Chapter 1

First Ideas

We will begin a study of partial differential equations by deriving equations
modeling diffusion processes and wave motion. These are widely applicable in
the physical and life sciences, engineering, economies, and other areas. Following
this, we will lay the foundations for the Fourier method, which is used to write
solutions for many kinds of problems, and then solve two eigenvalue/eigenfunction
problems that oeccur frequently when this method is used.

The chapter concludes with a proof of a theorem on the convergence of
Fourier series.

1.1 Two Partial Differential Equations

1.1.1 The Heat, or Diffusion, Equation

We will derive a partial differential equation modeling heat flow in & medium.
Although we will speak in terms of heat flow becaunse it is familiar to us, the
heat equation applies to general diffusion processes, which might be a flow of
energy, a dispersion of ingect or bacterial populations in controlled environments,
changes in the concentration of a chemical dissolving in a fluid, or many other
phenomena of interest. For this reason the heat equation is also called the
diffusion equation.

Consider a bar of material of constant density, p, having uniform cross sec-
tions with area A. The lateral surface of the bar is insulated, so there ig no heat
loss across this surface.

Place an z-axis along the length, L, of the bar and assume that at a given
time, the temperature is the same along any cross section perpendicular to this
axis, although it may vary from one cross section to another. We will derive an
equation for u(z, t), the temperature in the cross section of the bar at x, at time
t. In the context of diffusion, w{x,t) is called a density distribution function.

Let ¢ be the specific heat of the material of the bar. This is the amount
of heat energy that must be supplied to a unit mass of the material to raise
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Figure 1.1: Flux in segment = rate in minus rate out.

its temperature one degree. The segment of bar between x and z + Ax has
mass pAAr, and it will take approximately pcAu{z, t)Az units of heat energy
to change the temperature of this segment from zero 1o u{z,t), its temperature
at time £.

The total heat energy in this segment at any time £ > 0 is

T+AT
E{x, Az t} = f pcAu(E, ) dE.

This amount of heat energy within the segment at time t can increase in
two ways: heat energy may flow into the segment across its ends (this change
is the flux of the energy), and/or there may be a source or loss of heat energy
within the segment. This can occur if there is, say, a chemical reaction or if the
material is radicactive.

The rate of change of the temperature within the segment, with respect to
time, is therefore

E
— = flux plus source or sink

at
r+Ax 81'1.
- f peAE (€, 1) de.

Assume for now that there is no source or loss of energy within the bar. Then

r+HT o
fux = /x pcAa—T:(ﬁ,t)dg. (1.1)

Now let F'{z,t) be the amount of heat energy per unit area flowing across
the cross section at x at time ¢, in the direction of increasing x. Then the flux
of the energy info the segment hetween » and x + Az at time ¢ is the rate of
flow into the segment across the section at z, minus the rate of flow out of the
segment across the section at  + Az {Figure 1.1):

Aux = AF(z,t) — AF{z + Az, t).

Write this as
flux = —A(F(z + Az, t) - F(z,1)). (1.2)
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Now recall Newton’s law of cooling, which states that heat energy flows from
the warmer to the cooler region, and the amount of heat energy is proportional
to the temperature difference (gradient). This means that

Ou
Flz,t)= —KE(LB, t).
The positive constant of proportionality, K, is called the heat conductivity of
the bar. The negative sign in this equation is due to the fact that energy flows
from the warmer to the cooler segment. Substitute this expression for F'(z,%)
into equation 1.2 to obtain

du O
flux =—-A (—K%(:E + Az, Y+ Ka(m,t)) .

Write this as A
LTar 8 Su

From equations 1.1 and 1.3 for the filux, we have

T+Ax Ju T+AT 8 Hu
[ seadienae= [T 2 (kaGten) ae

Divide out the commeon factor 4 and wrile this equation as

AT Bu 8 (. Bu..
[ [rGren - 4 (K5en)| =0

This equation must be valid for any choices of ¢ and = + A=z, as long as
O<z<z+Azr<lL.

If the integrand were nonzero at some z, then, agsuming continuity of this inte-
grand (which is reasonable on physical grounds), it would be nonzero, therefore
strictly positive or strictly negative on some interval (x,z + Ax). This would
force this integral to be positive or negative, not zero, for this x and Ag, and
this is a contradiction. We conclude that the integrand must be identically zero,
hence o &2
u u
pe i K 377
It is convenient to denote partial derivatives using subscripts. In this nota-
tion,
ty = Ky, (1.4)

where & = K/cp is called the diffustvity of the material of the bar. Equation
1.4 is the one-dimensional heatf, or diffusion, equation. This equation, with
appropriate boundary and initial conditions, models a wide range of diffusion
phenomena, providing a setting for a mathematical analysis to draw conclusions
about the behavior of the process under study.
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If we allow for a source term Q(x, ¢}, then the heat equation is
U = ke + Q(;E, f) (15)

We say that equation 1.4 is homogeneous. Because of the Q{x, ) term, equation
1.5 is nonhomogeneous. Both equations are second-order partial differential
equations because they confain at least one second derivative term, but no
higher derivative. Both equations are also hinear, which means they are linear
in the unknown function and its derivatives. By contrast, the second-order
partial differential equation

Uy = Ky + Ul

is nonlinear because of the wu, term, which allows for an interaction between
the density function, u, and its rate of change with respect to x.

The linear, homogeneous heat equation u; = ku,, has the important features
that a finite sum of solutions and a product of a solution by a constant are again
solutions. That is, if u; (z, y) and wy(x, i) are solutions, then aw (z, y)+buz (2, y)
is also a solution for any numbers a4 and ». This can be verified by substituting
au1 + bug into equation 1.4. This is not the case with the nonhomogeneous
equation 1.5, as can also be seen by substitution.

Everyday experience suggests that to know the temperature in a bar of
material at any time we have to have some information, such as the temperatnre
throughout the bar at some particular tie (this is an initicl condition), together
with information about the temperatures at the ends of the bar (these are
boundary conditions). A typical initial condition has the form

w(z, 0) = flz)for 0 < x < L,

in which f(x) is a given function. Initia! is taken as time zero as a convenience.

Boundary conditions specify conditions at end points of the space variable
{or perhaps on a surface in higher dimensional models}. These can take different
forms. One commonly seen set of boundary conditions is

w(0,1) = a(t), u(L, ) = f{t) for 0 < z < L,

where a(t) and 3(¢) are given functions. These specify conditions at the left
and right ends of the material at all times.

Boundary conditions may also reflect other physical conditions at the hound-
ary. We will see some of these when we solve specific problems in different
settings.

A problem consisting of the heat equation, together with initial and bound-
ary conditions, is called & initial-boundery value problem for the heat equation.

1.1.2 The Wave Equation

Imagine a string (guitar string, wire, telephone line, power line, or the like)
suspended between two points. We want to describe the motion of the string
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X X+ Ax

Figure 1.2: Segment of string between x and ¢ + Az,

if it is fixed at its ends, displaced in a specified way and released with a given
velocity.

Place an z-axis along the straightened string from 0 to L, and assume that
each particle of string moves only vertically in a plane. We seek a function
u(z,t) so that, at any time ¢ > 0, the graph of the function u = u(x, t) gives the
position or shape of the string at that time. This enables us to view snapshois
of the string in motion.

Begin with a simple case by neglecting damping effects, such as air resistance
and the weight of the string. Let T(x.¢) be the tension in the string at point z
and time ¢, and assume that this acts tangentially to the string. The magnitude
of this vector is T(xz,t) =|| T(x,t) ||. Also assume that the mass, p, per unit
length is constant.

Apply Newton's second law of motion to the segment of string between z and
#+ Agz. This states that the net force on the segment due to the tension is equal
to the acceleration of the center of mass of the segment times the mass of the
segment. This is a vector equation, meaning that we can match the horizonial
components and the vertical components of both sides. Looking at the vertical
components in Figure 1.2 gives us approximately

T{x + Az, t) sin(@ + A®) — T{z,t) sin(#) = p{Ax)uyu(T, 1),
in which T is the center of mass of this segment of string. Then

T{x + Az, t)sin(¢ Z:Q} — T'{z,t)sin{§) — (@ b,

The vertical component, v(x,t), of the tension is

vz, t) = Tz, t) sin(6).
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Then )
v(z + Az, t} — vlz,t)

Azx
Let Ax — (. Then T — x, and this equation yields

= pun(ZT,1).

Uy = Piiyy.
The horizontal component of the tension is
h(xz,t) = T{x,t) cos(f}.
But
iz, t) = bz, t)tan(f) = h(z, thu,,

850
Uy = (}zuz)m = Py,

By assumption, the horizontal component of the tension on the entire segment
of string is zero:
e+ Az, ty — hiz,t) =0

Therefore, h(x,t) is independent of z, and
(htiy )z = hitge.

Then
hu;,;z = g

Or, in its more traditional form,
2
Ut = C Uz, {1.6)

where ¢ = h/p. Equation 1.6 is the one-dimensional wave equation (one space
dimension).

If a forcing term is included to allow other forees acting on the string, then
the wave equation may take the form

Ugr = Czuﬂ:-’z + P(E: t)‘

As with the heat equation, we attempt to solve the wave equation subject
to initial and boundary counditions specifying the position of the string at time
t = 0, and the forces that set the string in motion.

The boundary conditions if the ends of the string are fixed are

w(0,f) =uw{L,t)=0fort > 0.

We will also see variations on these boundary conditions. For example, if the
ends are in motion, with their positions at time ¢ given as functions of £, then

u(0,t) = a(t),u{L,t) = B(t) for t > 0,
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for some given functions a(t) and 8(t).
Initial conditions take the form

u(z,0) = p(z) and u(z,0) = Pz} for 0 <z < L,

specifying the initial position and velocity of the string. Equation 1.6, together
with boundary and initial conditions, is called an initial-boundary value problem
for the wave equation.

As we develop methods of solving these and other partial differential equa-
tions, under a variety of initial and boundary conditions, we will also explore
properties of solutions and questions sueh as the sensitivity of solutions to small
perturbations of initial and boundary conditions.

Problems for Section 1.1

1.

Show that s s
ulz, t) = cos(amz)e” @™ ¢

is a solution of the heat equation with k& = 1, on any interval [0, L].

Show that .
u(x, t) — t—3/28—22/4kf

is a solution of w; = ku,, for x > 0, > 0. Show also that this solution is
unbounded.

Show that
. {NAT nct
u{r,t) = asin (T) cos (T)

satisfies wave equation 1.6, with ¢ any constant, ¢ and L positive constants,
and n any positive integer.

. Let f be a differentiable function of a single variable, defined on the entire

real line. Show that
ulz, ) = (Fl@ — ct) + fo + cf)

is a solution of the wave equation uy; = c®ug. for all x and ¢, and that

u(z,0) = f(x).

. Let ¢¥(z) be continuous on the real line. Let

u(x,t) = %/ﬁmw(s) ds.

—ct

Show that u{x,t) satisfies the wave equation and that

Ue(2,0) = ¢ff{z) for 0 < ¢ < L.
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6. Let v and 4 be continuous on [0, L]. Let

1 T+et
u(e, t) = E(cp(m — ) +plz +et)) + % f Pis) ds.

Show that u(x, t) satisfies the wave equation and also the initial conditions
w(x, 0} = (z) and w;(x, 0} = ().

Problems 7-12 deal with a classification of second-order partial differential equa-
tions that are linear with constant coefficients in the second derivative terms.
Such an equation has the form

Aty + Bugs + Cuge + H(z £, u, t, 1) = 0, {1.7)

A, B, and C are constants; A and B are not both zero; and H{x,#, u, %, u;) is
any function of x, ¢, u, u,, and u;. Thus the equation may not be linear in the
first derivative terms or terms involving ». It is always possible to transform
equation 1.7 to one of three standard, or canonical, forms. These problems
explore how to do this.

7. Start with a change of variables
E=x+at,n=x+bl.

Show that this transformation from the x,t-plane to a £, 7-plane is invert-
ible if ¢ # b, and that

1

r = e (b —an),t =

1
Py Ut I

8. Let u(x(£,n),t(€,n)) = V(£, 1), obtained by substituting for & and ¥ in
terms of £ and 7 in equation 1.7. Show that the resulting partial differential
equation for V is

(A+0aB +a*C)Vee + (2A + (a + B) B + 2abC) Vg,
+ (A +BB +b2C)Vy + K&, 0, V. Ve, V) = 0. (1.8)

Hint: Use the chain rule to compute t,y, th,¢, and g in terms of partial
derivatives of V{&,#).

9. Suppose B? —4AC > . Try to choose @ and b to make the coefficients of
Vee and Vi, vanish. This requires that we solve for ¢ and b so that

Ca’+ Ba+4A=0and Cb° + Bb+ 4 =0.

Notice that ¢ and b both satisiv the same quadratic equation, having
coefficients 4, B3, and . Show that, if C # 0, then equation 1.7 transforins
to

er‘l’]' + K(€7 ns V} Vf: V]‘]) = (}
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by choosing

~B ++/B% — 4AC —-B - B? -4AC
a= oY, and b = 20 .

In this case we say that equation 1.7 is hyperbolic. The transformed equa-
tion is the ecanonical form of the hyperbolic equation.

If C' = 0, show that we can choose
E=tn= —%aﬂ-t

to obtain the hyperbolic canonical form.

10. Show that, if B? — 4AC = 0, then by choosing a = 0 and b = —B/2C,
equation 1.7 transforms to

v%f + K(f,?’}, Vs VE‘!VY}) = D'

In this case equation 1.7 is called parabolic and the transformed eguation
is called the canonical form of the parabolic equation.

11. Finally, suppose B? — 44C < 0. Now the roots of Ca? + Ba+ A = 0 are
complex, say p £ i{g. Define the transformation

£=x+pi =gt
and show that this transforms equation 1.7 to

qu& + V‘l’]l"f]' +K(§:7?; V? VE:‘V‘?) = D'

In this case, equation 1.7 is said to be elliptic and the transformed equation
is the canonical form of the elliptic equation.

12. Classify the diffusion equation and the wave equation as being elliptic,

parabolie, or hyperbolic.

In each of problems 13-17, classify the partial differential equation and deter-
mine its canonical form.

13, dugpy — 2000 + Wy + 2Uu, —zu =0
14, 2Upe + Upe —duy +x+1t = 0.

15, Upy — 3ty — xte = 0.

16. gy + Qe + 22 — tu=0.

17, tgr — 2Ugs + Sug + 1202 =0,



10 CHAPTER 1. FIRST IDEAS

1.2 Fourier Series

In attempting to solve problems involving the heat equation, French mathe-
matician Joseph Fourier (1768-1830} announced that he could write solutions
by expanding the initial temperature function in an infinite series of sines and/or
cosines of different frequencies. Because nearly any function {for example, a dif-
ferentiable function) could be an initial temperature function, this led to the
astounding assertion that almost any function one could think of had such a
trigonometric series representation. This was too much for the rest of the sci-
entific community to accept.

Nevertheless, Fourier’s method did appear to solve significant problems. In-
tensive research, carried out in the eighteenth and nineteenth centuries, justified
Fourier’s claims, and Fourier series now have many applications. In this section
we outline the fundamental idea of & Fourier series, enabling us to use these
series to solve initial-boundary value problems.

1.2.1 The Fourier Series of a Function

Given f(z) defined on [—L, L], we want to choose numbers ag, a1, - and
by, bo, -+ such that
fle) = la + i [a cos (m) + by, sin (m)] (1.9)
= 9 0 P e LR L n L .

on this interval. This is not always possible, but we will explore the idea to see
when it might work.

Fourier was not the first to imagine such a thing. The great Swiss mathe-
matician Leonhard Euler (1707-1783) devised a way of caleulating the a, s and
b, in the series 1.9. While lacking in rigor, Euler’s approach is interesting
and actually leads to the correct choice of the coeflicients. We follow Euler’s
reasoning here, with a proof given in section 1.4.

Euler's approach was based on some easily derived trigonometric integrals.
If n and k are positive integers, then

L
nary |, km:)
cos{ — Jsin| — | de =1,
[, () (5
L
nre kﬂ'a':) .
cos | — | cos de=0ifn £k,
[yeos () e (5

& FLTL ( k':r:z:)
sin{ = Jsin! — V de =0if n # k.
[ on () em (7 :

These are called orthogonality relations for reasons that will be clarified when
we treat eigenfunction expansions in Chapter 7.

and
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In addition,

110052 (?) a!:t::/j:sin2 (?-;—az) de=Lforn=12,---.

Now assume equation 1.9, and suppose that we can interchange the summa-
tion and an integration. In this case,

/:: flz)dx

_ | dz > L nTEe dz + b & . {nnx d
__/_LEGU +; a,n/_Lcos(T) + n/_Lsm(T) T
= Lay,

because the integrals of cos(nmz/L) and sin(nwzx/L) over [—L, L] are all zero.
The integrated equation therefore reduces to

L
/ f(x)dx = Layg,
-L

from which we conclude that

.
a =1 [ fe)de (1.10)

This is a formula for ag. Next we want to obtain formulas for a; with k =
1,2,.-.. Let k be any positive integer. Multiply equation 1.9 by cos{kwz/L)
and integrate to obtain

L kmrx
f_L flz)cos (—L—) dz
_ /L 1 knx d
=/, gaocos | —— | dz
= £ nTE krx R i krz
+ E lan/_Lcos (T) cos (T) dx+bnj;bsm (—L—) cos (T) dr| .

n=1
Now,

/L €08 (?) dr =10.
-L

Further, by the orthogonality relations, all of the integrals in the summation
are zero except for the integral

chos kﬂ cOS k?r_.:v dx
—L L L !
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which occurs when n = k. This integral equals L. We therefore have
L

flz)cos (k%) dr = ap L,

—-L

f flx (k”) for k=1,2,3,- (1.11)

Notice that this reproduces the formula for ap when & = 0.
Similarly, if we multiply equatien 1.9 by sin(knz/L) and integrate term by
term, all terms vanish except the n = & term in the integrals of the sine terms,

and we obtain
/ H a:)sm( ) dx. (1.12)

Equations 1.10-1.12 are the Fourier coefficients of f{x) on [-L,L]. When
these Fourier coeflicients are used, the series on the right side of equation 1.9 is
called the Fourier series of f(x) on [—L, L].

Now we must be careful not to overreach. Although we have a plausible
rationale for the selection of the Fourier coefficienis of a function, we have no
reason to believe that this Fourier series actually converges to the function at
all (or any!) points of the interval. The following two examples are revealing in
this regard.

from which

Example 1.1 Let

fr) = 0 for =3<=z <0,
24z for0<z<3.

We will write the Fourier series of f(z) on |[—3,3]. Compute the coeflicients:

= %/—if(x)d.r

1 £ 7
—5/0. (2+$)d3:—§,

1P naL
Gy = g[gf(x)cos (T) dx
1 /3 WAL
:gfo (2+3:)cos( i )d;z:

(-0 -1

niwe
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Figure 1.3: Graph of f{z) from example 1.1.

and

/ f(x)sn )
= 3/0 (2 + z)sin (n;x) de

_2-5(=1)"
- nw ’

The Fourier series of f(z) on [-3,3] is

b [ e () + 28 e ()]

Figure 1.3 is a graph of the function, and Figures 1.4 and 1.5 compare the
function with the 10th and 50th partial sums, respectively, of its Fourier series.
These graphs suggest that the series converges to f(x) for —3 < « < 0 and for
0 < z < 3. However, at # = 0, the series does not appear to converge to f(0),
which is 2. And at both 3 and —3, the Fourier series is the same:

n=1

This series cannot converge to both f(—3) = 0 and to f(3) = 5.
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Figure 1.4: Comparison of f{z) with the 10th partial sum in example 1.1.

Figure 1.5: Comparison of f(x) with the 50th partial sumn in example 1.1,
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Example 1.2 Let

-1 for-2<z<1,
glz)y=43 forl <z <3/2
-5 for3/2<x<2.

The Fourier coefficients of g(z) on [—2, 2] are
ap = —2,
an = ;5-1_-(—4 sin{nw/2) + 8sin{3nx/4)),
by = %((—1)“ + cos{nm /2) — 2 cos(3nw/4)).

The Fourler series is

-1+ i [:—W (—4sin{nn/2) + 8sin{3nw/4)) cos (?)

n=1

+ % ({(—1)" + cos{(nxn /2) — 2cos(3nm/4)) sin (Eg"x_)) .

Figure 1.6 is a graph of this function, and Figures 1.7 and 1.8 are graphs
of the tenth and fiftieth partial sums of the Fourier series, respectively. It
does appear that the series converges to g(z) for —2 < 2z < 1, | < z < 3/2,
and 3/2 < x < 2. However, it is not clear what the series converges to at
x=-2,1,3/2 or 2. And, as we saw in example 1.1, this Fourier series is the
same at, both end points of the interval, even though g{—2) # g(2).

Because of examples like these, we need something to tell us the sum of a
Fourier at points on the interval. One criterion for convergence is in terms
of the familiar notions of continuity and differentiability. We say that f(z)} is
piecewise continuous on [a, b] if the following three conditions are satisfied:

1. f(z) is continuous at all but possibly finitely many points of [a, b].

2. If there is a point ¢ with ¢ < ¢ < & at which f(z) is discontinuous, then
limg . f{z) and lim__,. f(z} are both finite. That is, f(x) has finite one-
sided limits at every point of discontinuity interior to the interval (if there are
any such points).

3. limg.s.4 f(z) and lim,_,— f(z} are both finite. This means that, at the
end points of the interval, the function has finite limits as x approaches the end
point from within the interval.

These conditions mean that any discontinuities the function has on the in-
terval are jump discontinuities, so-called because the graph has a gap or jump
at such a point. The function of example 1.1 has a jump discontinuity at z =0
(Figure 1.3), while the function of example 1.2 has jump discontinuities at z = 1
and @ = 3/2 (Figure 1.6). Both of these functions are piecewise continuous on
their interval of definition.
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-

=3

-4

=5

Figure 1.6: Graph of g(z) of example 1.2.

] y

Figure 1.7: Comparison of g{x) with the 10th partial sum in example 1.2,
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L=
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-]
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Figure 1.8: Comparison of gz} with the 50th partial sum in example 1.2

f(2) is piecewise smooth on [a,b] if f{z) and its derivative f'{z) are both
piecewise continuous on the interval.

Piecewise smooth means that the graph has a continuous tangent at all but
finitely many points, and any discontinuities of the function exhibit themselves
in finite jumps or gaps in the graph. The functions of examples 1.1 and 1.2 are
piecewise smooth.

Finally, we will use the standard notation

fla=) = lim flo— k) and f+) = lim f(z+h).

Sf(x—) is the left limit of the function at x, and f(z+)} is the right imit at x.
The plus and minus signs in the notation refer only to left and right limits, and
x itself may be positive, negative or zero.

In example 1.1,

f{0—)=0and f(0+) =2,
while for —3 < z < 0 and 0 < & < 3, fle—) = f{z+) = f(z). Further,
F(=3+)=0and f{3-)=5.
At any point at which the function is continuous, the left and right limits

equal the fu:l_lction value at the point.
In example 1.2,

o= Ay o -h=-1

while
9(1+) = lim g(1+h)=3.
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L/

o (et} + f(x=))2

A

X

Figure 1.%: Convergence of a Fourier series at a jump discontinuity.

For -2 <z < 1,1 <x<3/2and 3/2 <z < 2, g(z-)} = g{z+) = g(r) because
g(r) is continuous on these intervals. And, g(—2+) = —1 and g(2—) = —5.
With these ideas and notation, we can state the following.

Theorem 1.1 (Convergence of Fourier Series) Let f(zx) be piecewise
smooth on [—L,L]. If —L < ¢ < L, then the Fourier series of f(z) on this
interval converges to

S(fe—) + fa+)).

Further, at both & = L and x = —L, the Fouricr series converges to

SU-L) + F(L-)).

Figure 1.9 displays this behavior. If the function has a jump discontinuity at
#, then the graph has a gap at x and the Fourler series converges to the average
of the left and right limits of the function at . This is the point midway between
the ends of the graph at the gap. At any z where the function is continuous,
the series converges to f{x}, because at such a point, f(z—) = f{x+) = f(z).

At both end points L and —L, the Fourier series converges to the average of
the left limit of the function at L, and the right limit at —L.

In example 1.1, the Fourler series of f{x) converges to

0 for -3 <z <0,

1 at xr =0,

24ax forG<e <3

5/2 atz=-3andatz=3.

This conclusion at the end points 3 and —3 follows from the facts that f(—3+) =
0 and f(3—) = 5, and the average of these limits is 5/2.
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15 1

10 4

Figure 1.10: The function w(z)} of example 1.3.

In example 1.2, the Fourier series of g{x) converges to

(-1 for —2<z<]1,

1 atx =1,
for 1 < & < 3/2,
Y-1 atz=372,

-5 for3/2<z<?2
-3 atz=-2andatz=2

The conclusion at the end points follows from the facts that g{—2+) = —1 and
g(2~) = —5, and the average of —1 and —5 is —3.

Example 1.3 Let

—dr for 4 <z« -2

4sin{3z) for -2 <x < 2,
w(z) =

3 for 2 <x <3,

- for 3 < x < 4.

Figure 1.10 is a graph of this function. The Fourier series of w(x) on —[4, 4]
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converges to

'3

—4z for -4 < xz < =2,

1(8 ~ 4sin(6)) at x=-2,

4sin(3x} for —2 < z <2,
£(3+4sin(6)) at 2z =2,

—r for3<ax <4

G at x = —4 and at £ = 4.

The conclusion at the end points follows from the caleulation
w(—4+) = —4(~4) = 16 and w(1~) = ~4,

We do not have to compute the Fourier coefficients of w(x) to draw these con-
clusions.

1.2.2 Fourier Sine and Cosine Series

In solving partial differential equations on an interval [0, L], we will often need
to expand a function in a series of just sines, or just cosines, on this half-interval,

The key to such a sine or cosine expansion is to recall some facts about even
and odd functions. A function f(z) defined on [—L, L] i3 called an even function
if

J(—=z)=flz)for 0 <z < L.

Figure 1.11 shows a typical graph of an even function. The part of the graph
to the left of the vertical axis is a reflection across this axis of the part to the
right. (Fold the paper along the vertical axis and trace the part of the graph
for £ > 0). Examples of even functions are ¢, z°, cos(x), and e

If f(z) is even on [—L, L], then

/if(:z)da:=2f;f(a:)d:c,

This is because the area under the graph to the right of the vertical axis equals
the area under the graph to the left.
We call f(z) an odd function if

f—=x)=—f(-z)for0< 2z < L.

Figure 1.12 shows the graph of a typical odd function. The graph to the left of
the vertical axis is the reflection through the origin of the graph to the right of
the vertical axis. That ig, fold the graph for z > 0 over the vertical axis, then
fold again over the horizontal axis, Examples of odd functions are z*,sin(z),
and z7 — 4.

If f(x} is odd on [—L, L}, then

jjrf(x)d:nzo
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Figure 1.11: A typical even function, symmetric about the vertical axis.
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Figure 1.12: A typical odd function, symmetric through the origin.
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because the area under the graph to the right of the vertical axis is the negative
of the area to the left.
Notice that:

P=at),

a product of odd functions is even (for example, 3z

a product of even functions is even {z12? = z%), and

a product of an even and an odd function is odd (x%z% = a?).

Now go back to the general setting of a function g{x) defined on [0, L].
Extend g(x) to an even function G.(z) on {~L, L] by defining

_jelz) for0D<a <L,
Gele) = {q(—m) for —L < & < 0.

This defines (7.(x) on [—L, L] by leaving g(x) alone for 0 < x < L, and reflecting
the graph of g{z) on [0, L] across the vertical axis to define it for —L < z < (.

Expand G.(r) in a Fourier seriez on [—L, L]. Because G.(x)cos{nmz/L) is
an even function and G.(2) = g{x} for & < x < L, the cosine coefficients in this

expansion are
1k nIL
An:-L—/_LGe(rz:)co.s( 7 ) dr

2 g v nry
=2 [ uwreos () e
2 L

= E/ﬂ glx)cos (RLLI) dax.

Further, G.{x}sin{nrx/L) is odd on {—L, L], so the coeflicients of the sine terms

vauish: L
1 . {RTE
B, = 7 [.LGE_(Q)Sln (T) de =1

The Fourier series of G.(x) on [—L, L] is, therefore,

%An + iAn cos (n—f) ,

fi==

containing only cosine terms. Because G¢(z) = g(z) on [0, L], this is a cosine
expansion of g(z) ou [0, L].
In summary, the Fourier cosine series of g(z) on [0, L] is

%Ag—f—ZAncos(zﬂ), {1.13)

=1
in which

L )
A, = E/U gl{x) cos (%) dr for n=10,1,2,3,---. {1.14)
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Using G(z) on [—L, L] and the convergence theorem, we can determine the
surmn of this cosine expansion on [0, L]. Assuming that g(z) is piecewise smooth,
use the fact that G.(x) = g{x) for 0 < & < L to conclude that the cosine series

converges to

%(g(x—) +olz+Nif0<x < L

For £ = 0, compute the limits:
G(0+) = hl—lrr(IJl+ G0+ h) = hgllnl*' Ge(h)
= lim g(z) = g{0+)
and
G-} = hl—1>1{]1+ G.(0—h) = Jlt]_}}r{r)le Ge(—h)
= lim g(h) = (0+).
Therefore, at 2 = 0, the cosine expansion of g(z) converges to
1 1
2(G(0-) + G(0+) = S(3(0+) + g(0+) = g(0+)

A similar argument shows that, at x = L, the cosine series for g(z) on [0, L]
converges (o g{L—}.

The even extension of g(x) to G.{x) was a device used to obtain this half-
interval expansion of g(z) from the already known Fourier series of G.(x) on
[£,L]. In computing the coefficients A, in a cosine expansion, we need only
g{z) and do not have to explicitly construct G (z). Just write the series 1.13,
with coefficients from equation 1.14.

Example 1.4 (A Fourier Cosine Expansion) Let g{z) = e for 0 < z <
2. From equation 1,14, the cosine coefficients of g(x) on this interval are

2 2
Ag:—/ €dr=¢?—1
2 a

and, forn=1,2,--,

2 f? - nAT 4 n 2
An—§£ e” cos (T) de = ——=—=((—1)e* - 1}.

T A+ it
Further, using the convergence theorem, this series will converge to e for 0 <
X< 2

1, . 4 2 nwE
T = (21 —_ {(~1"e? Y
e 2(6 )+nE=l4+n2ﬂ_2(( 1"e l)cos( 3 )

Figure 1.13 shows a graph of g{z) = ¢* compared with the 10th partial sum
of this cosine series on [0, 2]. This cosine expansion appears to converge very
quickly to g(z).
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Figure 1.13: g(z) compared with the 10th partial sum of the cosine expansion
in example 1.4

We can develop a Fourier sine expansion of g{z) on [0, L] by a similar tactic.
Now, however, because the sine terts in the series are odd functions, extend
g(z) to an odd function G,(z) on [—L, L] by setting

g <E <
G(z) = gz} forD<xz <L,
~g(—z) for —L <x < 0.

G.(z) is an odd function and G,(z} = g{z) on [0, L]. Further, the Fourier series
for G,(x) on [- L, L] will contain only sine terms, because the coefficients of the
cosine terms involve integrals of G,{z} cos(nwz/L), and these integrals are zero
because this is an odd function on {-L, L.

In summary, the Fourier sine expansion of g(z) on [0, L] is

b nr

S B, sin( ) (1.15)
L

=1

where

9 rk . {NAT
B, = E/cn #{x) sin (T) drforn=1,2---. (1.16)

As with cosine series, we do not actually have to write out (,(z) to compute
these coefficients.

Assuming that g(z) is plecewise smooth on [0, L], this sine series will converge
to

%(g(x—) +gla+Nfor 0< e < L.
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Figure 1.14: &* compared with the 150th partial sum of the sine expansion in
example 1.5.

Without any computation, a sine series converges to 0 at x = 0 and at & = L,
because sin(0) = 0 and sin{nx) = 0 for every integer n.

Example 1.5 (A Fourier Sine Expansiocn) We will write a Fourier sine
series for * on [0,2]. The coefficients are

2
ALY Znar
B-n - /0 e” sin (T) dz = m (]_ — (—1)“82) .

This sine series converges to € for 0 < z < 2 (but not at 0 or 2}, so we can
write

s 2nrw AL v
e = Zl y (1 - (—1)”’e2) sin (T) for0 <z < 2.

Figure 1.14 shows graphs of g(x) and the 150th partial sum of this sine
expansion. Contrast thig with the much more rapid convergence of the cosine
expansion of this function in example 1.4.

Problems for Section 1.2

In each of problems 1--6, write the Fourier series of the function, and determine
the sum of this series on the interval. Compare graphs of some partial sums of
the series with a graph of the function.

1. fley)=—zfor -1 <z < 1.
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Flz) = cos(3z) for —wv <z < m.
flz)=sin(2z) for -2 <2 < 2.

fir)=1—|x|for 2 <x < 2.

fa) = —-4 for —x <z <0,
7T )4 for0 <z <.

Jz) =cos{z/2} —sin(z) for —r <z <7

In each of problems 7-12, determine the sum of the Fourier series of the func-
tion on the interval. In doing this, it is not necessary to compute the Fourier
coeficients.

7.

10.

11.

12.

13.

2¢ for -3 <2 <0,
flzy=<¢0 for 2<2 <1,
z? forl<ax<3.

cos{z) for —2<x <1/2,
sin(x) for 1/2 <z <2

—x for —4 <x <2,
2 for 0 <& <4,

1 for -2 < <0,
-1 for0<x<1/2,
z? for1/2<z <2

cos(mz) for -2 <z <0,

for0<xr<32
l1—z for -3 << x < -1/2,
24z for —1/2 <z <1,
flz) = P _
4—z for 1l <z <2,

l—z—2? for2<z<3.

Sum both of the series

=)

Z—andz nz

n=1 =1

Hint: Expand f(x) = 22 in a Fourier series on [~, 7]. Now make choices
of & to obtain these series.
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14.

Suppose
:—ao—l-ZLanos( )+b sm(nzx)

for —L < z < L. Multiply this equation by f{z) and assume that the
resulting expression can be integrated term by term to derive Parseval’s
equation:

—a0+z 2 g2y = lf((:c))

n=1

In each of problems 15-22, find the Fourier cosine series and the Fourier sine
geries for f(z) on the interval. Determine what each series converges to on this
interval. Compare graphs of some partial sums of this series with a graph of the
function.

15.

16.

17.

18.

19.

20,

21.

22,

23.

fley=4dfor0<x <3

1 for 0 <z <1,
f(x)"—{—l for 1 <z <2,

flz) = 0 for 0 < ¢ < /2,
~sinfz) forw/2 <z <.

flz)=2zfor0< 2 < 1.

flzy=2%for0 <z <2

flzy=e®lor0<e <L

f{z)=sin(3z) for 0 <z < 7.

x foro< e <1,
flz) =
22—z forl<a <2,

Sum the series

-
n=14n 1

Hint: Expand sin{x) in a cosine series on [0, 7] and evaluate this series at
an appropriately chasen point.
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1.3 Two Eigenvalue Problems

In solving initial-boundary value problems, we will often encounter the problem:
X"+ 22X =0; X(0) = X(L) = 0. {1.17)

We want to find numerical values of the constant A such that there are nontrivial
(not identically zero) solutions X {z) of problem 1.17. Such values of ) are called
eigenvalues of this problem, and corresponding nontrivial solutions X {x) are
eigenfunctions.

To find the eigenvalues and ecigenfunctions of problem 1.17, consider sepa-
rately the cases that A is zero, negative, or positive.

If A =0, then X" =0, so X(2) = ¢z + d for some numbers ¢ and d. Now

X(0) =d=0

and

X(L) = el =t implies that ¢ = 0.

This means that X (2} = 0 for all z. The only solution for X (z) in this case is
the trivial solution, so 0 is not an eigenvalue of this problem.
If A < 0, then we may write A = —o?, where o > 0. Now

X" —a?X =0,

with general solution
X{z) = ce®™ + de™ "%,

Then

X(0) = c+ d = 0 implies that ¢ = —d,
50

X{z) = c(e™ — ™ %*) = 2¢sinhinz).
And,

X(L) = 2csinhf{al) =0
Since al > 0, sinh{al) > 0, so ¢ = 0 and X(z) is the trivial function. This
problem has no negative eigenvalue.
Finally, if A = 0, write A = o, with & > 0. Then
X" +a’X =0,
with solutions of the form

X{x) = acos(az) + bsin(ax).

Now
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s0 X(z} = bsin{ox). Then
X{L) = bsin(al)=0.

If 5 = 0 we again have only the trivial solution and have run out of cases. Thus
attempt to find solutions with & 7 0. This will require that we choose « 50 that

sin{aed) = 0.

We can manage this if oL is an integer multiple of 7, leading us to choose

a:%fornzl,Z,---.

Denote

n2n?

)kn = ? for n = 1,2,3,“’ .
These are the eigenvalues of the problem 1.17, indexed by n. Corresponding to
each eigenvalue A, we have an eigenfunction

AL

Xa(a) =sin (222)
n( ) L

or any nonzero constant multiple of this function.

We will also frequently encounter the problem:

X4+ AX =0; X'y = X'(L)=0. (1.18)

As with problem 1.17, consider cases on A.

If A =0, then X{z)} = cx+d for some constants ¢ and 4. Now X (0) =¢=0,
and X(z) = d is a solution. Unlike problem 1.17, ¢ is an eigenvalue of this
problem, with nonzero constant eigenfunctions.

If A < 0, write A = —a?, with & > 0, to obtain the general solution

X(z) = ce™ + de™ o
of the differential equation. Now
X{0)=ac—ad=0
so ¢ = d and
X(z) = c{e™® + 7)) = 2ccoshaz).

Then
X'(L) = 2casinh(aL) = 0.
But al > 0, and sinh(aZ) > 0, so ¢ = 0 and this case has only the trivial
solution. Problem 1.18 has no negative eigenvalue,
If A >0, set A = a? with o > 0. Now X” + o?X = 0, with the general
solution
X = ccos(az) + dsin{azx).
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Now X'(0) =da =0, so
X(z) = ccos(az).

Then
X'(L) = —~aesin(aL) = Q.

To obtain a nontrivial solution, we need ¢ £ 0. This forces us to choose a so
that sin{el) = 0. As in problem 1.17, oL must be a positive infeger multiple
of 7, say ol = nn. Then o must be chosen as

nw
& = Tll forn=1,2.3,---.
For each positive integer i,
nig
A‘H - L2

is an eigenvalue of problem 1.18, with corresponding eigenfunction

Xz} = cos (?) forn=1,2.--.

To summarize, the cigenvalues and eigenfunctions of problem 1.18 are
2.9
nim WEr
A = --—I—JE—,XH(:C) = 08 (—L—) forn=0,1,2,---.
We are now prepared to solve some important problems involving partial
differential equations.
Problems for Section 1.3

Find the eigenvalues and eigenfunctions of each of the following problems.
L X4+ 2X =0, X{0) = X'(L)=0.
2. X"+ AX =0; X' () = X{L)=0.
3. X"+ AX =0, X(0) = X(L), X'(0) = X'(L).
4 X"+ 2AX =0;X(0}) =0, X(L)+2X'(L} = 0.

1.4 A Proof of the Convergence Theorem

We will prove the Fourier convergence theorem, providing an understanding of
why the series converges to the left and right limit of the function at interior
points of the interval.
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1.4.1 The Role of Periodicity

Recall that f(z) is periodic if f(x) is defined for all real numbers x and, for
some positive number p,

flz) = flz+p)

for all . We call p a period of f. If p is a period, so are 2p, 3p, and so on.
When we speak of the period, or fundamental period of a function, we mean its
smallest period. For example, sin(z) has period 2nr for any positive integer n,
because

sin{z + 2n7) = sin(x) for all «.

However, 27 is the smallest period of sin(z), so we say that sin{z) has funda-
mental period 27.

Of course, “most™ functions (for example, polynomials and exponential func-
tions) are not periadic.

Now consider an issue we avoided in informally developing the idea of a
Fourier series. For Fourier expansions on an interval [—L, L], or perhaps [0}, L],
we considered function values f{z) only for x in this interval. Indeed, this is
the way we look at things when we use Fourier series to solve initial-boundary
value problems involving partial differential equations. If we are studying heat
conduction in a har of metal, we place the bar along an axis and do not think
about values of 2 outside this segment.

However, even though we think of the function as living on an interval in
such applications, the Faurier series on [—L, L] is

%ao + 2 {an €08 (?) + by sin (?)] .

which is not ouly defined on the entire real line but is periodic of period 2L! How
can f(z}, which is defined only on an interval, be equal to a periodic function
(its Fourier series)?

The answer is that the Fourier series actually represents not the function,
but its periodic extension to the entire real line.

We can see this with a simple example. Let f(r}) = z for -1 <z < 1. The
familiar graph is shown in Figure 1.15. Figure 1.16 shows its periodic extension
f to the entire line. This extension is done by sliding the graph forward from
[—1,1) onto the intervals [1,3},(3,5),[5,7), - and backward onto the intervals
[—3.-1),[-5,-3),[~7,—5), - -, as in the diagram. Then f(x) = f(z) for -1 <
z < 1, but f(x) continues on to be defined for all x. Further, f is periodic of
period 2, just as the Fourier expansion of f(x) on [-1,1] is.

In making such an extension, a subtlety appears. Because f is periodic, we
cannot assign functions values to f arbitrarily at different points. Given any «,
we necessarily have f{a) = f(a + np) for any integer 7.

In this example, where f has period 2,f(z) = f(z + 2n) for every integer n.
In particular,

F-1) = F(-1+2) = f(1).
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Figure 1.15: Graph of f{z) =1for -1 <2 < 1.

Figure 1.16: Periodic extension f {x) of the graph of Figure 1.15.
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It was in anticipation of this that we defined f(z) for —1 < z < 1 instead of on
—1 < g < 1. Once f(—1) is specified, then f(1) is predetermined.

Now notice that, with f {z) defined for all z, there are no endpoints to
distinguish in stating a convergence theorem. At every real number z, the
Fourier series of f(x) on [-1, 1] converges to (f( =)+ flz+))/2.

In particular, at @ = —1, f(—1+4) = —1 and f(—1—) = 1, so at —1 the series
converges to

S(F(-14)+ F1-)) =

Andat z =1, f(1-) =1 and f{1+) = —1, so the series also converges to

(f(=1+)+ f(1-)) =0.

o=

Armed with this point of view, we now develop the machinery needed to
prove the convergence theorem, beginning with Dirichlet’s formmla. We will
let . = « and work on [—m, 7). This simplifies the frequently encountered
expression nrx/L to just nx.

1.4.2 Dirichlet’s Formula

Convergence of any series depends on the convergence of its sequence of partial
sums. Let f{z) be periodic of period 2x. The Nth partial sumn of the Fourier
expansion of f(x) on [—m, 7] is

N
Sniz) = lﬂ.o -+ Z(an cos(nx) + by sin(nz)),

n=1

in which the a9 and b] s are the Fourier coefficients of the function on the
interval. We rewrite Sy () in a way that will help us determine its limit as
N — 0.

Insert the Fourier coefficients of f(z) into Sx{z) to write:

Snw) =52 [ foa
N ™
+ = p Z [ ) cos(n&) d€ cos(nz) + . F(&) sin(n&) d{sin(nm)}
?11_[ F&) + E(cos né) cos(nx) + sin(ng) sm(nx))] d¢
” N
= [ 19 |5+ X costante - m))] de. (119)
- n=1
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It is possible to derive a simple expression for the sum in square brackets.
Let y = £ — x and let

:—+Zc03ny

Multiply o by 2sin(y/2) to obtain

N
2o sin{y/2) = sin(y/2} + 2 z cos{ny}sinfy/2)

n=1

N
= sinfy/2) + Z[siu((n +1/2)y) — sinl(n — 1/2)y)]

n=1
= sin(y/2) + [sin(3y/2) — sin(y/2)) + [sin(5y/2) — sin(3y/2)] +
+ [sin{({N — 1/2)y) —sin{{ N — 3/2)y)}
+ [sin((N + 1/2)y) — sin{{ N — 1/2)y)].

This is a telescoping sum, with all terms except one canceling on the right. We
obtain
20 sin{y/2) = sin{(N + 1/2)y).
Then
_ sin((N +1/2)(¢ ~ 1)
T TS - /)

provided that sin({(¢ — x}/2) # 0. Inserting this result into equation 1.19, we
e (N +1/2)(& - )
1 f7 sin{{N + 1/2){{ — =
= — &, 1.2
FRUE = el (1-20)
Put £ = & — ¢ into equation 1.20 to obtain

st =2 [ pa U L0 4

T

Because f(x) is periodic of period 2, this integrand also has period 2x and we
can carry out the integration over any interval of length 2r. In particular, we

can write (« / )
b]Il N +1/2)
Sn{x) = f flx 2‘3111(5/2) dt. (1.21}
This is Dirichlet’s formula. The function
sin((N + 1/2)t)
2sin{t/2)

is called the Dirichlet kernel. Tt has the following property, which we will use
shortly.
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Lemma 1.1

1 /% sin((N+1/2)8) 1 [Tsin((N+1/2)¢) 1
ﬂ' [ﬂ 2sin(t/2) dt = ﬂ‘_/o d

2sin(£/2) 2

Proof Let f(z) = 1. The Fourier coefficients of f(z) on [—m, ]| are

1 e
Tdx
£

in=2 [ costugyas =0and b = - [ sin(ngyat ~ .

-

and, forn =1,2,---,

Therefore, for this function, Sy(z) = 1 and Dirichlet’s formula 1.21 becomes:

1 sin((N + 1/2)t) 1 f sin((N +1/2)t)
= dt = 1. 1.22
ﬁj;,, 2sin(t/2) a2 T 2sin(t/2) (1:22)
But if we let £ = —w in the left integral in equation 1.22, we obtain
0 sin((N 1 f%si 1
1/ sm((l\. +1/2}¢) Qb = _/ qm((.;’\.f-k /2)11;)(“])‘11”
TJ_p  2sin(¢/2) T4, 2gin{w/2)
= lf —sm((}\jr +1/2)0) dip.
7 fo 2sin(t/2)

This means that the integrals on the left in equation 1.22 are equal. Because
their sum is 1, each integral equals 1/2, as was to be shown.

1.4.3 The Riemann-Lebesgue Lemma
We will prove a result needed to compute the limit of Sy () as N — oo.

Lemma 1.2 (Riemann-Lebesgue) Let ¢ be piecewise continuous on [a, b].
Then

b
lim / glt)sin({wt) dt =
WS a
Proof Suppose first that g is continucus on [e, b]. Let

I= /bg(t)sin(wt) dt.

Let t = £ + w/w, with w chosen large enough that b — r/w > a. Then

b— fw

b—m/fw
I= f o€ + 7 /w) sinwt + ) dé = / 6(& + /) sin(uwt) d.

—r fw A=
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To maintain ¢ as the variable of integration, replace { with ¢ in the last integral:

b
I= —f glt + 7 /w) sinfwt) dt.

—w

Add this expression for I to the definition of I to write

b LES NIN)
21’:/ g(t)sin(wt)dt—f g(t +m/w)sin(wt} dt

a—1

B
= / [g(t) — g(t + 7 fw)] sin{wt) dt

a—1tfw 4
+ /b g(t) sinfwt) df — / glt + 7 /w) sin(wt) dt. {1.23)

—ar a—=xw

Because g is continuous on a closed interval [a, #], there is some number M such
that |g(t)| < M on [a,b]. Then

b
‘J[ g@)snmaw)dt|g_n43
b—mfut W

and
@ )
\ / g(t + 7/w) sinwt) dt| <mZ.
Ja—umfu W
For the remaining integral in equation 1.23, use the fact that g is uniformly
continuous on [¢,b]. Let € > 0. Then there is some § > 0 such that

1 .
|Mﬂ—9@ﬂ<§mﬂx—m<d
Then

lg(t) — gt + 7/ew)] < %f if = <5

Therefore, if w > 7 /4§, and w is also large enough that b—r/w > a and M7 /w <
¢/3, we have from equation 1.23 and the bounds just obtained that

Ki} " € € € E
2Nl M—+M-—+_-<-+-+-=c¢
|27 < w+ w+3<3+3+3 €
But then c
|I|<§<eifw>ﬂ'/d

This proves that
lim f=0.

L — 0

Now we must confront the case that ¢ has a finite number of jump discontinu-
ities in [a,b], say at #; < f3,< -+« < t;. Write I as a sum of integrals, over
e a1], b1, 2] -+ L [tRs 8], By redefining gt) at the end poinis of each of these
intervals, if necessary, we can write I as a finite sum of integrals, each having
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the same form as I, but each having a continuous integrand. (This redefinition
of g(¢) at finitely many points of [a, b] does not affect the value of the integrals).
By what we have just shown, each of these integrals has limit 0 as w — oo,
completing the proof of the lemma.

1.4.4 Proof of the Convergence Theorem

We will prove that, if f is piecewise smooth on |-, 7] and periodic of period
27, then the Fourier series of f(z) on this interval converges at x to

5 (Fla=) + f+).

The argument is essentially the one used by Dirichlet. Use Dirichlet’s formula
and Lemma 1.1 to write

sm N+1/2)t)
=7 [ st o

sm N+ sin((V + 1/2)t)
_/ fla+ © 2sin{t/2) at

/ fa+b) S‘“(Q(gn;;/lg)” dt — & fa—)+ 3 f (o)
L1 / o+ 2N 1200 E}Z(f”dt—%f(x+)+§f(x+)
L [+ o - sa- )1% + 1 fan)

f e+ 9~ o et 0

To complete the proof, it is enough to show that each of the last two integrals
in equation 1.24 has limit zero as N — o0, In this event, we will have shown

1
Sn(@) = 3 (fe=) + f@+)).
To prove that the last integral has limit zero, let

_ flz+t) = fla+)
90 = )

Using the fact that f/(x) is piecewise continuous on [—m, 7], observe that

flz+t)— flat)

dt + %f(:ﬁ—). (1.24)

for0 <t <

t]l—1+%]+ g(t) = r]:l—m 25in(t/2)
i 10 = FE) 12
TS0+ 1 sin(£/2)
~ lim flz+ty— flzt) lim — /2
=0+ 1 ¢—0+ 8in{#/2)

= f(z+) 1= fllz+)
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Now define
g(0) = f/(0+).

Because f is piecewise smooth on [—w, ] and periodic of period 27, g is piecewise
smooth on [0, 7]. By the Riemann-Lebesgue lemma, with w = N + 1/2,

T

lim g(t) sin{wt) dt
= NIEHN/U |flz+t)— f(E+)|EEW dt = 0.

This proves that the last integral in equation 1.24 has limit zero as N — .
By a similar argument, we can also conclude that

] : N
Jm [ et - f(m—)|Wdt — 0.
This proves that )
i Sy () = 5 (flz+) — flz—)},

as we wanted to show.
Problem for Section 1.4

At points of discontinuity, Fourier series exhibit the Gibbs phenomenon, named
for the Yale mathematician Josiah Willard Gibbs [1839-1903), who was the first
to offer an explanation. To see the Gibbs phenomenon in a specific case, let

-1 for-1<z<0,
f(x)_{l for0 <z <1.

This function has a jump discontinuity at x = 0, and the Fourier series of f(x)
on {—1,1} converges to 0 there.

Graph f(z) and partial sums Sy(z) of this Fourier series, for V = 10, 20,
40, 60, and 100. You will see the partial sums approach closer to the graph of
the function for —1 < & < 0 and 0 < & < 1. However, at {}, the partial sums
appear to exhibit oscillations of a height that do not decrease as & approaches
0 (even though the length of interval to the left or right of 0 on which these
oscillations occur becomes shorter). This is the Gibbs phenomenon, and it is
seen in the convergence of Fourier series at jump discontinuities.

In the late 18th century, it was thought that, if a series of functions converges
to a function, then the graphs of the partial sums would vary from the limit
function by less and less as ¥ — co. The Gibbs phenomenon showed that this is
not true in the way it was then understood. The length of interval on which the
oscillations occur does shorten and tends to zere as n — oo, but the oscillations
remain at about the same height.



