Chapter 1

First Ideas

1.1 Two Partial Differential Equations
2. Verifying that the function is a solution of the heat equation is a straight-

forward exercise in differentiation. One way to show that w(z,t) is un-
bounded is to observe that if t > 0 and x = 2V kt, then

1
u(e,t) = —t=3/2
e

and this can be made as large as we like by choosing ¢ sufficiently close to
Zero.

4. By the chain rule,

we = = (f(@—ct) + f'la+et)),

— D =

Uze = 5 (f"(z =) + f"(x + b)),
w = 5@ = et)(~¢) + [z +et)(@), and

e = ("o = et) (= + 1@+ b))

It is routine to verify that uy = c?uy.,.

7. One way to show that the transformation is one to one is to evaluate the
Jacobian
&z ft

=b—a=+#0.
Ne Mt 7
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Finally, solve & = a + at, n = x 4 bt for z and ¢ to obtain the inverse
transformation

1 1

- " (e — t =
€z b_a(§ an)ﬂ b_a

(n—2¢).

. With V(&,n) = u(x(&,n),t(&,n)), chain rule differentiations yield:

Uy = V£€:c + Ve = Ve + Vi,
up = Ve& + Ve = aVe + 0V,

and, by continuing these chain rule differentiations and using the product
rule,

Uge = Vee + 2Vey + Vi,

uy = a®Vee + 2abVe,, + b*Vyy,y, and
Uyt = aVee + (a + 0)Vey + bV,

Now collect terms to obtain

Auwz + Bugs + Cutt =
(A+aB+a*C)Vee + (2A+ (a+ b)B + 2abC) Ve, + (A + bB + 2C) V.

This, coupled with the fact that H(x,t, u, u,, u;) transforms to some func-
tion K(&,n,V, Ve, V,)), yields the conclusion.

. From the solution of problem 8, the transformed equation is hyperbolic if
C # 0 because in that case we can choose a and b to make the coefficients
of V¢¢ and V), vanish. This is done by choosing a and b to be the distinct
roots of

A+ Ba+ Ca* =0 and A+ Bb+ Cb?

which are the same quadratic equation. For example, we could choose

—B+ VB2 —4AC —B — VB2 —4AC
a= 50 and b = 50 .

If C' =0, use the transformation
E=t,n=—=a+t
, N .

Now chain rule differentiations yield

B
Uy = —ZV»,], Uy = va + Vn,
B? B B
Uz = FVWI’ Uzt = _ZV&? - ZVnn'
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We do not need uy, because C' = 0 in this case. Now we obtain

2

B
Aty + Bug + Cuy = _7‘/5717

yielding a hyperbolic canonical form
Ven + K(§n, V. Ve, V) =0
of the given partial differential equation.

In this case suppose B2 — 4AC = 0. Now let

B
E=x,n=20— —=t

2C
Now
B
Uy = ‘/5 + Vm Ut = _%an
BQ
Upe = Vee +2Vey + Vi, Uy = EVM, and
B B
Uzt = _%VEU - %er
Then

Auzx + B’U/It + Cutt

B? B?
= A(V§§ + 2V£n + Vnn) - %(Vén + Vm]) + Evnn
B? B? B?
= AVie + Ve <2A—%> + Vi <A—%+@)

= AV,

with two terms on the next to last line vanishing because B? — 4AC = 0.
This gives the canonical form

vaf +K(§7777Vv7‘/§7v77) = O
for the original partial differential equation when B? —4AC = 0.

Suppose now that B2 —4AC < 0. Let the roots of Ca? + Ba+ A = 0 be
p+iq. Let

§=ux+pt,n=qt
Proceeding as in the preceding two problems, we find that
A’U,zx + Buxt + Cutt
= (A+ Bp + Cp*)Vee + (4B + 2pgC) Vey + ¢* V.
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Now we need some information about p and ¢g. Because of the way p + iq
was chosen,
C(p+iq)® +B(p+ig) + A=0.

This gives us
Cp®> —Cq*> + Bp+ A+ (2Cpq + Bq)i = 0.

Then
Cp* — Cq¢?> + Bp =0 and 2Cpq + Bq = 0.

In this case,
Auwm + Bugy + Cuy = q2(‘/£5 + Vnn)

and we obtain the canonical form
Vee + Vi + K(§,n, V, Ve, Vi) =0
for this case.
12. The diffusion equation is parabolic and the wave equation is hyperbolic.
14. B2 —4AC = 33 > 0, so the equation is hyperbolic. With

1++/33 1-+33
=g and b= —

the canonical form is

Vey — -
&1 494/33 g ¢ 8

16. With A=1,B =0, and C =0, B2 — 44C = —36 < 9, so the equation is
elliptic. Solve 9a% + 1 = 0 to get a = +i/3. Thus use the transformation

16 <—7—\/§ 7—\/577)

1
= ==t
=z, 3

to obtain the canonical form

VEEWLVMJF&Z*ZWVZO-

1.2 Fourier Series

2. cos(3z) is the Fourier series of cos(3x) on [—m, 7. This converges to cos(3x)
for -t <z <m.

4. The Fourier series of f(x) on [—2,2] is

i A1 = (=D")

53 cos(nmwa/2),
n?m

n=1

converging to 1 — |z| for —2 < 2 < 2. Figure 1.1 compares a graph of f(x)
with the fifth partial sum of the series.
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O
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Figure 1.1: f(x) and the 5th partial sum of the Fourier series in Problem 4.

10.

The Fourier series is

Figure 1.2 compares a graph of the function with the fifth partial sum of
the series.

The Fourier series converges to

cos(z) for —2 <z < 1/2,
sin(z) for 1/2 <z <2,
(cos(2) +sin(2))/2  for x = £2.

The series converges to

1 for -2 <z <0,
-1 for 0 < x,1/2,
x? for 1/2 <z <2,
0 at z =0,

—-3/8 atxz=1/2,

5/2  atx=4£2.
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Figure 1.2: f(x) and the 5th partial sum of the Fourier series in Problem 6.

12. The series converges to

1—x
24z

4 — g2
l—z—=z
3/2

3

—5/2
—7/2

2

14. Multiply by f(z) to obtain

(£())? =5a0f(2)

for -3 <x < —1/2,
for —1/2 <z < 1,

forl<z<?2,
for 2 < x < 3,
at = —1/2,
at x =1,
at x = 2,

at x = £3.

+ Y (anf (@) cos(nma/L) + by f(z) sin(nra/L)) .

n=1

Integrate term by term:

[ v@ra=ju [ 5w

N i <an /_ LL F(@) cos(nz/L) dx + by /

dx

L

f(z)sin(nma/L) dm) .

-L
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16.

18.

Then . .
/ (f(x))* da = %ao(Lao) + > L(al +b3).

—L n=1

Upon division by L, this yields Parseval’s equation.

The cosine series is

Z 4 sin( n7r/2

cos(nmx/2),

converging to 1 for 0 <z < 1,to —1 for 1 < x <2, and to 0 at z = 1.
Figure 1.3 compares the function to the 100th partial sum of this cosine
expansion.

The sine series is

o0

> %(—4cos(n7r/2) +2(1 + (=1)")) sin(nwz/2),

n=1

converging to 0 at the end points and at 1, and to the function for 0 < z <
1 and 1 < z < 2. Figure 1.4 is the 100th partial sum of this sine series.

The cosine expansion is
+ ‘ —n27'('2 -1+ (= cos(nmx).

This converges to f(x) on [0,1]. Figure 1.5 compares the function with
the 10th partial sum of this cosine series.

—
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Figure 1.3: f(z) and the 100th partial sum of the cosine series in Problem 16.
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Figure 1.4: f(z) and the 100th partial sum of the sine expansion in Problem 16.

0.5

Figure 1.5: f(x) and the 10th partial sum of the cosine series in Problem 18.
The sine expansion is
i i(—l)"'H sin(nma)
“— nm ’

converging to 0 at = 0 and = = 1, and to 2z for 0 < x < 1. Figure 1.6
compares the function with the 50th partial sum of this sine expansion.
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Figure 1.6: f(x) and the 50th partial sum of the sine expansion in Problem 18.

094
0.8 4
0.74
0.64
054

0.4 4

T T T T 1
0.2 0.4 0.6 0.8 1

Figure 1.7: f(x) and the 10th partial sum of the cosine series in Problem 20.

20. The cosine expansion is

o0

1 2 —1 n
1- ot 2 m(l —e " (=1)")cos(nmz),

converging to e”* for 0 < z < 1. Figure 1.7 shows the function and the
10th partial sum of this series.
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Figure 1.8: f(z) and the 50th partial sum of the sine expansion in Problem 20.

The sine expansion is

o0

2nm _ .
Z m(l — e H(=1)")sin(n7x).
n=1

This series converges to0 at t =0and at t = 1, and toe ™ for 0 < =z < 1.
Figure 1.8 shows the 50th partial sum.

22. The cosine expansion is

N =

- 4 n
+ Zl 33 (2cos(nm/2) — (1 4+ (—=1)")) cos(nmz/2),
converging to f(x) on [0,2]. Figure 1.9 shows graphs of the function and
the 10th partial sum of this cosine series.

The sine series is
o0

Z 16 sin(nmx/2)

55 sin(nmx/2),
n2m

n=1

converging to f(z) on [0, 2]. The function and the 10th partial sum of this
sine series are shown in Figure 1.10.

23. Expand f(x) = sin(x) in a cosine series on [0, 7]:

cos(nx).

2 S 21+ (=1
P3 e

n=

&
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Figure 1.9: f(x) and the 10th partial sum of the cosine series in Problem 22.
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Figure 1.10: f(z) and the 50th partial sum of the sine expansion in Problem 22.

Since 1 + (—1)" = 0 if n is odd, we need only to retain the even positive
integers in the sum. Replace n with 2n to write

oo

. —4
sin(z) = Z R cos(2nx).

n=1

Now choose z = 7/2.
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1.3 Two Eigenvalue Problems

2. Eigenvalues and eigenfunctions are

A, = <(2n2—L 1)77)27 X, () = cos ((277, ;an;) .

A_A_\
VvV vV V'V

0.5 -I |

Figure 1.11: f(z) and the 10th partial sum.
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Figure 1.12: f(x) and the 25th partial sum.
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Figure 1.13: f(z) and the 50th partial sum.
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Figure 1.14: f(z) and the 100th partial sum.

4. Eigenvalues and eigenfunctions are
X, (z) = sin(ay,x),

An = «

where «, is the nth positive root (in increasing order) of the equation
tan(al) = —2a.
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1.4 A Proof of the Convergence Theorem

The Fourier series of f(z) on [—1,1] is

> 1(1 — (=1)") sin(n7z).

nm

Figures 1.11-1.14 show the function and the nth partial sum for n = 10, 25, 50, 100,
respectively.





