Chapter 1

First Ideas

1.1 Two Partial Differential Equations

2. Verifying that the function is a solution of the heat equation is a straightforward exercise in differentiation. One way to show that $u(x, t)$ is unbounded is to observe that if $t>0$ and $x=2 \sqrt{k t}$, then

$$
u(x, t)=\frac{1}{e} t^{-3 / 2}
$$

and this can be made as large as we like by choosing t sufficiently close to zero.
4. By the chain rule,

$$
\begin{aligned}
u_{x} & =\frac{1}{2}\left(f^{\prime}(x-c t)+f^{\prime}(x+c t)\right) \\
u_{x x} & =\frac{1}{2}\left(f^{\prime \prime}(x-c t)+f^{\prime \prime}(x+c t)\right) \\
u_{t} & =\frac{1}{2}\left(f^{\prime}(x-c t)(-c)+f^{\prime}(x+c t)(c)\right), \text { and } \\
u_{t t} & =\frac{1}{2}\left(f^{\prime \prime}(x-c t)(-c)^{2}+f^{\prime \prime}(x+c t)(c)^{2}\right)
\end{aligned}
$$

It is routine to verify that $u_{t t}=c^{2} u_{x x}$.
7. One way to show that the transformation is one to one is to evaluate the Jacobian

$$
\left|\begin{array}{ll}
\xi_{x} & \xi_{t} \\
\eta_{x} & \eta_{t}
\end{array}\right|=\left|\begin{array}{ll}
1 & a \\
1 & b
\end{array}\right|=b-a \neq 0
$$

Finally, solve $\xi=a+a t, \eta=x+b t$ for x and t to obtain the inverse transformation

$$
x=\frac{1}{b-a}(b \xi-a \eta), t=\frac{1}{b-a}(\eta-\xi) .
$$

8. With $V(\xi, \eta)=u(x(\xi, \eta), t(\xi, \eta))$, chain rule differentiations yield:

$$
\begin{aligned}
u_{x} & =V_{\xi} \xi_{x}+V_{\eta} \eta_{x}=V_{\xi}+V_{\eta} \\
u_{t} & =V_{\xi} \xi_{t}+V_{\eta} \eta_{t}=a V_{\xi}+b V_{\eta}
\end{aligned}
$$

and, by continuing these chain rule differentiations and using the product rule,

$$
\begin{aligned}
u_{x x} & =V_{\xi \xi}+2 V_{\xi \eta}+V_{\eta \eta}, \\
u_{t t} & =a^{2} V_{\xi \xi}+2 a b V_{\xi \eta}+b^{2} V_{\eta \eta}, \text { and } \\
u_{x t} & =a V_{\xi \xi}+(a+b) V_{\xi \eta}+b V_{\eta \eta} .
\end{aligned}
$$

Now collect terms to obtain

$$
\begin{aligned}
& A u_{x x}+B u_{x t}+C u_{t t}= \\
& \quad\left(A+a B+a^{2} C\right) V_{\xi \xi}+(2 A+(a+b) B+2 a b C) V_{\xi \eta}+\left(A+b B+b^{2} C\right) V_{\eta \eta}
\end{aligned}
$$

This, coupled with the fact that $H\left(x, t, u, u_{x}, u_{t}\right)$ transforms to some function $K\left(\xi, \eta, V, V_{\xi}, V_{\eta}\right)$, yields the conclusion.
9. From the solution of problem 8 , the transformed equation is hyperbolic if $C \neq 0$ because in that case we can choose a and b to make the coefficients of $V_{\xi \xi}$ and $V_{\eta \eta}$ vanish. This is done by choosing a and b to be the distinct roots of

$$
A+B a+C a^{2}=0 \text { and } A+B b+C b^{2}
$$

which are the same quadratic equation. For example, we could choose

$$
a=\frac{-B+\sqrt{B^{2}-4 A C}}{2 C} \text { and } b=\frac{-B-\sqrt{B^{2}-4 A C}}{2 C} .
$$

If $C=0$, use the transformation

$$
\xi=t, \eta=-\frac{B}{A} x+t
$$

Now chain rule differentiations yield

$$
\begin{aligned}
u_{x} & =-\frac{B}{A} V_{\eta}, u_{t}=V_{\xi}+V_{\eta}, \\
u_{x x} & =\frac{B^{2}}{A^{2}} V_{\eta \eta}, u_{x t}=-\frac{B}{A} V_{\xi \eta}-\frac{B}{A} V_{\eta \eta} .
\end{aligned}
$$

We do not need $u_{t t}$, because $C=0$ in this case. Now we obtain

$$
A u_{x x}+B u_{x t}+C u_{t t}=-\frac{B^{2}}{A} V_{\xi \eta}
$$

yielding a hyperbolic canonical form

$$
V_{\xi \eta}+K\left(\xi, \eta, V, V_{\xi}, V_{\eta}\right)=0
$$

of the given partial differential equation.
10. In this case suppose $B^{2}-4 A C=0$. Now let

$$
\xi=x, \eta=x-\frac{B}{2 C} t
$$

Now

$$
\begin{aligned}
u_{x} & =V_{\xi}+V_{\eta}, u_{t}=-\frac{B}{2 C} V_{\eta} \\
u_{x x} & =V_{\xi \xi}+2 V_{\xi \eta}+V_{\eta \eta}, u_{t t}=\frac{B^{2}}{4 C^{2}} V_{\eta \eta}, \text { and } \\
u_{x t} & =-\frac{B}{2 C} V_{\xi \eta}-\frac{B}{2 C} V_{\eta \eta}
\end{aligned}
$$

Then

$$
\begin{aligned}
& A u_{x x}+B u_{x t}+C u_{t t} \\
& =A\left(V_{\xi \xi}+2 V_{\xi \eta}+V_{\eta \eta}\right)-\frac{B^{2}}{2 C}\left(V_{\xi \eta}+V_{\eta \eta}\right)+\frac{B^{2}}{4 C} V_{\eta \eta} \\
& =A V_{\xi \xi}+V_{\xi \eta}\left(2 A-\frac{B^{2}}{2 C}\right)+V_{\eta \eta}\left(A-\frac{B^{2}}{2 C}+\frac{B^{2}}{4 C}\right) \\
& =A V_{\xi \xi}
\end{aligned}
$$

with two terms on the next to last line vanishing because $B^{2}-4 A C=0$. This gives the canonical form

$$
V_{\xi \xi}+K\left(\xi, \eta, V, V_{\xi}, V_{\eta}\right)=0
$$

for the original partial differential equation when $B^{2}-4 A C=0$.
11. Suppose now that $B^{2}-4 A C<0$. Let the roots of $C a^{2}+B a+A=0$ be $p \pm i q$. Let

$$
\xi=x+p t, \eta=q t
$$

Proceeding as in the preceding two problems, we find that

$$
\begin{aligned}
& A u_{x x}+B u_{x t}+C u_{t t} \\
& \quad=\left(A+B p+C p^{2}\right) V_{\xi \xi}+(q B+2 p q C) V_{\xi \eta}+q^{2} V_{\eta \eta}
\end{aligned}
$$

Now we need some information about p and q. Because of the way $p+i q$ was chosen,

$$
C(p+i q)^{2}+B(p+i q)+A=0
$$

This gives us

$$
C p^{2}-C q^{2}+B p+A+(2 C p q+B q) i=0
$$

Then

$$
C p^{2}-C q^{2}+B p=0 \text { and } 2 C p q+B q=0
$$

In this case,

$$
A u_{x x}+B u_{x t}+C u_{t t}=q^{2}\left(V_{\xi \xi}+V_{\eta \eta}\right)
$$

and we obtain the canonical form

$$
V_{\xi \xi}+V_{\eta \eta}+K\left(\xi, \eta, V, V_{\xi}, V_{\eta}\right)=0
$$

for this case.
12. The diffusion equation is parabolic and the wave equation is hyperbolic.
14. $B^{2}-4 A C=33>0$, so the equation is hyperbolic. With

$$
a=\frac{1+\sqrt{33}}{8} \text { and } b=\frac{1-\sqrt{33}}{8}
$$

the canonical form is

$$
V_{\xi \eta}-\frac{16}{49 \sqrt{33}}\left(\frac{-7-\sqrt{33}}{8} \xi+\frac{7-\sqrt{33}}{8} \eta\right)
$$

16. With $A=1, B=0$, and $C=0, B^{2}-4 A C=-36<9$, so the equation is elliptic. Solve $9 a^{2}+1=0$ to get $a= \pm i / 3$. Thus use the transformation

$$
\xi=x, \eta=\frac{1}{3} t
$$

to obtain the canonical form

$$
V_{\xi \xi}+V_{\eta \eta}+\xi^{2}-3 \eta V=0
$$

1.2 Fourier Series

2. $\cos (3 x)$ is the Fourier series of $\cos (3 x)$ on $[-\pi, \pi]$. This converges to $\cos (3 x)$ for $-\pi \leq x \leq \pi$.
3. The Fourier series of $f(x)$ on $[-2,2]$ is

$$
\sum_{n=1}^{\infty} \frac{4\left(1-(-1)^{n}\right)}{n^{2} \pi^{2}} \cos (n \pi x / 2)
$$

converging to $1-|x|$ for $-2 \leq x \leq 2$. Figure 1.1 compares a graph of $f(x)$ with the fifth partial sum of the series.

Figure 1.1: $f(x)$ and the 5th partial sum of the Fourier series in Problem 4.
6. The Fourier series is

$$
\begin{aligned}
& \frac{2}{\pi}+\frac{4}{3 \pi} \cos (x)-\sin (x) \\
& +\sum_{n=2}^{\infty} \frac{4(-1)^{n+1}}{\pi\left(4 n^{2}-1\right)} \cos (n x)
\end{aligned}
$$

Figure 1.2 compares a graph of the function with the fifth partial sum of the series.
8. The Fourier series converges to

$$
\begin{cases}\cos (x) & \text { for }-2<x<1 / 2 \\ \sin (x) & \text { for } 1 / 2<x<2 \\ (\cos (2)+\sin (2)) / 2 & \text { for } x= \pm 2\end{cases}
$$

10. The series converges to

$$
\begin{cases}1 & \text { for }-2<x<0 \\ -1 & \text { for } 0<x, 1 / 2 \\ x^{2} & \text { for } 1 / 2<x<2 \\ 0 & \text { at } x=0 \\ -3 / 8 & \text { at } x=1 / 2 \\ 5 / 2 & \text { at } x= \pm 2\end{cases}
$$

Figure 1.2: $f(x)$ and the Fth partial sum of the Fourier series in Problem 6.
12. The series converges to

$$
\begin{cases}1-x & \text { for }-3<x<-1 / 2 \\ 2+x & \text { for }-1 / 2<x<1 \\ 4-x^{2} & \text { for } 1<x<2 \\ 1-x-x^{2} & \text { for } 2<x<3 \\ 3 / 2 & \text { at } x=-1 / 2 \\ 3 & \text { at } x=1 \\ -5 / 2 & \text { at } x=2 \\ -7 / 2 & \text { at } x= \pm 3\end{cases}
$$

14. Multiply by $f(x)$ to obtain

$$
\begin{aligned}
(f(x))^{2}= & \frac{1}{2} a_{0} f(x) \\
& +\sum_{n=1}^{\infty}\left(a_{n} f(x) \cos (n \pi x / L)+b_{n} f(x) \sin (n \pi x / L)\right) .
\end{aligned}
$$

Integrate term by term:

$$
\begin{aligned}
& \int_{-L}^{L}(f(x))^{2} d x=\frac{1}{2} a_{0} \int_{-L}^{L} f(x) d x \\
& +\sum_{n=1}^{\infty}\left(a_{n} \int_{-L}^{L} f(x) \cos (n \pi x / L) d x+b_{n} \int_{-L}^{L} f(x) \sin (n \pi x / L) d x\right)
\end{aligned}
$$

Then

$$
\int_{-L}^{L}(f(x))^{2} d x=\frac{1}{2} a_{0}\left(L a_{0}\right)+\sum_{n=1}^{\infty} L\left(a_{n}^{2}+b_{n}^{2}\right)
$$

Upon division by L, this yields Parseval's equation.
16. The cosine series is

$$
\sum_{n=1}^{\infty} \frac{4 \sin (n \pi / 2)}{n \pi} \cos (n \pi x / 2)
$$

converging to 1 for $0 \leq x<1$, to -1 for $1<x \leq 2$, and to 0 at $x=1$. Figure 1.3 compares the function to the 100th partial sum of this cosine expansion.
The sine series is

$$
\sum_{n=1}^{\infty} \frac{1}{n \pi}\left(-4 \cos (n \pi / 2)+2\left(1+(-1)^{n}\right)\right) \sin (n \pi x / 2)
$$

converging to 0 at the end points and at 1 , and to the function for $0<x<$ 1 and $1<x<2$. Figure 1.4 is the 100th partial sum of this sine series.
18. The cosine expansion is

$$
1+\sum_{n=1}^{\infty} \frac{4}{n^{2} \pi^{2}}\left(-1+(-1)^{n}\right) \cos (n \pi x)
$$

This converges to $f(x)$ on $[0,1]$. Figure 1.5 compares the function with the 10th partial sum of this cosine series.

Figure 1.3: $f(x)$ and the 100th partial sum of the cosine series in Problem 16.

Figure 1.4: $f(x)$ and the 100th partial sum of the sine expansion in Problem 16.

Figure 1.5: $f(x)$ and the 10th partial sum of the cosine series in Problem 18.

The sine expansion is

$$
\sum_{n=1}^{\infty} \frac{4}{n \pi}(-1)^{n+1} \sin (n \pi x)
$$

converging to 0 at $x=0$ and $x=1$, and to $2 x$ for $0<x<1$. Figure 1.6 compares the function with the 50th partial sum of this sine expansion.

Figure 1.6: $f(x)$ and the 50th partial sum of the sine expansion in Problem 18.

Figure 1.7: $f(x)$ and the 10th partial sum of the cosine series in Problem 20.
20. The cosine expansion is

$$
1-\frac{1}{e}+\sum_{n=1}^{\infty} \frac{2}{1+n^{2} \pi^{2}}\left(1-e^{-1}(-1)^{n}\right) \cos (n \pi x)
$$

converging to e^{-x} for $0 \leq x \leq 1$. Figure 1.7 shows the function and the 10th partial sum of this series.

Figure 1.8: $f(x)$ and the 50th partial sum of the sine expansion in Problem 20.

The sine expansion is

$$
\sum_{n=1}^{\infty} \frac{2 n \pi}{1+n^{2} \pi^{2}}\left(1-e^{-1}(-1)^{n}\right) \sin (n \pi x)
$$

This series converges to 0 at $x=0$ and at $x=1$, and to e^{-x} for $0<x<1$. Figure 1.8 shows the 50 th partial sum.
22. The cosine expansion is

$$
\frac{1}{2}+\sum_{n=1}^{\infty} \frac{4}{n^{2} \pi^{2}}\left(2 \cos (n \pi / 2)-\left(1+(-1)^{n}\right)\right) \cos (n \pi x / 2)
$$

converging to $f(x)$ on $[0,2]$. Figure 1.9 shows graphs of the function and the 10th partial sum of this cosine series.
The sine series is

$$
\sum_{n=1}^{\infty} \frac{16 \sin (n \pi x / 2)}{n^{2} \pi^{2}} \sin (n \pi x / 2)
$$

converging to $f(x)$ on $[0,2]$. The function and the 10 th partial sum of this sine series are shown in Figure 1.10.
23. Expand $f(x)=\sin (x)$ in a cosine series on $[0, \pi]$:

$$
\sin (x)=\frac{2}{\pi}+\sum_{n=2}^{\infty} \frac{-2\left(1+(-1)^{n}\right)}{\pi\left(n^{2}-1\right)} \cos (n x)
$$

1.2. FOURIER SERIES

Figure 1.9: $f(x)$ and the 10th partial sum of the cosine series in Problem 22.

Figure 1.10: $f(x)$ and the 50th partial sum of the sine expansion in Problem 22.

Since $1+(-1)^{n}=0$ if n is odd, we need only to retain the even positive integers in the sum. Replace n with $2 n$ to write

$$
\sin (x)=\sum_{n=1}^{\infty} \frac{-4}{\pi\left(4 n^{2}-1\right)} \cos (2 n x)
$$

Now choose $x=\pi / 2$.

1.3 Two Eigenvalue Problems

2. Eigenvalues and eigenfunctions are

$$
\lambda_{n}=\left(\frac{(2 n-1) \pi}{2 L}\right)^{2}, X_{n}(x)=\cos \left(\frac{(2 n-1) \pi x}{2 L}\right)
$$

Figure 1.11: $f(x)$ and the 10th partial sum.

Figure 1.12: $f(x)$ and the 25 th partial sum.

Figure 1.13: $f(x)$ and the 50th partial sum.

Figure 1.14: $f(x)$ and the 100th partial sum.
4. Eigenvalues and eigenfunctions are

$$
\lambda_{n}=\alpha_{n}^{2}, X_{n}(x)=\sin \left(\alpha_{n} x\right)
$$

where α_{n} is the nth positive root (in increasing order) of the equation $\tan (\alpha L)=-2 \alpha$.

1.4 A Proof of the Convergence Theorem

The Fourier series of $f(x)$ on $[-1,1]$ is

$$
\sum_{n=1}^{\infty} \frac{2}{n \pi}\left(1-(-1)^{n}\right) \sin (n \pi x)
$$

Figures 1.11-1.14 show the function and the nth partial sum for $n=10,25,50,100$, respectively.

