
Chapter 1

First Ideas

1.1 Two Partial Differential Equations

2. Verifying that the function is a solution of the heat equation is a straight-
forward exercise in differentiation. One way to show that u(x, t) is un-
bounded is to observe that if t > 0 and x = 2

√
kt, then

u(x, t) =
1
e
t−3/2

and this can be made as large as we like by choosing t sufficiently close to
zero.

4. By the chain rule,

ux =
1
2
(f ′(x − ct) + f ′(x + ct)),

uxx =
1
2
(f ′′(x − ct) + f ′′(x + ct)),

ut =
1
2
(f ′(x − ct)(−c) + f ′(x + ct)(c)), and

utt =
1
2
(f ′′(x − ct)(−c)2 + f ′′(x + ct)(c)2).

It is routine to verify that utt = c2uxx.

7. One way to show that the transformation is one to one is to evaluate the
Jacobian ∣∣∣∣ξx ξt

ηx ηt

∣∣∣∣ =
∣∣∣∣1 a
1 b

∣∣∣∣ = b − a �= 0.
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Finally, solve ξ = a + at, η = x + bt for x and t to obtain the inverse
transformation

x =
1

b − a
(bξ − aη), t =

1
b − a

(η − ξ).

8. With V (ξ, η) = u(x(ξ, η), t(ξ, η)), chain rule differentiations yield:

ux = Vξξx + Vηηx = Vξ + Vη,

ut = Vξξt + Vηηt = aVξ + bVη,

and, by continuing these chain rule differentiations and using the product
rule,

uxx = Vξξ + 2Vξη + Vηη,

utt = a2Vξξ + 2abVξη + b2Vηη, and
uxt = aVξξ + (a + b)Vξη + bVηη.

Now collect terms to obtain

Auxx + Buxt + Cutt =

(A + aB + a2C)Vξξ + (2A + (a + b)B + 2abC)Vξη + (A + bB + b2C)Vηη.

This, coupled with the fact that H(x, t, u, ux, ut) transforms to some func-
tion K(ξ, η, V, Vξ, Vη), yields the conclusion.

9. From the solution of problem 8, the transformed equation is hyperbolic if
C �= 0 because in that case we can choose a and b to make the coefficients
of Vξξ and Vηη vanish. This is done by choosing a and b to be the distinct
roots of

A + Ba + Ca2 = 0 and A + Bb + Cb2

which are the same quadratic equation. For example, we could choose

a =
−B +

√
B2 − 4AC

2C
and b =

−B −
√

B2 − 4AC

2C
.

If C = 0, use the transformation

ξ = t, η = −B

A
x + t.

Now chain rule differentiations yield

ux = −B

A
Vη, ut = Vξ + Vη,

uxx =
B2

A2
Vηη, uxt = −B

A
Vξη − B

A
Vηη.
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We do not need utt, because C = 0 in this case. Now we obtain

Auxx + Buxt + Cutt = −B2

A
Vξη,

yielding a hyperbolic canonical form

Vξη + K(ξ, η, V, Vξ, Vη) = 0

of the given partial differential equation.

10. In this case suppose B2 − 4AC = 0. Now let

ξ = x, η = x − B

2C
t.

Now

ux = Vξ + Vη, ut = − B

2C
Vη,

uxx = Vξξ + 2Vξη + Vηη, utt =
B2

4C2
Vηη, and

uxt = − B

2C
Vξη − B

2C
Vηη.

Then

Auxx + Buxt + Cutt

= A(Vξξ + 2Vξη + Vηη) − B2

2C
(Vξη + Vηη) +

B2

4C
Vηη

= AVξξ + Vξη

(
2A − B2

2C

)
+ Vηη

(
A − B2

2C
+

B2

4C

)
= AVξξ,

with two terms on the next to last line vanishing because B2 − 4AC = 0.
This gives the canonical form

Vξξ + K(ξ, η, V, Vξ, Vη) = 0

for the original partial differential equation when B2 − 4AC = 0.

11. Suppose now that B2 − 4AC < 0. Let the roots of Ca2 + Ba + A = 0 be
p ± iq. Let

ξ = x + pt, η = qt.

Proceeding as in the preceding two problems, we find that

Auxx + Buxt + Cutt

= (A + Bp + Cp2)Vξξ + (qB + 2pqC)Vξη + q2Vηη.
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Now we need some information about p and q. Because of the way p + iq
was chosen,

C(p + iq)2 + B(p + iq) + A = 0.

This gives us

Cp2 − Cq2 + Bp + A + (2Cpq + Bq)i = 0.

Then
Cp2 − Cq2 + Bp = 0 and 2Cpq + Bq = 0.

In this case,
Auxx + Buxt + Cutt = q2(Vξξ + Vηη)

and we obtain the canonical form

Vξξ + Vηη + K(ξ, η, V, Vξ, Vη) = 0

for this case.

12. The diffusion equation is parabolic and the wave equation is hyperbolic.

14. B2 − 4AC = 33 > 0, so the equation is hyperbolic. With

a =
1 +

√
33

8
and b =

1 −
√

33
8

the canonical form is

Vξη − 16
49
√

33

(
−7 −

√
33

8
ξ +

7 −
√

33
8

η

)
.

16. With A = 1, B = 0, and C = 0, B2 − 4AC = −36 < 9, so the equation is
elliptic. Solve 9a2 + 1 = 0 to get a = ±i/3. Thus use the transformation

ξ = x, η =
1
3
t

to obtain the canonical form

Vξξ + Vηη + ξ2 − 3ηV = 0.

1.2 Fourier Series

2. cos(3x) is the Fourier series of cos(3x) on [−π, π]. This converges to cos(3x)
for −π ≤ x ≤ π.

4. The Fourier series of f(x) on [−2, 2] is
∞∑

n=1

4(1 − (−1)n)
n2π2

cos(nπx/2),

converging to 1− |x| for −2 ≤ x ≤ 2. Figure 1.1 compares a graph of f(x)
with the fifth partial sum of the series.
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Figure 1.1: f(x) and the 5th partial sum of the Fourier series in Problem 4.

6. The Fourier series is

2
π

+
4
3π

cos(x) − sin(x)

+
∞∑

n=2

4(−1)n+1

π(4n2 − 1)
cos(nx).

Figure 1.2 compares a graph of the function with the fifth partial sum of
the series.

8. The Fourier series converges to⎧⎪⎨⎪⎩
cos(x) for −2 < x < 1/2,
sin(x) for 1/2 < x < 2,
(cos(2) + sin(2))/2 for x = ±2.

10. The series converges to ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for −2 < x < 0,
−1 for 0 < x, 1/2,
x2 for 1/2 < x < 2,
0 at x = 0,
−3/8 at x = 1/2,
5/2 at x = ±2.
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Figure 1.2: f(x) and the 5th partial sum of the Fourier series in Problem 6.

12. The series converges to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − x for −3 < x < −1/2,
2 + x for −1/2 < x < 1,
4 − x2 for 1 < x < 2,
1 − x − x2 for 2 < x < 3,
3/2 at x = −1/2,
3 at x = 1,
−5/2 at x = 2,
−7/2 at x = ±3.

14. Multiply by f(x) to obtain

(f(x))2 =
1
2
a0f(x)

+
∞∑

n=1

(anf(x) cos(nπx/L) + bnf(x) sin(nπx/L)) .

Integrate term by term:∫ L

−L

(f(x))2 dx =
1
2
a0

∫ L

−L

f(x) dx

+
∞∑

n=1

(
an

∫ L

−L

f(x) cos(nπx/L) dx + bn

∫ L

−L

f(x) sin(nπx/L) dx

)
.
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Then ∫ L

−L

(f(x))2 dx =
1
2
a0(La0) +

∞∑
n=1

L(a2
n + b2

n).

Upon division by L, this yields Parseval’s equation.

16. The cosine series is
∞∑

n=1

4 sin(nπ/2)
nπ

cos(nπx/2),

converging to 1 for 0 ≤ x < 1, to −1 for 1 < x ≤ 2, and to 0 at x = 1.
Figure 1.3 compares the function to the 100th partial sum of this cosine
expansion.

The sine series is
∞∑

n=1

1
nπ

(−4 cos(nπ/2) + 2(1 + (−1)n)) sin(nπx/2),

converging to 0 at the end points and at 1, and to the function for 0 < x <
1 and 1 < x < 2. Figure 1.4 is the 100th partial sum of this sine series.

18. The cosine expansion is

1 +
∞∑

n=1

4
n2π2

(−1 + (−1)n) cos(nπx).

This converges to f(x) on [0, 1]. Figure 1.5 compares the function with
the 10th partial sum of this cosine series.

Figure 1.3: f(x) and the 100th partial sum of the cosine series in Problem 16.
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Figure 1.4: f(x) and the 100th partial sum of the sine expansion in Problem 16.

Figure 1.5: f(x) and the 10th partial sum of the cosine series in Problem 18.

The sine expansion is

∞∑
n=1

4
nπ

(−1)n+1 sin(nπx),

converging to 0 at x = 0 and x = 1, and to 2x for 0 < x < 1. Figure 1.6
compares the function with the 50th partial sum of this sine expansion.
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Figure 1.6: f(x) and the 50th partial sum of the sine expansion in Problem 18.

Figure 1.7: f(x) and the 10th partial sum of the cosine series in Problem 20.

20. The cosine expansion is

1 − 1
e

+
∞∑

n=1

2
1 + n2π2

(1 − e−1(−1)n) cos(nπx),

converging to e−x for 0 ≤ x ≤ 1. Figure 1.7 shows the function and the
10th partial sum of this series.
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Figure 1.8: f(x) and the 50th partial sum of the sine expansion in Problem 20.

The sine expansion is

∞∑
n=1

2nπ

1 + n2π2
(1 − e−1(−1)n) sin(nπx).

This series converges to 0 at x = 0 and at x = 1, and to e−x for 0 < x < 1.
Figure 1.8 shows the 50th partial sum.

22. The cosine expansion is

1
2

+
∞∑

n=1

4
n2π2

(2 cos(nπ/2) − (1 + (−1)n)) cos(nπx/2),

converging to f(x) on [0, 2]. Figure 1.9 shows graphs of the function and
the 10th partial sum of this cosine series.

The sine series is
∞∑

n=1

16 sin(nπx/2)
n2π2

sin(nπx/2),

converging to f(x) on [0, 2]. The function and the 10th partial sum of this
sine series are shown in Figure 1.10.

23. Expand f(x) = sin(x) in a cosine series on [0, π]:

sin(x) =
2
π

+
∞∑

n=2

−2(1 + (−1)n)
π(n2 − 1)

cos(nx).
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Figure 1.9: f(x) and the 10th partial sum of the cosine series in Problem 22.

Figure 1.10: f(x) and the 50th partial sum of the sine expansion in Problem 22.

Since 1 + (−1)n = 0 if n is odd, we need only to retain the even positive
integers in the sum. Replace n with 2n to write

sin(x) =
∞∑

n=1

−4
π(4n2 − 1)

cos(2nx).

Now choose x = π/2.



12 CHAPTER 1. FIRST IDEAS

1.3 Two Eigenvalue Problems

2. Eigenvalues and eigenfunctions are

λn =
(

(2n − 1)π
2L

)2

, Xn(x) = cos
(

(2n − 1)πx

2L

)
.

Figure 1.11: f(x) and the 10th partial sum.

Figure 1.12: f(x) and the 25th partial sum.
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Figure 1.13: f(x) and the 50th partial sum.

Figure 1.14: f(x) and the 100th partial sum.

4. Eigenvalues and eigenfunctions are

λn = α2
n, Xn(x) = sin(αnx),

where αn is the nth positive root (in increasing order) of the equation
tan(αL) = −2α.
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1.4 A Proof of the Convergence Theorem

The Fourier series of f(x) on [−1, 1] is

∞∑
n=1

2
nπ

(1 − (−1)n) sin(nπx).

Figures 1.11–1.14 show the function and the nth partial sum for n = 10, 25, 50, 100,
respectively.




