
 1

 Ideas that began to form a decade ago among a handful of enthusiasts are today
fundamental, one of them being agile product development using Scrum. Com-
panies such as Immobilienscout24.de at least doubled their productivity due to
the introduction of Scrum (Zeitler, 2011). These impressive results led large
automobile and telecommunication enterprises to adopt the same product
development method. Despite the success of the agile approach, there is one
drawback: the realization that company processes that may have seemed to
have in fact nothing to do with a project will now also need to undergo change.
This may include strategic purchasing, key account management, demand man-
agement, and development departments. These processes need to be adapted
to form a framework that will benefi t signifi cantly from the agile development
process. Only when this is achieved can enterprises recognize the full extent of
the enormous potential which results from their information technology (IT)
teams adopting the agile approach.

 Commercial-legal agreements with suppliers and partners are a substantial
part of these basic conditions. They set the requirements that drive service
providers to produce products faster and more effectively.

1

 Agility: What Is That?

Agile Contracts: Creating and Managing Successful Projects with Scrum, First Edition.
Andreas Opelt, Boris Gloger, Wolfgang Pfarl, and Ralf Mittermayr.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.

CO
PYRIG

HTED
 M

ATERIA
L

2 AGILITY: WHAT IS THAT?

 Let ’ s us emphasize this again: An understanding of the methodology is not
the largest hurdle in a conversion to the agile model. Rather, the challenge is
the internal organizational culture and the potential changes to the internal
processes.

 Clearly, the organizational structure will not change from one day to the
next. The following situation is characteristic: In one of our projects, the top
management of a worldwide company decided to implement agile methodolo-
gies. So far, so good. Often enough it is management that is toughest to con-
vince that the majority of self-organized and responsible work functions that
have their own clear goals experience enormous leaps in productivity. However,

 Cannot Be Stopped

 The U.S. software vendor VersionOne conducted a survey on the extent
of agile method implementations over the past six years. Participants
from the worldwide software development industry took part between
July and November 2011 (VersionOne, 2011). Of the 6042 responses, the
following can be concluded:

 1. More than half of the participants questioned have already worked
with agile methods for over two years.

 2. Approximately one in fi ve of those surveyed (17%) expressed the
fact that they were aware that their company was planning a shift
toward agile in the near future.

 3. Almost two-thirds of those interviewed indicated that their com-
panies complete almost half of all projects by using agile methods,
and that three or more teams already work in this way.

 4. For almost one-fourth of the participants (22%), time to market is
the main motivation for applying agile methodology.

 5. Those questioned rate higher productivity as one of the most sig-
nifi cant advantages (75%). An even greater advantage is the ability
to handle changing customer requirements (84%). Project progress
also becomes more visible (77%).

 It is not only the teams ’ employees who are losing their apprehension
of agility. Management—despite a certain fear of scaling, legal regula-
tions, and a lack of documentation—is more open to the agile approach.
In two-thirds of the cases (64%), the initiative came from management.
Interesting to note is that despite rising support by management, the
largest hurdle in the conversion to agile methods is not knowledge of
the methodology but of the internal organizational culture.

AGILITY: WHAT IS THAT? 3

the employees, who should fulfi ll the order of priority set by top management,
were forced to infringe on the rules given by the purchase department. By no
means did the purchase department want to permit contracts with providers
to be closed according to an agile model. Such a reaction immediately poses
a question among employees as to whether an agile approach toward tenders
has a future in the company and whether it can be sustained. How successfully
the agile model is received by a supplier does not depend only on the supplier
but also on necessary changes within your own company. Meanwhile, the
company has found a new way of aligning successfully the set up and handling
of agile projects together with procurement.

 Traditional processes block the way for new requirements. Currently, most
purchasing and sales processes are based on the traditional waterfall method-
ology (synonymous with predictive processes) for project management and
product development. However, the waterfall process model has plenty of
shortcomings, and IT services often attempt to exploit these in their business
models. It is only natural that the purchasing departments of large organiza-
tions are against new processes, as such processes create defensive strategies
and demand tougher contracts. Nevertheless, a project may fail to succeed.

 A number of disadvantageous facts have been known for decades:

 1. New products are not developed using the waterfall method, and effec-
tive projects are not organized based on that method. This was shown by
 Nonaka and Takeuchi (1986).

 2. Even Winston Royce, creator of the waterfall model, said that this process
does not work entirely and that it has to be carried out at least twice
(Royce, 1970).

 3. Studies carried out by the National Aeronautics and Space Admini-
stration in 1996 confi rm the testimony of Barry Boehm, a software
engineer from the 1980s, who calculated that estimates given at the
beginning of a project life cycle (before the requirements phase) carry
on average an uncertainty factor of 4 (Boehm, 1981). Thus, the actual
time needed for a project could be either four times as long or only a
fourth of what had originally been predicted, which seems very close to
being unpredictable.

 Especially in large organizations, we can fi nd yet another prerequisite for
setting up contracts with IT service providers that would have a negative effect
on the productivity of software development projects: Every project has a
budget. As a rule, these budgets have to be allocated very early—often even a
year before the project is scheduled to begin. This means that departments defi ne
how much money should be spent before knowing the actual project goals of
the company. Since no one knows exactly what the requirements will look like
in 12 months, they are broadly defi ned. These requirements are requested from
the service providers and judged as well as priced by the service providers.

4 AGILITY: WHAT IS THAT?

 • The Standish Group collects information on IT projects and their
associated problems, and regularly publishes the Chaos Report. A
project is defi ned as successful if time and budget constraints are
met and if it complies with the required features and functions.
However, some critical parameters are missing in this analysis, such
as quality, risk and customer satisfaction. More important, and
without focusing on the background details of the statistics as such,
is how the measured success of projects has developed in recent
years.

 Findings of the Chaos Reports, 1994–2009

2009 2006 2004 2002 2000 1998 1996 1994

Success 32% 35% 29% 34% 28% 26% 27% 16%
Partial success 44% 19% 53% 15% 23% 28% 40% 31%
Failure 24% 46% 18% 51% 49% 46% 33% 53%

 Although the situation has improved signifi cantly over the last 17
years, the percentage of successful projects is still well below 50%.
According to the study, let ’ s have a look at the most common causes for
the failure of IT projects (Standish Group, 2009):

 1. A lack of reliable input from users (2009: 12.8%)
 2. Incomplete requirements and specifi cations (2009: 12.3%)
 3. Changes in the requirements and specifi cations (2009: 11.8%)

 Buyers, sellers, departments—all of them are doing their best to ensure that
project costs do not get out of control and that schedules are met. Despite this,
more than 60% of all IT projects fail. Many large IT projects extend their
budgets by up to 400% and deliver only 25% of the desired functionality. Such
“black swans” can destroy entire companies, as Bent Flyvbjerg and Alexander
Budzier wrote in the Harvard Business Review of September 2011 (Flyvbjerg
and Budzier, 2011). This also results in a tremendous loss for the economy.

 [Note: The term black swan was coined by the fi nancial mathematician Nassim
Nicholas Taleb. He describes those events (both positive and negative) that are
not only rare and unpredictable but also have major consequences that in ret-
rospect were not actually so unlikely. Flyvbjerg and Budzier use the term only
in its negative form .]

 There is as much discussion about the details of the analysis and facts of IT
projects as about the actual success of IT projects themselves. And rightly so,
because if we study the details of statistics or the background of an analysis,
we will fi nd a wealth of information that may shed a different light on various
numbers. The bottom line, however, is that all studies agree.

 Let ’ s take a little tour d ’ horizon of some of the unpleasant facts:

AGILITY: WHAT IS THAT? 5

 To phrase it differently: The hit list for these stumbling blocks would be
as follows:

 1. Lack of cooperation
 2. Missing knowledge of the requirements (the customer does not

know what he or she really wants)
 3. The fact that what is partially unknown is usually also described

incorrectly or incompletely

 • Unpleasant fi ndings on the project ’ s success can also be found in a
study by the Technical University of Munich (Wildemann, 2006):
Only about half of all IT projects of the period examined were suc-
cessful. Either the projects took longer than planned, cost more
than expected, or emerged with different results. Other projects
actually had to be canceled and the costs had to be written off. The
renowned Viennese IT expert Walter Jaburek (a court-certifi ed
expert on information technology and telecommunications) said in
an interview that we conducted with him:

 Here is my experience congruent with the study by the Standish Group:
Most projects take three times as long as planned, thereby costing
approximately 2.8 times more and bringing 70 to 80% of the planned
functionality. The contract and the negotiating skills decide who carries
the additional 180% of the costs.

 • In 2007 Assure Consulting reported that most IT projects fail due
to unclear goals, unrealistic time constraints, and lack of coordina-
tion of the project participants (Assure Consulting, 2007).

 • The consultants at Roland Berger reported that 20% of all IT proj-
ects are canceled. Every second project exceeds the agreed-upon
time frame or is more expensive than planned. Vital is the indica-
tion that the probability of failure increases with the duration and
complexity of projects (Roland Berger Strategy Consultants, 2008).

 • A fall 2004 Forrester survey indicated that nearly one-third of
customers are dissatisfi ed with the time it takes to deliver the
custom applications requested (Forrester, 2005).

 • Various studies and the experience of experts give reason to believe
that requirements of IT projects change by up to 3% per month.
As is referenced in the literature over and over again: The require-
ments for a software solution cannot be described deterministically.
This can be summarized with the observation that, typically, 35%
of all requirements change during a software project (Schwaber
and Sutherland, 2012).

6 AGILITY: WHAT IS THAT?

 In your own daily practice you may also experience the fact that IT projects
often take one step forward and two steps back. This could be for one or more
of the following reasons:

 • There is not enough user input.
 • There is no simple, clear vision that describes a project ’ s purpose.
 • There is very little teamwork.
 • Projects are becoming increasingly complex.
 • The technologies used in projects have become more versatile.
 • Systems have increasingly become more widely distributed.
 • Functional and transparent monitoring of progress is often not possible.
 • Experts on all sides (supplier, consultants, and customers) fi nd it increas-

ingly diffi cult to predict potential problems.
 • The planning of projects is often very complex, sometimes almost

impossible.
 • Knowledge is poorly distributed.

 We need to put a stop to this immense waste of resources, time, money, and
creativity . This was fi rst noted by some software developers in the 1990s—
without trials or lengthy discussions. It was simply due to their own suffering
that they discussed ideas for new project management and the development
of new methods to allow teams, together with their project managers, to deliver
continuously.

 1.1 THE AGILE MANIFESTO OF 2001

 To indicate at what points there is a rethinking of the purchase and sales pro-
cesses and how this affects the setup of a contract, we follow the popular agile
management framework: Scrum (in the State of Agile Survey by VersionOne
 (2011), Scrum was named as the method of use by 52% of respondents). Scrum
is a perfect example of agility as we understand it. It is not merely just a
method. It is based on very specifi c values and principles of cooperation that
are aimed primarily at self-understanding of development teams. Of course,
due to its strengths, it also affects the relationship between customers and
service providers. Let ’ s start our journey through the agile methodology at the
origin, the agile manifesto . In the winter of 2001, a few representatives of the
agile movement got together to discuss how they should promote the emerging
trend in software development to reach as many people as possible. They also
wanted to clarify what agile software development methods could actually
achieve. It turned out that there are deep beliefs or even values that defi ne
agile ’ s capabilities.

THE AGILE MANIFESTO OF 2001 7

 What do these values mean in more detail?

 Individuals and i nteractions o ver p rocesses and t ools
 Once again, look at your own project practice: How often do you realize that
just talking to others can create shortcuts and solve a problem? That working
together more effectively helps reach goals in a shorter time? How often do
you experience that the available rigid processes are actually more of a hin-
drance than a help?

 All agile development processes assume that to deliver a product it is
essential that the team members and all other stakeholders talk to each other
and exchange ideas constantly. For self-organization, it is essential to respect
and recognize that individuals differ from each other. Obviously, teams with
clearly defi ned processes and good development tools are productive. However,
processes and tools are by no means more important than the individuals and
their interactions.

 This statement is often misunderstood and is interpreted as if team members
are suddenly allowed to do everything. It is understood, mistakenly, as if all
the walls are broken and, for example, no external infl uence or requirements
should be provided to Scrum teams. Management feels especially strongly
about hierarchical organizational cultures and is threatened by this aspect of
the agile manifesto. But this is obviously not the case. Many developers have
this attitude when they fi rst come into contact with Scrum, but Scrum does
not tell them how they should work. In Scrum, it is assumed that developers
use their common sense and do everything necessary professionally to deliver
the product. The principle of this thought is the essence of self-organization.
 The nature of self-organization is that within a clearly defi ned framework,

 Agile Manifesto

 We are uncovering better ways of developing software by doing it and
helping others to do it.

 Through this work we have come to value:

 • Individuals and interactions over processes and tools
 • Working software over comprehensive documentation
 • Customer collaboration over contract negotiation
 • Responding to change over following a plan

 That is, although there is value in the items on the right, we value the
items on the left more (http://www.agilemanifesto.org).

8 AGILITY: WHAT IS THAT?

creative freedom is allowed and that this is actually the only way in which
creative freedom can happen.

 There are, of course, requirements and guidelines that must be followed.
You can certainly not build a car and say: “Let the team get on with it and
we ’ ll see what comes out at the end.” In the present day, no one would do that.
Of course, cars must be built in a way that takes all legal guidelines and physi-
cal circumstances into account.

 The next misconception: The customer is no longer able to defi ne what he
wants in a Scrum project. This, too, is nonsense. All of these misinterpretations
have, contributed to the history of Scrum failures, as people who wanted to
use Scrum were faced with these misinterpretations. Tragically, for this reason,
Scrum projects often did not show the success that was possible. Rather than
looking closer, the simple conclusion often was that the method was bad.

 Tip: Accept the statement of the manifesto as it stands. It states the belief that
people are successful only if they communicate with one another, and that this
is especially effective when using tools that allow them to achieve their results
faster .

 Working s oftware o ver c omprehensive d ocumentation
 No statement from the agile world has been and will probably continue to be
misunderstood more frequently than the one regarding the value of software.
That it is gladly and consciously depicted incorrectly makes development
teams open to attack. We hear again and again from customers and partners
that teams do not document anything, due to the fact that they are using
Scrum. Let us consider again the underlying problem: Do you enjoy document-
ing? Do you enjoy writing reports, and are you passionate about writing notes
on the course of events? How many documents are not relevant because they
were written solely for the fi ling cabinet? And let ’ s face it, particularly in the
software development environment, an excessive number of pages of docu-
mentation are produced.

 However, this is not the reason that good or improved software is written.
Most people see documentation as a useless by-product that is inevitably not
going to help to make their work more meaningful and of higher quality. We ’ re
not talking about cases where people are sloppy at work. That obviously does
exist. No, it ’ s about making it clear. Documentation is only useful when it
enables a person to handle a task or understand a topic faster and more
effi ciently.

 Obviously, there are documents that we consider meaningful and that are
necessary. For example, a doctor ’ s note is necessary in order for hospital per-
sonnel to know how to help a patient. The plans of an architect, which support
work at a construction site, are useful, meaningful and above all, necessary. In
software development, this could be documentation that allows the customer
to pass the work on the current software increment to another software pro-
vider (e.g., an incrementally growing document on the high-level architecture

THE AGILE MANIFESTO OF 2001 9

of the software). This may be necessary if the relations have weakened for the
initial service provider or the service provider decides to discontinue product
development. This documentation is also useful and helps to make sure that
we can continue from where others have left off.

 In conclusion: Necessary documentation must be produced, either by the Scrum
team itself or by the Scrum support teams from within a large development
department .

 What does the agile manifesto statement say? At the end, a project ’ s success
should not be based solely on whether the plan was provided or whether a
doctor ’ s diagnosis is present on paper. The document is not the product. Thus,
the measure of product success is not about whether the documents were
written correctly according to a process. Very often we have seen projects
which were in trouble even though the fi rst steps in the waterfall process, which
delivered hundreds of pages of requirements and detailed design were present.
However, we know of hardly any customers who stopped projects that deliv-
ered high-quality software even if the number of “documentation pages” was
minimal!

 Customer c ollaboration o ver c ontract n egotiation
 The next argument: No, the third principle does not mean that no contracts
should be concluded or negotiated. Why would we write a book like that if
this were the case? We even present in Chapter 7 many details on how to
negotiate a treaty framework for the agile approach. This is, instead, how we
interpret this basic principle: Of course, you need contracts. Clearly defi ning
 together how you want to collaborate is useful: to regulate how payment is to
proceed and how much is to be paid; to think about what happens if one of
the parties no longer cooperates as originally agreed—all that is necessary and
must be done.

 It appears, however, that the best contracts do not always lead to the fact
that they also shared the success of the project. Especially in the software
industry, IT and software development departments like to be regarded as
service providers. The software suppliers are typically pushed into a corner
when it comes to service, and here they remain with too little information to
perform their task purposefully and successfully. However, it appears that
software development projects are successful only when those who write the
software and those who require the product work closely together. It is clear
that customers get the products they really need only if they involve them-
selves actively. They must make themselves available as partners during a
project. The functionalities, which facilitate productivity, are obtained when
the software development teams are assisted. From our own experience we
can say that if the parties work together and want to succeed, the probability
is extremely high that the product delivered will be satisfactory.

 Thus, it is important to express the duty to cooperate fully and to emphasize
the cooperative approach without placing the responsibility for quality on the

10 AGILITY: WHAT IS THAT?

contractor. If you read the agile manifesto carefully, you ’ ll see that it does not
say that the item on the right is not useful. It says that item is valid and useful;
however, the item on the left is even more important from an agile
perspective!

 Keyword respect: The former indicates what this principle wishes to express. We
are respectful of each other. The customer should not pressurize the service
provider, and the service provider should not attempt to mislead the customer .

 On the Agile Tour 2011 in Vienna, Mitch Lacey, an agile practitioner and
consultant, told the following story about a conversation between customers
and suppliers. A client came to him and explained his project in half an hour.
He then proceeded to ask what such a project would cost. Mitch replied:

 This is a question I cannot answer because you should expect a professional
response from me. I do not have enough information after 30 minutes to be able
to make a meaningful statement. That would be totally unprofessional. I ’ ll make
another suggestion: You work for two weeks with us and if you like what you get,
then you pay for these two weeks. If not, then you don ’ t pay. And so we continue.
You pay when you are satisfi ed with the work we deliver. You could of course
abuse this principle, since we obviously cannot exclude the functionality, which
you are not satisfi ed with and for which you have not paid, from the product. New
functionality is developed on top of the supplied functionality of the last iteration.
In this case you would pay for the development in the fi rst two weeks, then you
would not pay for the next two weeks, and then you would pay again and so on.
This would cut your costs and at the end you would have the fi nished product with
all the functionality at half the cost. However, we would note in this case that you
had not dealt with us fairly and we would have to stop working.

 This way of dealing with a customer who we may not yet know minimizes
the risk. It is also a successful practice to be able to start from a basis of trust
and to respond if the trust is broken (this is called the tit for tat strategy). The
beauty of agile projects is that at the end all that counts is what is actually
delivered.

 Incidentally, this is a fi rst indication of how contracts should be designed. It is
expected that the result desired would be that software is delivered and not a
question of whether intermediate steps were generated successfully .

 Responding to c hange o ver f ollowing a p lan
 Reading this head, our attention jumps immediately to the last word: plan.
This wording is interpreted by many to mean that in agile projects and agile
product development, there are no plans. As if there would only be chaos: No
one knows what he or she will get and no one can say how expensive a project
or product will be.

 This interpretation is obviously wrong. With agile projects, you plan more
frequently and more concretely than with traditional methods—on a total of
fi ve levels:

AGILE DEVELOPMENT BASED ON SCRUM 11

 • On the level of the vision
 • On the level of the road map
 • On the level of release
 • On the level of the sprints and iterations
 • On the level of daily work

 Agile methodologists have developed countless planning procedures and
tools, beginning with clear conceptions about how you produce a vision and
how you subsequently produce release plans. There are concrete procedural
instructions on how to arrange sprint planning and much more. At all levels,
the participants are aware that each of these planning activities will be repeated
iteratively and that the plan must be adjusted continuously. The development
team plans every day to collaborate to achieve the sprint goal. During the
sprint, the development team and product owner discuss (or to phrase it dif-
ferently, they plan in cooperation) how the next sprint will be executed. At the
beginning of a release, the Scrum team and customers discuss what they would
like to see produced in the forthcoming release.

 During the current release, the product owner and the customers talk about
how the product is to be developed further in the long run. The product road
map and the vision of the product are tested in the market, and if necessary,
a more sustainable vision for the product is generated. Ideally, the entire plan-
ning process is therefore completely transparent. Recently, Pries and Quigley
 (2011) have compared Scrum to standard project management techniques,
with the result that there are comparable planning mechanisms in this agile
methodology.

 Each of these planning processes has its own visualization techniques and pre-
sentation methods. For the plans to proceed as effectively and as rapidly as
possible, the communicative process among the various parties must be coordi-
nated. In agile development, not having a plan is not an option .

 1.2 AGILE DEVELOPMENT BASED ON SCRUM

 Scrum is now the de facto standard in agile software development. In recent
years it has evolved from a project management methodology to a new under-
standing about how to manage dysfunctional working teams, departments,
entire organizational units, and companies [in software development and even
in industries such as education (Pries and Quigley, 2011)]. Typically, companies
use Scrum initially at the team or project level as a project management
method. Some companies continue to use it that way. Others evolve even
further and shape the life cycle of their entire organization with Scrum. Basi-
cally, it is not a method of software development but a management frame-
work within which software development, in whatever way and by whatever
means, is taking place (Table 1.1).

12 AGILITY: WHAT IS THAT?

 With Scrum, there are a few principles and just a few rules. However, these
rules and principles are adhered to strictly. Completely in accordance with the
agile manifesto, Scrum is based on another conception regarding people:
Scrum respects each person involved and the subject is perceived of as a liter-
ate member of the team. Scrum is designed to give teams freedom so that the
talents of its members are exposed and so that an enjoyable and productive
working environment can exist. In our interpretation, Scrum enables each
team member to regain the skills and competence they need to take over
responsibility.

 The opinion that Scrum is a development method is a common misunder-
standing. That Scrum leaves unrestricted freedom to team members is another
misunderstanding. Agile approaches such as Scrum are based on a meaningful
interaction of rules, discipline, personal responsibility, thinking together, assist-
ing each other, and not using your knowledge simply to shine personally.

 • Product development vs. project management. Scrum is not about pro-
ducing a predefi ned end result but, rather, a steady stream of product
parts, resulting in an overall end product. Using Scrum, the developers
create a product that approximates the future by the constant inclusion
of current changes. By default with Scrum, the applicable software is
developed at the end of each sprint. In addition, this results in continuous
intermediate products . These products make it possible to start risk-free
and to measure the progress of a project based on the product parts
already supplied. This is the real reason that agile software development
projects do not conform to traditional contractual concepts. Something
is always delivered, which is not the case with traditional project manage-
ment methods.

 • Management framework vs. development methods. Scrum has no regula-
tions on how to work, but sets out roles and responsibilities very clearly.
It also defi nes very clear limits for the development part. The principle
of the time box produces not only creative pressure but also the security
that is necessary for the development of self-organization.

 TABLE 1.1 Agile Development Methods Within an Agile Framework

Agile Development Method Agile (Management/Process) Frameworks

Adaptive software development S

c

r

u

m

Agile data warehousing
Crystal
Dynamic system development method
Extreme programming
Feature-driven development
Software expedition
Universal application
Usability-driven development
Kanban

AGILE DEVELOPMENT BASED ON SCRUM 13

 • Product owner vs. project manager. The term project manager does not
exist in Scrum. A product owner is a product visionary who can deliver
the product idea to the team, thereby encouraging the team members to
productivity. The product owner is responsible for the fi nancial success
of the product but, in contrast to a standard project manager, also, has a
deep understanding of the client ’ s domain and requirements.

 Before we take a closer look at Scrum, we need to resolve the three greatest
misconceptions.

 1. Scrum is based on temporary thoughts and hence involves no plan-
ning. Planning in Scrum is carried out consistently and strictly on three
levels: at the daily level (daily Scrum), at the sprint level (sprint plan-
ning), and at the release level (release planning). Scrum follows the
Deming cycle, the basic idea of continuous improvement and permanent
planning following the motto plan–do–check–act (Deming, 1982).

 2. Scrum promotes unprofessional work. This view has its foundation in a
world where freedom is perceived as a threat to problem solving and
where inches-thick documents are considered quality criteria for good
software. Scrum allows freedom of creativity for the team and prescribes
in no way how a problem should to be solved. In sprint planning, you
dog however, specify what needs to be present at the end of a sprint. If
documentation is deemed to be necessary, it will be included at the end
of the sprint. Scrum reveals unprofessional work relentlessly. Due to the
daily Scrum, unprofessional work by individual developers is visible to
all team members.

 3. Agile methods and Scrum are not disciplined. Agile processes are
extremely consequential in their implementation, as each person ’ s
actions become permanently visible and obvious. Discipline in Scrum is,
in fact, so extreme that every meeting starts on time and to the minute
and whoever is not present must remain outside.

 The v alues of Scrum
 It is quite clear that people ’ s perception of the agile manifesto and conse-
quently of Scrum is different from that of the command receiver and the
executing aides, who work according to a strict plan. In Scrum, we assume that
intelligent people have a fundamental interest in contributing their ideas to
improving things or even to developing new things (see, in addition, the X and
Y theory of Douglas McGregor). Those who promote Scrum are of the opinion
that we are all adults and are therefore basically responsible for our own
actions. In Scrum we believe (and know) that people give their all if they are
fascinated by a vision. Commitment, focus, openness, courage , and respect are
therefore the values of Scrum on which the thinking of those who work with
Scrum should be based.

14 AGILITY: WHAT IS THAT?

 1.2.1 The Principles of Organization

 The concepts on which Scrum is based, require a different form of organiza-
tion. In principle, the procedural principles of the Toyota production system
are transferred to software development.

 • Small, self-organized, and cross-functional teams. Ideally, a Scrum team
is made up of seven people: the scrum master, the product owner, and
the fi ve members of the development team. The members of the develop-
ment team do not rely solely on their own specializations but are able to
perform various tasks in the work process (according to the concept of
the T-shaped person ; see, e.g., Reinertsen, 2009). This means that they can
share their knowledge with each other, applied in various combinations,
and they have no fear of tasks that do not correspond directly to their
core competencies. They organize their tasks entirely by themselves.

 • Working according to the pull principle. The team has sole authority to
decide how much labor and how many product parts can be delivered
during a sprint. The team has control over how much work it receives.
(For a description of the pull principle in production, go to http://de.
wikipedia.org/wiki/Pull-System .)

 • Intervals with a clear time limit: the time box. The team gets challenging
targets, which are specifi ed at intervals with specifi c time frames. All
actions are limited in time and require a result. This creates a clear
framework.

 • Useful business functions: potential shippable code. At the end of each
time interval, the team must deliver a product that meets the standards,
guidelines, and requirements of the project.

 1.2.2 The Process Model

 The Scrum process model defi nes the framework for running all the activities
of product development (Figure 1.1). Besides the six roles outlined above, the
Scrum process consists of six meetings and 12 artifacts, shown in Table 1.2 .

 A weakness of traditional development methods is that they separate cus-
tomers and developers. This causes a separation between the strategic and the
tactical-operational levels. As a result, the team knows that it should do some-
thing, but not why. Knowing why is background information essential to devel-
oping innovative approaches to problem solving. This fact has long been
known. For example, Richard Feynman observed during the Manhattan atomic
bomb project that his team ’ s productivity increased extremely as soon as they
were given more information about the “why” (Feynman, 1985).

 Software developers in traditional processes are usually focused strongly
on their work and ignore existing medium- to long-term business issues.
With Scrum, however, the software developers are included in the strategic

AGILE DEVELOPMENT BASED ON SCRUM 15

 Figure 1.1 The process model: “Scrum Flow.”

 TABLE 1.2

Roles Meetings Artifacts

Team Estimation meeting Product vision
Product owner Sprint planning 1 Product backlog item (story)
Scrum master Sprint planning 2 Product backlog (list of stories)
Manager Daily scrum Sprint goal
Customer Estimation meeting Selected product backlog
End user Sprint review Tasks

Sprint retrospective Sprint backlog
Release plan
Impediment backlog
Product increment: usable

software
Defi nition of done
Burndown chart

16 AGILITY: WHAT IS THAT?

considerations in the following two ways, and developers begin to understand
the context in which the success or failure of their work affects their fi rm and
its customers.

 • On the one hand, the product owner develops a product vision for the
product, either alone or together with the team.

 • On the other hand, the team always becomes involved in later strategic
planning.

 In these two substrategies, product line strategy and organizational strategy
higher-level strategies are obviously also factored in.

 Strategic planning provides us with a perspective from which, to assess
whether a project can succeed, and with the ability to decide which approach
will lead to achieving the goals. In summary, we are planning the following:

 • On the strategic level, the goals that we want to achieve
 • On the tactical level, the actions that are necessary to achieve these

objectives

 The r oles
 The strength of Scrum lies in the clear allocation of responsibilities and the
separation of responsibilities of Scrum master, product owner, and team. In
practice, to strengthen the situation intellectually within the teams or in an
organization, we add the roles of customers, end users, and managers.

 • The development team: the suppliers. The development team delivers
the product. It manages its own affairs and is authorized to do anything
goal-oriented that is necessary to achieve the desired result. This is done
while complying with the standards and procedures of the organization.
The team itself controls the amount of work that it can handle and there-
fore accepts responsibility for the quality of the delivery.

 • The product owner: the visionary. The product owner steers the product
development and is responsible for ensuring that the team develops the
desired functionalities in the correct order. He or she ensures that the
project results justify the fi nancial investment for the project. The product
owner works on a daily basis with the team and takes all necessary deci-
sions in a timely manner. He or she is working continuously on the
product backlog and the release plan.

 • The Scrum master: the change agent. The Scrum master helps the team
achieve its goals. He or she works to ensure that all the diffi culties,
obstacles, and problems that are present are solved. Although not autho-
rized to give instructions, this person ensures that the Scrum process is
followed. One of the main tasks of the Scrum master is to educate all
persons involved in the project so that they can understand and carry out
their roles.

AGILE DEVELOPMENT BASED ON SCRUM 17

 • The manager: the provider. Management provides resources and guide-
lines within the organization. It creates the framework within which the
team, the product owner, and the Scrum master may move. Management
often solves the problems identifi ed by the Scrum master.

 • The customer: the fi nancer. The customer is the requester of the project;
he or she buys it or has been ordering the project. Typically, executive
managers in organizations buy products from external companies. In an
internal project development team, the person responsible for the budget
often has the role of customer.

 • The end user: the user. The user of the product is an essential source of
information for the Scrum team. He or she is the one who will eventually
use the “usable software.” Therefore, the Scrum team includes the user
in the product development process. During the sprint planning, the user
collaborates with the product owner to defi ne the requirements. Later,
he or she will work together with the team to ensure that the application
is deliverable.

 Scrum on a s trategic l evel

 • Develop a product vision. Initially, a team member is faced with a product
idea that is often introduced by the customer: the product owner. He or
she handles this idea until there is a product vision. The product vision
includes the basic idea for the project, including the necessary contraints,
which are envisioned from the start.

 • Create a product backlog. The product owner develops, either alone or
with the help of team members, the product functionality (product
backlog items). These items are listed in a very simple form: the user
stories (or contextual groups of user stories, called epics). A story is a
short sentence that represents a part of functionality in a special way. It
is described by Mike Cohn (2004), who establishes the following structure
for user stories:

 • As a user with a role, I want a function, so that I can get benefi ts.
 • Example. As a bank customer, I want the ability to identify myself, so

that I can retrieve my customer data.
 • All user stories (or epics) are included in a list, the product backlog.
 • Order the list by priorities. The product owner places the items in the

product backlog list in order of expected fi nancial gain from the respective
functions (http://www.scrum.org/scrumguides , last accessed on 6/3/12).

 • Hold an estimation meeting. Next, each product backlog item must be
valued as to its size. The estimation is performed by team members. A
Scrum team includes all those people who are necessary to ensure that the
backlog items are transformed into software that can be delivered. The
team members estimate the extent of each product backlog item to be
delivered and communicate the result to the product owner (Gloger, 2011).

18 AGILITY: WHAT IS THAT?

 • Estimate and prioritize the product backlog. The product backlog esti-
mate is now completed. All team members have an idea of what the
product should look like, and the product owner has a fi rst impression of
how much effort it will take to create the product.

 • Determine the velocity. To determine when something can be delivered,
we need to know the order and the size of the stories as well as the capac-
ity (i.e., velocity) of the team.

 • Create the release plan. With the capacity of the team we can calculate
the duration of the project. Assuming that the team will remain as it is
now, we can determine the number of sprints and, consequently, specify
release dates for the various stories.

 Scrum on a t actical l evel
 The actual implementation phase in Scrum is carried out in clearly defi ned
time intervals, the sprints. Until the end of each sprint, the team must do its
best to deliver functional and quality software (potential shippable code or, as
termed more recently, usable software). At the beginning of a sprint, the tacti-
cal implementation is discussed, based on the plan that was developed in the
strategic planning phase. On the basis of rough ideas about what features (user
stories) are to be delivered in the respective sprints, it is now decided how
much can actually be delivered in this sprint. A sprint covers a maximum
period of 30 days and is divided into a series of (planning) workshops: sprint
planning 1, sprint planning 2, daily Scrum, estimation meeting, sprint review,
and sprint retrospective.

 • Sprint planning 1: explaining the requirements for the sprint. In this fi rst
sprint workshop, the product owner, the team, the management, the users,
and the Scrum master are present. The product owner explains the stories
and, together with the team members and management, defi nes the goals
for the upcoming sprint. The stories are then selected suitably, according
to the goals and abilities of the teams to deliver them. This is how sprint
backlog develops (in accordance with the Scrum Guide, http://www.
scrum.org/scrumguides , last accessed on 6/3/12).

 • Sprint planning 2: design and planning. Here the team members plan,
together with the Scrum master, how they will meet the target agreed to
in sprint planning 1. They advise each other on how the application
should be structured, what architecture should be selected, which inter-
faces should be written, and whether test cases should already have been
created and written. In short, they discuss in detail what needs to be done.

 • Daily Scrum: coordination and feedback. Every day the team members
meet (the product owner may also participate) at the same time in the
same place for 15 minutes for a daily planning meeting moderated by the
Scrum master. Here, each team member selects the task that he or she
will work on that day. The team members inform the Scrum master of

AGILE DEVELOPMENT BASED ON SCRUM 19

obstacles and problems so that he or she can solve them as quickly as
possible.

 • Estimation meeting: advance planning and estimation. The product
owner and team members update the product backlog at least once
during the sprint. Thus, stories containing new estimates are provided and
new stories are included in the product backlog. At the same time, the
order of the backlog items is adjusted, to take the new information into
consideration. This meeting allows the product owner to update and
complete the release plan of the project.

 • Sprint review: presenting the results. At the end of the sprint, the Scrum
team presents the stories that have been developed. The team shows
only the stories that are really complete, that is, that could be put into
production.

 • Sprint retrospective: constantly improving. The sprint retrospective
enables the team to learn systematically. In this stage the team analyzes
which processes must be improved in order to work more effectively. The
results of the retrospective are captured in the impediment backlog and
contribute as suggestions for improvements in the sprint planning.

 The key principle is: At the end of a sprint, the development team must provide
potentially useful functionality. This means that no further work is needed to
pass this functionality to the end user. This principle must be adapted to the
respective conditions of development. Therefore, the level of completion is
agreed between the development team and the product owner (the “defi nition
of done”). The Scrum master is working continuously with the Scrum team to
improve the effi ciency of the teamwork. Ideally, the end user receives a tested
delivery at the end of the sprint .

 Scrum can help companies to compete in the global marketplace. It does
so by designing the software product development to be more responsive and
problem-oriented rather than just a work-through project. The principles of
Scrum, the roles and the process framework, create structures and rules by
which to guide the staff but at the same time to give them the freedom to
develop their potential. In this way, they fi nd new, innovative approaches and
begin to think beyond their horizons. The fact that Scrum is much more than
simply a single method is usually not recognized by companies until they are
already working with it.

 1.2.3 Estimation in Scrum

 Estimating the complexity of the functionality to be delivered is an essential
part of the cost negotiation and implementation of projects. This is not special
for Scrum, but the way this is done within an agile framework agreement is
different. To prepare you for later work as to how estimates in Scrum are
analyzed and prepared, we provide here an explanation and basic overview.

20 AGILITY: WHAT IS THAT?

 In the real business world there are many reasons why the product owner
must create a release plan. This plan should show at which point certain sets
of specifi c functionality are available. To create this plan, the product owner
needs three pieces of information:

 1. The size (in terms of complexity) of the backlog items.
 2. The prioritization: that is, the order of the backlog items in the list of

functions.
 3. The capacity of the Scrum team: that is, the number of backlog items

(counted in complexity points or story points, which are discussed later)
that the Scrum team can develop in one sprint.

 If these factors are available, the product owner can very easily calculate
at which point the functionality will be available. The problem is that this
information is not known at the beginning of a project. Therefore, a way must
be found to estimate the size of the backlog items and the capacity and/or
velocity of the Scrum team.

 Predictability and e stimates
 Why is estimating functionality so problematic? The answer is because esti-
mating as we generally think of it estimates the wrong thing: namely, the effort.
When estimating a project, we must distinguish between:

 • Estimating the effort
 • Estimating the size (i.e., the complexity)

 Very often, the estimate of the size of the functionalities is confused with
the estimate of the effort. It is understandable that a project manager would
appreciate an estimate of the effort, because this gives the project sponsor
information about the cost of the project. But if estimates are based on effort,
this also means that the project plans must be based on an estimation of the
activities.

 In software development, where a more productive programmer is up to
25 times as effective as a weaker one, it is impossible to predict the time taken
for a particular programming task. What is even more extreme is that there is
no correlation between the time required for a particular task and the end
result. Even if the project manager asked the developer for an estimate each
time a task was performed, he or she would still have the problem that the
same developer does not always complete the task. Estimating in Scrum means
to estimate the size, not the effort.

 In Scrum, the team performance is measured by its velocity , the amount of
functionality that a team can provide in a time unit or sprint. In other words,
the velocity is an expression of the throughput (measured in terms of the size
of the functionality) of the team. The more a team gets done during a sprint,

AGILE DEVELOPMENT BASED ON SCRUM 21

the higher its throughput (i.e., velocity). If the product owner knows the mea-
sured velocity of a team, he or she can accurately calculate when a specifi c
product part is fi nished.

 Estimates w ith s tory p oints
 Before we can determine the size of the backlog items, we need to establish
what size means. Size refers to the degree of understanding that a team has of
the functionality of the backlog item. The more accurate the understanding,
the smaller the associated size.

 To estimate the size of a backlog item, we require only three things:

 1. First, we need a reference . We obtain this by selecting an item from the
list of backlog items, which at fi rst glance appears to be small and man-
ageable. While browsing, the team together determines which properties
the backlog item has, thus establishing the reference. The reference rep-
resents the dimensions or aspects that the team needs to use to deter-
mine the size. If, for example, we want to determine the size of countries
and we had a list of all the European countries, we might fi rst look for
the smallest country. For this we would fi rst have to agree on the proper-
ties according to which we determine size. We could take into consider-
ation the area as well as the size of the population. We could, of course,
also use a combination of many properties. The factors incorporated in
the determination of the size are set when estimating backlog items. Here
you select the dimensions that best help you understand the backlog
items. The responsibility for setting the dimensions of the unit lies com-
pletely with the team. The reference should express all relevant aspects.

 2. If you have agreed to a reference, that is, a backlog item that appears
suitable as a reference, the next step is to establish the unit of measure .
The unit is simple in our case. We need something that expresses the size
of a backlog item. The agile community has agreed to call this unit of
measure story points . This is completely arbitrary; you might as well
count gummy bears, as long as you are aware that we are dealing here
with the designation of a unit.

 3. Finally, we need a scale . Scaling is diffi cult because it leads easily to mis-
interpretations. We are dealing with estimates of relative size (i.e., the
relative understanding of the functionality that will be generated). We
therefore require a scale that takes into account the fact that estimates
have larger fl uctuations when big things, which are often associated with
a greater lack of understanding, are estimated. In other words, an esti-
mate will be more accurate if we are dealing with a small, manageable
package than if it is a very large package.

 The agile community has, not least thanks to the work of Mike Cohn (2005),
selected Cohn ’ s impure fi bonacci series as the agreed-upon scale (Table 1.3).

22 AGILITY: WHAT IS THAT?

This scale already indicates to us, simply through its values, how “accurate”
the estimate is. A high value means automatically that the standard deviation
is higher. The estimate is therefore not inaccurate, but the range in which our
backlog item is located is much larger. We will see that we use this property
to schedule the release plan.

 Now we have everything that necessary to estimate the backlog items: a
reference, a unit, and a scale. At this point we invite the team to an estimation
meeting. As this can sometimes be a rather large meeting, we have to perform
as effi ciently as possible.

 Planning p oker
 Planning poker generates estimates in a relatively short time, based on expert
opinion, and it also makes the proceedings entertaining. The use of Planning
Poker in the estimation process is so effective because it uses the intuition of
experts and helps to avoid the communication problems that every group of
experts experiences. Planning poker is “played” by all the Scrum team members.
It is, in fact, important that all team members (i.e., software developers, data-
base engineers, testers, business analysts, and designers) estimate the backlog
together. In an agile software development project, that usually involves no
more than 10 team members. If the team is any larger, you should split it up
and carry out the estimation in two teams. It is crucial that the product owner
be present, but he or she has no right to estimate.

 Planning poker is played with planning poker cards. To prepare in advance,
each team member is given a set of “playing cards” with the values of the
impure Fibonacci series according to Cohn (i.e., 0, 1, 2, 3, 5, 8, 13, 20, 40, 100).
When all team members have their card set, in the next step they agree on the
reference backlog item or call to mind once again what the reference backlog
item was in the last round of estimations and which features were relevant in
the assessment.

 Once the reference backlog item has been found, the actual estimation
process begins. The moderator of the meeting then reads out loud the descrip-
tion of the backlog items that are to be estimated. Any questions about the
understanding of issues for this backlog item are answered at this meeting
(where relevant, these answers are used to extend the description of the
backlog item). When all questions have been answered, each team member
selects a card which represents the value that this team member believes
to be correct. While poker is being played, nobody announces his or her

 TABLE 1.3 The Impure Fibonacci Series According to Cohn

Step 1 2 3 4 5 6 7 8 9

Value 1 2 3 5 8 13 20 40 100
Standard deviation at 50% accuracy 0.5 1 1.5 2.5 4 6.5 10 20 50

AGILITY FROM THE PERSPECTIVE OF PROCUREMENT 23

selection. Only when all team members have decided are the cards revealed
(simultaneously).

 Almost always, the estimates of individual team members differ. This is
good, as it gives each person the opportunity to learn something. The two team
members with the highest and lowest estimates now explain how they got to
their respective numbers. This explanation is only for the exchange of informa-
tion, not about who is right. At this stage, the moderator of the meeting should
ensure that no confl icts arise. Perhaps things can be clarifi ed once again
through the exchange of information or via additional information supplied
by the product owner. The moderator may, if deeming it necessary, retain this
information in the form of notes.

 Once both team members have explained how they arrived at their values,
the estimation is repeated. Once again all the parties involved select a number
and show it simultaneously. Generally, the fi gures have now aligned them-
selves: for example, the values 8, 8, 5, and 8. The moderator then asks whether
we can agree on a value of 8. If the team members are in disagreement, a third
round is played. This time, the values should be almost identical. If not, the
“most sensible” value is considered. This estimation procedure is not about
accuracy but, rather, about selecting a value that makes sense.

 In this way we are able very quickly to obtain a valued product backlog in
which all team members were involved. This factor is crucial because only
when all team members have together completed the estimate of the backlog
items can they get involved in these estimates. More important is the fact that
during the poker, all team members manage to gain an idea of what is to be
developed. For larger teams and projects, Boris Gloger has developed another
method of estimation: magic estimation, which is described in Chapter 3 .

 1.3 AGILITY FROM THE PERSPECTIVE OF PROCUREMENT

 It is already quite common in modern procurement of custom software to
insist that after no later than four weeks, the fi rst fully functional increment
of the product be shipped. (Custom software is designed specifi cally for the
client. As part of the custom software or product concept we also understand
software development that happens during customer-specifi c software integra-
tion projects.) The “elevator pitch” of Scrum inventor Ken Schwaber has
always been: “I help companies deliver software in 30 days” (Schwaber and
Sutherland, 2012). That ’ s what the agile software development is: fast, iterative,
one increment at a time. The buyer is able to learn from mistakes on both sides
and does not have to make a big decision without the possibility of handling
the risks properly in the course of the project.

 The contractor should deliver product features consecutively. Feedback
from the customer should be incorporated as soon as possible, and despite
possible changes to the scope of the project, the overall result desired should
be delivered. It is, however, very unlikely that for large orders a contractor

24 AGILITY: WHAT IS THAT?

will be able to deliver an entire product within 30 days, but there is a high
probability that after 30 days a fi rst increment will be delivered with which
the customer will be able to start working.

 The traditional development processes of Winston Royce are not able to
meet the foregoing expectations placed on software development services. The
traditional model, developed in the 1970s, is still in frequent use. It is, some-
what, a contradiction to Scrum, as the capturing of requirements, the creation
of the entire design, and all the contractual duties and a subsequent tender
often take much longer than four weeks. Thus, fi rst units are typically delivered
much later than with the agile model.

 The problem inherent in all software development projects and all services
is the variability as to what should be delivered: the inability to know what you
actually need . We know that this is diffi cult to digest for those in procurement
(and perhaps for many others, too). However, the understanding that this
inability is a systematic, even a necessary principle is essential. The simple fact
that you agree to purchase and develop a project for which you cannot describe
all the details in advance is actually the fi rst important step toward project
success (Reinertsen, 2009).

 An example: A mechanical engineer wanted to implement a new method
of materials testing. Part of the work of the project team consisted of operating
the essential innovation and inventing the vital approaches and components.
In this example it is obvious that you cannot know whether the team will
manage to deliver the desired outcome on a given time line and at a specifi ed
cost. The value of the product lies in the new product ideas, or the invention.
If you know what you want to invent but still do not know how to get there
in detail, the value of the new product is to eliminate the lack of knowledge
as to how to get there.

 And here lies the paradox. To plan would mean to know what to do and
to know how the result can be achieved. This is not so because you want
to explore new territory. The waterfall project cannot help here and it is
understandable that it would be a waste of money to invest in detailed
specifi cations as to what should be done. A project based on traditional prac-
tices simply cannot consider all the uncertainties associated with the problems
that exist.

 Despite the weaknesses of traditional tendering processes and classical
implementation approaches, it is interesting to hear the following from some
procurement representatives and even key account managers. These state-
ments are often linked to the rejection of an agile contracting model and show
the tendency toward fi xed-price contracts:

 • “I want to know what I get for my money!”
 • “We need to know exactly what the client wants; otherwise, we cannot

estimate our costs.”
 • “The customer always wants more than he or she asked for initially!”

AGILITY FROM THE PERSPECTIVE OF THE SOFTWARE PROVIDER 25

 • “How can I be sure that the contractor will not infl ate the price? They
can simply work more slowly.”

 • “I need a work contract, not time and materials development, because I
can capitalize the investment accordingly.”

 We hear such statements in almost any discussion of agile software develop-
ment and agile project management approaches. They suggest a deep-seated
confl ict among the parties—development, seller, and buyer—as to trust and,
of course, the fact that on the one hand you want to buy something as inex-
pensively as possible and, on the other hand, sell something at the highest
possible price with manageable risk in the development process.

 Wait a moment. Can we not do anything about this? Is it not true that the
nature of the business follows this exact principle? We buy things as cheaply
as possible so that we can make as much profi t as possible. We cover this point
in subsequent chapters. It is, however, important at this point to understand
that it is clear that this principle concerns business, and that we need new
approaches for complex IT projects and custom software. Traditional contracts
with fi xed-price agreements or, at the other extreme, contracts based on time
and materials often lead to lose–lose situations with just the illusion of solving
the concerns listed above. In Chapter 5 in particular we show that modern
procurement is capable of conducting tenders for agile fi xed-price contracts
jointly with the business departments, thereby awarding a contract to the sup-
plier who reveals the best quality and price with the lowest associated risk.

 1.4 AGILITY FROM THE PERSPECTIVE OF
THE SOFTWARE PROVIDER

 A seller of software services should be able to make customers pay adequately
for the value and quality of the product and service provided. The sellers ’ (also
called key account managers throughout the book) job is to offer a product
that the customer wants at a higher price than a product that the customer
does not want. The actual underlying problem is described brilliantly in an
article about the agency David and Goliath:

 “We cannot complain about too little work, quite the opposite,” says Matthias
Czech, owner and creative director [of the agency David and Goliath]. There is
however a catch. More and more frequently, says Czech, the agency is invited to
pitches where the customer evaluates which agency best suits the company, based
on the offer. This as opposed to evaluating based on creativity, effi ciency and
performance (http://bit.ly/rNiNAC , last accessed on 5/1/12).

 Customers want the cheapest provider. They want to buy software integra-
tion services and software development services as if such services were a
standard consumer product. They want to know at the beginning what it will

26 AGILITY: WHAT IS THAT?

cost, but as described above, they do not have a detailed idea of what they really
want. Sellers or service providers cannot offer a product when they do not yet
have one. They have no idea at what price they can offer a product, because
they do not know the market for a new product. This can only be established in
the course of a project. At the same time, a seller knows that there will always
be someone who claims to be able to offer the same thing more cheaply.

 The variability and illusions surrounding expenses play a trick on sellers. If
there is a really creative, highly effective team in the background which provides
excellent quality quickly, a seller can potentially make a favorable offer. Even
if he or she knows that the team requires little time (low cost), a seller cannot
be sure that competitors will not offer lower price and provide lower quality.
Indeed, the customer and even the seller cannot defi ne exactly what is to be
delivered, but both believe in the illusion that this can be described perfectly.

 And then there is the fact that the seller should in no case offer a project
at a discounted cost. He or she puts a team to work that is very good, works
fast, and offers high quality. As a result, the seller should offer the project at
a fairly high price because, after all, the customer is being provided with a
product of high value. In both cases, whether a fi xed-price project or a time
and materials project, the situation is not advantageous for the seller. This is
different, of course, if the seller follows a philosophy of offering at lowest cost
and then generating additional revenue based on tons of change requests.

 1.5 THE 12 PRINCIPLES OF AGILE SOFTWARE DEVELOPMENT

 In addition to the four pairs of values, the authors of the agile manifesto have
named 12 additional principles that apply to the agile management framework.
Next we show how the parties involved—customer, supplier, and development
or Scrum team—can shape these principles and achieve project success through
shared support.

 The practices listed below are just a few of the possibilities for collabora-
tion. They symbolize a different way of dealing with customers, suppliers, and
teams. Implementing Scrum or other agile management framework always
infl uences the entire organization. Often, not all parts of an organization are
able to implement all aspects at once. Therefore, consider the statements below
only as references of where relationships should evolve.

 1. Emphasis is on d elivery
 “Our top priority is to satisfy our customers through early and continuous
delivery of valuable software content.”

 How d o w e b ehave a s a c ustomer?

 • We participate in sprint reviews.
 • Our department takes on fi nished software at the end of a sprint if pos-

sible, otherwise as early in the process as feasible.

THE 12 PRINCIPLES OF AGILE SOFTWARE DEVELOPMENT 27

 • We integrate the software into our existing systems as soon as possible
after delivery, as this often deters the risks inherent in the fact that the
software operations department has a very specifi c view of the software
delivered.

 • We give critical but respectful feedback.

 How d o w e b ehave a s a s ervice p rovider?

 • Our software development processes allow us to show the customer fully
functional software after each sprint.

 • We make appropriate environments accessible to the customer.

 How d o w e b ehave on the Scrum t eam?

 • We optimize our development practices in the team so that we are able
to present completed software at the end of a sprint.

 • We talk extensively with users and customize applications according to
the user ’ s requirements.

 • We deliver the most effective solution that fulfi lls the user ’ s
requirements.

 2. Free e xchange
 “Accept changes in requirements even late in development. Agile processes use
changes to the competitive advantage of customers.”

 How d o w e b ehave a s a c ustomer?

 • We distinguish between functional requirements and the conditions of
the project.

 • We are personally involved in the project vision and understand the
technological implications.

 • We are aware that we are permitted to make changes.
 • We understand that there is a profound change when we alter the

environment.

 How d o w e b ehave a s a s ervice p rovider?

 • We welcome changes.
 • We develop in such a way that we are able to respond rapidly to changes.
 • We make this possible with good documentation, refactoring, and con-

tinuous and open communication about what has actually occurred.
 • We invite customers to daily Scrums, sprint plannings, and reviews.

 How d o w e b ehave on the Scrum t eam?

 • We communicate with customers to fulfi ll their needs. We try to think like
customers and users.

28 AGILITY: WHAT IS THAT?

 • We are open to criticism when our applications are under review.
 • We acknowledge our errors and correct them immediately.

 3. Deliver in i terations
 “Deliver functional software regularly within a few weeks or months and favor
these shorter time periods.”

 How d o w e b ehave a s a c ustomer?

 • We are present at sprint reviews and give feedback.
 • As quickly as possible, we integrate into our existing infrastructure the

partial functionality delivered.

 How d o w e b ehave a s a s ervice p rovider?

 • We invite customers to sprint reviews and openly discuss the current
status.

 How d o w e b ehave on the Scrum t eam?

 • We deliver complete functionality at the end of each sprint.

 4. End u ser and d eveloper s it t ogether
 “Experts and developers must work together daily throughout the project.”

 How d o w e b ehave a s a c ustomer?

 • We make experts from various departments available to the development
team.

 • We are available when the development team has questions.
 • We take time for the project and respect the fact that nobody can guess

our wishes without us giving feedback and helping to understand the
details.

 How d o w e b ehave a s a s ervice p rovider?

 • We welcome the experts when they are present in the Scrum team.
 • We call them when we have questions.
 • We make a point of inviting them to sprint planning.

 How d o w e b ehave on the Scrum t eam?

 • We work with the experts daily.
 • We make an effort to understand the experts.
 • We observe how the expecrts work. However, we do not ask them what

they want; instead, we work with them until we know what they need.

THE 12 PRINCIPLES OF AGILE SOFTWARE DEVELOPMENT 29

 5. Trust the i ndividual
 “Build projects around motivated individuals. Give them the environment and
support they needs and trust that they will get the job done.”

 How d o w e b ehave a s a c ustomer?

 • We search for an agile development partner.
 • We provide motivated experts.
 • We trust the delivery team for at least the fi rst three sprints.
 • We also check whether they deliver what we expect.

 How d o w e b ehave a s a s ervice p rovider?

 • We select project team members who really want to work on the project.
 • We give them the tools they need for their work and remove unnecessary

bureaucratic hurdles.

 How d o w e b ehave on the Scrum t eam?

 • We state openly when we need something or when we are obstructed by
something.

 • We have a Scrum master who clears obstacles out of our way.
 • We behave respectfully toward customers and management.

 6. Face-to- f ace c ommunication i s m ore e ffective
 “The most effi cient and effective method of delivering information to a develop-
ment team is face to face.”

 How d o w e b ehave a s a c ustomer?

 • We understand that good documents are always only a result of successful
face-to-face communication.

 How d o w e b ehave a s a s ervice p rovider?

 • We communicate openly with the client. All information, including prob-
lems and areas where we are lagging behind, is visible to the customer.

 • We do not hide anything.

 How d o w e b ehave on the Scrum t eam?

 • We talk to users.
 • We understand their needs.
 • We observe users while they are working.

 7. All that m atters i s c ompleted f unctionality
 “Functioning software is the primary measure of success.”

30 AGILITY: WHAT IS THAT?

 How d o w e b ehave a s a c ustomer?

 • We call on our service provider to deliver the fi rst part of completed
software within 30 days.

 • We are not satisfi ed with documents as representing of progress.

 How d o w e b ehave a s a s ervice p rovider?

 • We deliver software in short intervals.
 • All obstacles on the customer ’ s side are discussed openly, and all obsta-

cles on our side are also addressed and resolved openly.

 How d o w e b ehave on the Scrum t eam?

 • We constantly deliver software that is potentially usable.

 8. Sustainable p ace
 “Agile processes promote sustainable development. Clients, developers, and
users should be able to maintain a steady pace indefi nitely.”

 How d o w e b ehave a s a c ustomer?

 • We will not push the team for functionality and deadlines, and we will
not demand overtime or changes at the last minute.

 How d o w e b ehave a s a s ervice p rovider?

 • We constantly work professionally and to a high standard.
 • We deliver only tested, documented, and representative software.
 • We do not commit to functionality over long periods.

 How d o w e b ehave on the Scrum t eam?

 • We honor our commitments in the sprint.
 • We work as a team, striving continually to deliver consistently on a high

level.

 9. Quality i s an a ttitude
 “Continuous attention to technical excellence and good design promotes agility.”

 How d o w e b ehave a s a c ustomer?

 • We expect high technical quality from our contractors, and we know that
this is not something that we can buy for a bargain price.

 • We do not, therefore, select our service providers according to price, alone.

 How d o w e b ehave a s a s ervice p rovider?

 • We deliver to the customer an excellent design with extensible architec-
ture, and we invest in the training of our staff.

THE 12 PRINCIPLES OF AGILE SOFTWARE DEVELOPMENT 31

 How d o w e b ehave on the Scrum t eam?

 • We look constantly to the future and search for solutions that are
extensible.

 • We perform test-driven development, we automate, and we document.
 • We educate ourselves continuously to correct weaknesses.

 10. Keep i t s imple, s tupid (KISS)
 “Simplicity. The art of maximizing the amount of work not done is essential.”

 How d o w e b ehave a s a c ustomer?

 • We check constantly whether we still require what we requested.
 • We cancel projects if we already have what we need.
 • We accept contracts that allow us these things.

 How d o w e b ehave a s a s ervice p rovider?

 • We deliver from the start the features that are most valuable to the
customer.

 • We favor short project lead times.
 • We deliver fast, we deliver functionality, and therefore we do not bill in

hours.

 How d o w e b ehave on the Scrum t eam?

 • We are always looking for the simplest solution that can be produced
professionally.

 11. Complexity c an o nly be a nswered with s elf- o rganization
 “The best architectures, requirements, and designs emerge from self-organized
teams.”

 How d o w e b ehave a s a c ustomer?

 • We make how our systems work completely transparent.
 • We do not yet defi ne solutions.
 • We allow the teams to do their work.

 How d o w e b ehave a s a s ervice p rovider?
 • We educate the staff in such a way that all the necessary skills are present

in the team.

 How d o w e b ehave on the Scrum t eam?
 • We reveal when there is something that we cannot achieve due to a lack

of skills.
 • We actively ask questions.
 • We work proactively with customers.

32 AGILITY: WHAT IS THAT?

 12. Learn from postmortems
 “At regular intervals, the team refl ects how it can be more effective and adjusts
its behavior accordingly.”

 How d o w e b ehave a s a c ustomer?

 • We expect to hear of errors made by the teams that have led to
improvements.

 • We participate by invitation in the project retrospective.
 • We respond to requests for change and respect them as having the poten-

tial to increase productivity.

 How d o w e b ehave a s a s ervice p rovider?

 • We work with customers continually to improve our relationships and
inform them as to where we see potential for improvement.

 How d o w e b ehave on the Scrum t eam?

 • We perform our retrospectives rigorously.

 1.6 SUMMARY

 Companies that want to meet the requirements of dynamic markets are relying
more and more on agile methods of software development. The management
framework Scrum is the method most commonly used. While development
teams using agile methods are already presenting impressive results, the ben-
efi ts of agile development are still not obvious to many buyers. Therefore,
agile-developed products and projects are often grouped into inappropriate
“traditional” contract constructs.

 The main drawback: Valuable principles of cooperation between customers
and suppliers, as they are to be implemented in the agile way of thinking, based
on the agile manifesto, continue to be disregarded in these rigid contract con-
structs. Customers as well as suppliers do not have a successful project in sight
as a goal but, rather, each entity to its own advantage. Both sides struggle with
the same problem: the inability to know what is actually needed and how the
details of the scope will change during the project for various reasons. The
basic problem for all software development projects and all service providers
is therefore the variability of what is to be delivered.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

