
CHAPTER 1

PRELIMINARIES

1.1 INTRODUCTION

The purpose of this chapter is to review some basic facts from probability, informa-
tion theory, and optimization. In particular, Sections 1.2–1.11 summarize the main
points from probability theory. Sections 1.12–1.14 describe various fundamental
stochastic processes, such as Poisson, Markov, and Gaussian processes. Elements
of information theory are given in Section 1.15, and Section 1.16 concludes with an
outline of convex optimization theory.

1.2 RANDOM EXPERIMENTS

The basic notion in probability theory is that of a random experiment: an exper-
iment whose outcome cannot be determined in advance. The most fundamental
example is the experiment where a fair coin is tossed a number of times. For sim-
plicity suppose that the coin is tossed three times. The sample space, denoted Ω, is
the set of all possible outcomes of the experiment. In this case Ω has eight possible
outcomes:

Ω = {HHH,HHT,HTH,HTT, THH, THT, TTH, TTT} ,
where, for example, HTH means that the first toss is heads, the second tails, and
the third heads.
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2 PRELIMINARIES

Subsets of the sample space are called events. For example, the event A that the
third toss is heads is

A = {HHH,HTH, THH, TTH} .
We say that event A occurs if the outcome of the experiment is one of the elements
in A. Since events are sets, we can apply the usual set operations to them. For
example, the event A∪B, called the union of A and B, is the event that A or B or
both occur, and the event A ∩ B, called the intersection of A and B, is the event
that A and B both occur. Similar notation holds for unions and intersections of
more than two events. The event Ac, called the complement of A, is the event that
A does not occur. Two events A and B that have no outcomes in common, that is,
their intersection is empty, are called disjoint events. The main step is to specify
the probability of each event.

Definition 1.2.1 (Probability) A probability P is a rule that assigns a number
0 � P(A) � 1 to each event A, such that P(Ω) = 1, and such that for any sequence
A1, A2, . . . of disjoint events

P

(⋃
i

Ai

)
=
∑
i

P(Ai) . (1.1)

Equation (1.1) is referred to as the sum rule of probability. It states that if
an event can happen in a number of different ways, but not simultaneously, the
probability of that event is simply the sum of the probabilities of the comprising
events.

For the fair coin toss experiment the probability of any event is easily given.
Namely, because the coin is fair, each of the eight possible outcomes is equally
likely, so that P({HHH}) = · · · = P({TTT}) = 1/8. Since any event A is the
union of the “elementary” events {HHH}, . . . , {TTT}, the sum rule implies that

P(A) =
|A|
|Ω| , (1.2)

where |A| denotes the number of outcomes in A and |Ω| = 8. More generally, if a
random experiment has finitely many and equally likely outcomes, the probability
is always of the form (1.2). In that case the calculation of probabilities reduces to
counting.

1.3 CONDITIONAL PROBABILITY AND INDEPENDENCE

How do probabilities change when we know that some event B ⊂ Ω has occurred?
Given that the outcome lies in B, the event A will occur if and only if A∩B occurs,
and the relative chance of A occurring is therefore P(A ∩ B)/P(B). This leads to
the definition of the conditional probability of A given B:

P(A |B) =
P(A ∩B)

P(B)
. (1.3)

For example, suppose that we toss a fair coin three times. Let B be the event that
the total number of heads is two. The conditional probability of the event A that
the first toss is heads, given that B occurs, is (2/8)/(3/8) = 2/3.
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Rewriting (1.3) and interchanging the role of A and B gives the relation P(A ∩
B) = P(A)P(B |A). This can be generalized easily to the product rule of probability,
which states that for any sequence of events A1, A2, . . . , An,

P(A1 · · ·An) = P(A1)P(A2 |A1)P(A3 |A1A2) · · ·P(An |A1 · · ·An−1) , (1.4)

using the abbreviation A1A2 · · ·Ak ≡ A1 ∩A2 ∩ · · · ∩Ak.
Suppose that B1, B2, . . . , Bn is a partition of Ω. That is, B1, B2, . . . , Bn are

disjoint and their union is Ω. Then, by the sum rule, P(A) =
∑n

i=1 P(A ∩ Bi)
and hence, by the definition of conditional probability, we have the law of total
probability:

P(A) =

n∑
i=1

P(A |Bi)P(Bi) . (1.5)

Combining this with the definition of conditional probability gives Bayes’ rule:

P(Bj |A) =
P(A |Bj)P(Bj)∑n
i=1 P(A |Bi)P(Bi)

. (1.6)

Independence is of crucial importance in probability and statistics. Loosely
speaking, it models the lack of information between events. Two events A and B
are said to be independent if the knowledge that B has occurred does not change
the probability that A occurs. That is, A, B independent ⇔ P(A |B) = P(A).
Since P(A |B) = P(A ∩B)/P(B), an alternative definition of independence is

A, B independent ⇔ P(A ∩B) = P(A)P(B) .

This definition covers the case where B = ∅ (empty set). We can extend this
definition to arbitrarily many events.

Definition 1.3.1 (Independence) The events A1, A2, . . . , are said to be inde-
pendent if for any k and any choice of distinct indexes i1, . . . , ik,

P(Ai1 ∩Ai2 ∩ · · · ∩Aik) = P(Ai1)P(Ai2) · · ·P(Aik) .

Remark 1.3.1 In most cases independence of events is a model assumption. That
is, we assume that there exists a P such that certain events are independent.

EXAMPLE 1.1

We toss a biased coin n times. Let p be the probability of heads (for a fair
coin p = 1/2). Let Ai denote the event that the i-th toss yields heads, i =
1, . . . , n. Then P should be such that the events A1, . . . , An are independent,
and P(Ai) = p for all i. These two rules completely specify P. For example,
the probability that the first k throws are heads and the last n− k are tails is

P(A1 · · ·AkA
c
k+1 · · ·Ac

n) = P(A1) · · ·P(Ak)P(A
c
k+1) · · ·P(Ac

n)

= pk(1− p)n−k.
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1.4 RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

Specifying a model for a random experiment via a complete description of Ω and
P may not always be convenient or necessary. In practice, we are only interested
in certain observations (i.e., numerical measurements) in the experiment. We in-
corporate these into our modeling process via the introduction of random vari-
ables, usually denoted by capital letters from the last part of the alphabet (e.g., X,
X1, X2, . . . , Y, Z).

EXAMPLE 1.2

We toss a biased coin n times, with p the probability of heads. Suppose that
we are interested only in the number of heads, say X. Note that X can take
any of the values in {0, 1, . . . , n}. The probability distribution of X is given
by the binomial formula

P(X = k) =

(
n

k

)
pk(1− p)n−k, k = 0, 1, . . . , n . (1.7)

Namely, by Example 1.1, each elementary event {HTH · · ·T} with exactly k
heads and n − k tails has probability pk(1 − p)n−k, and there are

(
n
k

)
such

events.

The probability distribution of a general random variable X — identifying such
probabilities as P(X = x),P(a � X � b), and so on — is completely specified by
the cumulative distribution function (cdf), defined by

F (x) = P(X � x), x ∈ R .

A random variable X is said to have a discrete distribution if, for some finite or
countable set of values x1, x2, . . ., P(X = xi) > 0, i = 1, 2, . . . and

∑
i P(X = xi) =

1. The function f(x) = P(X = x) is called the probability mass function (pmf) of
X — but see Remark 1.4.1.

EXAMPLE 1.3

Toss two fair dice and let M be the largest face value showing. The pmf of
M is given by

m 1 2 3 4 5 6
∑

f(m)
1

36

3

36

5

36

7

36

9

36

11

36
1

For example, to get M = 3, either (1, 3), (2, 3), (3, 3), (3, 2), or (3, 1) has to be
thrown, each of which happens with probability 1/36.

A random variable X is said to have a continuous distribution if there exists a
positive function f with total integral 1, such that for all a, b,

P(a � X � b) =

∫ b

a

f(u) du . (1.8)
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The function f is called the probability density function (pdf) of X. Note that in
the continuous case the cdf is given by

F (x) = P(X � x) =

∫ x

−∞
f(u) du ,

and f is the derivative of F . We can interpret f(x) as the probability “density” at
X = x in the sense that

P(x � X � x+ h) =

∫ x+h

x

f(u) du ≈ h f(x) .

Remark 1.4.1 (Probability Density) Note that we have deliberately used the
same symbol, f , for both pmf and pdf. This is because the pmf and pdf play
very similar roles and can, in more advanced probability theory, both be viewed as
particular instances of the general notion of probability density. To stress this view-
point, we will call f in both the discrete and continuous case the pdf or (probability)
density (function).

1.5 SOME IMPORTANT DISTRIBUTIONS

Tables 1.1 and 1.2 list a number of important continuous and discrete distributions.
We will use the notation X ∼ f , X ∼ F , or X ∼ Dist to signify that X has a pdf f ,
a cdf F or a distribution Dist. We sometimes write fX instead of f to stress that
the pdf refers to the random variable X. Note that in Table 1.1, Γ is the gamma
function: Γ(α) =

∫∞
0

e−xxα−1 dx, α > 0.

Table 1.1: Commonly used continuous distributions.

Name Notation f(x) x ∈ Parameters

Uniform U[α, β]
1

β − α
[α, β] α < β

Normal N(μ, σ2)
1

σ
√
2π

e−
1
2 (

x−μ
σ )

2

R σ > 0, μ ∈ R

Gamma Gamma(α, λ)
λαxα−1e−λx

Γ(α)
R+ α, λ > 0

Exponential Exp(λ) λ e−λx
R+ λ > 0

Beta Beta(α, β)
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1 [0, 1] α, β > 0

Weibull Weib(α, λ) αλ (λx)α−1 e−(λx)α
R+ α, λ > 0

Pareto Pareto(α, λ) αλ (1 + λx)−(α+1)
R+ α, λ > 0
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Table 1.2: Commonly used discrete distributions.

Name Notation f(x) x ∈ Parameters

Bernoulli Ber(p) px(1− p)1−x {0, 1} 0 � p � 1

Binomial Bin(n, p)

(
n

x

)
px(1− p)n−x {0, 1, . . . , n} 0 � p � 1,

n ∈ N

Discrete
uniform

DU{1, . . . , n} 1

n
{1, . . . , n} n ∈ {1, 2, . . .}

Geometric G(p) p(1− p)x−1 {1, 2, . . .} 0 � p � 1

Poisson Poi(λ) e−λ λ
x

x!
N λ > 0

1.6 EXPECTATION

It is often useful to consider different kinds of numerical characteristics of a random
variable. One such quantity is the expectation, which measures the mean value of
the distribution.

Definition 1.6.1 (Expectation) Let X be a random variable with pdf f . The
expectation (or expected value or mean) of X, denoted by E[X] (or sometimes μ),
is defined by

E[X] =

{∑
x x f(x) discrete case,∫∞
−∞ x f(x) dx continuous case.

If X is a random variable, then a function of X, such as X2 or sin(X), is again
a random variable. Moreover, the expected value of a function of X is simply a
weighted average of the possible values that this function can take. That is, for any
real function h

E[h(X)] =

{∑
x h(x) f(x) discrete case,∫∞
−∞ h(x) f(x) dx continuous case.

Another useful quantity is the variance, which measures the spread or dispersion
of the distribution.

Definition 1.6.2 (Variance) The variance of a random variable X, denoted by
Var(X) (or sometimes σ2), is defined by

Var(X) = E[(X − E[X])2] = E[X2]− (E[X])2 .

The square root of the variance is called the standard deviation. Table 1.3 lists
the expectations and variances for some well-known distributions.
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Table 1.3: Expectations and variances for some well-known distributions.

Dist. E[X] Var(X)

Bin(n, p) np np(1− p)

G(p)
1

p

1− p

p2

Poi(λ) λ λ

U(α, β)
α+ β

2

(β − α)2

12

Exp(λ)
1

λ

1

λ2

Dist. E[X] Var(X)

Gamma(α, λ)
α

λ

α

λ2

N(μ, σ2) μ σ2

Beta(α, β) α
α+β

αβ
(α+β)2(1+α+β)

Weib(α, λ) Γ(1/α)
αλ

2Γ(2/α)
α −

(
Γ(1/α)
αλ

)2

The mean and the variance do not give, in general, enough information to com-
pletely specify the distribution of a random variable. However, they may provide
useful bounds. We discuss two such bounds. Suppose X can only take nonnegative
values and has pdf f . For any x > 0, we can write

E[X] =

∫ x

0

tf(t) dt+

∫ ∞

x

tf(t) dt �
∫ ∞

x

tf(t) dt

�
∫ ∞

x

xf(t) dt = xP(X � x) ,

from which follows the Markov inequality: if X � 0, then for all x > 0,

P(X � x) � E[X]

x
. (1.9)

If we also know the variance of a random variable, we can give a tighter bound.
Namely, for any random variable X with mean μ and variance σ2, we have

P(|X − μ| � x) � σ2

x2
. (1.10)

This is called the Chebyshev inequality. The proof is as follows: Let D2 = (X−μ)2;
then, by the Markov inequality (1.9) and the definition of the variance,

P(D2 � x2) � σ2

x2
.

Also, note that the event {D2 � x2} is equivalent to the event {|X − μ| � x}, so
that (1.10) follows.

1.7 JOINT DISTRIBUTIONS

Often a random experiment is described by more than one random variable. The
theory for multiple random variables is similar to that for a single random variable.
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Let X1, . . . , Xn be random variables describing some random experiment. We
can accumulate these into a random vector X = (X1, . . . , Xn). More generally, a
collection {Xt, t ∈ T } of random variables is called a stochastic process. The set
T is called the parameter set or index set of the process. It may be discrete (e.g.,
N or {1, . . . , 10}) or continuous (e.g., R+ = [0,∞) or [1, 10]). The set of possible
values for the stochastic process is called the state space.

The joint distribution of X1, . . . , Xn is specified by the joint cdf

F (x1, . . . , xn) = P(X1 � x1, . . . , Xn � xn) .

The joint pdf f is given, in the discrete case, by f(x1, . . . , xn) = P(X1 =
x1, . . . , Xn = xn), and in the continuous case f is such that

P(X ∈ B) =

∫
B

f(x1, . . . , xn) dx1 . . . dxn

for any (measurable) region B in Rn. The marginal pdfs can be recovered from the
joint pdf by integration or summation. For example, in the case of a continuous
random vector (X,Y ) with joint pdf f , the pdf fX of X is found as

fX(x) =

∫
f(x, y) dy .

Suppose that X and Y are both discrete or both continuous, with joint pdf f ,
and suppose that fX(x) > 0. Then the conditional pdf of Y given X = x is given
by

fY |X(y |x) = f(x, y)

fX(x)
for all y .

The corresponding conditional expectation is (in the continuous case)

E[Y |X = x] =

∫
y fY |X(y |x) dy .

Note that E[Y |X = x] is a function of x, say h(x). The corresponding random
variable h(X) is written as E[Y |X]. It can be shown (see, for example, [3]) that
its expectation is simply the expectation of Y , that is,

E[E[Y |X]] = E[Y ] . (1.11)

When the conditional distribution of Y given X is identical to that of Y , X and
Y are said to be independent. More precisely:

Definition 1.7.1 (Independent Random Variables) The random variables
X1, . . . , Xn are called independent if for all events {Xi ∈ Ai} with Ai ⊂ R,
i = 1, . . . , n,

P(X1 ∈ A1, . . . , Xn ∈ An) = P(X1 ∈ A1) · · ·P(Xn ∈ An) .

A direct consequence of the definition above for independence is that random
variables X1, . . . , Xn with joint pdf f (discrete or continuous) are independent if
and only if

f(x1, . . . , xn) = fX1
(x1) · · · fXn

(xn) (1.12)

for all x1, . . . , xn, where {fXi} are the marginal pdfs.
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EXAMPLE 1.4 Bernoulli Sequence

Consider the experiment where we flip a biased coin n times, with probability p
of heads. We can model this experiment in the following way. For i = 1, . . . , n,
let Xi be the result of the i-th toss: {Xi = 1} means heads (or success),
{Xi = 0} means tails (or failure). Also, let

P(Xi = 1) = p = 1− P(Xi = 0), i = 1, 2, . . . , n .

Last, assume that X1, . . . , Xn are independent. The sequence {Xi, i =
1, 2, . . .} is called a Bernoulli sequence or Bernoulli process with success prob-
ability p. Let X = X1 + · · ·+Xn be the total number of successes in n trials
(tosses of the coin). Denote by B the set of all binary vectors x = (x1, . . . , xn)
such that

∑n
i=1 xi = k. Note that B has

(
n
k

)
elements. We now have

P(X = k) =
∑
x∈B

P(X1 = x1, . . . , Xn = xn)

=
∑
x∈B

P(X1 = x1) · · ·P(Xn = xn) =
∑
x∈B

pk(1− p)n−k

=

(
n

k

)
pk(1− p)n−k .

In other words, X ∼ Bin(n, p). Compare this with Example 1.2.

Remark 1.7.1 An infinite sequence X1, X2, . . . of random variables is called inde-
pendent if for any finite choice of parameters i1, i2, . . . , in (none of them the same)
the random variables Xi1 , . . . , Xin are independent. Many probabilistic models in-
volve random variables X1, X2, . . . that are independent and identically distributed,
abbreviated as iid. We will use this abbreviation throughout this book.

Similar to the one-dimensional case, the expected value of any real-valued func-
tion h of X1, . . . , Xn is a weighted average of all values that this function can take.
Specifically, in the continuous case,

E[h(X1, . . . , Xn)] =

∫
· · ·
∫

h(x1, . . . , xn) f(x1, . . . , xn) dx1 . . . dxn .

As a direct consequence of the definitions of expectation and independence, we
have

E[a+ b1X1 + b2X2 + · · ·+ bnXn] = a+ b1μ1 + · · ·+ bnμn (1.13)

for any sequence of random variables X1, X2, . . . , Xn with expectations μ1, μ2, . . . ,
μn, where a, b1, b2, . . . , bn are constants. Similarly, for independent random vari-
ables, we have

E[X1X2 · · ·Xn] = μ1 μ2 · · ·μn .

The covariance of two random variables X and Y with expectations E[X] = μX

and E[Y ] = μY , respectively, is defined as

Cov(X,Y ) = E[(X − μX)(Y − μY )] .
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This is a measure for the amount of linear dependency between the variables. A
scaled version of the covariance is given by the correlation coefficient,

�(X,Y ) =
Cov(X,Y )

σX σY
,

where σ2
X = Var(X) and σ2

Y = Var(Y ). It can be shown that the correlation
coefficient always lies between −1 and 1; see Problem 1.13.

For easy reference, Table 1.4 lists some important properties of the variance
and covariance. The proofs follow directly from the definitions of covariance and
variance and the properties of the expectation.

Table 1.4: Properties of variance and covariance.

1 Var(X) = E[X2]− (E[X])2

2 Var(aX + b) = a2Var(X)

3 Cov(X,Y ) = E[XY ]− E[X]E[Y ]

4 Cov(X,Y ) = Cov(Y,X)

5 Cov(aX + bY, Z) = aCov(X,Z) + bCov(Y, Z)

6 Cov(X,X) = Var(X)

7 Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X,Y )

8 X and Y indep. =⇒ Cov(X,Y ) = 0

As a consequence of properties 2 and 7, for any sequence of independent random
variables X1, . . . , Xn with variances σ2

1 , . . . , σ
2
n,

Var(a+ b1X1 + b2X2 + · · ·+ bnXn) = b21 σ
2
1 + · · ·+ b2n σ

2
n (1.14)

for any choice of constants a and b1, . . . , bn.

For random vectors, such as X = (X1, . . . , Xn)
�, it is convenient to write the

expectations and covariances in vector notation.

Definition 1.7.2 (Expectation Vector and Covariance Matrix) For any
random vector X, we define the expectation vector as the vector of expectations

μ = (μ1, . . . , μn)
� = (E[X1], . . . ,E[Xn])

� .

The covariance matrix Σ is defined as the matrix whose (i, j)-th element is

Cov(Xi, Xj) = E[(Xi − μi)(Xj − μj)] .

If we define the expectation of a vector (matrix) to be the vector (matrix) of
expectations, then we can write

μ = E[X]
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and
Σ = E[(X− μ)(X− μ)�] .

Note that μ and Σ take on the same role as μ and σ2 in the one-dimensional case.

Remark 1.7.2 Note that any covariance matrix Σ is symmetric. In fact (see Prob-
lem 1.16), it is positive semidefinite, that is, for any (column) vector u,

u� Σu � 0 .

1.8 FUNCTIONS OF RANDOM VARIABLES

Suppose that X1, . . . , Xn are measurements of a random experiment. Often we are
only interested in certain functions of the measurements rather than the individual
measurements. Here are some examples.

EXAMPLE 1.5

Let X be a continuous random variable with pdf fX and let Z = aX + b,
where a = 0. We wish to determine the pdf fZ of Z. Suppose that a > 0. We
have for any z

FZ(z) = P(Z � z) = P
(
X � (z − b)/a

)
= FX

(
(z − b)/a

)
.

Differentiating this with respect to z gives fZ(z) = fX
(
(z − b)/a

)
/a. For

a < 0 we similarly obtain fZ(z) = fX
(
(z − b)/a

)
/(−a) . Thus, in general,

fZ(z) =
1

|a| fX
(
z − b

a

)
. (1.15)

EXAMPLE 1.6

Generalizing the previous example, suppose that Z = g(X) for some mono-
tonically increasing function g. To find the pdf of Z from that of X we first
write

FZ(z) = P(Z � z) = P
(
X � g−1(z)

)
= FX

(
g−1(z)

)
,

where g−1 is the inverse of g. Differentiating with respect to z now gives

fZ(z) = fX(g−1(z))
d

dz
g−1(z) =

fX(g−1(z))

g′(g−1(z))
. (1.16)

For monotonically decreasing functions, d
dz g

−1(z) in the first equation needs
to be replaced with its negative value.

EXAMPLE 1.7 Order Statistics

Let X1, . . . , Xn be an iid sequence of random variables with common pdf f
and cdf F . In many applications one is interested in the distribution of the
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order statistics X(1), X(2), . . . , X(n), where X(1) is the smallest of the {Xi, i =
1, . . . , n}, X(2) is the second smallest, and so on. The cdf of X(n) follows from

P(X(n) � x) = P(X1 � x, . . . ,Xn � x) =
n∏

i=1

P(Xi � x) = (F (x))n .

Similarly,

P(X(1) > x) = P(X1 > x, . . . ,Xn > x) =
n∏

i=1

P(Xi > x) = (1− F (x))n .

Moreover, because all orderings of X1, . . . , Xn are equally likely, it follows
that the joint pdf of the ordered sample is, on the wedge {(x1, . . . , xn) : x1 �
x2 � · · · � xn}, simply n! times the joint density of the unordered sample
and zero elsewhere.

1.8.1 Linear Transformations

Let x = (x1, . . . , xn)
� be a column vector in Rn and A an m × n matrix. The

mapping x �→ z, with z = Ax, is called a linear transformation. Now consider a
random vector X = (X1, . . . , Xn)

�, and let

Z = AX .

Then Z is a random vector in Rm. In principle, if we know the joint distribution
of X, then we can derive the joint distribution of Z. Let us first see how the
expectation vector and covariance matrix are transformed.

Theorem 1.8.1 If X has an expectation vector μX and covariance matrix ΣX,
then the expectation vector and covariance matrix of Z = AX are given by

μZ = AμX (1.17)

and
ΣZ = A ΣX A� . (1.18)

Proof: We have μZ = E[Z] = E[AX] = AE[X] = AμX and

ΣZ = E[(Z− μZ)(Z− μZ)
�] = E[A(X− μX)(A(X− μX))�]

= AE[(X− μX)(X− μX)�]A�

= A ΣX A� .

�

Suppose that A is an invertible n×n matrix. If X has a joint density fX, what is
the joint density fZ of Z? Consider Figure 1.1. For any fixed x, let z = Ax. Hence,
x = A−1z. Consider the n-dimensional cube C = [z1, z1 + h] × · · · × [zn, zn + h].
Let D be the image of C under A−1, that is, the parallelepiped of all points x such
that Ax ∈ C. Then,

P(Z ∈ C) ≈ hn fZ(z) .
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D C

x z

A

A

−1

Figure 1.1: Linear transformation.

Now recall from linear algebra (e.g., [5]) that any matrix B linearly transforms
an n-dimensional rectangle with volume V into an n-dimensional parallelepiped
with volume V |B|, where |B| = | det(B)|. Thus,

P(Z ∈ C) = P(X ∈ D) ≈ hn|A−1| fX(x) = hn|A|−1 fX(x) .

Letting h go to 0, we obtain

fZ(z) =
fX(A−1z)

|A| , z ∈ Rn. (1.19)

1.8.2 General Transformations

We can apply reasoning similar to that above to deal with general transformations
x �→ g(x), written out as ⎛⎜⎜⎜⎝

x1

x2

...
xn

⎞⎟⎟⎟⎠ �→
⎛⎜⎜⎜⎝
g1(x)
g2(x)

...
gn(x)

⎞⎟⎟⎟⎠ .

For a fixed x, let z = g(x). Suppose that g is invertible; hence x = g−1(z). Any
infinitesimal n-dimensional rectangle at x with volume V is transformed into an
n-dimensional parallelepiped at z with volume V |Jx(g)|, where Jx(g) is the matrix
of Jacobi at x of the transformation g, that is,

Jx(g) =

⎛⎜⎝
∂g1
∂x1

· · · ∂g1
∂xn

... · · · ...
∂gn
∂x1

· · · ∂gn
∂xn

⎞⎟⎠ .

Now consider a random column vector Z = g(X). Let C be a small cube around z
with volume hn. Let D be the image of C under g−1. Then, as in the linear case,

P(Z ∈ C) ≈ hn fZ(z) ≈ hn|Jz(g−1)| fX(x) .

Hence we have the transformation rule

fZ(z) = fX(g−1(z)) |Jz(g−1)|, z ∈ Rn. (1.20)

(Note: |Jz(g−1)| = 1/|Jx(g)|.)
Remark 1.8.1 In most coordinate transformations, it is g−1 that is given — that
is, an expression for x as a function of z rather than g.
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1.9 TRANSFORMS

Many calculations and manipulations involving probability distributions are facili-
tated by the use of transforms. Two typical examples are the probability generating
function of a positive integer-valued random variable N , defined by

G(z) = E[zN ] =
∞∑
k=0

zk P(N = k) , |z| � 1 ,

and the Laplace transform of a positive random variable X defined, for s � 0, by

L(s) = E[e−sX ] =

{∑
x e
−sx f(x) discrete case,∫∞

0
e−sx f(x) dx continuous case.

All transforms share an important uniqueness property: two distributions are
the same if and only if their respective transforms are the same.

EXAMPLE 1.8

Let M ∼ Poi(μ); then its probability generating function is given by

G(z) =

∞∑
k=0

zk e−μ μk

k!
= e−μ

∞∑
k=0

(zμ)k

k!
= e−μezμ = e−μ(1−z) . (1.21)

Now let N ∼ Poi(ν) independently of M . Then the probability generating
function of M +N is given by

E[zM+N ] = E[zM ]E[zN ] = e−μ(1−z)e−ν(1−z) = e−(μ+ν)(1−z) .

Thus, by the uniqueness property, M +N ∼ Poi(μ+ ν).

EXAMPLE 1.9

The Laplace transform of X ∼ Gamma(α, λ) is given by

E[e−sX ] =

∫ ∞

0

e−λx λα xα−1

Γ(α)
e−sx dx

=

(
λ

λ+ s

)α ∫ ∞

0

e−(λ+s)x (λ+ s)α xα−1

Γ(α)
dx

=

(
λ

λ+ s

)α

.

As a special case, the Laplace transform of the Exp(λ) distribution is given by
λ/(λ+ s). Now let X1, . . . , Xn be iid Exp(λ) random variables. The Laplace
transform of Sn = X1 + · · ·+Xn is

E[e−sSn ] = E[e−sX1 · · · e−sXn ] = E[e−sX1 ] · · · E[e−sXn ] =

(
λ

λ+ s

)n

,

which shows that Sn ∼ Gamma(n, λ).
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1.10 JOINTLY NORMAL RANDOM VARIABLES

It is helpful to view normally distributed random variables as simple transforma-
tions of standard normal — that is, N(0, 1)-distributed — random variables. In
particular, let X ∼ N(0, 1). Then X has density fX given by

fX(x) =
1√
2π

e−
x2

2 .

Now consider the transformation Z = μ+ σX. Then, by (1.15), Z has density

fZ(z) =
1√
2πσ2

e−
(z−μ)2

2σ2 .

In other words, Z ∼ N(μ, σ2). We can also state this as follows: if Z ∼ N(μ, σ2),
then (Z − μ)/σ ∼ N(0, 1). This procedure is called standardization.

We now generalize this to n dimensions. Let X1, . . . , Xn be independent and
standard normal random variables. The joint pdf of X = (X1, . . . , Xn)

� is given
by

fX(x) = (2π)−n/2e−
1
2 x�x, x ∈ Rn. (1.22)

Consider the affine transformation (i.e., a linear transformation plus a constant
vector)

Z = μ+BX (1.23)

for some m×n matrix B. Note that, by Theorem 1.8.1, Z has expectation vector μ
and covariance matrix Σ = BB�. Any random vector of the form (1.23) is said to
have a jointly normal or multivariate normal distribution. We write Z ∼ N(μ,Σ).
Suppose that B is an invertible n × n matrix. Then, by (1.19), the density of
Y = Z− μ is given by

fY(y) =
1

|B|√(2π)n
e−

1
2 (B−1y)�B−1y =

1

|B|√(2π)n
e−

1
2 y�(B−1)�B−1y .

We have |B| =√|Σ| and (B−1)�B−1 = (B�)−1B−1 = (BB�)−1 = Σ−1, so that

fY(y) =
1√

(2π)n |Σ| e
− 1

2 y�Σ−1y .

Because Z is obtained from Y by simply adding a constant vector μ, we have
fZ(z) = fY(z− μ), and therefore

fZ(z) =
1√

(2π)n |Σ| e
− 1

2 (z−μ)�Σ−1(z−μ), z ∈ Rn . (1.24)

Note that this formula is very similar to that of the one-dimensional case.
Conversely, given a covariance matrix Σ = (σij), there exists a unique lower

triangular matrix

B =

⎛⎜⎜⎜⎝
b11 0 · · · 0
b21 b22 · · · 0
...

...
...

bn1 bn2 · · · bnn

⎞⎟⎟⎟⎠ (1.25)

such that Σ = BB�. This matrix can be obtained efficiently via the Cholesky
square root method; see Section A.1 of the Appendix.
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1.11 LIMIT THEOREMS

We briefly discuss two of the main results in probability: the law of large num-
bers and the central limit theorem. Both are associated with sums of independent
random variables.

Let X1, X2, . . . be iid random variables with expectation μ and variance σ2. For
each n, let Sn = X1+ · · ·+Xn. Since X1, X2, . . . are iid, we have E[Sn] = nE[X1] =
nμ and Var(Sn) = nVar(X1) = nσ2.

The law of large numbers states that Sn/n is close to μ for large n. Here is the
more precise statement.

Theorem 1.11.1 (Strong Law of Large Numbers) If X1, . . . , Xn are iid with
expectation μ, then

P

(
lim

n→∞
Sn

n
= μ

)
= 1 .

The central limit theorem describes the limiting distribution of Sn (or Sn/n),
and it applies to both continuous and discrete random variables. Loosely, it states
that the random sum Sn has a distribution that is approximately normal, when n
is large. The more precise statement is given next.

Theorem 1.11.2 (Central Limit Theorem) If X1, . . . , Xn are iid with expec-
tation μ and variance σ2 <∞, then for all x ∈ R,

lim
n→∞P

(
Sn − nμ

σ
√
n

� x

)
= Φ(x) ,

where Φ is the cdf of the standard normal distribution.

In other words, Sn has a distribution that is approximately normal, with expec-
tation nμ and variance nσ2. To see the central limit theorem in action, consider
Figure 1.2. The left part shows the pdfs of S1, . . . , S4 for the case where the {Xi}
have a U[0, 1] distribution. The right part shows the same for the Exp(1) distri-
bution. We clearly see convergence to a bell-shaped curve, characteristic of the
normal distribution.

n=1

n=4

n=3

n=2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

n=1

n=3
n=2

n=4

0

0.2

0.4

0.6

0.8

0 2 4 6 8x

Figure 1.2: Illustration of the central limit theorem for (left) the uniform distribu-
tion and (right) the exponential distribution.
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A direct consequence of the central limit theorem and the fact that a Bin(n, p)
random variable X can be viewed as the sum of n iid Ber(p) random variables,
X = X1 + · · ·+Xn, is that for large n

P(X � k) ≈ P(Y � k) , (1.26)

with Y ∼ N(np, np(1 − p)). As a rule of thumb, this normal approximation to the
binomial distribution is accurate if both np and n(1− p) are larger than 5.

There is also a central limit theorem for random vectors. The multidimensional
version is as follows: Let X1, . . . ,Xn be iid random vectors with expectation vector
μ and covariance matrix Σ. Then for large n the random vector X1 + · · ·+Xn has
approximately a multivariate normal distribution with expectation vector nμ and
covariance matrix nΣ.

1.12 POISSON PROCESSES

The Poisson process is used to model certain kinds of arrivals or patterns. Imagine,
for example, a telescope that can detect individual photons from a faraway galaxy.
The photons arrive at random times T1, T2, . . .. LetNt denote the number of arrivals
in the time interval [0, t], that is, Nt = sup{k : Tk � t}. Note that the number
of arrivals in an interval I = (a, b] is given by Nb − Na. We will also denote it
by N(a, b]. A sample path of the arrival counting process {Nt, t � 0} is given in
Figure 1.3.

Nt

0

1

2

3

4

T1 T2 T3 T4

Figure 1.3: A sample path of the arrival counting process {Nt, t � 0}.

For this particular arrival process, one would assume that the number of ar-
rivals in an interval (a, b) is independent of the number of arrivals in interval (c, d)
when the two intervals do not intersect. Such considerations lead to the following
definition:

Definition 1.12.1 (Poisson Process) An arrival counting process N = {Nt} is
called a Poisson process with rate λ > 0 if

(a) The numbers of points in nonoverlapping intervals are independent.

(b) The number of points in interval I has a Poisson distribution with mean
λ× length(I).
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Combining (a) and (b) we see that the number of arrivals in any small interval
(t, t + h] is independent of the arrival process up to time t and has a Poi(λh)
distribution. In particular, the conditional probability that exactly one arrival
occurs during the time interval (t, t+ h] is P(N(t, t+ h] = 1 |Nt) = e−λh λh ≈ λh.
Similarly, the probability of no arrivals is approximately 1−λh for small h. In other
words, λ is the rate at which arrivals occur. Notice also that since Nt ∼ Poi(λt), the
expected number of arrivals in [0, t] is λt, that is, E[Nt] = λt. In Definition 1.12.1
N is seen as a random counting measure, where N(I) counts the random number
of arrivals in set I.

An important relationship between Nt and Tn is

{Nt � n} = {Tn � t} . (1.27)

In other words, the number of arrivals in [0, t] is at least n if and only if the n-th
arrival occurs at or before time t. As a consequence, we have

P(Tn � t) = P(Nt � n) = 1−
n−1∑
k=0

P(Nt = k)

= 1−
n−1∑
k=0

e−λ t(λ t)k

k!
,

which corresponds exactly to the cdf of the Gamma(n, λ) distribution; see Prob-
lem 1.17. Thus

Tn ∼ Gamma(n, λ) . (1.28)

Hence each Tn has the same distribution as the sum of n independent Exp(λ)-
distributed random variables. This corresponds with the second important charac-
terization of a Poisson process:

An arrival counting process {Nt} is a Poisson process with rate λ if and only
if the interarrival times A1 = T1, A2 = T2 − T1, . . . are independent and
Exp(λ)-distributed random variables.

Poisson and Bernoulli processes are akin, and much can be learned about Pois-
son processes via the following Bernoulli approximation. Let N = {Nt} be a Pois-
son process with parameter λ. We divide the time axis into small time intervals
[0, h), [h, 2h), . . . and count how many arrivals occur in each interval. Note that the
number of arrivals in any small time interval of length h is, with high probability,
either 1 (with probability λh e−λh ≈ λh) or 0 (with probability e−λh ≈ 1 − λh).
Next, define X = {Xn} to be a Bernoulli process with success parameter p = λh.
Put Y0 = 0 and let Yn = X1+ · · ·+Xn be the total number of successes in n trials.
Y = {Yn} is called the Bernoulli approximation to N . We can view N as a limiting
case of Y as we decrease h.

As an example of the usefulness of this interpretation, we now demonstrate that
the Poisson property (b) in Definition 1.12.1 follows basically from the independence
assumption (a). For small h, Nt should have approximately the same distribution
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as Yn, where n is the integer part of t/h (we write n = �t/h�). Hence,

P(Nt = k) ≈ P(Yn = k)

=

(
n

k

)
(λh)k(1− (λh))n−k

≈
(
n

k

)
(λt/n)k(1− (λt/n))n−k

≈ e−λ t (λ t)k

k!
. (1.29)

Equation (1.29) follows from the Poisson approximation to the binomial distribu-
tion; see Problem 1.22.

Another application of the Bernoulli approximation is the following. For the
Bernoulli process, given that the total number of successes is k, the positions of
the k successes are uniformly distributed over points 1, . . . , n. The corresponding
property for the Poisson process N is that given Nt = n, the arrival times T1, . . . , Tn

are distributed according to the order statistics X(1), . . . , X(n), where X1, . . . , Xn

are iid U[0, t].

1.13 MARKOV PROCESSES

Markov processes are stochastic processes whose futures are conditionally indepen-
dent of their pasts given their present values. More formally, a stochastic process
{Xt, t ∈ T }, with T ⊆ R, is called a Markov process if, for every s > 0 and t,

(Xt+s |Xu, u � t) ∼ (Xt+s |Xt) . (1.30)

In other words, the conditional distribution of the future variable Xt+s, given the
entire past of the process {Xu, u � t}, is the same as the conditional distribution
of Xt+s given only the present Xt. That is, in order to predict future states, we
only need to know the present one. Property (1.30) is called the Markov property.

Depending on the index set T and state space E (the set of all values the {Xt}
can take), Markov processes come in many different forms. A Markov process with
a discrete index set is called a Markov chain. A Markov process with a discrete
state space and a continuous index set (such as R or R+) is called a Markov jump
process.

1.13.1 Markov Chains

Consider a Markov chain X = {Xt, t ∈ N} with a discrete (i.e., countable) state
space E . In this case the Markov property (1.30) is

P(Xt+1 = xt+1 |X0 = x0, . . . , Xt = xt) = P(Xt+1 = xt+1 |Xt = xt) (1.31)

for all x0, . . . , xt+1,∈ E and t ∈ N. We restrict ourselves to Markov chains for
which the conditional probabilities

P(Xt+1 = j |Xt = i), i, j ∈ E (1.32)
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are independent of the time t. Such chains are called time-homogeneous. The
probabilities in (1.32) are called the (one-step) transition probabilities of X. The
distribution ofX0 is called the initial distribution of the Markov chain. The one-step
transition probabilities and the initial distribution completely specify the distribu-
tion of X. Namely, we have by the product rule (1.4) and the Markov property
(1.30),

P(X0 = x0, . . . , Xt = xt)

= P(X0 = x0)P(X1 = x1 |X0 = x0) · · ·P(Xt = xt |X0 = x0, . . . Xt−1 = xt−1)

= P(X0 = x0)P(X1 = x1 |X0 = x0) · · ·P(Xt = xt |Xt−1 = xt−1) .

Since E is countable, we can arrange the one-step transition probabilities in an
array. This array is called the (one-step) transition matrix of X. We usually denote
it by P . For example, when E = {0, 1, 2, . . .}, the transition matrix P has the form

P =

⎛⎜⎜⎜⎝
p00 p01 p02 . . .
p10 p11 p12 . . .
p20 p21 p22 . . .
...

...
...

. . .

⎞⎟⎟⎟⎠ .

Note that the elements in every row are positive and sum up to unity.
Another convenient way to describe a Markov chain X is through its transition

graph. States are indicated by the nodes of the graph, and a strictly positive (> 0)
transition probability pij from state i to j is indicated by an arrow from i to j with
weight pij .

EXAMPLE 1.10 Random Walk on the Integers

Let p be a number between 0 and 1. The Markov chain X with state space Z

and transition matrix P defined by

P (i, i+ 1) = p, P (i, i− 1) = q = 1− p, for all i ∈ Z

is called a random walk on the integers. Let X start at 0; thus, P(X0 = 0) = 1.
The corresponding transition graph is given in Figure 1.4. Starting at 0, the
chain takes subsequent steps to the right with probability p and to the left
with probability q.

p p ppp p

q q q q qq

0 1 2−1−2

Figure 1.4: Transition graph for a random walk on Z.

We show next how to calculate the probability that, starting from state i at
some (discrete) time t, we are in j at (discrete) time t+ s, that is, the probability
P(Xt+s = j | Xt = i). For clarity, let us assume that E = {1, 2, . . . ,m} for some
fixed m, so that P is an m×m matrix. For t = 0, 1, 2, . . ., define the row vector

π(t) = (P(Xt = 1), . . . ,P(Xt = m)).
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We call π(t) the distribution vector, or simply the distribution, of X at time t
and π(0) the initial distribution of X. The following result shows that the t-step
probabilities can be found simply by matrix multiplication.

Theorem 1.13.1 The distribution of X at time t is given by

π(t) = π(0)P t (1.33)

for all t = 0, 1, . . .. (Here P 0 denotes the identity matrix.)

Proof: The proof is by induction. Equality (1.33) holds for t = 0 by definition.
Suppose that this equality is true for some t = 0, 1, . . .. We have

P(Xt+1 = k) =
m∑
i=1

P(Xt+1 = k |Xt = i)P(Xt = i) .

But (1.33) is assumed to be true for t, so P(Xt = i) is the i-th element of π(0)P t.
Moreover, P(Xt+1 = k |Xt = i) is the (i, k)-th element of P . Therefore, for every
k,

m∑
i=1

P(Xt+1 = k |Xt = i)P(Xt = i) =
m∑
i=1

P (i, k)(π(0)P t)(i) ,

which is just the k-th element of π(0)P t+1. This completes the induction step, and
thus the theorem is proved. �

By taking π(0) as the i-th unit vector, ei, the t-step transition probabilities
can be found as P(Xt = j |X0 = i) = (ei P

t)(j) = P t(i, j), which is the (i, j)-th
element of matrix P t. Thus, to find the t-step transition probabilities, we just have
to compute the t-th power of P .

1.13.2 Classification of States

Let X be a Markov chain with discrete state space E and transition matrix P . We
can characterize the relations between states in the following way: If states i and j
are such that P t(i, j) > 0 for some t � 0, we say that i leads to j and write i→ j.
We say that i and j communicate if i → j and j → i, and write i ↔ j. Using the
relation “↔”, we can divide E into equivalence classes such that all the states in
an equivalence class communicate with each other but not with any state outside
that class. If there is only one equivalent class (= E ), the Markov chain is said to
be irreducible. If a set of states A is such that

∑
j∈A P (i, j) = 1 for all i ∈ A ,

then A is called a closed set. A state i is called an absorbing state if {i} is closed.
For example, in the transition graph depicted in Figure 1.5, the equivalence classes
are {1, 2}, {3}, and {4, 5}. Class {1, 2} is the only closed set: the Markov chain
cannot escape from it. If state 1 were missing, state 2 would be absorbing. In
Example 1.10 the Markov chain is irreducible since all states communicate.
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1

2

3

4

5

Figure 1.5: A transition graph with three equivalence classes.

Another classification of states is obtained by observing the system from a local
point of view. In particular, let T denote the time the chain first visits state j, or
first returns to j if it started there, and let Nj denote the total number of visits to
j from time 0 on. We write Pj(A) for P(A |X0 = j) for any event A. We denote
the corresponding expectation operator by Ej . State j is called a recurrent state
if Pj(T < ∞) = 1; otherwise, j is called transient. A recurrent state is called
positive recurrent if Ej [T ] < ∞; otherwise, it is called null recurrent. Finally, a
state is said to be periodic, with period δ, if δ � 2 is the largest integer for which
Pj(T = nδ for some n � 1) = 1; otherwise, it is called aperiodic. For example, in
Figure 1.5 states 1 and 2 are recurrent, and the other states are transient. All these
states are aperiodic. The states of the random walk of Example 1.10 are periodic
with period 2.

It can be shown that recurrence and transience are class properties. In partic-
ular, if i ↔ j, then i recurrent (transient) ⇔ j recurrent (transient). Thus, in an
irreducible Markov chain, one state being recurrent implies that all other states are
also recurrent. And if one state is transient, then so are all the others.

1.13.3 Limiting Behavior

The limiting or “steady-state” behavior of Markov chains as t→∞ is of consider-
able interest and importance, and this type of behavior is often simpler to describe
and analyze than the “transient” behavior of the chain for fixed t. It can be shown
(see, for example, [3]) that in an irreducible, aperiodic Markov chain with transition
matrix P the t-step probabilities converge to a constant that does not depend on
the initial state. More specifically,

lim
t→∞P t(i, j) = πj (1.34)

for some number 0 � πj � 1. Moreover, πj > 0 if j is positive recurrent and πj = 0
otherwise. The intuitive reason behind this result is that the process “forgets”
where it was initially if it goes on long enough. This is true for both finite and
countably infinite Markov chains. The numbers {πj , j ∈ E } form the limiting
distribution of the Markov chain, provided that πj � 0 and

∑
j πj = 1. Note

that these conditions are not always satisfied: they are clearly not satisfied if the
Markov chain is transient, and they may not be satisfied if the Markov chain is
recurrent (i.e., when the states are null-recurrent). The following theorem gives
a method for obtaining limiting distributions. Here we assume for simplicity that
E = {0, 1, 2, . . .}. The limiting distribution is identified with the row vector π =
(π0, π1, . . .).
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Theorem 1.13.2 For an irreducible, aperiodic Markov chain with transition ma-
trix P , if the limiting distribution π exists, then it is uniquely determined by the
solution of

π = πP , (1.35)

with πj � 0 and
∑

j πj = 1. Conversely, if there exists a positive row vector π
satisfying (1.35) and summing up to 1, then π is the limiting distribution of the
Markov chain. Moreover, in that case, πj > 0 for all j and all states are positive
recurrent.

Proof: (Sketch) For the case where E is finite, the result is simply a consequence
of (1.33). Namely, with π(0) being the i-th unit vector, we have

P t+1(i, j) =
(
π(0) P t P

)
(j) =

∑
k∈E

P t(i, k)P (k, j) .

Letting t → ∞, we obtain (1.35) from (1.34), provided that we can change the
order of the limit and the summation. To show uniqueness, suppose that another
vector y, with yj � 0 and

∑
j yj = 1, satisfies y = yP . Then it is easy to show by

induction that y = yP t, for every t. Hence, letting t→∞, we obtain for every j

yj =
∑
i

yi πj = πj ,

since the {yj} sum up to unity. We omit the proof of the converse statement. �

EXAMPLE 1.11 Random Walk on the Positive Integers

This is a slightly different random walk than the one in Example 1.10. Let X
be a random walk on E = {0, 1, 2, . . .} with transition matrix

P =

⎛⎜⎜⎜⎝
q p 0 . . .
q 0 p 0 . . .
0 q 0 p 0 . . .
...

. . .
. . .

. . .
. . .

. . .

⎞⎟⎟⎟⎠ ,

where 0 < p < 1 and q = 1− p. Xt could represent, for example, the number
of customers who are waiting in a queue at time t.

All states can be reached from each other, so the chain is irreducible and
every state is either recurrent or transient. The equation π = πP becomes

π0 = q π0 + q π1 ,

π1 = p π0 + q π2 ,

π2 = p π1 + q π3 ,

π3 = p π2 + q π4 ,

and so on. We can solve this set of equation sequentially. If we let r = p/q,
then we can express the π1, π2, . . . in terms of π0 and r as

πj = rj π0, j = 0, 1, 2, . . . .
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If p < q, then r < 1 and
∑∞

j=0 πj = π0/(1 − r), and by choosing π0 = 1 − r,
we can make the sum

∑
πj = 1. Hence, for r < 1, we have found the limiting

distribution π = (1 − r)(1, r, r2, r3, . . .) for this Markov chain, and all the
states are therefore positive recurrent. However, when p � q,

∑
πj is either 0

or infinite, and hence all states are either null-recurrent or transient. (It can
be shown that only the case p = q leads to null-recurrent states.)

Let X be a Markov chain with limiting distribution π. Suppose π(0) = π. Then,
combining (1.33) and (1.35), we have π(t) = π . Thus, if the initial distribution
of the Markov chain is equal to the limiting distribution, then the distribution of
Xt is the same for all t (and is given by this limiting distribution). In fact, it is
not difficult to show that for any k the distribution of Xk, Xk+1, Xk+2 . . . is the
same as that of X0, X1, . . .. In other words, when π(0) = π, the Markov chain is
a stationary stochastic process. More formally, a stochastic process {Xt, t ∈ N} is
called stationary if, for any positive τ, t1, . . . , tn, the vector (Xt1 , . . . , Xtn) has the
same distribution as (Xt1+τ , . . . , Xtn+τ ). Similar definitions hold when the index
set is Z, R+, or R. For this reason any distribution π for which (1.35) holds is
called a stationary distribution.

Noting that
∑

j pij = 1, we can rewrite (1.35) as the system of equations∑
j

πi pij =
∑
j

πj pji for all i ∈ E . (1.36)

These are called the global balance equations. We can interpret (1.35) as the state-
ment that the “probability flux” out of i is balanced by the probability flux into
i. An important generalization, which follows directly from (1.36), states that the
same balancing of probability fluxes holds for an arbitrary set A . That is, for every
set A of states we have ∑

i∈A

∑
j /∈A

πi pij =
∑
i∈A

∑
j /∈A

πj pji . (1.37)

1.13.4 Reversibility

Reversibility is an important notion in the theory of Markov and more general pro-
cesses. A stationary stochastic process {Xt} with index set Z or R is said to be re-
versible if, for any positive integer n and for all t1, . . . , tn, the vector (Xt1 , . . . , Xtn)
has the same distribution as (X−t1 , . . . , X−tn). One way to visualize this is to
imagine that we have taken a video of the stochastic process, which we may run in
forward and reverse time. If we cannot determine whether the video is running for-
ward or backward, the process is reversible. The main result for reversible Markov
chains is that a stationary Markov process is reversible if and only if there exists a
collection of positive numbers {πi, i ∈ E } summing to unity that satisfy the detailed
(or local) balance equations

πi pij = πj pji , i, j ∈ E . (1.38)

Whenever such a collection {πj} exists, it is the stationary distribution of the
process.

A good way to think of the detailed balance equations is that they balance the
probability flux from state i to state j with that from state j to state i. Contrast
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this with the equilibrium equations (1.36), which balance the probability flux out
of state i with that into state i.

Kolmogorov’s criterion is a simple criterion for reversibility based on the tran-
sition probabilities. It states that a stationary Markov process is reversible if and
only if its transition rates satisfy

p(i1, i2) p(i2, i3) . . . p(in−1, in) p(in, i1) = p(i1, in) p(in, in−1) . . . p(i2, i1) (1.39)

for all finite loops of states i1, . . . , in, i1. (For clarity, we have used the notation
p(i, j) rather than pij for the transition probabilities.) The idea is quite intuitive:
if the process in forward time is more likely to traverse a certain closed loop in one
direction than in the opposite direction, then in backward time it will exhibit the
opposite behavior, and hence we have a criterion for detecting the direction of time.
If such “looping” behavior does not occur, the process must be reversible.

1.13.5 Markov Jump Processes

A Markov jump process X = {Xt, t � 0} can be viewed as a continuous-time gen-
eralization of a Markov chain and also of a Poisson process. The Markov property
(1.30) now reads

P(Xt+s = xt+s |Xu = xu, u � t) = P(Xt+s = xt+s |Xt = xt) . (1.40)

As in the Markov chain case, one usually assumes that the process is time-
homogeneous, that is, P(Xt+s = j |Xt = i) does not depend on t. Denote this
probability by Ps(i, j). An important quantity is the transition rate qij from state
i to j, defined for i = j as

qij = lim
t↓0

Pt(i, j)

t
.

The sum of the rates out of state i is denoted by qi. A typical sample path of X
is shown in Figure 1.6. The process jumps at times T1, T2, . . . to states Y1, Y2, . . .,
staying some length of time in each state.

Y2

Y1

Y3

Y0

Xt

t

T1 T2 T30

Figure 1.6: A sample path of a Markov jump process {Xt, t � 0}.

More precisely, a Markov jump process X behaves (under suitable regularity
conditions; see [3]) as follows:

1. Given its past, the probability that X jumps from its current state i to state
j is Kij = qij/qi.



26 PRELIMINARIES

2. The amount of time that X spends in state j has an exponential distribution
with mean 1/qj , independent of its past history.

The first statement implies that the process {Yn} is in fact a Markov chain, with
transition matrix K = (Kij).

A convenient way to describe a Markov jump process is through its transition
rate graph. This is similar to a transition graph for Markov chains. The states are
represented by the nodes of the graph, and a transition rate from state i to j is
indicated by an arrow from i to j with weight qij .

EXAMPLE 1.12 Birth-and-Death Process

A birth-and-death process is a Markov jump process with a transition rate
graph of the form given in Figure 1.7. Imagine that Xt represents the total
number of individuals in a population at time t. Jumps to the right correspond
to births, and jumps to the left to deaths. The birth rates {bi} and the death
rates {di} may differ from state to state. Many applications of Markov chains
involve processes of this kind. Note that the process jumps from one state to

0 1 2

b0 b1 b2

d3d2d1

Figure 1.7: The transition rate graph of a birth-and-death process.

the next according to a Markov chain with transition probabilities K0,1 = 1,
Ki,i+1 = bi/(bi + di), and Ki,i−1 = di/(bi + di), i = 1, 2, . . .. Moreover, it
spends an Exp(b0) amount of time in state 0 and Exp(bi + di) in the other
states.

Limiting Behavior We now formulate the continuous-time analogues of (1.34) and
Theorem 1.13.2. Irreducibility and recurrence for Markov jump processes are de-
fined in the same way as for Markov chains. For simplicity, we assume that
E = {1, 2, . . .}. If X is a recurrent and irreducible Markov jump process, then
regardless of i,

lim
t→∞P(Xt = j |X0 = i) = πj (1.41)

for some number πj � 0. Moreover, π = (π1, π2, . . .) is the solution to∑
j �=i

πi qij =
∑
j �=i

πj qji, for all i = 1, . . . ,m (1.42)

with
∑

j πj = 1, if such a solution exists, in which case all states are positive
recurrent. If such a solution does not exist, all πj are 0.

As in the Markov chain case, {πj} is called the limiting distribution of X and is
usually identified with the row vector π. Any solution π of (1.42) with

∑
j πj = 1

is called a stationary distribution, since taking it as the initial distribution of the
Markov jump process renders the process stationary.
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Equations (1.42) are again called the global balance equations and are readily
generalized to (1.37), replacing the transition probabilities with transition rates.
More important, if the process is reversible, then, as with Markov chains, the
stationary distribution can be found from the local balance equations:

πi qij = πj qji , i, j ∈ E . (1.43)

Reversibility can be easily verified by checking that looping does not occur, that is,
via Kolmogorov’s criterion (1.39), replacing the probabilities p with rates q.

EXAMPLE 1.13 M/M/1 Queue

Consider a service facility where customers arrive at certain random times
and are served by a single server. Arriving customers who find the server
busy wait in the queue. Customers are served in the order in which they
arrive. The interarrival times are exponential random variables with rates λ,
and the service times of customers are iid exponential random variables with
rates μ. Last, the service times are independent of the interarrival times. Let
Xt be the number of customers in the system at time t. By the memoryless
property of the exponential distribution (see Problem 1.7), it is not difficult
to see that X = {Xt, t � 0} is a Markov jump process, and in fact a birth-
and-death process with birth rates bi = λ, i = 0, 1, 2, . . . and death rates
di = μ, i = 1, 2, . . ..

Solving the global balance equations (or, more easily, the local balance
equations, since X is reversible), we see that X has a limiting distribution
given by

lim
t→∞P(Xt = n) = (1− �) �n, n = 0, 1, 2, . . . , (1.44)

provided that � = λ/μ < 1. This means that the expected service time needs
to be less than the expected interarrival time for a limiting distribution to
exist. In that case, the limiting distribution is also the stationary distribution.
In particular, if X0 is distributed according to (1.44), then Xt has the same
distribution for all t > 0.

1.14 GAUSSIAN PROCESSES

The normal distribution is also called the Gaussian distribution. Gaussian pro-
cesses are generalizations of multivariate normal random vectors (discussed in Sec-
tion 1.10). Specifically, a stochastic process {Xt, t ∈ T } is said to be Gaussian if
all its finite-dimensional distributions are Gaussian. That is, if for any choice of n
and t1, . . . , tn ∈ T , it holds that

(Xt1 , . . . , Xtn)
� ∼ N(μ,Σ) (1.45)

for some expectation vector μ and covariance matrix Σ (both of which depend
on the choice of t1, . . . , tn). Equivalently, {Xt, t ∈ T } is Gaussian if any linear
combination

∑n
i=1 biXti has a normal distribution. Note that a Gaussian process

is determined completely by its expectation function μt = E[Xt], t ∈ T , and
covariance function Σs,t = Cov(Xs, Xt), s, t ∈ T .
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EXAMPLE 1.14 Wiener Process (Brownian Motion)

The quintessential Gaussian process is theWiener process or (standard) Brow-
nian motion. It can be viewed as a continuous version of a random walk
process. Figure 1.8 gives a typical sample path. The Wiener process plays
a central role in probability and forms the basis of many other stochastic
processes.
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Figure 1.8: A sample path of the Wiener process. The inset shows a magnification
of the path over a small time interval.

The Wiener process can be defined as a Gaussian process {Xt, t � 0} with
expectation function μt = 0 for all t and covariance function Σs,t = s for
0 � s � t. The Wiener process has many fascinating properties (e.g., [11]).
For example, it is a Markov process (i.e., it satisfies the Markov property
(1.30)) with continuous sample paths that are nowhere differentiable. More-
over, the increments Xt−Xs over intervals [s, t] are independent and normally
distributed. Specifically, for any t1 < t2 � t3 < t4,

Xt4 −Xt3 and Xt2 −Xt1

are independent random variables, and for all t � s � 0,

Xt −Xs ∼ N(0, t− s) .

This leads to a simple simulation procedure for Wiener processes, which is
discussed in Section 2.8.

1.15 INFORMATION

In this section we discuss briefly various measures of information in a random ex-
periment. Suppose that we describe the measurements in a random experiment via
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a random vector X = (X1, . . . , Xn) with pdf f . Then all the information about the
experiment (all of our probabilistic knowledge) is obviously contained in the pdf
f . However, in most cases we would want to characterize our information about
the experiments with just a few key numbers, such as the expectation and the co-
variance matrix of X, which provide information about the mean measurements
and the variability of the measurements, respectively. Another informational mea-
sure comes from coding and communications theory, where the Shannon entropy
characterizes the average number of bits needed to transmit a message X over a (bi-
nary) communication channel. Yet another approach to information can be found
in statistics. Specifically, in the theory of point estimation, the pdf f depends on a
parameter vector θ. The question is how well θ can be estimated via an outcome
of X — in other words, how much information about θ is contained in the “data”
X. Various measures for this type of information are associated with the maximum
likelihood, the score, and the (Fisher) information matrix. Finally, the amount of
information in a random experiment can often be quantified via a distance concept,
such as the Kullback–Leibler “distance” (divergence), also called the cross-entropy.

1.15.1 Shannon Entropy

One of the most celebrated measures of uncertainty in information theory is the
Shannon entropy, or simply entropy. A good reference is [4], where the entropy of
a discrete random variable X with density f is defined as

E

[
log2

1

f(X)

]
= −E [log2 f(X)] = −

∑
X

f(x) log2 f(x) .

Here X is interpreted as a random character from an alphabet X , such that X = x
with probability f(x). We will use the convention 0 ln 0 = 0.

It can be shown that the most efficient way to transmit characters sampled from
f over a binary channel is to encode them such that the number of bits required
to transmit x is equal to log2(1/f(x)). It follows that −∑X f(x) log2 f(x) is the
expected bit length required to send a random character X ∼ f ; see [4].

A more general approach, which includes continuous random variables, is to
define the entropy of a random variable X with density f by

H(X) = −E[ln f(X)] =

{
−∑ f(x) ln f(x) discrete case,

− ∫ f(x) ln f(x) dx continuous case.
(1.46)

Definition (1.46) can easily be extended to random vectors X as (in the continuous
case)

H(X) = −E[ln f(X)] = −
∫

f(x) ln f(x) dx . (1.47)

H(X) is often called the joint entropy of the random variables X1, . . . , Xn, and it is
also written as H(X1, . . . , Xn). In the continuous case, H(X) is frequently referred
to as the differential entropy to distinguish it from the discrete case.
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EXAMPLE 1.15

Let X have a Ber(p) distribution for some 0 � p � 1. The density f of X
is given by f(1) = P(X = 1) = p and f(0) = P(X = 0) = 1 − p so that the
entropy of X is

H(X) = −p ln p− (1− p) ln(1− p) .

The graph of the entropy as a function of p is depicted in Figure 1.9. Note
that the entropy is maximal for p = 1/2, which gives the “uniform” density
on {0, 1}.
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Figure 1.9: The entropy for the Ber(p) distribution as a function of p.

Next, consider a sequence X1, . . . , Xn of iid Ber(p) random variables. Let
X = (X1, . . . , Xn). The density of X, say g, is simply the product of the
densities of the Xi, so that

H(X) = −E [ln g(X)] = −E
[
ln

n∏
i=1

f(Xi)

]
=

n∑
i=1

−E [ln f(Xi)] = nH(X) .

The properties of H(X) in the continuous case are somewhat different from those
in the discrete one. In particular:

1. The differential entropy can be negative, whereas the discrete entropy is al-
ways positive.

2. The discrete entropy is insensitive to invertible transformations, whereas the
differential entropy is not. Specifically, if X is discrete, Y = g(X), and g
is an invertible mapping, then H(X) = H(Y) because fY(y) = fX(g−1(y)).
However, in the continuous case, we have an additional factor due to the
Jacobian of the transformation.

It is not difficult to see that of any density f , the one that gives the maximum
entropy is the uniform density on X . That is,

H(X) is maximal ⇔ f(x) =
1

|X | (constant) . (1.48)
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For two random vectors X and Y with joint pdf f , we define the conditional
entropy of Y given X as

H(Y |X) = −E
[
ln

f(X,Y)

fX(X)

]
= H(X,Y)−H(X) , (1.49)

where fX is the pdf of X and f(x,y)
fX(x) is the conditional density of Y (at y), given

X = x. It follows that

H(X,Y) = H(X) +H(Y |X) = H(Y) +H(X |Y) . (1.50)

It is reasonable to require that any sensible additive measure describing the
average amount of uncertainty should satisfy at least (1.50) and (1.48). It follows
that the uniform density carries the least amount of information, and the entropy
(average amount of uncertainty) of (X,Y) is equal to the sum of the entropy of X
and the amount of entropy in Y after the information in X has been accounted for.
It is argued in [10] that any concept of entropy that includes the general properties
(1.48) and (1.50) must lead to the definition (1.47).

The mutual information of X and Y is defined as

M(X,Y) = H(X) +H(Y)−H(X,Y) , (1.51)

which, as the name suggests, can be interpreted as the amount of information shared
by X and Y. An alternative expression, which follows from (1.50) and (1.51), is

M(X,Y) = H(X)−H(X |Y) = H(Y)−H(Y |X) , (1.52)

which can be interpreted as the reduction of the uncertainty of one random variable
due to the knowledge of the other. It is not difficult to show that the mutual
information is always positive. It is also related to the cross-entropy concept, which
follows.

1.15.2 Kullback–Leibler Cross-Entropy

Let g and h be two densities on X . The Kullback–Leibler cross-entropy between
g and h (compare with (1.47)) is defined (in the continuous case) as

D(g, h) = Eg

[
ln

g(X)

h(X)

]
=

∫
g(x) ln g(x) dx−

∫
g(x) lnh(x) dx .

(1.53)

D(g, h) is also called the Kullback–Leibler divergence, the cross-entropy, and the
relative entropy. If not stated otherwise, we will call D(g, h) the cross-entropy
(CE) between g and h. Notice that D(g, h) is not a distance between g and h in
the formal sense, since in general D(g, h) = D(h, g). Nonetheless, it is often useful
to think of D(g, h) as a distance because

D(g, h) � 0
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and D(g, h) = 0 if and only if g(x) = h(x). This follows from Jensen’s inequality
(if φ is a convex function, such as − ln, then E[φ(X)] � φ(E[X])). Namely

D(g, h) = Eg

[
− ln

h(X)

g(X)

]
� − ln

{
Eg

[
h(X)

g(X)

]}
= − ln 1 = 0 .

It can be readily seen that the mutual information M(X,Y) of vectors X and
Y defined in (1.51) is related to the CE in the following way:

M(X,Y) = D(f, fXfY) = Ef

[
ln

f(X,Y)

fX(X) fY(Y)

]
,

where f is the (joint) pdf of (X,Y) and fX and fY are the (marginal) pdfs of X
and Y, respectively. In other words, the mutual information can be viewed as the
CE that measures the distance between the joint pdf f of X and Y and the product
of their marginal pdfs fX and fY, that is, under the assumption that the vectors
X and Y are independent.

1.15.3 Maximum Likelihood Estimator and Score Function

We introduce here the notion of the score function (SF) via the classical maximum
likelihood estimator. Consider a random vector X = (X1, . . . , Xn) that is is dis-
tributed according to a fixed pdf f(·;θ) with unknown parameter (vector) θ ∈ Θ.
Say that we want to estimate θ on the basis of a given outcome x (the data) of X.
For a given x, the function L(θ;x) = f(x;θ) is called the likelihood function. Note
that L is a function of θ for a fixed parameter x, whereas for the pdf f it is the
other way around. The maximum likelihood estimate θ̂ = θ̂(x) of θ is defined as

θ̂ = argmax
θ∈Θ

L(θ;x) . (1.54)

Because the function ln is monotone increasing, we also have

θ̂ = argmax
θ∈Θ

lnL(θ;x) . (1.55)

The random variable θ̂(X) with X ∼ f(·;θ) is the corresponding maximum likeli-

hood estimator, which is again written as θ̂. Note that often the data X1, . . . , Xn

form a random sample from some pdf f1(·;θ), in which case f(x;θ) =
∏N

i=1 f1(xi;θ)
and

θ̂ = argmax
θ∈Θ

N∑
i=1

ln f1(Xi;θ) . (1.56)

If L(θ;x) is a continuously differentiable concave function with respect to θ
and the maximum is attained in the interior of Θ, then we can find the maximum
likelihood estimator of θ by solving

∇θ lnL(θ;x) = 0 .

The function S(·;x) defined by

S(θ;x) = ∇θ lnL(θ;x) =
∇θf(x;θ)

f(x;θ)
(1.57)
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is called the score function. For the exponential family (A.9) it is easy to see that

S(θ;x) =
∇c(θ)
c(θ)

+ t(x) . (1.58)

The random vector S(θ) = S(θ;X) with X ∼ f(·;θ) is called the (efficient) score.
The expected score is always equal to the zero vector, that is,

Eθ[S(θ)] =

∫
∇θf(x;θ)μ(dx) = ∇θ

∫
f(x; θ)μ(dx) = ∇θ1 = 0 ,

where the interchange of differentiation and integration is justified via the bounded
convergence theorem.

1.15.4 Fisher Information

The covariance matrix I(θ) of the score S(θ) is called the Fisher information matrix.
Since the expected score is always 0, we have

I(θ) = Eθ

[
S(θ)S(θ)�

]
. (1.59)

In the one-dimensional case, we thus have

I(θ) = Eθ

[(
∂ ln f(X; θ)

∂θ

)2
]

.

Because

∂2

∂θ2
ln f(x; θ) =

∂2

∂θ2
f(x; θ)

f(x; θ)
−

⎛⎜⎝ ∂

∂θ
f(x; θ)

f(x; θ)

⎞⎟⎠
2

,

we see that (under straightforward regularity conditions) the Fisher information is
also given by

I(θ) = −Eθ

[
∂2 ln f(X; θ)

∂θ2

]
.

In the multidimensional case we have similarly

I(θ) = −Eθ [∇S(θ)] = −Eθ

[∇2 ln f(X;θ)
]
, (1.60)

where ∇2 ln f(X;θ) denotes the Hessian of ln f(X;θ), that is, the (random) matrix(
∂2 ln f(X;θ)

∂θi∂θj

)
.

The importance of the Fisher information in statistics is corroborated by the famous
Cramér–Rao inequality, which (in a simplified form) states that the variance of any
unbiased estimator Z of g(θ) is bounded from below via

Var(Z) � (∇g(θ))� I−1(θ)∇g(θ) . (1.61)

For more details, see [12].
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1.16 CONVEX OPTIMIZATION AND DUALITY

Let f(x), x ∈ R, be a real-valued function with continuous derivatives — also called
a C1 function. The standard approach to minimizing f(x) is to solve the equation

f ′(x) = 0 . (1.62)

The solutions to (1.62) are called stationary points. If, in addition, the function
has continuous second derivatives (a so-called C2 function), the condition

f ′′(x∗) > 0 (1.63)

ensures that a stationary point x∗ is a local minimizer, that is, f(x∗) < f(x) for all
x in a small enough neighborhood of x∗.

For a C1 function on Rn, (1.62) generalizes to

∇f(x) ≡

⎛⎜⎜⎝
∂f(x)
∂x1

...
∂f(x)
∂xn

⎞⎟⎟⎠ = 0 , (1.64)

where ∇f(x) is the gradient of f at x. Similarly, a stationary point x∗ is a local
minimizer of f if the Hessian matrix (or simply Hessian) at x∗,

∇2f(x∗) ≡

⎛⎜⎜⎝
∂2f(x∗)

∂x2
1

· · · ∂2f(x∗)
∂x1∂xn

... · · · ...
∂2f(x∗)
∂x1∂xn

· · · ∂2f(x∗)
∂x2

n

⎞⎟⎟⎠ , (1.65)

is positive definite, that is, x� [∇2f(x∗)]x > 0 for all x = 0.
The situation can be further generalized by introducing constraints. A general

constrained optimization problems can be written as

min
x∈Rn

f(x) (1.66)

subject to: hi(x) = 0, i = 1, . . . ,m , (1.67)

gi(x) � 0, i = 1, . . . , k . (1.68)

Here f, gi, and hi are given functions, f(x) is called the objective function, and
hi(x) = 0 and gi(x) � 0 represent the equality and inequality constraints, respec-
tively.

The region of the domain where the objective function is defined and where all
the constraints are satisfied is called the feasible region. A global solution to the
optimization problem is a point x∗ ∈ Rn such that there exists no other point
x ∈ Rn for which f(x) < f(x∗). Alternative names are global minimizer and global
minimum, although the latter could be confused with the minimum value of the
function. Similarly, for a local solution/minimizer, the condition f(x) < f(x∗) only
needs to hold in some neighborhood of x∗.

Within this formulation fall many of the traditional optimization problems. An
optimization problem in which the objective function and the equality and inequal-
ity constraints are linear functions, is called a linear program. An optimization
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problem in which the objective function is quadratic, while the constraints are lin-
ear functions is called a quadratic program. Convexity plays an important role in
many practical optimization problems.

Definition 1.16.1 (Convex Set) A set X ∈ Rn is called convex if, for all x,y ∈
X and θ ∈ (0, 1), the point (θx+ (1− θ)y) ∈X .

Definition 1.16.2 (Convex Function) A function f(x) on a convex set X is
called convex if, for all x,y ∈X and θ ∈ (0, 1),

f
(
θx+ (1− θ)y

) ≤ θf(x) + (1− θ)f(y) . (1.69)

If a strict inequality in (1.69) holds, the function is said to be strictly convex. If
a function f is (strictly) convex, then −f is said to be (strictly) concave. Assuming
X is an open set, convexity for f ∈ C1 is equivalent to

f(y) � f(x) + (y − x)�∇f(x) for all x,y ∈X .

Moreover, for f ∈ C2, convexity is equivalent to the Hessian matrix being positive
semidefinite for all x ∈X :

y�
[∇2f(x)

]
y � 0, for all y ∈ Rn .

The problem (1.66) is said to be a convex programming problem if

1. the objective function f is convex,

2. the inequality constraint functions {gi(x)} are convex, and

3. the equality constraint functions {hi(x)} are affine, i.e., of the form a�i x− bi.

Note that the last requirement follows from the fact that an equality constraint
hi(x) = 0 can be viewed as a combination of the inequality constraints hi(x) � 0
and −hi(x) � 0, so that both hi and −hi need to be convex. Both the linear and
quadratic programs (with positive definite matrix C) are convex.

1.16.1 Lagrangian Method

The main components of the Lagrangian method are the Lagrange multipliers and
the Lagrange function. The method was developed by Lagrange in 1797 for the
optimization problem (1.66) with equality constraints (1.67). In 1951 Kuhn and
Tucker extended Lagrange’s method to inequality constraints.

Definition 1.16.3 (Lagrange Function) Given an optimization problem (1.66)
containing only equality constraints hi(x) = 0, i = 1, . . . ,m, the Lagrange function,
or Lagrangian, is defined as

L(x,β) = f(x) +
∑
i

βi hi(x) ,

where the coefficients {βi} are called the Lagrange multipliers.
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A necessary condition for a point x∗ to be a local minimizer of f(x) subject to the
equality constraints hi(x) = 0, i = 1, . . . ,m, is

∇x L(x∗,β∗) = 0 ,

∇β L(x∗,β∗) = 0 ,

for some value β∗. The conditions above are also sufficient if L(x,β∗) is a convex
function of x.

EXAMPLE 1.16 Maximum Entropy Distribution

Let p = {pi, i = 1, . . . , n} be a probability distribution. Consider the following
program, which maximizes the (Shannon) entropy:

max
p

−
n∑

i=1

pi ln pi

subject to:
n∑

i=1

pi = 1 .

The Lagrangian is

L(p, β) =
n∑

i=1

pi ln pi + β

(
n∑

i=1

pi − 1

)
over the domain {(p, β) : pi ≥ 0, i = 1, . . . , n, β ∈ R}. The optimal solution
p∗ of the problem is the uniform distribution, that is, p∗ = (1/n, . . . , 1/n);
see Problem 1.35.

Definition 1.16.4 (Generalized Lagrange Function) Given the original opti-
mization problem (1.66), containing both the equality and inequality constraints,
the generalized Lagrange function, or simply Lagrangian, is defined as

L(x,α,β) = f(x) +
k∑

i=1

αi gi(x) +

m∑
i=1

βi hi(x) .

A necessary condition for a point x∗ to be a local minimizer of f(x) in the opti-
mization problem (1.66) is the existence of an α∗ and β∗ such that

∇x L(x∗,α∗,β∗) = 0 ,

∇β L(x∗,α∗,β∗) = 0 ,

gi(x
∗) � 0, i = 1, . . . , k ,

α∗i � 0, i = 1, . . . , k ,

α∗i gi(x
∗) = 0, i = 1, . . . , k .

These equations are usually referred as the Karush–Kuhn–Tucker (KKT) condi-
tions. For convex programs we have the following important results:

1. Every local solution x∗ to a convex programming problem is a global solution
and the set of global solutions is convex. If, in addition, the objective function
is strictly convex, then any global solution is unique.
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2. For a strictly convex programming problem with C1 objective and constraint
functions, the KKT conditions are necessary and sufficient for a unique global
solution.

1.16.2 Duality

The aim of duality is to provide an alternative formulation of an optimization prob-
lem that is often more computationally efficient or has some theoretical significance
(see [7], page 219). The original problem (1.66) is referred to as the primal problem,
whereas the reformulated problem, based on Lagrange multipliers, is referred to as
the dual problem. Duality theory is most relevant to convex optimization problems.
It is well known that if the primal optimization problem is (strictly) convex, then
the dual problem is (strictly) concave and has a (unique) solution from which the
optimal (unique) primal solution can be deduced.

Definition 1.16.5 (Lagrange Dual Program) The Lagrange dual program of
the primal program (1.66), is

max
α,β

L∗(α,β)

subject to: α � 0 ,

where L∗ is the Lagrange dual function:

L∗(α,β) = inf
x∈X

L(x,α,β) . (1.70)

It is not difficult to see that if f∗ is the minimal value of the primal problem,
then L∗(α,β) � f∗ for any α � 0 and any β. This property is called weak duality.
The Lagrangian dual program thus determines the best lower bound on f∗. If d∗

is the optimal value for the dual problem, then d∗ < f∗. The difference f∗ − d∗ is
called the duality gap.

The duality gap is extremely useful for providing lower bounds for the solutions
of primal problems that may be impossible to solve directly. It is important to note
that for linearly constrained problems, if the primal is infeasible (does not have a
solution satisfying the constraints), then the dual is either infeasible or unbounded.
Conversely, if the dual is infeasible, then the primal has no solution. Of crucial
importance is the strong duality theorem, which states that for convex programs
(1.66) with linear constrained functions hi and gi the duality gap is zero, and any
x∗ and (α∗,β∗) satisfying the KKT conditions are (global) solutions to the primal
and dual programs, respectively. In particular, this holds for linear and convex
quadratic programs (note that not all quadratic programs are convex).

For a convex primal program with C1 objective and constraint functions, the
Lagrangian dual function (1.70) can be obtained by simply setting the gradient
(with respect to x) of the Lagrangian L(x,α,β) to zero. One can further simplify
the dual program by substituting into the Lagrangian the relations between the
variables thus obtained.
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EXAMPLE 1.17 Linear Programming Problem

Consider the following linear programming problem:

min
x

c�x

subject to: Ax � b .

The Lagrangian is L(x,α) = c�x−α�(Ax−b). The Lagrange dual function
is the infimum of L over all x; thus

L∗(α) =

{
b�α if A�α = c ,

−∞ otherwise,

so that the Lagrange dual program becomes

max
α

b�α

subject to: A�α = c ,

α � 0 .

An interesting fact to note here is that for the linear programming problem
the dual of the dual problem always gives back the primal problem.

EXAMPLE 1.18 Quadratic Programming Problem

Consider the following quadratic programming problem:

min
x

1

2
x�Cx

subject to: Cx � b ,

where the n × n matrix C is assumed to be positive definite (for a general
quadratic programming problem the matrix C can always be assumed to be
symmetric, but it is not necessarily positive definite). The Lagrangian is
L(x,α) = 1

2x
�Cx−α�(Cx−b). We can minimize this by taking its gradient

with respect to x and setting it to zero. This gives Cx−Cα = C(x−α) = 0.
The positive definiteness of C implies that x = α. The maximization of the
Lagrangian is now reduced to maximizing L(α,α) = 1

2 α
�Cα−α�(Cα−b) =

− 1
2 α

�Cα+α�b subject to α � 0. Hence we can write the dual problem as

max
α

− 1

2
α�Cα+α�b

subject to: α � 0 .

Notice that the dual problem involves only simple nonnegativity constraints.
Now suppose that we are given the Cholesky factorization C = BB�. It

turns out (see Problem 1.36) that the Lagrange dual of the dual problem
above can be written as

min
μ

1

2
μ�μ

subject to: Bμ � b ,

(1.71)
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with μ = B�α. This is a so-called least distance problem, which, provided
that we know the Cholesky factorization of C, is easier to solve than the
original quadratic programming problem.

A final example of duality is provided by the widely used minimum cross-entropy
method [9].

EXAMPLE 1.19 Minimum Cross-Entropy (MinxEnt) Method

Let X be a discrete random variable (or vector) taking values x1, . . . ,xr, and
let q = (q1, . . . , qr)

� and p = (p1, . . . , pr)
� be two strictly positive distri-

bution (column) vectors for X. Consider the following primal program of
minimizing the cross-entropy of p and q, that is,

∑n
i=1 pi ln(pi/qi), for a fixed

q, subject to linear equality constraints:

min
p

r∑
k=1

pk ln
pk
qk

(1.72)

subject to: Ep[Si(X)] =

r∑
k=1

Si(xk) pk = γi, i = 1, . . . ,m (1.73)

r∑
k=1

pk = 1 , (1.74)

where S1, . . . , Sm are arbitrary functions.
Here the objective function is convex, since it is a linear combination of

functions of the form p ln(p/c), which are convex on R+, for any c > 0.
In addition, the equality constraint functions are affine (of the form a�p −
γ). Therefore, this problem is convex. To derive the optimal solution p∗ of
the primal program above, it is typically easier to solve the associated dual
program [9]. Below we present the corresponding procedure.

1. The Lagrangian of the primal problem is given by

L(p,λ, β) =
r∑

k=1

pk ln
pk
qk
−

m∑
i=1

λi

( r∑
k=1

Si(xk) pk−γi
)
+β
( r∑

k=1

pk−1
)
, (1.75)

where λ = (λ1, . . . , λm)� is the Lagrange multiplier vector corresponding to
(1.73) and β is the Lagrange multiplier corresponding to (1.74). Note that we
can use either a plus or a minus sign in the second sum of (1.75). We choose
the latter because later we generalize the very same problem to inequality
(�) constraints in (1.73), giving rise to a minus sign in the Lagrangian.

2. Solve (for fixed λ and β)
min
p
L(p,λ, β) (1.76)

by solving
∇pL(p,λ, β) = 0 ,

which gives the set of equations

∇pk
L(p,λ, β) = ln

pk
qk

+ 1−
m∑
i=1

λi Si(xk) + β = 0, k = 1, . . . , r .
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Denote the optimal solution and the optimal function value obtained from
the program (1.76) as p(λ, β) and L∗(λ, β), respectively. The latter is the
Lagrange dual function. So we write

pk(λ, β) = qk exp

(
−β − 1 +

m∑
i=1

λi Si(xk)

)
, k = 1, . . . , r . (1.77)

Since the sum of the {pk} must be 1, we obtain

eβ =

r∑
k=1

qk exp

(
−1 +

m∑
i=1

λi Si(xk)

)
. (1.78)

Substituting p(λ, β) back into the Lagrangian gives

L∗(λ, β) = −1 +
m∑
i=1

λi γi − β . (1.79)

3. Solve the dual program
max
λ,β
L∗(λ, β) . (1.80)

Since β and λ are related via (1.78), we can solve (1.80) by substituting the
corresponding β(λ) into (1.79) and optimizing the resulting function:

D(λ) = −1 +
m∑
i=1

λi γi − ln

{
r∑

k=1

qk exp{−1 +∑m
i=1 λi Si(xk)}

}
. (1.81)

Since D(λ) is continuously differentiable and concave with respect to λ, we
can derive the optimal solution, λ∗, by solving

∇λD(λ) = 0 , (1.82)

which can be written componentwise in the following explicit form:

∇λj
D(λ) = γi −

∑r
k=1 Si(xk) qk exp

{
−1 +∑m

j=1 λj Sj(xk)
}

∑r
k=1 qk exp

{
−1 +∑m

j=1 λj Sj(xk)
}

= γi −
Eq

[
Si(X) exp

{
−1 +∑m

j=1 λj Sj(X)
}]

Eq

[
exp

{
−1 +∑m

j=1 λj Sj(X)
}] = 0

(1.83)

for j = 1, . . . ,m. The optimal vector λ∗ = (λ∗1, . . . , λ
∗
m) can be found by

solving (1.83) numerically. Note that if the primal program has a nonempty
interior optimal solution, then the dual program has an optimal solution λ∗.

4. Finally, substitute λ = λ∗ and β = β(λ∗) back into (1.77) to obtain the
solution to the original MinxEnt program.

It is important to note that we do not need to explicitly impose the condi-
tions pi � 0, i = 1, . . . , n, because the quantities {pi} in (1.77) are automati-
cally strictly positive. This is a crucial property of the CE distance; see also
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[1]. It is instructive (see Problem 1.37) to verify how adding the nonnegativity
constraints affects the procedure above.

When inequality constraints Ep[Si(X)] � γi are used in (1.73) instead of
equality constraints, the solution procedure remains almost the same. The
only difference is that the Lagrange multiplier vector λ must now be nonneg-
ative. It follows that the dual program becomes

max
λ

D(λ)

subject to: λ � 0 ,

with D(λ) given in (1.81).
A further generalization is to replace the above discrete optimization prob-

lem with a functional optimization problem. This topic will be discussed in
Chapter 8. In particular, Section 8.9 deals with the MinxEnt method, which
involves a functional MinxEnt problem.

PROBLEMS

Probability Theory

1.1 Prove the following results, using the properties of the probability measure
in Definition 1.2.1 (here A and B are events):

a) P(Ac) = 1− P(A).

b) P(A ∪B) = P(A) + P(B)− P(A ∩B).

1.2 Prove the product rule (1.4) for the case of three events.

1.3 We draw three balls consecutively from a bowl containing exactly five white
and five black balls, without putting them back. What is the probability that all
drawn balls will be black?

1.4 Consider the random experiment where we toss a biased coin until heads
comes up. Suppose that the probability of heads on any one toss is p. Let X be
the number of tosses required. Show that X ∼ G(p).

1.5 In a room with many people, we ask each person his/her birthday (day and
month). Let N be the number of people queried until we get a “duplicate” birthday.

a) Calculate P(N > n), n = 0, 1, 2, . . ..

b) For which n do we have P(N � n) � 1/2?

c) Use a computer to calculate E[N ].

1.6 Let X and Y be independent standard normal random variables, and let U
and V be random variables that are derived from X and Y via the linear transfor-
mation (

U
V

)
=

(
sinα − cosα
cosα sinα

)(
X
Y

)
.

a) Derive the joint pdf of U and V .

b) Show that U and V are independent and standard normally distributed.

1.7 Let X ∼ Exp(λ). Show that the memoryless property holds: for all s, t � 0,

P(X > t+ s |X > t) = P(X > s) .
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1.8 Let X1, X2, X3 be independent Bernoulli random variables with success prob-
abilities 1/2, 1/3, and 1/4, respectively. Give their conditional joint pdf, given that
X1 +X2 +X3 = 2.

1.9 Verify the expectations and variances in Table 1.3.

1.10 Let X and Y have joint density f given by

f(x, y) = c x y, 0 � y � x, 0 � x � 1 .

a) Determine the normalization constant c.

b) Determine P(X + 2Y � 1).

1.11 Let X ∼ Exp(λ) and Y ∼ Exp(μ) be independent. Show that

a) min(X,Y ) ∼ Exp(λ+ μ),

b) P(X < Y | min(X,Y )) =
λ

λ+ μ
.

1.12 Verify the properties of variance and covariance in Table 1.4.

1.13 Show that the correlation coefficient always lies between −1 and 1. [Hint:
Use the fact that the variance of aX + Y is always nonnegative, for any a.]

1.14 Consider Examples 1.1 and 1.2. Define X as the function that assigns the
number x1 + · · ·+ xn to each outcome ω = (x1, . . . , xn). The event that there are
exactly k heads in n throws can be written as

{ω ∈ Ω : X(ω) = k} .

If we abbreviate this to {X = k}, and further abbreviate P({X = k}) to P(X = k),
then we obtain exactly (1.7). Verify that one can always view random variables
in this way, that is, as real-valued functions on Ω, and that probabilities such as
P(X � x) should be interpreted as P({ω ∈ Ω : X(ω) � x}).
1.15 Show that

Var

(
n∑

i=1

Xi

)
=

n∑
i=1

Var(Xi) + 2
∑
i<j

Cov(Xi, Xj) .

1.16 Let Σ be the covariance matrix of a random column vector X. Write Y =
X−μ, where μ is the expectation vector of X. Hence Σ = E[YY�]. Show that Σ
is positive semidefinite. That is, for any vector u, we have u�Σu � 0.

1.17 Suppose Y ∼ Gamma(n, λ). Show that for all x � 0

P(Y � x) = 1−
n−1∑
k=0

e−λx(λx)k

k!
. (1.84)

1.18 Consider the random experiment where we draw uniformly and indepen-
dently n numbers, X1, . . . , Xn, from the interval [0,1].

a) Let M be the smallest of the n numbers. Express M in terms of
X1, . . . , Xn.
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b) Determine the pdf of M .

1.19 Let Y = eX , where X ∼ N(0, 1).

a) Determine the pdf of Y .

b) Determine the expected value of Y .

1.20 We select a point (X,Y ) from the triangle (0, 0) − (1, 0) − (1, 1) in such a
way that X has a uniform distribution on (0, 1) and the conditional distribution of
Y given X = x is uniform on (0, x).

a) Determine the joint pdf of X and Y .

b) Determine the pdf of Y .

c) Determine the conditional pdf of X given Y = y for all y ∈ (0, 1).

d) Calculate E[X |Y = y] for all y ∈ (0, 1).

e) Determine the expectations of X and Y .

Poisson Processes

1.21 Let {Nt, t � 0} be a Poisson process with rate λ = 2. Find

a) P(N2 = 1, N3 = 4, N5 = 5),

b) P(N4 = 3 |N2 = 1, N3 = 2),

c) E[N4 |N2 = 2],

d) P(N [2, 7] = 4, N [3, 8] = 6),

e) E[N [4, 6] |N [1, 5] = 3].

1.22 Show that for any fixed k ∈ N, t > 0 and λ > 0,

lim
n→∞

(
n

k

)(
λt

n

)k (
1− λt

n

)n−k

=
(λt)k

k!
e−λt .

[Hint: Write out the binomial coefficient and use the fact that limn→∞
(
1− λt

n

)n
=

e−λt.]

1.23 Consider the Bernoulli approximation in Section 1.12. Let U1, U2, . . . denote
the times of success for the Bernoulli process X.

a) Verify that the “intersuccess” times U1, U2 − U1, . . . are independent and
have a geometric distribution with parameter p = λh.

b) For small h and n = �t/h�, show that the relationship P(A1 > t) ≈ P(U1 >
n) leads in the limit, as n→∞, to

P(A1 > t) = e−λt.

1.24 If {Nt, t � 0} is a Poisson process with rate λ, show that for 0 � u � t and
j = 0, 1, 2, . . . , n,

P(Nu = j |Nt = n) =

(
n

j

)(u
t

)j (
1− u

t

)n−j

,

that is, the conditional distribution of Nu given Nt = n is binomial with parameters
n and u/t.
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Markov Processes

1.25 Determine the (discrete) pdf of each Xn, n = 0, 1, 2, . . ., for the random
walk in Example 1.10. Also, calculate E[Xn] and the variance of Xn for each n.

1.26 Let {Xn, n ∈ N} be a Markov chain with state space {0, 1, 2}, transition
matrix

P =

⎛⎝ 0.3 0.1 0.6
0.4 0.4 0.2
0.1 0.7 0.2

⎞⎠ ,

and initial distribution π = (0.2, 0.5, 0.3). Determine

a) P(X1 = 2),

b) P(X2 = 2),

c) P(X3 = 2 |X0 = 0),

d) P(X0 = 1 |X1 = 2),

e) P(X1 = 1, X3 = 1).

1.27 Two dogs harbor a total number of m fleas. Spot initially has b fleas and
Lassie has the remaining m−b. The fleas have agreed on the following immigration
policy: at every time n = 1, 2 . . ., a flea is selected at random from the total
population and that flea will jump from one dog to the other. Describe the flea
population on Spot as a Markov chain and find its stationary distribution.

1.28 Classify the states of the Markov chain with the following transition matrix:

P =

⎛⎜⎜⎜⎜⎝
0.0 0.3 0.6 0.0 0.1
0.0 0.3 0.0 0.7 0.0
0.3 0.1 0.6 0.0 0.0
0.0 0.1 0.0 0.9 0.0
0.1 0.1 0.2 0.0 0.6

⎞⎟⎟⎟⎟⎠ .

1.29 Consider the following snakes-and-ladders game. Let N be the number of
tosses required to reach the finish using a fair die. Calculate the expectation of N
using a computer.

1.30 Ms. Ella Brum walks back and forth between her home and her office every
day. She owns three umbrellas, which are distributed over two umbrella stands (one
at home and one at work). When it is not raining, Ms. Brum walks without an
umbrella. When it is raining, she takes one umbrella from the stand at the place of
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her departure, provided there is one available. Suppose that the probability that it
is raining at the time of any departure is p. Let Xn denote the number of umbrellas
available at the place where Ella arrives after walk number n; n = 1, 2, . . ., including
the one that she possibly brings with her. Calculate the limiting probability that
it rains and no umbrella is available.

1.31 A mouse is let loose in the maze of Figure 1.10. From each compartment
the mouse chooses one of the adjacent compartments with equal probability, in-
dependent of the past. The mouse spends an exponentially distributed amount of
time in each compartment. The mean time spent in each of the compartments 1,
3, and 4 is two seconds; the mean time spent in compartments 2, 5, and 6 is four
seconds. Let {Xt, t � 0} be the Markov jump process that describes the position
of the mouse for times t � 0. Assume that the mouse starts in compartment 1 at
time t = 0.

1 2

3 4

5

6

Figure 1.10: A maze.

What are the probabilities that the mouse will be found in each of the compart-
ments 1, 2, . . . , 6 at some time t far away in the future?

1.32 In an M/M/∞-queueing system, customers arrive according to a Poisson
process with rate a. Every customer who enters is immediately served by one
of an infinite number of servers; hence there is no queue. The service times are
exponentially distributed, with mean 1/b. All service and interarrival times are
independent. Let Xt be the number of customers in the system at time t. Show
that the limiting distribution of Xt, as t→∞, is Poisson with parameter a/b.

Optimization

1.33 Let a and let x be n-dimensional column vectors. Show that ∇x a�x = a.

1.34 Let A be a symmetric n × n matrix and x be an n-dimensional column
vector. Show that ∇x

1
2 x

�Ax = Ax. What is the gradient if A is not symmetric?

1.35 Show that the optimal distribution p∗ in Example 1.16 is given by the
uniform distribution.

1.36 Derive the program (1.71).
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1.37 Consider the MinxEnt program

min
p

n∑
i=1

pi ln
pi
qi

subject to: p � 0, Ap = b,
n∑

i=1

pi = 1 ,

where p and q are probability distribution vectors and A is an m× n matrix.

a) Show that the Lagrangian for this problem is of the form

L(p,λ, β,μ) = p�ξ(p)− λ�(Ap− b)− μ�p+ β(1�p− 1) .

b) Show that pi = qi exp(−β − 1 + μi +
∑m

j=1 λj aji), for i = 1, . . . , n.

c) Explain why, as a result of the KKT conditions, the optimal μ∗ must be
equal to the zero vector.

d) Show that the solution to this MinxEnt program is exactly the same as
for the program where the nonnegativity constraints are omitted.

Further Reading

An easy introduction to probability theory with many examples is [13], and a more
detailed textbook is [8]. A classical reference is [6]. An accurate and accessible
treatment of various stochastic processes is given in [3]. For convex optimization
we refer to [2] and [7].
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