INTRODUCTION

1.1 A TRANSDISCIPLINARY RESEARCH AREA

The study of extreme events has long been a very relevant field of investigation at the
intersection of different fields, most notably mathematics, geosciences, engineering,
and finance [1-7]. While extreme events in a given physical system obey the same
laws as typical events do, extreme events are rather special from a mathematical point
of view as well as in terms of their impacts. Often, procedures like mode reduction
techniques, which are able to reliably reproduce the typical behavior of a system,
do not perform well in representing accurately extreme events and therefore, under-
estimate their variety. It is extremely challenging to predict extremes in the sense
of defining precursors for specific events and, on longer time scales, to assess how
modulations in the external factors (e.g., climate change in the case of geophysical
extremes) have an impact on their properties.

Clearly, understanding the properties of the tail of the probability distribution of a
stochastic variable attracts a lot of interest in many sectors of science and technology
because extremes sometimes relate to situations of high stress or serious hazard, so
that in many fields it is crucial to be able to predict their return times in order to
cushion and gauge risks, such as in the case of the construction industry, the energy
sector, agriculture, territorial planning, logistics, and financial markets, just to name
a few examples. Intuitively, we associate the idea of an extreme event to something
that is either very large, or something that is very rare, or, in more practical terms, to
something with a rather abnormal impact with respect to an indicator (e.g., economic

Extremes and Recurrence in Dynamical Systems, First Edition.

Valerio Lucarini, Davide Faranda, Ana Cristina Gomes Monteiro Moreira de Freitas, Jorge Miguel
Milhazes de Freitas, Mark Holland, Tobias Kuna, Matthew Nicol, Mike Todd, and Sandro Vaienti.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.



2 INTRODUCTION

or environmental welfare) that we deem important. While overlaps definitely exist
between such definitions, they are not equivalent.

An element of subjectivity is unavoidable when treating finite data—observational
or synthetic—and when having a specific problem in mind: we might be interested
in studying yearly or decadal temperature maxima in a given location, or the return
period of river discharge larger than a prescribed value. Practical needs have indeed
been crucial in stimulating the investigation of extremes, and most notably in the
fields of hydrology [5] and finance [2], which provided the first examples of empirical
yet extremely powerful approaches.

To take a relevant and instructive example, let us briefly consider the case of geo-
physical extremes, which do not only cost many human lives each year, but also cause
significant economic damages [4, 8—10]; see also the discussion and historical per-
spective given in [11]. For instance, freak ocean waves are extremely hard to predict
and can have devastating impacts on vessels and coastal areas [12—14]. Windstorms
are well known to dominate the list of the costliest natural disasters, with many occur-
rences of individual events causing insured losses topping USD 1 billion [15, 16].
Temperature extremes, like heat waves and cold spells, have severe impacts on soci-
ety and ecosystems [ 17-19]. Notable temperature-related extreme events are the 2010
Russian heat wave, which caused 500 wild fires around Moscow, reduced grain har-
vest by 30% and was the hottest summer in at least 500 years [20]; and the 2003 heat
wave in Europe, which constituted the second hottest summer in this period [21]. The
2003 heat wave had significant societal consequences: for example, it caused addi-
tional deaths exceeding 70,000 [17]. On the other hand, recent European winters were
very cold, with widespread cold spells hitting Europe during January 2008, Decem-
ber 2009, and January 2010. The increasing number of weather and climate extremes
over the past few decades [22-24] has led to intense debates, not only among sci-
entists but also policy makers and the general public, as to whether this increase is
triggered by global warming.

Additionally, in some cases, we might be interested in exploring the spatial
correlation of extreme events. See extensive discussion in [25, 26]. Intense precip-
itation events occurring at the same time within a river basin, which acts as a spatial
integrator of precipitations, can cause extremely dangerous floods. Large-scale long-
lasting droughts can require huge infrastructural investments to guarantee the welfare
of entire populations as well as the production of agricultural goods. Extended wind
storms can halt the production of wind energy in vast territories, dramatically
changing the input of energy into the electric grid, with the ensuing potential risk
of brown- or black-outs, or can seriously impact the air, land, and sea transportation
networks. In general, weather and climate models need to resort to parametrizations
for representing the effect of small-scale processes on the large-scale dynamics.
Such parametrizations are usually constructed and tuned in order to capture as
accurately as possible the first moments (mean, variance) of the large-scale climatic
features. However, it is indeed much less clear how spatially extended extremes can
be affected. Going back to a more conceptual problem, one can consider the case
where we have two or more versions of the same numerical model of a fluid, which
differ for the adopted spatial resolution. How can we compare the extremes of a
local physical observable provided by the various versions of the model? Is there a
coarse-graining procedure suited for upscaling to a common resolution the outputs
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of the models, such that we find a coherent representation of the extremes? In this
regard, see in [27] a related analysis of extremes of precipitation in climate models.

When we talk about the impacts of geophysical extremes, a complex portfolio
of aspects need to be considered, so the study of extremes leads naturally to com-
prehensive transdisciplinary areas of research. The impacts of geohazards depend
strongly not only on the magnitude of the extreme event, but also on the vulnerability
of the affected communities. Some areas, for example, coasts, are especially at risk of
high-impact geophysical hazards, such as extreme floods caused by tsunami, storm
surges, and freak waves. Delta regions of rivers face additional risks due to flooding
resulting from intense and extensive precipitation events happening upstream the river
basin, maybe at distances of thousands of kilometers. Sometimes, storm surges and
excess precipitation act in synergy and create exceptional coastal flooding. Mountain
areas are in turn, extremely sensitive to flash floods, landslides, and extreme solid and
liquid precipitation events.

When observing the impacts of extreme events on the societal fabric, it can be
noticed that a primary role is played by the level of resilience and preparedness of the
affected local communities. Such levels can vary enormously, depending on many
factors including the availability of technology; social structure; level of education;
quality of public services; presence of social and political tensions, including con-
flicts; gender relations; and many others [28-30]. Geophysical extremes can wipe out
or substantially damage the livelihood of entire communities, leading in some cases
to societal breakdown and mass migration, as, for example, in the case of intense
and persistent droughts. Prolonged and extreme climate fluctuations are nowadays
deemed to be responsible for causing or accelerating the decline of civilizations—for
example, the rapid collapse of the Mayan empire in the XI century, apparently fos-
tered by an extreme multidecadal drought event [31]. Cold spells can also have severe
consequences. An important but not so well-known example is the dramatic impacts
of the recurrent ultra cold winter Dzud events in the Mongolian plains, which lead to
the death of livestock due to starvation, and have been responsible for causing in the
past the recurrent waves of migration of nomadic Mongolian populations and their
clash with China, Central Asia, and Europe [32, 33]. The meteorological conditions
and drivers of Dzud events are basically uninvestigated.

Nowadays, public and private decision makers are under great uncertainty and
need support from science and technology to optimally address how to deal with
forecasts of extreme events in order to address questions such as: How to evacuate a
coastal region forecasted to be flooded as a result of a storm surge; and how to plan for
successive severe winter conditions affecting Europe’s transportation networks? How
to minimize the risk of drought-induced collapse in the availability of staple food in
Africa? How to adapt to climate change? Along these lines, today, a crucial part of
advising local and national governments is not only the prediction of natural hazards,
but also the communication of risk to a variety of public and private stakeholders, as,
for example, in the health, energy, food, transport, and logistics sectors [23].

Other sectors of public and private interest where extremes play an important role
are finance and (re-)insurance. Understanding and predicting events like the crash of
the New York Stock Exchange of October 1987 and the Asian crisis have become
extremely important for investors and institutions. The ability to assess the very high
quantiles of a probability distribution, and delve into low-probability events is of great



4 INTRODUCTION

interest, because it translates into the ability to deal efficiently with extreme financial
risks, as in the case of currency crises, stock market crashes, and large bond defaults,
and, in the case of insurance, of low probability/high risk events [2].

The standard way to implement risk-management strategies has been, until
recently, based on the value-at-risk (VaR) approach [34]. The VaR approach
typically aims at estimating the worst anticipated loss over a given period with a
given probability assuming regular market conditions. The basic idea is to extract
information from the typical events to predict the properties of the tails of the
probability distribution. The VaR method has been recently criticized because of
various limitations. In many applications, simple normal statistical models are used,
resulting in an underestimation of the risk associated with the high quantiles in the
common (in the financial sector) case where fat-tailed distributions are present. More
sophisticated statistical models partially address this problem, but, since they are
based on fitting distributions like the Student-# or mixtures of normals, the properties
of the nontypical events are poorly constrained. Nonparametric methods, instead,
cannot be used beyond the range of observed values, and therefore, it is virtually
impossible to have any predictive power for assessing the probability of occurrence
of out-of-sample events [35].

Intuitively, it seems impossible to be able to predict the probability of occurrence
of events larger than what has already been observed, and, in general, of events that
are extremely untypical. The key idea is to focus on the tail of the distribution, by
constructing a statistical model aimed at describing only the extreme data, so that the
fitting procedure is tailored to what one is interested in [36, 37]. In other terms, this
requires separating clearly typical events from nontypical—extreme—events, disre-
garding entirely the former, and attributing to the latter special features. One needs
to note that, by the very nature of the procedure, introducing spurious events in the
group of selected extremes (the so-called soft extremes) may lead to substantial biases
in the procedure of statistical fitting.

The goal of this introduction is to motivate the reader to delve into the mathemat-
ics of extremes by presenting some of the most interesting challenges in various areas
of scientific research where extremes play a major role. In this sense, we stick to the
history of the field, where mathematical findings and relevant applications have gone
hand in hand since several decades. In the following sections, we introduce the main
themes of this book, try to clarify the main ideas that we will develop, and under-
line the most problematic aspects related to the development of a rigorous theory of
extremes for dynamical systems as well as to its possible use in the study of specific
mathematical and more applied problems.

1.2 SOME MATHEMATICAL IDEAS

One can safely say that in the case of extremes, as in many other sectors of knowl-
edge, the stimuli leading to the mathematical theory have come from the need to
systematize and understand current technological applications at a deeper level. A
more complete and rigorous mathematical framework is also instrumental in defin-
ing more powerful and more robust algorithms and approaches to studying time series
and improving our ability to describe, study, and predict extremes, and, eventually,
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cushioning their impacts. This book aims at providing a mathematical point of view
on extremes that are able to relate their features to the dynamics of the underlying sys-
tem. Obviously, in order to develop a mathematical theory of extremes, it is necessary
to carefully define the rules of the game, that is, lay out criteria clearly separating the
extremes from regular events. Moreover, it is crucial to construct a conceptual frame-
work that can be easily adapted to many different applications while, at the same time,
is able to deliver as many results as possible that are universal within some suitable
limits.

The quest for some level of universality, apart from being of obvious mathemat-
ical interest, is very relevant when using exact mathematical results for interpreting
data coming from observations or from numerical simulations. In fact, the presence
of universal mathematical properties gives more robustness to the procedures of sta-
tistical inference. It is clear that the tantalizing goal of constructive credible estimates
for very high quantiles and for the probability of occurrence of yet unobserved events
requires one to provide arguments to define the properties for the tails of distribution
under very general conditions, and, possibly, of an explicit universal functional form
describing them.

The classical construction of the mathematical theory of extremes and the defini-
tion of extreme value laws (EVLs) result from the generalization of the intuitive points
of view—extreme as large and extreme as rare—introduced before. Following [38],
one considers a random variable (r.v.) X and investigates the conditions under which
one can construct the properties of the r.v. M, given by the maximum of a sequence
of n independent and identically distributed (i.i.d.) r.v. Xj, j=1,...,n,in the limit
n — oo. This is an extremely powerful and fruitful approach to the problem, which
we will discuss later in detail. One can find that, under rather general conditions and
using a suitable procedure of rescaling, it is possible to construct such a limit law for
M,,. In practice, one finds a general three-parameter statistical model for fitting the
empirical probability distribution of the block maxima (BM), which are constructed
from a time series of length s = n - k by chopping into k (long) blocks of length n, and
taking the maximum of each block. We refer to such a model as Generalized Extreme
Value (GEV) distribution.

The GEV distribution provides a generalization of the Frechét, Gumbel, and
Weibull distributions, which have long been used for studying extreme events in
many fields of science and technology. Nowadays, GEV-fitting is one of the most
common methods for dealing with extremes in many applications. Giving a meaning
to the statistics of, for example, the annual maxima of surface temperature in a given
location requires taking implicitly or explicitly the BM point of view [39]. The sign
of the shape parameter determines the qualitative properties of the extremes, If
the shape parameter is positive (Frechét distribution), the extremes are unlimited
and; if the shape parameter is negative (Weibull distribution), the extremes are
upper limited, with the Gumbel distribution (vanishing shape parameter) being the
limiting case lying in-between. The location parameter, instead, describes how
typically large extremes are, while the scale parameter indicates the variability of
the extremes.

A crucial aspect is that, under the same mathematical conditions allowing for the
definition of the limit laws for the variables M,,, it is possible to look at the prob-
lem from a complementary point of view. One finds a one-to-one correspondence
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between the statistical properties of the BM in the limit of very large n, and those
of the above-threshold events. These can be described by the conditional probability
of X, given that X itself exceeds a certain threshold value T, for very large 7. One
considers the case of T approaching infinity if the distribution of X is not bounded
from above, or, in the opposite case, of 7" approaching the maximum of the support
of the probability distribution of X. One can prove that these maxima are distributed
according to the two-parameter generalized Pareto distribution (GPD) [1, 40, 41].
This point of view leads to looking at extremes using the peaks over threshold (POT)
method. When one looks at the risk of occurrence of negative anomalies of input of
wind energy into the electric grid larger than a given alert level 7', the POT point of
view is taken [42]. When performing POT statistical inference, one derives the val-
ues of the two parameters of the corresponding GPD, namely, the shape and scale
parameters, with a similar meaning as for the GEV case. See [43] for an elegant and
comprehensive discussion of advanced uses of the POT methods for the relevant case
of rainfall data.

It is remarkable that while for a given series of i.i.d. r.v. X;, the probability dis-
tributions of POT events and of the BM are different, also in the limit, because the
procedure of selection of extremes is fundamentally different, the two points of view
are in some sense equivalent. In other terms, we have universal properties that do not
depend on the procedure of selection of the extremes. More specifically, if one learns
the properties of extremes defined as maxima taken over large blocks, the properties
of extremes as events above a (high) threshold can be automatically deduced, and the
other way around as well. In fact, the shape parameters of the GEV and GPD are the
same. Additionally, one can write explicit relationships by linking the GEV’s scale
and location parameters on one side with the GPD scale parameter and threshold T
(which acts as a hidden parameter) so that a, one-to-one correspondence between the
two distributions can be found [44].

There has long been a very lively debate on whether the BM or POT method is
better suited for treating finite time series coming from social, engineering, or natu-
ral systems. Most importantly, the existence of the corresponding well-defined and
universal parametric probability distributions implies that if we are able to obtain
a robust fit for the extremes of an observable, given a set of observations, we will
be able to predict the probability of occurrence (or the return time) of events larger
than anything observed, with an accuracy that depends on the quality of the fit. This
clarifies why the existence of universality fosters predictive power.

1.3 SOME DIFFICULTIES AND CHALLENGES IN STUDYING
EXTREMES

1.3.1 Finiteness of Data

It is important to note that, despite the powerful mathematics behind the EVLs, not
all problems related to extreme events can be tackled following the approaches men-
tioned above. Difficulties emerge, for example, when considering finite data samples
and attempting to derive via statistical inference the models of the underlying EVLs.

While the relationship between very large and very rare events is far from obvious,
it seems hard to conceive—or provide any useful definition of—an extreme as a fairly
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common event, so that, by construction, the statistical inference of extremes always
suffers from a relative (or serious) lack of data for fitting purposes [3]. The prob-
lem is more easily seen taking the BM point of view and the classical case of a time
series X;, 1 <j < s =nk > 1. Assuming that each entry of the time series is the real-
ization of i.i.d. stochastic variables, we need to divide the nk entries into k£ blocks,
each of size n, and perform our statistical inference over the Mj, 1 <j < k. Since we
are targeting extremes, we clearly have to consider the case n > 1. Moreover, since
we need to perform statistical inference using the GEV model, we definitely need
k> 1 in order to have sufficient robustness. In particular, fitting an p—parameter
probability distribution requires O(10”) independent data [45]; hence, considering
the GEV method, we need k = O(10%) candidates as true extremes. Assuming that
yearly maxima are reasonable candidates for extremes of temperature at a given loca-
tion, what said implies that we need time series covering O(10°) years to perform a
reasonable GEV-based analysis of extremes. It is immediately apparent that available
observational data—which cover at most three centuries for some meteorological sta-
tions (and neglecting all problems of homogenization)- are not appropriate, while one
immediately sees the potential of using ultralong numerical simulations with climate
models.

If data are abundant, one can think of many possible options for dividing a time
series of length nk into k blocks, each of length n. One can proceed as follows: larger
and larger values of n are considered, until for n > n_,;, the estimates of the GEV
parameters (and in particular of the shape parameter) are stable (and the goodness of
fitis high). This allows us to say that we have reached—for all practical purposes—the
asymptotic limit of the theory. Further increasing the value of n makes our fitting
procedure worse, because we reduce the value of k, thus increasing the uncertainty in
the parameters’ estimate [46]. The basic problem with the BM method is that many
excellent candidates for extremes are removed from the analysis because only the
maximum of each block is retained in the subsequent statistical inference procedure.
Interestingly, in many applications the POT approach is preferred to the BM approach
for fitting time series because it provides more efficient use of data and has better
properties of convergence when finite datasets are considered [3]. A comprehensive
treatment of optimal threshold selection procedures for the POT method is presented
in [43].

If data are relatively scarce, one is bound to relax the criteria for defining extremes
(thus considering soft extremes (e.g., taking n not too large, or choosing a moderate
threshold 7). As discussed in [46, 47], softening the criteria for choosing extremes
leads to biases in the estimates of the EVL distribution parameters, the basic reason
being that we quickly corrupt the statistics with many bogus entries. Therefore, in
some cases one needs to take a more heuristic point of view and construct empirical
measures of extremes, defined, for example, as events above a given percentile—say
95th—of the underlying probability distribution. This is, in fact, the standard point
of view taken in most climate-related investigations [23]. Unfortunately, as soon as
these—pragmatic and useful—points of view are taken, we lose universality and,
consequently, predictive power. This demonstrates that it is important to not only
understand what the limiting EVLs of given stochastic processes are, but also to evalu-
ate how fast the convergence of finite-data estimates is [46]. The reader is encouraged
to look at [48] for an in-depth analysis of extremes in simple atmospheric models,
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with a detailed discussion of how fast the statistics of BM converges to the GEV
distribution family depending on the choice of observable.

1.3.2 Correlation and Clustering

Apart from the elements of subjectivity and data requirements in defining how large
or how rare an event has to be in order to be called a frue extreme, many additional
aspects need to be dealt with when looking at many situations of practical interest.
In particular, it is extremely important to investigate the recurrence properties of
the extremes. This entails assessing whether they come as statistically independent
events, or whether they form clusters, that is, groups of extreme events concentrated in
time. The two scenarios relate to two different underlying dynamical processes, where
the occurrence of extremes is related or not to the presence of persistent patterns
of dynamics, and to memory effects, and, in terms of risk, imply entirely different
strategies of adaptation, mitigation, and response.

The classical EVT is basically unaltered if the stochastic variables Xj’s, instead of
being independent, are weakly correlated, meaning that the correlation between the
variables X; and X, decreases rapidly enough with |j — k|. In the presence of short
range (i.e., small |j — k|) strong correlations between X; and X;, the GEV- and GPD-
based approaches are not equivalent, the basic reason being that the POT method is
bound to select clusters of extremes, which are instead automatically neglected in the
BM procedure [3]. As a result, one can prove that when estimating the shape param-
eter with the POT and BM method using the same time series, one expects to obtain
different estimates, with the POT method giving biased results. At the practical level,
this may result in errors in the estimate of the return times of extreme events. The
extremal index (EI), which is the inverse of the average cluster size [49], is the most
important indicator of how important clustering is in a given time series, and various
statistical methods have been devised to optimally estimate its value [50]. In order
to use the POT approach, we need to post-process the data by performing declus-
tering. Commonly used declustering procedures are based on the idea of discarding
all the elements of a cluster except the largest one. After this treatment of data, the
POT method typically delivers the same estimates of the shape parameter as the BM
method [3].

Taking a concrete example where these issues play a key role, one may want to
accommodate situations where the occurrence of an extreme is not exclusively related
to the occurrence of a large event, but to the persistence of the considered observable
above a certain threshold for an extended period of time, so that clustering of indi-
vidual events is crucial. This is exactly how heat stress indices are defined by the
World Health Organization (WHO) in relation to the persistence of high temperature,
because the human body is well suited to resist short spells of high temperatures, but
has instead great problems in dealing with extended period of physical stress due to
heat. See also the definition of heat wave in [51]. Similarly, food security is strongly
affected by prolonged heat and drought stress in some key regions in the world and
contingency plans, based on risk reduction and insurance-based methods, are con-
tinuously updated to take into account the time scale of the persistence of extreme
conditions [9, 52].
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Some explicit results have been presented in the physical literature regarding
extremes of time series resulting from stochastic variables X; featuring long-term
correlations. In particular, one observes that the recurrence times of occurrence of
the above threshold events, instead of being Poisson distributed (which, roughly
speaking, implies that occurrence of one extreme does not influence the occurrence
of another extreme), follow a stretched exponential statistics, with ensuing impli-
cations on the possibility of predicting extremes [53, 54]. A detailed discussion of
the performance and limitations of the POT and BM methods in the context of time
series featuring substantial long-term correlations is given in [7].

1.3.3 Time Modulations and Noise

Often, the parameters or the boundary conditions of a system, change with time: what
is the best way to analyze extremes in a context like this? The usual setting of EVT
is based upon assuming stationarity in the stochastic variables. When performing
statistical inference from data, is it more efficient to remove trends in the time series
of the considered observables and then study the extremes of the obtained detrended
time series? Or should we analyze the original time series, and use time as a covariate?
How do we remove periodic components in the time-series of a process (e.g., energy
consumption) influenced by, for example, the daily and seasonal cycle?

Some of these aspects are dealt with in [3, 55]: it is proposed to treat time as covari-
ate and construct in this way a time-dependent description of extremes. See also [56],
where this method is compared with what is obtained by dividing the time series to
be studied in smaller blocks, and then performing standard EVT parameter inference
in each block separately assuming stationarity, as proposed in [57]. Recently, [58]
have proposed new statistical methods for constructing efficient time-dependent EVT
models from nonstationary time series, while [59] have underlined the limitations of
this approach when forcing terms have different time scales.

This issue is of extreme relevance and urgency, for example, with regard to the
very active field of investigation of the meteo-climatic extremes in the context of the
changes in the properties of the climate system due to anthropogenic influence. In
most cases, for the reasons outlined above, the investigation of changes in extremes
is performed by looking at heuristic indicators, such as changes in the probability
of occurrence of empirically defined above-thresholds events [60] or in the value of
very low and high quantiles [61]. Though it is becoming more common in geophysical
literature to make explicit—for example, [62]—or implicit—for example, [63]—use
of EVT. See also [4, 5, 64] for comprehensive reviews.

Another aspect to be mentioned is the role of noise or finite precision in observa-
tions. When taking into account real measuring devices, we also face the problem of
errors—uncertainties and biases—in recording data. Therefore, observational noise
needs to be addressed in order to connect mathematical results to inferences from
data [65]. On a related note, [66—68] concluded that there is a substantial impact of
finite precision (typically, ] mm) on the rain gauge readings on the fitting procedures
followed for reconstructing the statistical properties of rainfall data.
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1.4 EXTREMES, OBSERVABLES, AND DYNAMICS

The open issues and practical problems mentioned above clarify that it is necessary
to develop a comprehensive mathematical view of extremes in order to achieve flex-
ibility and predictive power in many real-life problems.

Traditionally, the theory of extreme events has been developed in the context of
probability theory and stochastic processes, as suggested by the definitions provided
above. Nonetheless, many of the examples we have hinted at suggest that one needs to
move in the direction of extending and adapting the classical results of extreme value
theory for investigating the extremes of observables of suitably defined dynamical
systems. The reader is encouraged to look at [69] for a comprehensive presentation
of the theory of dynamical systems, and into [70, 71] for a point of view specifically
tailored for linking dynamical systems and (nonequilibrium) statistical mechanics.

Roughly speaking, the conceptual bridge relies on considering a given (continuous
or discrete time) dynamical system as the generator of infinite stochastic variables,
each defined by the time series of a given observable, that is, a sufficiently regular
function mapping the trajectory of the point representing the evolution of the system
in the phase space into the real numbers, and then studying the extremes of such
observables. Such a point of view, first proposed in [72], has the crucial advantage
of giving the possibility of relating the properties of the extremes to the underlying
dynamics of the system generating them, thus providing a natural link between a
probability theory and a dynamical systems theory and connecting, in practical terms,
forward numerical simulations of—possibly complex—systems with the statistical
inference of the properties of extremes from a time series.

Moreover, it provides the perfect setting for studying the properties of extremes
generated by numerical models, which are finite-precision (and thus noisy) imple-
mentations of systems ranging from simple, low-dimensional maps up to discretized
(in time and space) representations of the evolution of continuum systems, such as
fluids. It is clear that by considering dynamical systems with different properties of
decay of correlations, one mirrors precisely the conditions of weak versus strong
correlations of stochastic variables described above. This substantiates the idea of
clusters of extreme events, and can define cases where the one-to-one equivalence
between BM and POT approaches is broken, therefore requiring additional mathe-
matical subtlety [49, 73, 74].

A key ingredient of a theory of extremes that incorporates dynamics and recur-
rences is the choice of the observable. This provides a new dimension of the problem,
and requires the scientist to define what a good, meaningful, useful, and well-behaved
observable is. Moreover, given a numerical model, one can practically explore many
of the aspects related to temporal or spatial coarse graining just by constructing in
rather simple ways the observable of interest. This issue naturally provides a more
statistical mechanical, physical setting to the problem of extremes, paving the way
for fascinating applications where extremes can be used as indicators of the struc-
tural properties of a system, defining new, powerful methods to study its tipping
points [75].

We shall see that, by looking at extremes, one can learn about the qualitative
properties of the dynamical system generating them, for example, by learning
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whether it features regular or chaotic motions [76], and, under suitable circum-
stances, understand basic information on the geometry of the attractor and on the
Lyapunov exponents determining the growth or decay or errors in given directions.
Therefore, extremes act as a probe of a dynamical system, and, when suitable
observables are considered, they define a natural microscope to look at the details
of the invariant measure, to the point of providing alternative ways to compute the
Hausdorff dimension of the attractor.

An especially important role is played by observables whose extremes correspond
to close returns of the orbit near a reference point [49, 74, 77, 78]. Interestingly,
perturbing systems with noise allows the establishment of EVLs for such observ-
ables also in the case of deterministic quasi-periodic motion and removes clusters of
extreme events when strong correlations are otherwise present [79].

Recurrence-based techniques have also been shown to be directly usable for study-
ing the properties of extremes in climatic time series [80]. Nonetheless, in many
practical applications, one is interested in studying a different sort of observables,
the so-called physical observables [44, 81], which a priori have nothing to do with
the recurrence of an orbit near a given reference point, but rather describe macro-
scopic or anyway physically relevant properties of the system. As a simple example,
one may consider the extremes of the energy [82] or of the temperature [48] in a
model of geophysical fluid. The extremes of physical observables permit the study of
rather sophisticated aspects of the geometry of the attractor of the underlying system,
providing a formidable tool for analyzing the properties of the unstable and stable
components of the tangent space.

One can formulate the problem of studying, at least heuristically, extremes for non-
stationary systems by taking into consideration some recent results of nonequilibrium
statistical mechanics and dynamical systems theory. This can involve the construc-
tion of a response theory for Axiom A dynamical systems to predict the change in
the expectation value of suitably defined observables resulting from weak perturba-
tions that are also time dependent, for example, such as small changes in a parameter
[83, 84]. In order to apply these results when assessing the time-dependent properties
of extremes—see Section 1.3.3—one needs to construct observables that can repre-
sent the extreme events of interest, and then apply the response theory to compute
their change as a result of the perturbation. Finally, the computed response can be
reformulated in terms of time-dependent correction to the value of the EVL param-
eters [44]. An interesting aspect is that, since extremes are in this case described by
the universal parametric family of EVLs, one could draw the rather counter-intuitive
conclusions that, in some sense, the response of extremes to perturbations could be
a better-posed problem than studying the response of the statistics of the bulk of the
events [56, 82]. In practical terms, this gives a framework for the rigorous questions
mentioned before in this introduction, such as determining how extremes change
when time-dependent perturbations are added to the system [56], as in the case of
changes in climatic extremes in an overall changing climate [85-87]. Apart from its
relevance in terms of applications, the mathematical interest in this regard is consid-
erable.

A different yet related dynamical point of view on extremes of nonstationary
systems is based upon considering the mathematical construction of the so-called
pullback attractor [88-90], sometimes referred to as snapshot attractor [91], which is
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basically the time-dependent generalization of the usual attractor appearing in many
dissipative chaotic system [70, 71], and enjoys a lot of the useful properties of the lat-
ter, except time invariance. The time-dependent measure supported on the pullback
attractor at time 7 is constructed by evolving from an infinitely distant past a Lebesgue
measure with compact support. This procedure, in practical numerical applications,
corresponds to starting to run in the distant past a large number of simulations with
different initial conditions, and observing the resulting ensemble at time ¢ [89]. The
time-dependent properties of extremes can then be assessed studying the properties
of such an ensemble [59, 92-94].

This setting suggests the possibility of achieving predictability of extremes in a sta-
tistical sense, that is, developing tools for understanding how their properties change
as a result of changing parameters of the system that generates them, which is clearly
a major scientific challenge in, for example, climate science [4, 23], where big data
are being advocated [10]. Our ability to predict the occurrence of individual extreme
events efficiently is still modest, see some examples in [4]. A crucial aspect is that it is
not easy to anticipate (we are not talking about ex-post analysis) the dynamical causes
leading to an extreme event. As clarified in [95, 96], (finite-time) Lyapunov exponents
and related dynamical objects have an important role in assessing the potential pre-
dictability of a chaotic system for typical conditions [97], in terms of allowing for
effectively extremes with a certain lead time. Some authors have proposed ingenious
methods for detecting precursors [98, 99], but still a comprehensive understanding of
this problem is missing.

1.5 THIS BOOK

The scope for the lines of investigation described above is immense, and what we are
proposing in this book is a limited perspective resulting from the collective effort of
a group of authors coming together and joining forces from a rather diverse spectrum
of scientific expertise, ranging from probability theory, to dynamical systems; from
statistical mechanics, to geophysical fluid dynamics; from theoretical physics, to time
series analysis. Without hoping or aiming to be either comprehensive or conclusive,
this book wishes to provide a new perspective on extreme events, a transdisciplinary
field of research of interest for mathematicians, natural scientists, statisticians, engi-
neers, and social scientists.

One can safely say that the main difference between this book and many other
excellent monographs in the literature, ranging from rather abstract mathematical
formulations of the theory of extremes [1, 100], to sophisticated presentation of
algorithms for defining, detecting, and performing statistical inference of extremes
[3, 50], to specific applications [2], is the focus on dynamics. In other words, we do
not take extremes as results of a black box—a stochastic process whose origin we
might not necessarily be interested in per se—but rather explore the links between
the (typically chaotic) system under investigation and the generating process leading
to the extreme and the extreme event itself. The freedom of looking at different
extremes is guaranteed by the possibility of choosing different observables, which
may be tailored for looking at local, global, or recurrence properties of the system
and for focusing on specific regions of its attractor. This perspective leads to
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considering extremes as a revealing source of information on the microscopic or
macroscopic properties of the system, and, hence, is naturally suited for improving
our understanding of its statistical mechanics. As opposed to many contributions in
the scientific literature, our emphasis will not be on presenting ideas for optimizing
statistical inference procedures, even if we will present examples and ideas in this
direction. Though, we hope to contribute to providing useful guidance for statistical
inference procedures by clarifying what they should find for given systems.

The main motivation for the approach we propose here comes mostly, but not
exclusively, from a more general interest by the authors in exploring the fruitful
and emerging nexus between mathematics and geophysical fluid dynamics, which
has recently received global accolade with the Mathematics for Planet Earth interna-
tional initiative (http://www.mpe2013 .org), and in particular of the program
Mathematics for the Fluid Earth (http://www.newton.ac.uk/event /MFE)
[101] held at the Newton Institute for Mathematical Science in Cambridge (UK); see
also the recent review [102]. Moreover, the authors hope to contribute to stimulat-
ing the development of new, effective, and robust methods for studying extremes in
a meteo-climatic context, thus contributing to the global effort for adapting to cli-
mate change and climate-related risk. This book tries to provide stimulations, hints,
and new results having in mind a readership of (applied) mathematicians, statisti-
cians, theoretical physicists, and experts in probability, stochastic processes, statisti-
cal mechanics, time series analysis, and (geophysical) fluid dynamics.

The structure of the book can be described as follows:

e In Chapter 2 we present an overview of general laws and concepts used for
describing rare events and introduce some terminology.

o In Chapter 3 the basics of classical extreme value theory are introduced, concen-
trating on results that are useful for developing a dynamical systems perspective.
In this part of the book, there is no reference to dynamics, whereas everything
is formulated exclusively in terms of stochastic processes.

e Chapters 4 and 5 constitute the core of the book. In the former, we introduce
dynamical systems as generators of random processes and present a description
of a variety of methods and approaches to derive EVLs for the so-called distance
observables. In the latter, we construct the correspondence between EVLs and
hitting/return time statistics in uniformly hyperbolic, nonuniformly hyperbolic,
and quasi-periodic systems.

e In Chapter 6 we focus on specific dynamical systems of special interest, and
study in detail the role of the decay of correlations in establishing EVLs and
relate it to the chaotic nature of the dynamics, and investigate the rate of con-
vergence of the statistics of extremes to the asymptotic EVLs. We also introduce
and discuss the properties of the extremes of the so-called physical observables.

e In Chapter 7 we tackle the important problem of the impact of noise on the statis-
tics of extremes in dynamical systems, treating the case of random perturbations
to the dynamics and of observational noise.

e In Chapter 8 we take the point of view of statistical mechanics and, using Axiom
A systems as the mathematical framework, we discuss extremes in the con-
text of high-dimensional dynamical systems, introducing the so-called physical
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observables, relating the properties of the extremes to the dynamical properties
of the underlying system, and proposing a framework for a response theory of
extremes.

In Chapter 9 we move our focus to studying the procedures for statistical infer-
ence and present instructive applications of the theory in numerical simulations,
investigating the role of finite size effects in the inference. We also present
examples of how EVT can be used to derive relevant information on the geomet-
rical and dynamical properties of the underlying system, and investigate how the
presence of noise impacts the statistics of extremes.

Chapter 10 focuses on physically oriented applications of EVT, showing how it
can be used for detecting tipping points in multistable systems and, additionally,
for providing a rigorous characterization of the properties of temperature fields
in the present and changing climate conditions.

Chapter 11 contains the concluding remarks of the book and provides indica-
tions for future research activities in the field.

Appendix A includes a few MATLAB® numerical codes used for producing
some of the numerical results contained in the book, which are distributed for
the benefit of the readers.
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