1

Introduction

1.1 Nonlinear Finite Elements in Design

Nonlinear finite element analysis is an essential component of computer-aided design. Testing
of prototypes is increasingly being replaced by simulation with nonlinear finite element
methods because this provides a more rapid and less expensive way to evaluate design concepts
and design details. For example, in the field of automotive design, simulation of crashes is
replacing full-scale tests, for both the evaluation of early design concepts and details of the
final design, such as accelerometer placement for airbag deployment, padding of the interior,
and selection of materials and component cross-sections for meeting crashworthiness criteria.
In many fields of manufacturing, simulation is speeding the design process by allowing
simulation of processes such as sheet-metal forming, extrusion, and casting. In the electronics
industries, simulation is replacing drop-tests for the evaluation of product durability.

Both analysts and developers of nonlinear finite element programs should understand the
fundamental concepts of nonlinear finite element analysis. Without an understanding of the
fundamentals, a finite element program is a black box that provides simulations. However,
nonlinear finite element analysis confronts the analyst with many choices and pitfalls. Without
an understanding of the implication and meaning of these choices and difficulties, an analyst
is at a severe disadvantage.

The purpose of this book is to describe the methods of nonlinear finite element analysis for
solid mechanics. The intent is to provide an integrated treatment so that the reader can gain an
understanding of the fundamental methods, a feeling for the comparative usefulness of
different approaches and an appreciation of the difficulties which lurk in the nonlinear world.

Nonlinear Finite Elements for Continua and Structures, Second Edition.

Ted Belytschko, Wing Kam Liu, Brian Moran, and Khalil I. Elkhodary.

© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/belytschko

2 Nonlinear Finite Elements for Continua and Structures

At the same time, enough detail about the implementation of various techniques is given so
that they can be programmed.
Nonlinear analysis consists of the following steps:

Development of a model

Formulation of the governing equations
Discretization of the equations
Solution of the equations

Interpretation of the results.

Nk e =

Items 2 to 4 typically are within the analysis code, while the analyst is responsible for items
I and 5.

Model development has changed markedly in the past decade. Until the 1990s, model
development emphasized the extraction of the essential elements of mechanical behavior. The
objective was to identify the simplest model which could replicate the behavior of interest.

It is now becoming common in industry to develop a single, detailed model of a design and
to use it to examine all of the engineering criteria which are of interest. The impetus for this
approach to modeling is that it costs far more to make several meshes for an engineering
product than can be saved by specializing meshes for each application. For example, the same
finite element model of a laptop computer can be used for a drop-test simulation, a linear static
analysis and a thermal analysis. By using the same model for all of these analyses, a significant
amount of engineering time can be saved. While this approach is not recommended in all
situations, it is becoming commonplace in industry.

In the near future the finite element model may become a ‘virtual’ prototype that can be
used for checking many aspects of a design’s performance. The decreasing cost of computer
time and the increasing speed of computers make this approach highly cost-effective. However,
the user of finite element software must still be able to evaluate the suitability of a model for
a particular analysis and understand its limitations.

The formulation of the governing equations and their discretization is today largely in the
hands of the software developers. However, an analyst who does not understand the funda-
mentals of the software faces many perils, because some approaches and software may be
unsuitable. Furthermore, to convert experimental data to input, the analyst must be aware of
the stress and strain measures used in the program and by the experimentalist who provided
material data. The analyst must understand the sensitivity of response to the data and how to
assess it. An effective analyst must be aware of the likely sources of error, how to check for
these errors and estimate their magnitudes, and the limitations and strengths of various
algorithms.

The solution of the discrete equations also presents many choices. An inappropriate choice
will result in very long run times which can prevent the analyst from obtaining the results
within the time schedule. An understanding of the advantages and disadvantages and the
approximate computer times required for various solution procedures is invaluable in the
selection of a good strategy for developing a reasonable model and selecting the best solution
procedure.

The analyst’s role is most crucial in the interpretation of results. In addition to the
approximations inherent even in linear finite element models, nonlinear analyses are often
sensitive to many factors that can make a single simulation quite misleading. Nonlinear solids

Introduction 3

can undergo instabilities, their response can be sensitive to imperfections, and the results can
depend dramatically on material parameters. Unless the analyst is aware of these phenomena,
misinterpretation of simulation results is quite possible.

Despite these pitfalls, our views on the usefulness and potential of nonlinear finite element
analyses are very sanguine. In many industries, nonlinear finite element analyses have shor-
tened design cycles and dramatically reduced the need for prototype tests. Simulations,
because of the wide variety of output they produce and the ease of doing ‘what-ifs,” can lead
to tremendous improvements of the engineer’s understanding of the basic physics of a
product’s behavior under various environments. While tests give the gross but important result
of whether the product withstands a certain environment, they usually provide little of the
detail of the behavior of the product on which a redesign can be based if the product does not
meet a test. Computer simulations, on the other hand, give detailed histories of stress and
strain and other state variables, which in the hands of a good engineer give valuable insight
into how to redesign the product.

Like many finite element books, this book presents a large variety of methods and recipes
for the solution of engineering and scientific problems by the finite element method. However,
to preserve a pedagogic character, we have interwoven several themes into the book which we
feel are of central importance in nonlinear analysis. These include the following:

1. The selection of appropriate methods for the problem at hand

2. The selection of a suitable mesh description and kinematic and kinetic descriptions for a
given problem

3. The examination of stability of the solution and the solution procedure

4. An awareness of the smoothness of the response of the model and its implication on the
quality and difficulty of the solution

5. The role of major assumptions and the likely sources of error.

The selection of an appropriate mesh description, i.e. whether a Lagrangian, Eulerian or
arbitrary Lagrangian Eulerian mesh is used, is important for many of the large deformation
problems encountered in process simulation and failure analysis. The effects of mesh distortion
need to be understood, and the advantages of different types of mesh descriptions should be
borne in mind in the selection.

Stability is a ubiquitous issue in the simulation of nonlinear processes. In numerical simu-
lations, it is possible to obtain solutions which are not physically stable and therefore quite
meaningless. Many solutions are sensitive to imperfections of material and load parameters;
in some cases, there is even sensitivity to the mesh employed in the solution. A knowledgeable
user of nonlinear finite element software must be aware of these characteristics and the
associated pitfalls, otherwise the results obtained by elaborate computer simulations can be
quite misleading and lead to incorrect design decisions.

The issue of smoothness is also ubiquitous in nonlinear finite element analysis. Lack of
smoothness degrades the robustness of most algorithms and can introduce undesirable noise
into the solution. Techniques have been developed which improve the smoothness of the
response; these are called regularization procedures. However, regularization procedures are
often not based on physical phenomena and in many cases the constants associated with
the regularization are difficult to determine. Therefore, an analyst is often confronted with the
dilemma of whether to choose a method which leads to smoother solutions or to deal with a

4 Nonlinear Finite Elements for Continua and Structures

discontinuous response. An understanding of the effects of regularization parameters and of
the presence of hidden regularizations, such as penalty methods in contact-impact, and an
appreciation of the benefits of these methods, is highly desirable.

The accuracy and stability of solutions are important issues in nonlinear analysis. These
issues manifest themselves in many ways. For example, in the selection of an element, the
analyst must be aware of stability and locking characteristics of various elements. A judicious
selection of an element involves factors such as the stability of the element for the problem at
hand, the expected smoothness of the solution and the magnitude of deformations expected.
In addition, the analyst must be aware of the complexity of nonlinear solutions. The possibility
of both physical and numerical instabilities must be kept in mind and checked in a solution.

Thus the informed use of nonlinear software in both industry and research requires consid-
erable understanding of nonlinear finite element methods. It is the objective of this book to
provide this understanding and to make the reader aware of the many interesting challenges
and opportunities in nonlinear finite element analysis.

1.2 Related Books and a Brief History of Nonlinear Finite Elements

Several excellent texts and monographs devoted either entirely or partially to nonlinear finite
element analysis have already been published. Books dealing only with nonlinear finite
element analysis include Oden (1972), Crisfield (1991), Kleiber (1989), and Zhong (1993).
Oden’s work is particularly noteworthy since it pioneered the field of nonlinear finite element
analysis of solids and structures. Recent books are Simo and Hughes (1998) and Bonet and
Wood (1997). Some of the books which are partially devoted to nonlinear analysis are
Belytschko and Hughes (1983), Zienkiewicz and Taylor (1991), Bathe (1996) and Cook,
Malkus and Plesha (1989). These books provide useful introductions to nonlinear finite
element analysis. As a companion book, a treatment of linear finite element analysis is also
useful. The most comprehensive are Hughes (1987) and Zienkiewicz and Taylor (1991).

In the following, we recount a brief history of nonlinear finite element methods. This
account differs somewhat from those in many other books in that it focuses more on the
software than published works. In nonlinear finite element analysis, as in many endeavors in
this information-computer age, the software often represents a better guide to the state-of-the-
art than the literature.

Nonlinear finite element methods have many roots. Not long after the linear finite element
method became known through the work of the Boeing group and the famous paper of Turner,
et al. (1956), engineers in many universities and research laboratories began extensions of the
method to nonlinear, small-displacement static problems. It is difficult to convey the
excitement of the early finite element community and the disdain of classical researchers for
the method. For example, for many years the Journal of Applied Mechanics shunned papers
on the finite element method because it was considered of no scientific substance. But to
many, particularly engineers who had to deal with engineering problems, the promise of the
finite element method was clear: it offered the possibility of dealing with the complex shapes
of real designs.

The excitement in the 1960s was fueled by Ed Wilson’s liberal distribution of his first pro-
grams. The first generation of these programs had no name. In many laboratories throughout
the world, engineers developed new applications by modifying and extending these early

Introduction 5

codes developed at Berkeley; they had a tremendous impact on engineering and the subsequent
development of finite element software. The second generation of linear programs developed
at Berkeley were called SAP (Structural Analysis Program). The first nonlinear program
which evolved from this work at Berkeley was NONSAP, which had capabilities for
equilibrium solutions and the solution of transient problems by implicit integration.

Among the first papers on nonlinear finite element methods were Argyris (1965) and Marcal
and King (1967). The number of papers soon proliferated, and software soon followed. Pedro
Marcal taught at Brown University for a time, but he set up a firm to market the first nonlinear
commercial finite element program in 1969; the program was called MARC and it is still a
major player. At about the same time, John Swanson was developing a nonlinear finite element
program at Westinghouse for nuclear applications. He left Westinghouse in 1969 to market the
program ANSY'S, which for many years dominated the commercial nonlinear finite element
scene, although it focused more on nonlinear materials than the complete nonlinear problem.

Two other major players in the early commercial software scene were David Hibbitt and
Klaus-Jiirgen Bathe. Hibbitt worked with Pedro Marcal until 1972, and then co-founded HKS,
which markets ABAQUS. This program has had substantial impact because it was one of the
first finite element programs to introduce gateways for researchers to add elements and
material models. Jiirgen Bathe launched his program shortly after obtaining his PhD at
Berkeley under the tutelage of Ed Wilson when he began teaching at MIT. It was an outgrowth
of the NONSAP codes, and was called ADINA.

The commercial finite element programs marketed until about 1990 focused on static solu-
tions and dynamic solutions by implicit methods. There were terrific advances in these
methods in the 1970s, generated mainly by the Berkeley researchers and those with Berkeley
roots: Thomas JR Hughes, Robert Taylor, Juan Simo, Jiirgen Bathe, Carlos Felippa, Pal
Bergan, Kaspar Willam, Ekerhard Ramm and Michael Ortiz are some of the prominent
researchers who have been at Berkeley; it was undoubtedly the main incubator in the early
years of finite elements.

Another lineage of modern nonlinear software is the explicit finite element codes. Explicit
finite element methods in their early years were strongly influenced by the work in the DOE
laboratories, particularly the so-called hydro-codes, Wilkins (1964).

In 1964, Costantino developed what was probably the first explicit finite element program,
at the IIT Research Institute in Chicago (Costantino, 1967). It was limited to linear materials
and small deformations, and computed the internal nodal forces by multiplying a banded form
of the stiffness matrix by the nodal displacements. It was first run on an IBM 7040 series com-
puter, which cost millions of dollars and had a speed of far less than 1 megaflop (million
floating point operations per second) and 32 000 words of RAM. The stiffness matrix was
stored on a tape and the progress of a calculation could be gauged by watching the tape drive;
after every step, the tape drive would reverse to permit a read of the stiffness matrix. These and
the later Control Data machines with similar specifications, the CDC 6400 and 6600, were the
machines on which finite element codes were run in the 1960s. A CDC 6400 cost almost $10
million, had 32k words of memory (for storing everything including the operating system and
compiler) and a real speed of about one megaflop.

In 1969, in order to sell a proposal to the Air Force, the senior author developed what has
come to be known as the element-by-element technique: the computation of the nodal forces
without use of a stiffness matrix. The resulting program, SAMSON, was a two-dimensional
finite element program which was used for a decade by weapons laboratories in the US. In

6 Nonlinear Finite Elements for Continua and Structures

1972, the program was extended to fully nonlinear three-dimensional transient analysis of
structures and called WRECKER. The funding was provided by a visionary program manager,
Lee Ovenshire, of the US Department of Transportation, who foresaw in the early 1970s that
crash testing of automobiles could be replaced by simulation.

However, it was a little ahead of its time, for at that time a simulation of a 300-element
model for a 20 ms simulation took about 30 hours of computer time, which cost about
$30000, the equivalent of three years’ salary of an Assistant Professor. Lee Ovenshire’s
program funded several pioneering efforts: Hughes’s work on contact-impact, Ivor Mclvor’s
work on crush, and the research by Ted Shugar and Carly Ward on the modeling of the human
head at Port Hueneme. But the Department of Transportation decided around 1975 that simu-
lation was too expensive and all funding was redirected to testing, bringing this research effort
to a screeching halt. WRECKER remained barely alive for the next decade at Ford, and the
development of explicit codes by Belytschko was shifted to the nuclear safety industry at
Argonne, where the code was called SADCAT and WHAMS.

Parallel work was initiated at the DOE national laboratories. In 1975, Sam Key, working at
Sandia, completed HONDO, which also featured an element-by-element explicit method. The
program treated both material nonlinearities and geometric nonlinearities and was carefully
documented. However, this program suffered from the restrictive dissemination policies of
Sandia, which did not permit codes to be released for security reasons. These programs
evolved further under the work of Dennis Flanagan, a graduate of Northwestern, who named
them PRONTO.

A milestone in the advancement of explicit finite element codes was John Hallquist’s work
at Lawrence Livermore Laboratories. John began his work in 1975, and the first release of the
DYNA code was in 1976. He drew on the work which preceded his with discernment and
interacted closely with many researchers from Berkeley, including Jerry Goudreau, Bob
Taylor, Tom Hughes, and Juan Simo. Some of the key elements of his success were the
development of contact-impact interfaces with Dave Benson, his awesome programming
productivity, and the wide dissemination of the resulting codes, DYNA-2D and DYNA-3D. In
contrast to Sandia, Livermore placed almost no impediments on the distribution of the
program, and like Wilson’s codes, John’s codes were soon found in universities and government
and industrial laboratories throughout the world. They were not as easy to modify, but many
new ideas were developed with the DYNA codes as a testbed.

Hallquist’s development of effective contact-impact algorithms (the first ones were crude
compared to what is available today, but they often worked), the use of one-point quadrature
elements and the high degree of vectorization made possible striking breakthroughs in
engineering simulation. Vectorization has become somewhat irrelevant with the new generation
of computers, but it was crucial for running large problems on the Cray machines which
dominated the 1980s. The one-point quadrature elements with consistent hourglass control, to
be discussed in Chapter 8, increased the speed of three-dimensional analysis by almost an
order of magnitude over fully integrated three-dimensional elements.

The DYNA codes were first commercialized by a French firm, ESI, in the 1980s and called
PAMCRASH, which also incorporated many routines from WHAMS. In 1989 John Hallquist
left Livermore and started his own firm to distribute LSDYNA, a commercial version of
DYNA.

The rapidly decreasing cost of computers and the robustness of explicit codes has revolu-
tionized design in the past decade. The first major area of application was automotive

Introduction 7

crashworthiness, but it proliferated rapidly. In more and more industries, prototype tests are
being replaced by nonlinear finite element simulations. Products such as cellphones, laptops,
washing machines, chain saws, and many others are designed with the help of simulations of
normal operations, drop-tests and other extreme loadings. Manufacturing processes, such as
forging, sheet-metal forming, and extrusion are also simulated by finite elements. For some of
these simulations, implicit methods are becoming increasingly powerful, and it is clear that
both capabilities are necessary. For example, while the explicit method is probably best suited
for simulating sheet metal forming operations, in the springback simulation implicit methods
are more suitable.

Today, the power of implicit methods is increasing more rapidly than that of explicit
methods, perhaps because they still have such a long way to go. Implicit methods for the
treatment of nonlinear constraints, such as contact and friction, have been improved tremen-
dously. Sparse iterative solvers have also become much more effective. A robust capability
today requires the availability of both classes of methods.

1.3 Notation

Nonlinear finite element analysis represents a nexus of three fields: (1) linear finite element
methods, which evolved out of matrix methods of structural analysis; (2) nonlinear continuum
mechanics; and (3) mathematics, including numerical analysis, linear algebra and functional
analysis (Hughes, 1996). In each of these fields a standard notation has evolved. Unfortunately,
the notations are quite different, and at times contradictory or overlapping. We have tried to
keep the variety of notation to a minimum and consistent within the book and with the relevant
literature. To aid readers who have some familiarity with the literature on continuum mechanics
or finite elements, many equations are given in matrix, tensor and indicial notation.

Three types of notation are used in this book: indicial notation, tensor notation and matrix
notation. Equations relating to continuum mechanics are written in tensor and indicial notation.
Equations pertaining to the finite element implementation are given in indicial or matrix
notation.

1.3.1 Indicial Notation

In indicial notation, the components of tensors or matrices are explicitly specified. Thus a
vector, which is a first-order tensor, is denoted in indicial notation by x,, where the range of the
index is the number of dimensions n,. Indices repeated twice in a term are summed, in
conformance with the rules of Einstein notation. For example in three dimensions, if x;, is the
position vector with magnitude r,

2 2 2 2
rT=XX = XX XX, XX, =X Y+ (1.3.1)

where the second equation indicates that x, = x, x, =y, X, =27, we will usually write out the
coordinates as x, y and z rather than using subscripts to avoid confusion with nodal values. For
a vector such as the velocity v, in three dimensions, v, = VeV, =V, V=V numerical subscripts
are avoided in writing out expressions to avoid confusing components with node numbers.
Indices which refer to components of tensors are always lower case.

8 Nonlinear Finite Elements for Continua and Structures

Nodal indices are indicated by upper case Latin letters, for example, v, is the i-component
of the velocity at node I. Upper case indices repeated twice are summed over their range,
which depends on the context. When dealing with an element, the range is over the nodes of
the element, whereas when dealing with a mesh, the range is over the nodes of the mesh.

Indicial notation at times leads to spaghetti-like equations, and the resulting equations are
often only applicable to Cartesian coordinates. For those who dislike indicial notation, it
should be pointed out that it is almost unavoidable in the implementation of finite element
methods, for in programming the finite element equations the indices must be specified.

1.3.2 Tensor Notation

In tensor notation, the indices are not shown. While Cartesian indicial equations only apply to
Cartesian coordinates, expressions in tensor notation are independent of the coordinate system
and apply to other coordinates such as cylindrical coordinates, curvilinear coordinates, etc.
Furthermore, equations in tensor notation are much easier to memorize. A large part of the
continuum mechanics and finite element literature employs tensor notation, so a serious
student should become familiar with it.

In tensor notation, we indicate tensors of order one or greater in boldface. Lower case bold-
face letters are almost always used for first-order tensors, while upper case boldface letters are
used for higher-order tensors. For example, the velocity vector is v in tensor notation, while a
second-order tensor, such as E, is written in upper case. The major exception is the Cauchy
stress tensor ¢, which is denoted by a lower case symbol. Equation (1.3.1) is written in tensor
notation as 7> = X - X where a dot denotes a contraction of the inner indices; in this case, the
tensors on the RHS have only one index so the contraction applies to those indices.

Tensor expressions are distinguished from matrix expressions by using dots and colons
between terms, as in a - b, and A - B. The symbol ‘:” denotes the contraction of a pair of
repeated indices which appear in the same order, so A : B= AB,. As another example, a linear
constitutive equation is given below in tensor notation and indicial notations:
=Cu& o0=C:¢ (1.3.2)

0

1.3.3 Functions

The functional dependence of a variable will be indicated wherever it first appears by listing
the independent variables. For example, v(x, 7) indicates that the velocity v is a function of the
space coordinates x and the time ¢. In subsequent appearances of v, these independent variables
are usually omitted. We will attach short words to some of the symbols. This is intended to
help a reader who delves into the middle of the book. It is not intended that such complex
symbols be used in working through derivations.

1.3.4 Matrix Notation

In implementing finite element methods, we will often use matrix notation. We will use the
same notation for matrices as for tensors but we will not use connective symbols. Thus (1.3.1)

Introduction 9

in matrix notation is written as 7> = x’x. All first-order matrices will be denoted by lower case
boldface letters, such as v, and will be considered column matrices. Examples of column
matrices are

X 12
X=4V¢ V=9V, (1.3.3)
z Vs

Usually rectangular matrices will be denoted by upper case boldface, such as A. The transpose
of a matrix is denoted by a superscript ‘7”, and the first index always refers to a row number,
the second to a column number. Thus a 2 x 2 matrix A and a 2 x 3 matrix B are written as
follows (the order of a matrix is given with the number of rows first):

A:[All AIZ}B:|:BII BIZ BIS} (134)
A21 A22 B B22 B23

21

To illustrate the various notations, the quadratic form associated with A and the strain energy
in the four notations is given next

1 1 1
x-Ax=xAx=xAx, —¢£:C.e=—¢C, e, =—{e)[Cl{e} 1.3.5
< R licis i \) i ijkl <kl ()
tensor matrix le;—al_/ 2 tensor 2 m 2 Voigt

Note that in converting a scalar product with a vector (column matrix) to matrix notation, the
transpose of the column matrix is taken if it premultiplies the term. Second-order tensors are
often converted to matrices in Voigt notation, which is described in Appendix 1.

1.4 Mesh Descriptions

One of the themes of this book is the different descriptions for the governing equations and
their discretization. We will classify three aspects of the description (Belytschko, 1977):

The mesh description

. The kinetic description, which is determined by the choice of the stress tensor and the form
of the momentum equation

3. The kinematic description, which is determined by the choice of the strain measure.

N =

In this section, we introduce the mesh descriptions. For this purpose, it is useful to introduce
some definitions and concepts which will be used throughout this book.

Spatial coordinates are denoted by x and are also called Eulerian coordinates. A spatial
coordinate specifies the location of a point in space. Material coordinates, also called
Lagrangian coordinates, are denoted by X. The material coordinate labels a material point:
each material point has a unique material coordinate, which is usually taken to be its spatial
coordinate in the initial configuration of the body, so at# =0, X = x.

10 Nonlinear Finite Elements for Continua and Structures

t Lagrangian Description

() Node
® Material Point

Nodal
Trajectory

— — _— Material Puint
T'rajectory

Figure 1.1 Space-time depiction of one-dimensional Lagrangian and Eulerian elements

The motion or deformation of a body is described by a function ¢(X,), with the material
coordinates X and the time ¢ as the independent variables. This function gives the spatial
positions of the material points as a function of time through

x=0(X, 1) (1.4.1)

This is also called a map between the initial and current configurations. The displacement u of
a material point is the difference between its current position and its original position:

uX,n)=60X,n)-X (14.2)

To illustrate these definitions, consider the following motion in one dimension:
1
x= (X, t)=(1—X)t+Eth+X (1.4.3)

In these equations, the material and spatial coordinates have been changed to scalars since the
motion is one-dimensional. A motion is shown in Figure 1.1 (it differs from (1.4.3)); the motions
of several material points are plotted in space-time to exhibit their trajectories. The velocity of
a material point is the time derivative of the motion with the material coordinate fixed, that is,
the velocity is given by

v=(X, t)=%=1+xu—1) (1.4.4)

The mesh description depends on the choice of independent variables. For purposes of
illustration, let us consider the velocity field. We can describe the velocity field as a function
of the Lagrangian (material) coordinates, as in (1.4.4), or we can describe the velocity as a
function of the Eulerian (spatial) coordinates:

V(x, =v(g ' (x, 1), 1) (1.4.5)

Introduction 11

In these expressions we have placed a bar over the velocity symbol to indicate that the velocity
field, when expressed in terms of the spatial coordinate x and the time ¢, will not be the same
function as that given in (1.4.4). We have also used an inverse map to express the material
coordinates in terms of the spatial coordinates:

X=¢"(x,1) (1.4.6)

Such inverse mappings can generally not be expressed in closed form for arbitrary motions,
but they are an important conceptual device. For the simple motion given in (1.4.3), the inverse
map is given by

X=q = 1.4.7
—2—r+1 (1.4.7)
Substituting the (1.4.7) into (1.4.4) gives
1—x+xt 1t2
_ x—1)(t—1 B)
S, =1+ - 2 (1.4.8)
—1*—t+1 —F—t+1
2 2

Equations (1.4.4) and (1.4.8) give the same physical velocity fields, but express them in terms of
different independent variables. Equation (1.4.4) is called a Lagrangian (material) description, for
it expresses the dependent variable in terms of the Lagrangian (material) coordinates. Equation
(1.4.8) is called an Eulerian (spatial) description, for it expresses the dependent variable as a
function of the Eulerian (spatial) coordinates. Mathematically, the velocities in the two
descriptions are different functions. Henceforth in this book, we will seldom use different symbols
for different functions when they pertain to the same field, but keep in mind that if a field variable
is expressed in terms of different independent variables, then the functions must be different. In
this book, a symbol for a dependent variable is associated with the field, not the function.

The differences between Lagrangian and Eulerian meshes are most clearly seen in the
behavior of the nodes. If the mesh is Eulerian, the Eulerian coordinates of nodes are fixed, that
is, the nodes are coincident with spatial points. If the mesh is Lagrangian, the Lagrangian
(material) coordinates of nodes are time invariant, that is, the nodes are coincident with
material points. This is illustrated in Figure 1.1. In the Eulerian mesh, the nodal trajectories
are vertical lines and material points pass across element interfaces. In the Lagrangian mesh,
nodal trajectories are coincident with material point trajectories, and no material passes
between elements. Furthermore, element quadrature points remain coincident with material
points in Lagrangian meshes, whereas in Eulerian meshes the material point at a given
quadrature point changes with time. We will see later that this complicates the treatment of
materials for which the stress is history-dependent.

The comparative advantages of Eulerian and Lagrangian meshes can be seen even in this
simple one-dimensional example. Since the nodes are coincident with material points in the
Lagrangian mesh, boundary nodes remain on the boundary throughout the evolution of the
problem. This simplifies the imposition of boundary conditions in Lagrangian meshes. In
Eulerian meshes, on the other hand, boundary nodes do not remain coincident with the

12 Nonlinear Finite Elements for Continua and Structures

boundary. Therefore, boundary conditions must be imposed at points which are not nodes, and
this engenders significant complications in multi-dimensional problems. Similarly, if a node
is placed on an interface between two materials, it remains on the interface in a Lagrangian
mesh, but not in an Eulerian mesh.

In Lagrangian meshes, since the material points remain coincident with mesh points,
elements deform with the material. Therefore, elements in a Lagrangian mesh can become
severely distorted. This effect is apparent in a one-dimensional problem only in the element
lengths: in Eulerian meshes, element lengths are constant in time, whereas in Lagrangian
meshes, element lengths change with time. In multi-dimensional problems, these effects are
far more severe, and Lagrangian elements can get very distorted. Since element accuracy
degrades with distortion, the magnitude of deformation that can be simulated with a Lagrangian
mesh is limited. Eulerian elements, on the other hand, are unchanged by the deformation of
the material, so no degradation in accuracy occurs because of material deformation.

To illustrate the differences between Eulerian and Lagrangian mesh descriptions, a two-
dimensional example will be considered. The spatial coordinates are denoted by x = [x, y]”
and the material coordinates by X = [X, Y]". The motion is given by

x=0(X, 1) (1.4.9)

where §(X, ?) is a vector function, i.e. it gives a vector for every pair of the independent vari-
ables. Writing out the above expression gives

x=¢(X,Y,t) y=¢,(X,Y,0) (1.4.10)

As an example of a motion, consider a pure shear
x=X+tY y=Y (1.4.11)

In a Lagrangian mesh, the nodes are coincident with material (Lagrangian) points, so for
Lagrangian nodes, X, = constant in time

For an Eulerian mesh, the nodes are coincident with spatial (Eulerian) points, so for Eulerian
nodes, X, = constant in time

Points on the edges of elements behave similarly to the nodes: in two-dimensional
Lagrangian meshes, element edges remain coincident with material lines, whereas in Eulerian
meshes, the element edges remain fixed in space.

To illustrate this statement, Figure 1.2 shows Lagrangian and Eulerian meshes for the shear
deformation given by (1.4.11). As can be seen, a Lagrangian mesh is like an etching on the
material: as the material is deformed, the etching (and the elements) deform with it. An
Eulerian mesh is like an etching on a sheet of glass held in front of the material: as the material
deforms, the etching is unchanged and the material passes across it.

The advantages and disadvantages of the two types of meshes in multi-dimensions are
similar to those in one dimension. In Lagrangian meshes, element boundaries (lines in two
dimensions, surfaces in three dimensions) remain coincident with boundaries and material
interfaces. In Eulerian meshes, element sides do not remain coincident with boundaries or
material interfaces. Hence tracking methods or approximate methods, such as volume of fluid
approaches, have to be used for moving boundaries treated in Eulerian meshes. Furthermore,
an Eulerian mesh must be large enough to enclose the material in its deformed state. On the

Introduction 13

% L £ / / / f
Ty A 4

original configuration deformed configuration

5
%
b
|
&
]
M

e i b e et

T T T T T T ¢

Figure 1.2 Two-dimensional shearing of a block showing Lagrangian (L) and Eulerian (E) elements

other hand, since Lagrangian meshes deform with the material, they become distorted in
simulations with severe deformations. In Eulerian meshes, elements remain fixed in space, so
their shapes never change.

A third type of mesh is an arbitrary Lagrangian Eulerian mesh, in which the nodes are
programmed to move so that the advantages of both Lagrangian and Eulerian meshes can be
exploited. In this type of mesh, the nodes can be programmed to move arbitrarily. Usually
the nodes on the boundaries are moved to remain on the boundaries, while the interior nodes
are moved to minimize mesh distortion. This type of mesh is described in Chapter 7.

1.5 Classification of Partial Differential Equations

For an understanding of the applicability of various finite element procedures, it is important
to know the attributes of solutions to various types of partial differential equations (PDEs).
The selection of an appropriate methodology depends on factors such as the smoothness of the
solution, how information propagates, and the effects of initial conditions and boundary
conditions; the latter are often collectively called the data for the problem. Considerable
insight can be gained by knowing the type of partial differential equation one is dealing with,
since the solution/attributes of different types of PDEs are markedly different.
PDE:s are classified into three types:

1. Hyperbolic, which are typified by wave propagation problems
2. Parabolic, which are typified by diffusion equations, such as heat conduction
3. Elliptic; elasticity and the Laplace equations are examples.

We will shortly show why PDEs are classified in this manner. Before doing that, we briefly
summarize the major characteristics of these different types of PDEs.

Hyperbolic PDEs arise from wave propagation phenomena. In hyperbolic PDEs, the
smoothness of the solution depends on the smoothness of the data. If the data are rough, the
solution will be rough; discontinuities in initial conditions and boundary condition propagate
through the domain. Furthermore, in nonlinear hyperbolic PDEs, discontinuities may develop
in the solution even for smooth data; examples are shocks in compressible flow. Information

14 Nonlinear Finite Elements for Continua and Structures

Heat Conduction

(parabuolic) Wave Equation

{hyperbalic)

- -

. J_ o information f information

=

~1

X X

Figure 1.3 Flow of information in parabolic and hyperbolic systems of PDEs

in a hyperbolic model travels at a finite speed called the wavespeed. This is illustrated in
Figure 1.3, which shows a rod with a force (source) applied at the left-hand end at time 7 = 0.
An observer at a point x will not be aware of the source until the wave reaches him: the wave
front is indicated by a line of slope ¢~ in Figure 1.3; ¢ is the wavespeed.

Elliptic PDEs are in a sense the opposite of hyperbolic PDEs. Examples of elliptic PDEs are
the Laplace equation and the equations of elasticity. In elliptic PDEs the solutions are very
smooth, that is, they are analytic, even if the data are rough. Furthermore, boundary data at any
point tend to affect the entire solution, that is, the domain of influence of data is the entire
domain. However, the effect of small irregularities in boundary data tends to be confined to the
boundary: this is known as St Venant’s principle. The major difficulty in the solution of elliptic
PDE:s is that acute corners in the boundary lead to singularities in the solution. For example,
at a re-entrant corner such as a crack, the strains (derivatives of the displacements) in
two-dimensional elastic solutions vary like =, where r is the distance from the crack tip. This
is the well-known crack tip singularity in fracture mechanics.

Parabolic PDEs are time-dependent PDEs with solutions that are smooth in space, but they
may possess singularities at corners. Their attributes are intermediate between elliptic and
hyperbolic equations. An example of a parabolic equation is the heat conduction equation.
Information travels at an infinite speed in a parabolic system. For example, Figure 1.3 shows
a heat source applied to a rod. The temperature rises instantaneously along the entire rod
according to the heat conduction equation. Far from a source, the temperature increase may be
very small. In hyperbolic systems, there is no response until the wave arrives.

The classification of PDEs rests on whether lines or surfaces exist across which the deriva-
tives of the solution are discontinuous. This is equivalent to examining whether lines exist
along which the PDEs can be reduced to ordinary differential equations.

The classification of PDEs is usually developed for first-order systems (any second-order
system can be expressed as two first-order systems). Consider a quasilinear system in two
unknowns:

Alu,x+Blu,_‘,+C1v,x+Dlv,y=E1 (1.5.1)

Au, + Bzu,y +C,v, + Dzv,y =FE, (1.5.2)

Introduction 15

In the above A, B,C, and D, are functions of the independent variables x and y and of the two
dependent variables u(x, y) and v(x, y). The system is called quasilinear because it is linear in
the derivatives.

Now let’s examine whether u and v can have discontinuous derivatives in the x—y plane.
Consider a curve I" parametrized by s. Along I' the derivatives are continuous but across I" the
derivatives may be discontinuous. By the chain rule, the derivatives of the dependent variables
can be written as

Upg =U, X, HU, Voo V=V, X Y, Y, (1.5.3)
Writing (1.5.1-1.5.3) as a single matrix equation gives

A

A 2
Az = - (1.5.4)
X, oy, 0 0 ||v

B

=
o

1 1

>
0
SHS
=
&/

s

< £

o
o
&
=
B
=

s

If the derivatives are discontinuous, the solution of the above system of linear algebraic
equations is indeterminate, that is, the solution is nonunique, which implies det(A) = 0.
Enforcing this condition yields (after some algebra):

ay, +2bx, v, +cx,.=0 (1.5.5)
where
a=AC -AC,, ¢c=B,D -BD, (1.5.6)
2b=BC,-B,C,+AD,-A,D,
Dividing (1.5.5) by x,i and noting that y, /x, = dy/dx =y, we obtain
ay,i + 2by, + ¢c=0 (1.5.7)

The solution to (1.5.7) is given by the roots of the quadratic equation

2
_—bENb —ac (1.5.8)
a

The solution of the above gives the lines I" along which the solutions may have discontinuous
derivatives. If b*> — ac < 0, then Vs, is imaginary and such lines do not exist. If b — ac > 0, these
lines are real, so discontinuities can exist; such PDEs are called hyperbolic.

Since y, by (1.5.8) is determined by the roots of a quadratic equation, there are two roots,
which give two sets of lines I'" and I, as shown in Figure 1.4. These lines are called
characteristics. The classification of PDEs is summarized in Table 1.1. For time-dependent
problems, the characteristics are lines along which information propagates in the x— plane;
the slope of these lines is the instantaneous wave speed c.

16 Nonlinear Finite Elements for Continua and Structures

-
x
Figure 1.4 Characteristics in a hyperbolic system
Table 1.1 Classification of PDEs
b’ —ac PDE Classification Solution smoothness
>0 has two families of characteristics hyperbolic discontinuous derivatives
=0 has one family of characteristics parabolic smooth
<0 no real characteristic elliptic smooth
As an example, we consider the one-dimensional wave equation
2
Usy = C Uy (1.5.9)

To reduce this equation to first-order form (1.5.1-2) we let f = u,,g=1u,. The wave equation
then becomes a set of two first-order equations:

8 =Cfr fr=8. (1.5.10)

where the second equation is just the statement u, = u, . Writing the above system in matrix
form with (1.5.4) gives

0 1 -1 0
&0 0o - r
A= sz =1, [y &, &l (1.5.11)
X, ¥, O 0
0 0 x, vy,

The characteristics are then found by setting det (A) = 0, which gives

x.—c’t2=0 or x’=c’ (1.5.12)

’t

Introduction 17

From this it can be seen that the PDE is hyperbolic. The two sets of characteristic lines are
given by

x,, =*c (1.5.13)

The characteristics are thus lines with slope +¢' in the x—¢ plane. In other words, in the wave
equation information travels to the left or right by the wave speed. Across the characteristic
lines, the derivatives of f=u, = &_(€_is the linear strain) and of g = u,, (the velocity) can be
discontinuous.

Consider next the Laplace equation G u, + Gu, = 0. This is the governing equation for
the elastic antiplane problem; u(x, y) is the displacement in the z direction and G are the shear
moduli. The procedure for examining the character of this equation is identical to that given
before. The steps are sketched in the following:

0 1 -1 0
G, 0 0 G, ’
f=u,, g=u, A= oz =11 1,88, (1514)
Y x, t, 0 0 ’ ’
0 0 x, t,
. . 2 2 2 Gl
det(A) =0 implies Gx,,+ G,y,,=0 or y, = e (1.5.15)
2

If G, > 0 and G, > O (which is the case for stable elastic materials), the characteristic lines are
then imaginary and the system is elliptic. No discontinuities are possible in the derivatives
f=u, org= U, . Discontinuities in derivatives are possible when the material constants G are
not homogeneous, that is, when the coefficients of the PDE G, are discontinuous. However,
discontinuities in derivatives of u coincide with the discontinuities in G . This equation differs
from the wave equation in that both independent variables are spatial coordinates; it is difficult
to give simple examples of PDEs in space-time which are elliptic.

It is left as an exercise to show that the equation u, = ow, is parabolic. In a parabolic
system, only one set of characteristics exists. These are parallel to the time axis, so information
travels at infinite speed. In parabolic systems, discontinuities occur in space only if there are
discontinuities in the data.

In a hyperbolic system, the governing equations become ordinary differential equations
along the characteristics. By integrating these ODEs along the characteristics, very accurate
solutions to hyperbolic PDEs can be obtained. This method is called the method of character-
istics. Such methods are very appealing because of their high accuracy. However, they are
quite difficult to program for more than one space dimension for arbitrary constitutive laws,
so the method of characteristics is used only in special-purpose software.

1.6 Exercises

1.1. Show that the diffusion equation (heat conduction is one example) u, = ou,, where a is
a positive constant, is parabolic.
1.2. Determine the classification of the equation for the dynamics of beams, u, = ow

XX "

