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Introduction

The cell wall of land plants consists of three layers, namely the middle
lamella, the primary cell wall, and the secondary cell wall. The middle
lamella is directly derived from the cell plate generated during cytokinesis
and the primary cell wall is deposited onto the middle lamella during the cell
expansion process. The two cell wall layers are generally found in all cell
types, whereas the secondary wall is deposited onto the primary cell wall in
certain specific cell types after cell expansion has ceased (Albersheim et al.,
2011; Fig. 1.1).

The three layers differ from each other in terms of their chemical nature and
physical properties, and they serve different biological functions. Although
both the primary and secondary cell walls directly function as a mechani-
cal housing capable of resisting both turgor pressure from the inside out and
compression force from the outside in, only the primary cell wall can extend
or deform in response to the force applied and thereby determine the direc-
tion and rate of cell expansion (Burgert and Frantzl, 2007; Wasterneys and
Collings, 2007; Fig. 1.1). In addition to these mechanical roles, the primary
cell wall functions as an information processing system. Typical functions
include non-cell-autonomous regulation of cell differentiation via apoplas-
tic signaling (Irving and Gehring, 2012; Wolf et al., 2012a), particularly in
meristems, defensive responses to pathogens and parasites (Bradley et al.,
1992; Vorwerk et al., 2004), and interactions with symbionts. The dynam-
ics of the primary cell wall therefore play a pivotal role in determining cell
shape and function during development and in response to environmental stim-
uli. Accordingly, in this chapter we will focus on the primary cell wall and
the dynamic aspects of its major components, namely cellulose and matrix
polysaccharides, in relation to its function.
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Figure 1.1 Various types of plant cells defined by the cell wall: (a–c) immunofluorescence labeling
with monoclonal antibodies against cell wall polysaccharide epitopes; (a) JIM5, specific to homo-
galacturonan with a low degree of methylesterification; (b, c) CCRC-M1, specific to fucosylated
xyloglucan; (d, e) bright field images of unstained specimens; (f) histochemical staining of lignin
with phloroglucinol-HCl. A, parenchyma of Oryza sativa; B, spongy mesophyll of Fagus crenata;
C, vascular of O. sativa; D, E and F, epidermis, trichome and xylem of A. thaliana, respectively.

Overview of the Plant Cell Wall

Plants devote a considerable amount of energy to constructing and maintaining
the architecture of the plant cell wall, which is a biphasic composite consist-
ing of crystalline microfibrils and an amorphous gel-like matrix; the former is
embedded in the latter, which is intelligent enough to be able to self-organize
and regulate cell shape and function during growth and, hence, the morphology
of land plants.

For its assembly, remodeling, and disassembly, various types of structural
and functional components must be secreted into the cell wall space. These
include polysaccharides, structural proteins, enzymes, and small signaling
molecules. Examination of the increasing number of currently available
genome sequences of land plants tells us that each plant genome contains
several thousand cell-wall-related genes which are implicated in biosynthesis,
modification, and disassembly of the cell wall, and their regulation with
respect to transcription, membrane trafficking, and enzyme actions (Henrissat
et al., 2001; Coutinho et al., 2003; Somerville et al., 2004; Yokoyama and
Nishitani, 2004; Brown et al., 2005). The presence of such a large number
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of genes and proteins committed to cell wall dynamics apparently reflects
the fact that cell wall type is dependent upon cell type, of which there are
estimated to be more than 40 in a land plant. Transcriptomic analysis has
demonstrated that different cell types have different expression patterns of
cell-wall-related genes (Zhu and Wang, 2000; Demura et al., 2002; Birnbaum
et al., 2003; Imoto et al., 2005; Demura and Fukuda, 2007).

In addition to cell-type-specific variations, the chemical and physical nature
of the cell wall is also hugely dependent upon the stages of growth and differ-
entiation of the cell. This is rather self-evident as we have seen that the rate
and direction of cell growth, and thus the final shape of the cell, is ultimately
determined by the nature of the cell wall. Continued reduction in the tensile
strength of the cell wall, which is termed ‘cell wall loosening’, is the direct
cause of cell wall expansion followed by cell expansion, the ubiquitous process
by which cell expansion is regulated. Accordingly, an anisotropic or localized
modification of the primary cell wall within a cell will cause anisotropic
cell growth, such as cell elongation in stem cortical cells and polarized cell
expansion in leaf trichomes and pavement cells. The chemical and physical
nature of the primary cell wall can therefore precisely determine the size and
shape of individual cells and play a vital role in determining the morphology
of the plant as a whole (Fig. 1.1; Somerville et al., 2004; Cosgrove, 2005).

By contrast, the secondary cell wall has a static structure consisting mainly
of crystalline cellulose microfibrils impregnated with lignin and suberin, and is
responsible for providing mechanical resistance as well as forming a diffusion
barrier. In xylem and fiber cells, the secondary cell wall functions to resist
compression force as well as tensile force, and it provides the cell with enough
strength to support aerial parts of the plant body, or serves as a non-growing
cellular pathway for the translocation of water and nutrients (Fig. 1.2; Demura
and Fukuda, 2007). On the other hand, the diffusion resistance function of the
secondary cell wall is most prominently found in the Casparian strip in the
endodermis, in which lignin confers the hydrophobicity necessary for forming
a diffusion barrier to the cell wall (Naseer et al., 2012). These functions of the
secondary wall are not directly related to the determination of cell shape and
are therefore not discussed in this chapter.

Components of the Primary Cell Wall

The primary cell wall is composed of cellulose microfibrils, matrix polysac-
charides, and structural proteins and can serve as an aqueous microenviron-
ment harboring non-structural soluble components such as enzymes, signal-
ing molecules, and ions (Carpita and Gibeaut, 1993; Cosgrove, 1997). In this
section, we first describe the structural features of the cellulose microfibrils
and two major matrix polysaccharides – pectin and hemicellulose – before
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Figure 1.2 Cellulose/hemicellulose and pectin networks in the primary cell wall at successive stages
of plant cell growth. (a) Processes of cell elongation and differentiation. (b) Major polymers and their
likely arrangement in the cell wall. Newly secreted hemicelluloses (shown in black) and the other
polymers (gray) are integrated into the cellulose/hemicellulose network.

describing how they are organized to form the dynamic architecture of the
primary cell wall.

Basic Structure and Cellulose Microfibrils

A single microfibril in land plants is circular or square when observed in
cross-section. The dimension of the cellulose microfibril in land plants
has been estimated by transmission electron microscopy, X-ray scattering
(Jakob et al., 1995), and solid-state 13C nuclear magnetic resonance (NMR)
(Newman, 1999; Kennedy et al., 2007). The diameters suggested by these
analyses range from 2.5 nm to 3.6 nm, which corresponds to 15–32 chains
of β-1,4-glucan molecules (Somerville, 2006; Fernandes et al., 2011) if it is
assumed that each chain occupies 0.317 nm2 (Nishiyama et al., 2002).

In cellulose microfibrils, there are two types of domains conforming to a
triclinic (termed cellulose I-α) form and a monoclinic (termed cellulose I-β)
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form. In land plants, the I-β form predominates. In the crystalline domain,
β-1,4-glucan chains are arranged in parallel and undergo self-association
via several interactions, which include the formation of intramolecular
hydrogen bonds at O3…O5 and O2…O5, an intermolecular hydrogen bond
at O3…O3, and hydrophobic intermolecular interactions. This structure
renders the cellulose microfibrils insoluble in water, immune to enzymatic
attack, and resistant to chemical agents.

Another important characteristic of cellulose is its high tensile strength and
elastic modulus. The latter is estimated to be between 124 and 155 GPa for
the cellulose I-β form, values that are comparable to that of gray cast iron
(Nishino et al., 1995). The crystallinity is frequently disrupted by disloca-
tions, resulting in amorphous or para-crystalline regions in the microfibril.
The cellulose microfibril therefore has a substructure consisting of highly
organized crystalline domains linked together by less organized amorphous
or para-crystalline regions (O’Sullivan, 1997; Nishiyama et al., 2002).

In the primary cell wall, stable crystalline cellulose microfibrils are embed-
ded in amorphous hydrophilic matrix polysaccharides through interaction
with the less-organized para-crystalline domains. Land plants contain two
major classes of matrix polysaccharides: hemicellulose and pectin. The
former includes xyloglucans, glucomannans, and arabinoxylans (Scheller and
Ulvskov, 2010), and the latter consists of homogalacturonan (HG) and the
rhamnogalacturonan (RG) I and II domains (Mohnen, 2008).

Hemicellulosic Polysaccharides

The typical hemicellulosic polysaccharide is a linear polymer composed of
a β-D-pyranosyl backbone substituted by short side chains with a single or
a few glycosyl residues. Hemicellulosic polysaccharides and cellulose there-
fore share the structural feature of a β-D-pyranosyl backbone, which allows
tight binding of hemicellulosic polysaccharides to the amorphous region of
the para-crystalline cellulose microfibril by hydrogen bonding. The hemicel-
lulose/cellulose interaction is of a chemical nature, such that concentrated
alkaline solution is required to disrupt the interaction and liberate hemicellu-
lose from the cell wall to aqueous solution (Cosgrove, 1997). Although the side
chains on hemicellulosic polysaccharides modulate the efficiency of binding
to the microfibrils, the interaction is still strong enough to resist tensile stress
derived from turgor pressure.

Since the molecular lengths of certain hemicellulosic polysaccharides such
as xyloglucans are longer than the distances between cellulose microfibrils,
they can cross-link adjacent microfibrils to tether together and coat the
surface of the cellulose microfibrils (Hayashi, 1989; McCann et al., 1990),
thereby forming a cellulose/hemicellulose network that functions as the major
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tension-bearing framework of the primary cell wall. It is worth noting that
it is these hemicellulosic cross-links that confer extensibility to the network
structure and act as a modulator of mechanical properties of the primary
cell wall. Xyloglucans are typical hemicellulosic polysaccharides. These
polysaccharides are ubiquitous in land plants and are particularly abundant
in dicotyledonous plants (Talbott and Ray, 1992; Popper et al., 2011). By
contrast, commelinoid monocotyledons, which include cereals such as rice
(Oryza sativa), have relatively few xyloglucans in most of the tissues, and a
relatively large amount of xyloglucans are restricted to certain tissue types
such as phloem (Fig. 1.1C; Brennan and Harris, 2011). The predominant
glycans in these plant species are glucuronoarabinoxylan and β (1→3),
(1→4)-mixed-linkage glucan, which are also hypothesized to cross-link the
cellulose microfibrils in these plant species (Vogel, 2008).

In addition to xyloglucans, glucomannans and arabinoxylans may also
bind to cellulose microfibrils in the primary cell walls of dicotyledonous
and non-graminaceous monocotyledonous plants. The fact that the molec-
ular lengths of these hemicelluloses are significantly shorter than those of
xyloglucans, and that their extractability from the cell wall differs from that of
xyloglucans, implies that these hemicelluloses may have different interactions
with cellulose from those of xyloglucans.

Cellulose/xyloglucan Network

The primary cell wall, which determines cell shape, must be strong enough to
withstand the mechanical stresses imposed upon it but flexible enough to allow
deformation in response to developmental and environmental cues. Given the
load-bearing function of cellulose/xyloglucan networks in the primary cell
wall, the rearrangement of these networks is essential during cell growth. Two
possible processes have been postulated to be involved in the rearrangement of
cellulose/xyloglucan networks. One process envisages a remodeling process
in which disruption of hydrogen bonding is followed by immediate reconnec-
tion at different positions, allowing remodeling of the cell wall network. The
other process postulates remodeling by molecular grafting between xyloglu-
can cross-links by means of an endotransglycosylation reaction. Both of these
processes can be achieved without the loss of cell wall integrity (Fig. 1.2). The
protein families expansins (Cosgrove, 2005) and xyloglucan endotransgluco-
sylase/hydrolases (XTHs) (Nishitani and Vissenberg, 2007) are implicated in
these processes.

Expansins were originally discovered for their ability to cause acid-induced
extension of isolated cell walls (McQueen-Mason et al., 1992). Expansins
form a family of small cell wall proteins characterized by a certain
carbohydrate-binding domain, some of which dissociate interactions between
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hemicellulose and cellulose microfibrils (Cosgrove, 2000; Yennawar et al.,
2006). However, expansins do not exhibit hydrolytic or transglucosylation
activity on any matrix polysaccharide examined, despite the fact that their
amino acid sequences are similar to the catalytic domain of the family-45
endoglucanases. The expansin EXPB1 has been proposed to facilitate the local
movement and stress relaxation of arabinoxylan–cellulose networks within
the cell walls of maize by non-covalent rearrangement, but its molecular
mechanism remains unclear (Yennawar et al., 2006).

In growing cells, wall expansion must be coupled with the synthesis and
integration of new wall components to maintain the thickness and mechanical
properties of the cell wall. Since expansins cause no significant alterations in
the chemical composition of the cellulose/xyloglucan network, their actions
alone cannot explain long-term cell expansion in which incorporation of new
wall materials is required to compensate for the thinning of wall thickness.
Instead, it is likely that expansins are involved in rapid and transient cell expan-
sion processes such as the ‘acid growth’ process observed during the first phase
of auxin-induced cell expansion, which is based on rapid, localized changes in
cell wall extensibility without additional polysaccharide synthesis (Rayle and
Cleland, 1992).

XTHs form a subgroup in the Glycoside Hydrolase Family 16 (GH16). Sev-
eral members of the XTH family specifically cleave a β (1→4) glucosidic
linkage of an unsubstituted glucosyl residue in a xyloglucan main chain (donor
substrate), and reconnect the reducing end generated by cleavage of the donor
molecule to the non-reducing end of another xyloglucan molecule (accep-
tor substrate). This activity is termed xyloglucan endotransglucosylase (XET)
activity. Certain XTHs only cleave xyloglucan without reconnecting the split
end, an activity termed xyloglucan endohydrolase (XEH) activity (Nishitani,
1997; Nishitani and Vissenberg, 2007).

Both XET and XEH activities enable extension of xyloglucan chains
tethering cellulose microfibrils and integrate new xyloglucans into the
cellulose/xyloglucan networks (Rose et al., 2002). This process provides an
effective means of rearranging the cellulose/xyloglucan network and allows
sustainable expansion of the cell wall. Although a complete description of
the functions of the XTH family of proteins in muro is not yet available, the
physiological role of XTH is becoming clearer. We will return to this topic in
‘Function of Xyloglucan and XTH’.

Pectic Polysaccharides

Hemicellulose serves as a cross-linker between cellulose microfibrils in the
primary cell wall, whereas pectin exists in a gel and serves as a space-filling
or packing matrix in the primary cell wall.
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Pectic polysaccharides are highly hydrophilic and are most soluble in the
water of polysaccharides in the primary cell wall. Pectic polysaccharides are
easily extracted by hot water, chelating agents, or dilute acidic solutions.
These polysaccharides are composed of a complex, heterogeneous group
of polysaccharide domains and characteristically contain galacturonic acid
and rhamnose, arabinose, and galactose as major sugar components (Ridley
et al., 2001). The main pectin domains include the homogalacturonan (HG),
rhamnogalacturonan I (RG I), and rhamnogalacturonan II (RG II) domains.
The HG domain has a relatively simple structure, forming a linear polymer
consisting of 1,4-linked α-D-galacturonic acid residues. RG I has a backbone
composed of alternating (1→2)α-L-rhamnose-(1→4) α-D-galacturonic acid
residues decorated primarily with arabinan and galactan side chains. The RG
II domain is a low molecular mass but highly complex carbohydrate domain
composed of 11 different glycosyl residues.

Some structural models have been proposed for the pectic matrix in the pri-
mary cell wall. One conventional model envisages HG to be a long main chain
connected in series to two branching domains, RG I and RG II. In this model,
the pectin backbone consists of three connected domains. In a more recent
model, however, RG I is postulated to function as a scaffold or the main chain
to which long HG domains and RG II domains are covalently attached as side
chains (Vincken et al., 2003). Pectic polysaccharides are therefore covalently
joined in vivo (Willats et al., 2006).

Pectin Network

The pectic polysaccharides are subject to a number of modifications of con-
formation and covalent linkage, crucial processes that alter the chemical and
physical nature of the matrix in the primary cell wall.

Borate binds to two apiose residues in RG II domains and forms an
apiose-borate-apiose diester bridge. Most RG II molecules are spontaneously
dimerized through the borate ester bridge upon secretion into the cell wall
space (O’Neill et al., 2004). Borate-mediated cross-linking contributes to the
strengthening of the primary cell wall as well as the control of wall porosity
and intercellular adherence (Caffall and Mohnen, 2009).

Another modification of pectic polysaccharides is de-esterification of
methylesterified galacturonic acid residues in the HG domain. Nascent
HG domains localized in the Golgi are normally fully methylesterified.
Methylester groups on the HG domain are removed upon secretion into
the cell wall by pectin methylesterases (PMEs) present in the cell wall
space. Demethylesterification of pectin is followed by two alternative pectin
modification processes.
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In one process, free carboxyl groups generated on the HG domain are
cross-linked via Ca2+ bridges to assemble the pectin into a gel-like network.
The resulting HG-Ca2+ complex acts as a space-filling hydrophilic filter to
prevent aggregation and collapse of the cellulose/hemicellulose network, and
is considered to make the network less sensitive to the actions of cell wall
enzymes (Cosgrove, 1997) and thereby renders the cell wall more resistant
to compression stress. This process is observed in the regulation of cell wall
stiffening in basal parts of inflorescence stems (Hongo et al., 2012).

In the other process, random demethylesterified HG domains are not fully
cross-linked via Ca2+ bridges. These domains become more susceptible to
hydrolytic degradation and are disassembled. This process is observed during
primordial development in the shoot apical meristem (Peaucelle et al., 2011a).

In addition to the boron and calcium bridges, pectic polysaccharides are
linked to each other by various covalent bonds including ester linkages through
phenolic dimers such as diferulic acid (Wallace and Fry, 1994). Furthermore,
the pectin networks may be linked to the cellulose/xyloglucan networks and
structural proteins via phenolics, such as p-coumaryl and feruloyl acids (Caf-
fall and Mohnen, 2009). More recently, pectin was demonstrated to link cova-
lently to arabinoxylan via a rhamnosyl residue in the arabinogalactan (AG)
domain of an arabinogalactan protein (AGP). This wall structure, consisting
of arabinoxylan, pectin, and AGP, is referred to as Arabinoxylan Pectin Ara-
binogalactan Protein1 (APAP1; Tan et al., 2013). A large macromolecular
network, which can interact functionally with the other components, is also
thought to be responsible for various physical properties of the primary cell
wall (Fig. 1.2).

The precise functions of many of the pectin networks are yet to be deter-
mined; however, recent work shows that modifying the pectic polysaccharides
is a key process in elucidating functional network formation with respect to
plant growth and development. We will return to this topic in ‘Function of
Pectin and PME’.

Biosynthesis and Assembly of the Cell Wall

Cellulose is synthesized at the plasma membrane by large complexes called
rosette terminal complexes (TCs; Delmer and Amor, 1995), whereas matrix
polysaccharides are polymerized exclusively in the Golgi lumen and secreted
into the apoplast or cell wall space via a membrane trafficking system. This
section focuses on the general mechanisms of the synthesis of the two types of
cell wall polysaccharides and how these polysaccharides are assembled into
the dynamic architecture of the primary cell wall.
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Cellulose Synthesis

A rosette terminal complex consists of six subunits, with each subunit con-
taining six catalytic units of cellulose synthase (CESA) proteins. Each cat-
alytic unit has been proposed to mediate polymerization of one (1→4)-linked
β-D-glucan chain using UDP (uridine diphosphate) -glucose as the substrate,
which is supplied by a membrane-associated form of sucrose synthase local-
ized in the vicinity of the catalytic units of cellulose synthase (Doblin et al.,
2002; Carpita, 2011). According to this model, 36 molecules of (1→4)-linked
β-D-glucans are synthesized at the same time on a single rosette. This predicted
number of molecules is not however supported by the actual observed num-
bers, which range from 15 to 32 as discussed in ‘Components of the Primary
Cell Wall’. Therefore, either two catalytic units are involved in the synthesis
of a single glucan chain, or fewer than five of the six catalytic units are actu-
ally functional in the rosette. The mechanism underlying cellulose synthesis
therefore remains controversial.

Nascent (1→4)-linked β-D-glucan chains are extruded as a self-assembling
microfibril, forming a crystalline microfibril. Evidence from genetic experi-
ments indicates that three different CESA genes are normally required to pro-
duce a functional complex, and that different sets of genes are involved in the
formation of the primary and secondary walls. In Arabidopsis, for example,
CESA1, CESA3, and CESA6 are required for the synthesis of the primary cell
wall, whereas CESA4, CESA7, and CESA8 are required to form secondary cell
walls (Burn et al., 2002; Taylor et al., 2003). Moreover, CESA2 and CESA5
are partially redundant with CESA6 (Desprez et al., 2007).

The master regulatory transcription factors that specifically govern the
synthesis of the secondary cell wall have been successfully identified using
suspension-culture cell lines, which can be forced to undergo highly syn-
chronized differentiation to tracheary elements (Yamaguchi and Demura,
2010). On the other hand, cellulose synthesis, especially in the primary cell
wall, has been proposed to be controlled post-transcriptionally rather than by
transcription factors (Somerville et al., 2004).

In addition, a variety of correlative evidence shows that the oriented depo-
sition of cellulose microfibrils seems to be guided by microtubules adjacent
to the plasma membrane (Somerville, 2006). A microtubule-associated pro-
tein termed CESA interactive protein 1 (CSI1) functions as a bridge between
CESA complexes and cortical microtubules. CSI1 plays a crucial role in reg-
ulating microtubule-directed cellulose synthesis (Li et al., 2012; Mei et al.,
2012).

Chitinase-like (CTL) proteins, including CTL1/POM1 and CTL2, are
another class of regulators of cellulose synthesis. These two proteins are
secreted to the apoplast and interact with CESA. In ctl1/ctl2 double mutants
the crystalline cellulose content is reduced. This suggests that these two CTLs
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affect assembly of the glucan chains, thereby modulating the interactions
between xyloglucan and cellulose (Sanchez-Rodriguez et al., 2012).

Synthesis of Matrix Polysaccharides

Matrix polysaccharides, including hemicellulosic and pectic polysaccharides,
are synthesized in the Golgi and secreted into the wall via an uncharacterized
vesicle-mediated trafficking pathway. Given the complexity of the structural
features of the matrix polysaccharides in terms of glycosidic linkages and
sugar residues, it is obvious that a large number of enzymes are required for
their synthesis.

Biosynthesis of xyloglucan (which has a relatively simple structure) is
thought to require β (1→4)-glucan synthase, encoded by CELLULOSE
SYNTHASE-LIKE C (CslC), to form the glucan backbone as well as at least
three other types of glycosyltransferases – including α-fucosyltransferases,
β-galactosyltransferases, and α-xylosyltransferase – to decorate the glucan
main chain with side chains (Zabotina, 2012).

For the synthesis of pectic polysaccharides, which are more complex
than xyloglucan, at least 67 transferases are thought to be required. These
enzymes, which include glycosyl-, methyl-, and acetyltransferases (Mohnen,
2008), are typically encoded by large multigene families classified as
glycosyl transferases in the CAZy (carbohydrate-active enzymes) database
(Yokoyama and Nishitani, 2004). Most of these synthetic enzymes for matrix
polysaccharides are integral membrane proteins and are considered to exist
as complexes anchored to the Golgi (Atmodjo et al., 2013).

The newly synthesized and retained polysaccharides in the Golgi lumen
are secreted as soluble polymers into the cell wall space, where they diffuse
within the aqueous extracellular environment to their final destination by an
as-yet-unknown mechanism.

Cell Wall Assembly

Upon secretion into the cell wall space, the matrix polysaccharide precursors
become associated with the pre-existing cell wall polymers or other newly
secreted precursors in muro. Some of the polysaccharides are also assem-
bled into larger polysaccharides via poorly understood mechanisms. Thus, the
newly synthesized polysaccharides are integrated into the pre-existing frame-
work of the primary cell wall to alter or maintain its chemical and physical
nature.

Network formation involves both spontaneous interactions between the
polysaccharides and, perhaps, enzymatic cross-linking. Although the precise
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molecular processes have not yet been fully identified, there are a few
examples in which specific wall enzymes are involved in the assembly
of newly synthesized polysaccharides into the pre-existing network. XTH
may be the only potential candidate for this function. XTH catalyzes the
molecular grafting or disassembly of xyloglucan cross-links within the
cellulose/xyloglucan network as well as the integration of newly synthesized
xyloglucans into the cellulose/xyloglucan network (Ito and Nishitani, 1999;
Rose et al., 2002; Eklöf and Brumer, 2010). PME-mediated demethylesteri-
fication of the HG domain of pectin is another example, which leads to the
formation of Ca2+ bridges between the carboxyl groups of HG domains,
thereby forming pectin gel (Micheli, 2001). These in muro network forma-
tions generally require a regulatory system for transporting the enzymes
and their substrates to the proper location at the proper time and to perform
reactions in a synergistic manner. PMEs are no doubt the key factor involved
in the regulatory system for such in muro network formation of pectin.

To date, two types of key factors (XTH and PME) have been specifically
implicated in the important processes of network formation which directly
affects the physical properties of the primary cell wall and defines cell mor-
phology. The functions of these two classes of proteins are discussed in the
following sections.

Function of Xyloglucan and XTH

The first indication of the role for xyloglucan in cell wall expansion was
obtained when its metabolism was studied using pulse-chase experiments
employing 14C-labeled glucose in pea stem tissues. This classical experiment
clearly showed that xyloglucan metabolism is enhanced during auxin-induced
cell expansion (Labavitch and Ray, 1974a, b). This study was followed by the
finding that changes in the molecular weight of cell wall xyloglucans were
generally induced by auxin and acidic pH in various land plants, including
monocotyledonous plants and gymnosperms (Nishitani, 1997).

These observations provided strong evidence for the hypothesis that
hydrolytic cleavage of xyloglucan cross-links between cellulose microfibrils
is the key step controlling the mechanical properties of the cell wall. However,
it was also observed that cleavage of load-bearing linkages alone cannot
account for prolonged cell expansion, in which remodeling of the cell wall is
required to integrate new wall components into the pre-existing framework
(Nishitani, 1997). To explain this paradox, hypothetical endotransglycosyla-
tion, or molecular grafting between cross-linking molecules, was postulated
(Albersheim, 1976).

The existence of this hypothetical enzyme was demonstrated when the
enzyme capable of mediating molecular grafting between xyloglucans was
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isolated from the cell wall space of Azuki bean (Fry et al., 1992; Nishitani
and Tominaga, 1992). This enzyme is currently termed xyloglucan endotrans-
glucosylase/hydrolase (XTH) (Rose et al., 2002). In this section, we discuss
the roles of XTH family enzymes and their specific substrates, xyloglucans,
in determining cell shape in plants.

Xyloglucan Structure and Function

Xyloglucan (Fig. 1.3) is the most abundant cross-linking polymer in land
plants (Fry, 1989; Hayashi, 1989; Popper et al., 2011), consisting of a
β (1→4)-glucan backbone frequently decorated with side chains of α
(1→6)-xylosyl residues. The α (1→6)-xylosyl side chains are often further
substituted with several different glycosyl residues depending on phylogeny
and cell type. In non-commelinoid monocotyledons and non-solanaceous
eudicotyledons, xylosyl residues are substituted with β (1→2)-galactosyl
residues with or without further substitution with α (1→2)-fucosyl residues;
in solanaceous plants, these residues are substituted with β (1→2)-galactosyl
or β (1→2)-arabinofuranosyl residues. In Poales (and Commelinales), the β
(1→4)-glucan backbone is less frequently substituted by xylosyl residues,
and α (1→2)-fucosyl-β (1→2)-galactosyl substitution is only restricted to
a specific cell wall type such as that in phloem (Hsieh and Harris, 2009;
Brennan and Harris, 2011).

As for other polysaccharides in plant cell walls, hydroxyl groups in xyloglu-
cans are O-acetylated at various positions. In Arabidopsis, for example, the
galactosyl moiety of the side chain is intensively O-acetylated. This acety-
lation affects the hydrolytic degradation properties of xyloglucan side chains.
An Arabidopsis mutant with reduced acetylation in xyloglucan (rwa2) is more
resistant to the pathogen Botrytis cinerea than the wild type, but it exhibits no
obvious morphological or growth differences (Manabe et al., 2011). The role
of O-acetylation in the cell wall extension process therefore remains unclear.

As we saw in ‘Components of the Primary Cell Wall’, xyloglucans
can non-covalently associate with β (1→4)-glucan chains of the cellulose
microfibrils to form the cellulose/xyloglucan network (Pauly et al., 1999)
which is found in the primary cell walls of flowering plants (Carpita and
Gibeaut, 1993). In vitro experiments reveal that the side chains of xyloglucans
can prevent self-association of xyloglucan molecules and that the terminal
fucosyl residue helps to stabilize the planar configuration of the xyloglucan
backbone, which is essential for optimal cellulose binding. Arabidopsis
mutants lacking a fucosyl (mur1) or galactosyl (mur3) residue exhibit
tissues with slightly reduced mechanical strength, but do not exhibit drastic
phenotypic changes in vegetative growth. Moreover, the Arabidopsis double
mutant xxt1/xxt2, which lacks detectable xyloglucan in its cell wall, exhibits
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Figure 1.3 Phylogeny of the XTH family of enzymes and their roles in construction, modification,
and disassembly of the cellulose/xyloglucan network in the primary cell wall. Black or gray lines
indicate xyloglucans (XG), and the circle ends indicate the reducing termini. XET, xyloglucan endo-
transglucosylase; XEH xyloglucan endohydrolase.

significant changes in the mechanical properties of its tissue, but gross mor-
phological phenotypes are not observed in this mutant (Cavalier et al., 2008).
These observations suggest that xyloglucans, and hence cellulose/xyloglucan
networks, are not essential for basic plant architecture or that they may be
compensated for by other components of the cell wall; however, they may be
required for modulating the mechanical properties of the cell wall.

XTH Family

A molecular basis for a dynamic aspect of the cellulose/xyloglucan network
was first demonstrated in the 1990s, when XET activity was isolated from
growing plant tissues (Fry et al., 1992; Nishitani and Tominaga, 1992).

The enzymes responsible for such activity (EC 2.4.1.207) are encoded by
a multigene family. The genomes of three angiosperm species, Arabidopsis
(Arabidopsis thaliana (L.) Heynh.), rice (Oryza sativa L.), and poplar (Pop-
ulus trichocarpa) contain 33, 29, and 41 members (Yokoyama and Nishitani,
2001; Yokoyama et al., 2004; Geisler-Lee et al., 2006), respectively, while the
basal land plant moss (specifically Physcomitrella patens) possesses 32 mem-
bers (Yokoyama et al., 2010). This family of proteins is classified into three
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groups – I/II, IIIA, and IIIB – based on amino acid sequence similarity. Bio-
chemical and structural studies have predicted that group I/II XTH exhibits
XET activity, whereas group IIIA XTH exclusively exhibits endohydrolase
(XEH) activity to xyloglucan molecules (Rose et al., 2002; Chanliaud et al.,
2004; Baumann et al., 2007; Eklöf and Brumer, 2010; Kaewthai et al., 2013).
Accordingly, this family of enzymes was renamed the xyloglucan endotrans-
glucosylase/hydrolase (XTH) family (Rose et al., 2002). Each member of this
family can mediate either cleavage and reconnection or simple cleavage of
xyloglucan molecules. It is worth noting that construction, remodeling, and
disassembly of xyloglucan cross-linking in the cellulose/xyloglucan network
can be explained by the collaborative actions of XTH family enzymes (Nishi-
tani, 1997).

Phylogenetic analysis indicates that the XTH gene family has diversified
during the evolution of land plants (Yokoyama and Nishitani, 2001; Yokoyama
et al., 2010). In addition, both biochemical and crystallographic data indicate
that the functional differences between XET and XEH can be ascribed to dif-
ferences in the structural features around the acceptor binding site, namely
whether a water molecule or the xyloglucan molecule has access to the accep-
tor substrate site (Baumann et al., 2007).

As mentioned in ‘Biosynthesis and Assembly of the Cell Wall’, the XTH
enzymes belong to Glycoside Hydrolase Family 16 (GH16) (Barbeyron
et al., 1998; Cantarel et al., 2009), which comprises a broad range of
microbial endoglucanases and endogalactanases, as well as algal β-agarase
and 𝜅-carrageenase. Since the closest relatives of XTH in GH16 are bac-
terial licheninases (EC 3.2.1.73) which specifically hydrolyze β (1→3), β
(1→4)-glucans, it has been hypothesized that the XTH genes evolved from
these bacterial glucanases (Planas, 2000; Eklöf and Brumer, 2010). This
notion was supported by the recent finding of a novel endoglucanase from
poplar (Populus trichocarpa), which revealed a newly recognized small clade
of GH16 genes that represent intermediates between the bacterial licheninases
and plant XTHs (Eklöf et al., 2013).

Xyloglucan Dynamics as Mediated by XTH

XET activity: Before the discovery of XTH, growth-promoting and growth-
inhibitory effects of exogenously applied xyloglucan oligosaccharides were
documented, and the ‘oligosaccharin’ hypothesis was advanced in the late
1980s (McDougall and Fry, 1989; Vargas-Rechia et al., 1998). This hypoth-
esis proposes that oligosaccharides derived from cell wall xyloglucans act as
signaling molecules (Ryan, 1987).
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Currently however, the term ‘oligosaccharins’ is seldom used for xyloglucan
oligosaccharides, which are instead considered to function simply as accep-
tor substrates for XTH, which mediate incorporation of xyloglucan oligomers
into the cellulose/xyloglucan network to facilitate disassembly of xyloglucan
cross-links (Takeda et al., 2002). This point of view is also supported by the
observation that the growth of tobacco suspension-culture cells is accelerated
by XTH-mediated incorporation of xyloglucan oligosaccharide into the cell
wall (Ito and Nishitani, 1999; Kaida et al., 2010).

Since the 1990s, the roles of XTHs in plant growth and differentiation have
been extensively investigated (Nishitani and Vissenberg, 2007). These stud-
ies show a positive correlation between XET activity and the growth process
in specific tissues or organs, such as fruit ripening (Redgwell and Fry, 1993)
and root elongation (Ryan, 1987; Pritchard et al., 1993; Vissenberg et al.,
2000). Furthermore, the effects of environmental factors (such as mechanical
stimulus, light conditions, anoxia, and developmental signals) on XTH gene
expression, as mediated by plant hormones, have been extensively studied (Lee
et al., 2005; Nishitani and Vissenberg, 2007).

Comprehensive expression analysis of all XTH genes of Arabidopsis reveals
that virtually all members of the XTH family have specific expression pat-
terns, many of which overlap. This result indicates that a specific set of XTH
family genes are expressed in individual tissues and in response to individual
environmental stimuli (Yokoyama and Nishitani, 2001; Lee et al., 2005). This
ubiquitous nature suggests the functional importance of xyloglucan dynamics
throughout the life cycles of land plants.

The overwhelming redundancy in XTH genes has however hampered func-
tional studies employing phenotypic analysis of XTH mutants. Only a few of
the 33 Arabidopsis XTH genes have been shown to exhibit morphological phe-
notypes in their loss-of-function mutants. Nonetheless, some mutants of XTH
genes exhibit tissue-specific phenotypes.

For example, atxth27-1 is a transposon-tagged knockout line of AtXTH27.
This mutant differentiates morphologically altered tracheary elements, fails
to develop tertiary veins in leaves, and exhibits lesion-mimic yellow spots
on leaves (Matsui et al., 2005), indicating that this gene is involved in the
formation of cell walls of tracheary elements. Another Arabidopsis mutant,
atxth28-1 (in which AtXTH28 is disrupted by a T-DNA insertion), is defective
in efficient self-pollination due to its shorter stamens, suggesting that atxth28
plays a role in the elongation growth of filament cells in the stamen (Kura-
sawa et al., 2009). AtXTH27 and AtXTH28 are similar to each other in terms
of both expression profile and amino acid sequence. These proteins belong to
the group IIIB subclass of the XTH family and are predicted to exhibit XET
activity. However, the phenotype of atxth28 is not enhanced by atxth27, indi-
cating that AtXTH28 is not functionally redundant with AtXTH27 in planta.
XTH is involved in a plant’s responses to light. In general, plants are highly



Trim size: 170mm x 244mm Fukuda c01.tex V3 - 08/20/2014 5:05 P.M. Page 19

THE BIOSYNTHESIS AND FUNCTION OF POLYSACCHARIDE 19

sensitive to the quality, quantity, and direction of light, and they usually escape
from the shade of other plants by rapidly elongating their shoot. This phe-
nomenon, termed shade avoidance, is triggered under low red/far red light and
high green light conditions. These types of light upregulate the expression of
AtXTH9, AtXTH15, AtXTH16, AtXTH17, AtXTH19, and AtXTH22 (Sasidharan
et al., 2010). Interestingly, disrupting only one of these genes can retard accel-
erated shoot growth under such light conditions, indicating the non-redundant
action of these genes on shoot growth.

XTH is also involved in plant defenses. Infestation of celery (Apium grave-
olens) by aphids (Myzus persicae) causes up-regulation of certain XTH genes,
including celery XTH1 specifically in the phloem, a tissue from which aphids
suck plant sap (Divol et al., 2007). Arabidopsis AtXTH33, which is the closest
homolog to celery XTH1, is also up-regulated when Arabidopsis is infested
by aphids. Since aphids preferentially settle on loss-of-function mutant of
AtXTH33 (atxth33) plants compared with wild-type plants, AtXTH33 and its
celery counterpart may play a role in protecting plants from aphids. Since
over-expression of AtXTH33 in Arabidopsis does not increase the resistance
of plants to aphids, factors other than AtXTH33 are likely to be involved in
this defense mechanism.

XTHs are therefore involved in growth responses to environmental stimuli as
well as defense to biotic stresses. For other functions of XTH in the hormonal
regulation of plant growth and responses to biotic and abiotic environmental
stimuli, the reader is referred to previous reviews (Lee et al., 2005; Nishitani
and Vissenberg, 2007).

XEH Activity: Storage xyloglucan, which occurs widely in plant seeds, was
noted as early as the 1830s by Matthias J. Schleiden and was named amyloide
because it was stained blue with iodine (Edwards et al., 1985). The enzyme,
which is capable of specifically hydrolyzing storage xylgolucans, was isolated
and characterized from germinated cotyledons of nasturtium (Tropaeolum
majus L.) and was named xyloglucan-specific endo-(1→4)-β-D-glucanase
before the discovery of the XTH family of proteins (Edwards et al., 1986).
Currently, this hydrolase is classified as a group IIIA XTH.

During germination, storage xyloglucans in cotyledonary cell walls are
degraded into monosaccharides by the sequential actions of hydrolytic
enzymes. These enzymes include glycosidases acting on xyloglucan side
chains as well as XTH members with XEH activity (Dos Santos et al., 2004).
XEH activity is therefore responsible for supplying carbohydrates used for
both respiration and body construction during seed germination.

Interestingly, genes encoding group IIIA XTH are found even in plant
species whose cotyledons do not contain storage xyloglucans (Eklöf and
Brumer, 2010). Arabidopsis does not contain storage xyloglucans in its seeds,
but it does contain two group IIIA XTHs, AtXTH31 and AtXTH32, which
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are expressed in various organs other than seeds. This observation suggests
that group IIIA XTHs may play other roles than in degradation of storage
xyloglucan. In fact, a recent study shows that neither a double mutant of
atxth31 and atxth32 nor transgenic plants impaired in these genes exhibit
prominent phenotypic changes in morphology (Kaewthai et al., 2013). These
results, together with those obtained using the xyloglucan-less double mutant
xxt1/xx2 described in ‘Xyloglucan Structure and Function’, raise questions
about the essential role of xyloglucan in the primary cell wall in determining
cell shape.

Another point worth noting is that rice (Oryza sativa L.), which contains
little xyloglucan in most tissues, still possesses group IIIA XTH with hydrolase
activity; the physiological role of this XTH remains elusive (Hara et al., 2014).

One possible explanation for these discrepancies is that there is an
as-yet-unknown essential factor (or factors) that is in charge of the regulation
of the basic properties of the primary cell wall, and xyloglucans serve as
modulators of this essential factor. This notion is consistent with the newest
structural model of the primary cell wall which has been advanced based
on solid-state, high-resolution, carbon-13 cross-polarization/magic angle
spinning nuclear magnetic resonance studies. This model envisages that
pectin, not xyloglucan, intensively interacts with cellulose microfibrils in the
primary cell wall (Peaucelle et al., 2012; Wang et al., 2012). The possible
role of pectin in determining cell shape is discussed in the next section.

Function of Pectin and PME

As for xyloglucans, pectins are broadly conserved among land plants and they
act as the major component that fills spaces within the cellulose/xyloglucan
network in the primary cell wall. Through the modification of pectin, plants
regulate the physical properties of primary cell walls, thereby directly regu-
lating developmental processes including the control of cell shape in plants.
There have also been recent breakthroughs in understanding pectin biosynthe-
sis and functionality, and a set of enzymes responsible for pectin biosynthesis
has been identified (Mohnen, 2008; Peaucelle et al., 2012; Wang et al., 2012;
Atmodjo et al., 2013). In addition, new roles for pectin in plant growth and
development are being elucidated (Palin and Geitmann, 2012; Peaucelle et al.,
2012). Since recent progress in this field has been reviewed by other authors
(e.g., Atmodjo et al., 2013), this section will focus on PME-mediated mod-
ification of pectin and its biological significance in the determination of cell
shape in plants.
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Basic Mechanisms of PME Action

Pectins as Regulators of the Physical Properties of the Primary Cell Wall: As
stated in ‘Components of the Primary Cell Wall’, pectin consists of three major
domains, namely HG (HG), RG I (RG-1), and RG II (RG-II). HG is the most
abundant domain, accounting for more than 60% of the pectin in the primary
cell wall. HG consists of an unbranched homopolymer of α-D-galacturonic
acid residues, while RG I and RG II have complex side chains. Biosynthe-
sis, methylesterification, and the addition of side chains to pectin main chains
occur in the Golgi apparatus.

An immunolabeling study using sycamore maple (Acer pseudoplatanus
L.) suspension-culture cells has revealed that pectins are polymerized at the
cis-Golgi, methylesterified at the medial-Golgi, and modified with side chains
at the trans-Golgi (Zhang and Staehelin, 1992).

Two galacturonosyltransferases (GalAT), GAUT1 and GAUT7, were
recently demonstrated to form a catalytic core of GalAT in Arabidopsis
(Atmodjo et al., 2011). Interestingly, during the formation of a functional
catalytic core, GAUT1 is processed to cleave the N-terminal transmembrane
domain and is no longer retained in the Golgi, whereas GAUT7 remains
unprocessed. GAUT1 is therefore anchored to the Golgi via association with
GAUT7 to form the GAUT1: GAUT7 complex.

As identified in ‘Components of the Primary Cell Wall’, HG is secreted into
the cell wall space in a highly methylesterified state and is then demethylesteri-
fied by pectin methylesterases (PMEs). The degree and pattern of methylester-
ification are critical factors in determining subsequent reactions, i.e., stiffen-
ing by cross-linking with Ca2+ or degradation by polygalacturonases (PGs).
Unraveling the mode of action of PMEs on HG and its regulatory mecha-
nism would therefore constitute an important advance in understanding how
polysaccharide modification is controlled in the wall space and how closely it
is related to cell wall integrity.

Two Modes of Demethylesterification of Pectin: PME acts on HG in two
different manners, i.e., ‘random’ and ‘linear’ (Fig. 1.4; Micheli, 2001). In the
random mode, PME randomly demethylesterifies galacturonic acid residues
in HG and produces discontinuously demethylesterified regions in HG, which
is susceptible to degradation by PGs, resulting in cell wall loosening or cell
wall disassembly. In the linear mode on the other hand, PME acts on con-
tinuous blocks of galacturonic acid residues along HG, giving rise to blocks
of demethylesterified residues in HG. This facilitates association among the
residues via the highly frequent formation of Ca2+ bridges to form a gel struc-
ture, which contributes to the stiffening of cell walls. Multiple factors such
as pH, cations, and the initial degree of methylesterification (DE) are thought
to affect the mode of action and catalytic properties of PME (Catoire et al.,



Trim size: 170mm x 244mm Fukuda c01.tex V3 - 08/20/2014 5:05 P.M. Page 22

22 FACTORS CONTROLLING PLANT CELL WALL PATTERNING

1998; Denes et al., 2000; Schmohl et al., 2000; Goldberg et al., 2001; Kim
et al., 2005).

Diversification of the PME Family: Pectin is conserved ubiquitously in the
Streptophyta, from charophytes to angiosperms (Popper et al., 2011). The
PME family of enzymes is thought to have arisen along with pectins and under-
gone diversification. In Arabidopsis, 66 members comprise the PME family.
Monocotyledons, especially grasses (whose cell walls contain fewer pectic
polysaccharides than dicotyledonous plants), have relatively few PMEs (c.
40 members in rice and Sorghum bicolor L. Moench). In addition, 15 PME
members are found in Coleochaete orbicularis (Wang et al., 2013). The diver-
sification of PMEs is likely to have contributed to both the functional and
morphological diversification of land plants.

PME Inhibitors: The activity of PME is regulated by specific proteinaceous
inhibitors termed pectin methylesterase inhibitors (PMEIs). PMEI was first
isolated from kiwi fruit (Actinidia chinensis Planch) (Balestrieri et al., 1990).
Kiwi PMEI is a small protein composed of 152 amino acid residues. Its
sequence shows significant similarity to the N-terminal region (termed ‘PRO
region’) of plant PMEs and it binds to PMEs, forming a heterodimeric
complex.

PMEIs also comprise a multigene family in angiosperms, whereas ferns,
mosses, and charophytes have few or no PMEI members (Wang et al., 2013).
The genome of A. thaliana encodes 71 PMEI members. PMEI and PME form
a stoichiometric 1:1 complex. Crystallographic analysis of the PME-PMEI
complex has revealed that plant PMEI is structurally distinct from bacterial
PMEI (Di Matteo et al., 2005). This observation suggests that PMEIs specif-
ically inhibit plant endogenous PMEs, unlike other inhibitor proteins such as
polygalacturonase inhibitor proteins (PGIPs) which function equally against
microbial polygalacturonases. Clustering analysis of PME and PMEI mRNA
data in Arabidopsis has revealed that PMEs can be classified into five clus-
ters with respect to their expression sites (seed coat, shoot apex, micropylar
endosperm, chalazal endosperm, and pollen), and PMEIs are classified within
the same categories as PMEs (Wolf et al., 2009a).

The balanced regulation of PME activity via endogenous inhibitors may
be beneficial to angiosperms, which may be related to the evolution of flo-
ral organs, fruits, and seeds. To date, functional analyses of PMEI reveal that
PMEI is involved in various phenomena (which we discuss below), but little is
known about the individual functions of PME–PMEI pairs, except for a few
such pairs (Peaucelle et al., 2008; Rockel et al., 2008; Reca et al., 2012).

PRO Region of PME: The PME family enzymes belong to Carbohydrate
Esterase Family 8 (CE8) and are classified into two groups based on their
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primary structures (Pelloux et al., 2007). In A. thaliana, 47 out of 66 PME
members are classified as Group 1 which is characterized by the presence of a
PRO region in the N-terminus; the remaining members are classified as Group
2, which lack PRO in the N-terminal region. During the maturation of PMEs,
the N-terminal PRO regions are processed by a protease which cleaves the
PRO region.

Since PRO regions have structural similarities to PMEI, several possible
roles for these regions have been proposed. These regions may serve as:
(1) molecular chaperones for PME folding (Shinde and Inouye, 1993); (2)
inhibitors of PME; and/or (3) regulators of PME targeting to the cell wall
(Micheli, 2001). Experiments using tobacco pollen tubes support the latter
two possibilities, namely inhibitory and targeting functions for the PRO
region, although the supporting evidence for these roles is rather indirect
(Bosch et al., 2005). A tobacco transient assay study also indicates that the
PRO region is required for the export of PME from the Golgi apparatus to
the cell wall (Wolf et al., 2009b). Subtilase, a putative proteinase capable of
cleaving the PRO region, is also of interest and is currently being investigated.
Unveiling the role of PME (as regulated by PMEI and the PRO region)
is crucial for understanding the individual roles of pectin modifications in
individual cell types at different growth stages.

Other Regulators of Pectin Demethylesterification: The regulatory mecha-
nisms of pectin demethylesterification are likely to vary depending on tissue
and organ type as well as developmental events. Recent studies have revealed
the emerging roles of indirect regulators of pectin demethylesterification as
well as PMEI. Plant hormones may represent one such type of regulator,
because plant hormones are master regulators of many developmental events
that require PME activity. Recently, PME was shown to act downstream of
auxin signaling in phyllotactic events (Peaucelle et al., 2011b; Braybrook and
Peaucelle, 2013). Another study has also revealed that brassinosteroids have
an effect on PME activity in the maintenance of cell wall integrity in growing
cells (Wolf et al., 2012b). Interestingly, an ubiquitin ligase has emerged
as another putative regulator of demethylesterification in seed mucilage
pectin (Voiniciuc et al., 2013). Several transcription factors that regulate
the expression of PMEs in specific cell types were also reported recently
(Peaucelle et al., 2011b; Phan et al., 2011; Negi et al., 2013).

Physiological Roles of Pectin Modification

Pectin Modification in Plant Development and Adaptation to Environmental
Changes: As mentioned in ‘Components of the Primary Cell Wall’ and at
the beginning of this section, the modification of pectins by PMEs and their
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regulators plays a crucial role in multiple steps of development by affecting
cell wall properties. PME-mediated random demethylesterification, followed
by PG-mediated degradation of pectin, is thought to lead to fruit softening
in some species such as watermelon, tomato, and peach (Tieman and Handa,
1994; Kagan-Zur et al., 1995; Brummell et al., 2004; Karakurt and Huber,
2004). PMEI plays an important role in fruit ripening. PMEI purified from
ripe fruit is a well-known proteinaceous inhibitor (Balestrieri et al., 1990),
although the physiological function of this compound has not been fully clari-
fied. PME-mediated enhancement of pectin degradation by PG is also involved
in cell adhesion, which contributes to tissue abscission and senescence (Willats
et al., 2001; Arancibia and Motsenbocker, 2006).

On the other hand, PME and PMEI are involved in multiple steps of plant
development because they regulate cell wall stiffening (or suppress stiffening
in the case of PMEI). Many studies have suggested the involvement of mutual
regulation of PME and PMEI in the growth of hypocotyls, flower stems, roots,
and many other organs. Recently, mucilage extrusion in Arabidopsis seed
coats was successfully used as a model system to study pectin degradation.
Seed mucilage is chiefly composed of unbranched RG-I and small amounts
of HG, cellulose, and xyloglucan, and contributes to protecting germinating
seeds against drought. Recent work demonstrates that the suppression of
pectin demethylesterification by PMEI6 promotes mucilage release, and a
subtilase is also involved in this regulatory process (Saez-Aguayo et al.,
2013).

Another PME member, PME5, plays a role in generating proper shoot
phyllotaxis. This PME acts in Arabidopsis shoot meristems and, unexpect-
edly, increases the elasticity of meristematic cell walls (Peaucelle et al.,
2008, 2011a, 2011b). By contrast, primary cell wall stiffening mediated by
demethylesterification of pectin contributes to the mechanical support to the
basal part of the stem (Hongo et al., 2012). Pectin modification is therefore
important, even in non-growing tissues. These results imply that the mode of
action of PME varies depending on its site of action, even in the stem.

Cell wall modification also plays a critical role in the plant’s interaction with
the environment. PME activity affects a plant’s susceptibility to fungi, bac-
teria, viruses, herbivores, and nematodes (reviewed in Lionetti et al., 2012).
Highly methylesterified pectin is likely to be most susceptible to degradation
by microbial pathogens (Lionetti et al., 2007; Volpi et al., 2011), whereas
the action of fruit-specific PME and the consequent generation of oligogalac-
turonides by PG reinforce plant defenses against pathogens in strawberries
(Osorio et al., 2008, 2011). Moreover, the involvement of PME in metal toler-
ance was recently revealed (Weber et al., 2013). Since demethylesterification
of HG increases its capacity to interact with apoplastic cations, HG may con-
tribute to the maintenance of metal homeostasis in the cell wall space.
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There are other studies showing that polarized or anisotropic demethylester-
ification occurs within a cell wall through the action of PME, and its
inhibition by PMEI is coordinated with the formation of individual cell
shape. This phenomenon is well-characterized during pollen tube growth,
and the PME–PMEI interaction was shown to be involved in this process.
In tobacco (Nicotiana tabacum L.) the apical region of the pollen tube is
highly methylesterified, and demethylesterification by exogenously applied
PME results in thickening of the apical cell wall and inhibition of pollen tube
growth (Bosch et al., 2005).

Using a transient expression system in tobacco pollen tubes, the growth-pro-
moting activity of Arabidopsis AtPMEI2 and the growth-inhibiting effect of
AtPPME1 have been demonstrated. In Arabidopsis, AtPMEI2 accumulates in
the apical region of the growing pollen tube, whereas AtPPME1 exhibits a
non-polarized localization (Rockel et al., 2008).

In addition, PME activity may influence trichome formation and stomatal
development although, to date, there is no direct evidence that demethylester-
ification of pectin is required for polarized growth of the cells (Francis et al.,
2006; Bischoff et al., 2010; Negi et al., 2013).

The PME family of enzymes, together with their specific inhibitors in the
PMEI family proteins, plays many diverse roles in various developmental pro-
cesses in almost every tissue. Their individual roles still remain elusive how-
ever, and the whole picture of PME/PMEI function has not yet been described.
Elucidating these complicated mechanisms is highly important for unveiling
the role of the cell wall in determining cell shape, and thus the growth patterns
and function of the plant itself.
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