
PART I

➤ CHAPTER 1: Introducing Java Platform, Enterprise Edition

➤ CHAPTER 2: Using Web Containers

➤ CHAPTER 3: Writing Your First Servlet

➤ CHAPTER 4: Using JSPs to Display Content

➤ CHAPTER 5: Maintaining State Using Sessions

➤ CHAPTER 6: Using the Expression Language in JSPsage in JSP

➤ CHAPTER 7: Using the Java Standard Tag LibraryTag Library

➤ CHAPTER 8: Writing Custom Tag and Function Librariesand Function Libraries

➤ CHAPTER 9: Improving Your Application Using Filtersur Application Using Filters

➤ CHAPTER 10: Making Your Application Interactive with WebSocketsYour A plication Interactive with WebSockets

➤ CHAPTER 11: Using Logging to Monitor Your Applicationsing Logging to Monitor Your Application

c01.indd 1c01.indd 1 11/6/2019 6:18:36 PM11/6/2019 6:18:36 PM

CO
PYRIG

HTED
 M

ATERIA
L

c01.indd 2c01.indd 2 11/6/2019 6:18:37 PM11/6/2019 6:18:37 PM

IN THIS CHAPTER

➤ Java SE and Java EE version timeline

➤ Introducing Servlets, fi lters, listeners, and JSPs

➤ Understanding WAR, and EAR fi les, and the class loader hierarchy

WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

There are no code downloads for this chapter.

NEW MAVEN DEPENDENCIES FOR THIS CHAPTER

There are no Maven dependencies for this chapter.

A TIMELINE OF JAVA PLATFORMS

The Java language and its platforms have had a long and storied history. From its invention in
the mid-‘90s to an evolution drought from 2007 to nearly 2012, Java has gone through many
changes and encountered its share of controversy. In the earliest days, Java, known as the Java
Development Kit or JDK, was a language tightly coupled to a platform composed of a small
set of essential application programming interfaces (APIs). Sun Microsystems unveiled the
earliest alpha and beta versions in 1995, and although Java was extremely slow and primitive
by today’s standards, it began a revolution in software development.

1

c01.indd 3c01.indd 3 11/6/2019 6:18:37 PM11/6/2019 6:18:37 PM

4 ❘ CHAPTER 1 INTRODUCING JAVA PLATFORM, ENTERPRISE EDITION

In the Beginning
Java’s history is summarized in Figure 1-1, a timeline of Java platforms. As of the publication of this
book, the Java language and the Java SE platform have always evolved together — new versions of
each always release at the same time and are tightly coupled to one another. The platform was called
the JDK through version 1.1 in 1997, but by version 1.2 it was clear that the JDK and the platform
were not synonymous. Starting with version 1.2 in late 1998, the Java technology stack was divided
into the following key components:

FIGURE 1-1: A timeline showing the correlation of the evolution of Java Platform, Standard Edition and
Java Platform, Enterprise Edition. The events on top of the timeline represent Java SE milestones while the
events on the bottom represent Java EE milestones.

Feb 19, 1997
JDK 1.1 Released

May 8, 2000
J2SE 1.3 Released

Sep 30, 2004
J2SE 5.0 Released

Dec 11, 2006
Java SE 6 Released

Jul 28, 2011
Java SE 7 Released

Dec 8, 1998
J2SE 1.2 Released

Feb 6, 2002
J2SE 1.4 Released

1995 2015
Jun 1997

Servlets 1.0
Released

May 1998
Java Professional

Edition (JPE) Announced

Dec 12, 1999
J2EE 1.2 Released

Nov 11, 2003
J2EE 1.4 Released

May 11, 2006
Java EE 5 Released

2006-2009
Java EE Drought #1

2010-2013
Java EE Drought #2

Dec 10, 2009
Java EE 6 Released

Jun 12, 2013
Java EE 7 Released

Sep 24,2001
J2EE 1.3 Released

2007-2011
The 5-Year Java Drought Mar 18, 2014

Java SE 8 Released

Jan 23, 1996
JDK 1.0 Released

1995
JDK Beta

Java is the language and includes a strict and strongly typed syntax with which you should
be very familiar by now.

➤ Java 2 Platform, Standard Edition, also known as J2SE, referred to the platform and
included the classes in the java.lang and java.io packages, among others. It was the
building block that Java applications were built upon.

➤ A Java Virtual Machine, or JVM, is a software virtual machine that runs compiled Java
code. Because compiled Java code is merely bytecode, the JVM is responsible for compiling
that bytecode to machine code before running it. (This is often called the Just In Time
Compiler or JIT Compiler.) The JVM also takes care of memory management so that
application code doesn’t have to.

➤ The Java Development Kit, or JDK, was and remains the piece of software Java developers
use to create Java applications. It contains a Java language compiler, a documentation
generator, tools for working with native code, and (typically) the Java source code for the
platform to enable debugging platform classes.

➤ The Java Runtime Environment, or JRE, was and remains the piece of software end users
download to run compiled Java applications. It includes a JVM but does not contain any of
the development tools bundled in the JDK. The JDK, however, does contain a JRE.

c01.indd 4c01.indd 4 11/6/2019 6:18:39 PM11/6/2019 6:18:39 PM

A Timeline of Java Platforms ❘ 5

All fi ve of these components have historically been specifi cations, not implementations. Any
company may create its own implementation of this Java technology stack, and many companies
have. Though Sun offered a standard implementation of Java, J2SE, the JVM, the JDK, and the
JRE, IBM, Oracle, and Apple also created competing implementations that offered different
features.

The IBM implementation was born out of need — Sun didn’t offer binaries capable of running on
IBM operating systems, so IBM created its own. The situation was similar for the Apple Mac OS
operating system, so Apple rolled its own implementation as well. Although the implementations
offered by these companies were all free as in beer, they were not free as in freedom, so they were
not considered open source software. As such, the open source community quickly formed the
OpenJDK project, which provided an open source implementation of the Java stack.

Still more companies created less popular implementations, some of which compiled your
application to machine code for a target architecture to improve performance by avoiding JIT
compilation. For the vast majority of users and developers, the Sun Java implementation was both
suffi cient and preferred. After Oracle’s purchase of Sun, the Sun and Oracle implementations
became one and the same.

Not shown in Figure 1-1 is the development of other languages capable of using the J2SE and
running on the JVM. Over the years, dozens of languages appeared that can compile to Java
bytecode (or machine code, in some cases) and run on the JVM. The most high-profi le of these are
Clojure (a Lisp dialect), Groovy, JRuby (a Java-based Ruby implementation), Jython (a Java-based
Python implementation), Rhino, and Scala.

The Birth of Enterprise Java
This brief history lesson might seem unnecessary — as an existing Java developer, you have likely
heard most of this before. However, it’s important to include the context of the history of
the Java Platform, Standard Edition, because it is tightly woven into the birth and evolution of the
Java Platform, Enterprise Edition. Sun was already aware of the need for more advanced tools for
application development, particularly in the arena of the growing Internet and the popularity of
web applications. In 1998, shortly before the release of J2SE 1.2, Sun announced it was working
on a product called the Java Professional Edition, or JPE. Work had already begun on a technology
known as Servlets, which are miniature applications capable of responding to HTTP requests. In
1997, Java Servlets 1.0 released alongside the Java Web Server with little fanfare because it lacked
many features that the Java community wanted.

After several internal iterations of Servlets and the JPE, Sun released Java 2 Platform, Enterprise
Edition (or J2EE) version 1.2 on December 12, 1999. The version number corresponded with the
current Java and J2SE version at the time, and the specifi cation included:

➤ Servlets 2.2

➤ JDBC Extension API 2.0

➤ Java Naming and Directory Interface (JNDI) 1.0

➤ JavaServer Pages (JSP) 1.2

➤ Enterprise JavaBeans (EJB) 1.1

c01.indd 5c01.indd 5 11/6/2019 6:18:40 PM11/6/2019 6:18:40 PM

6 ❘ CHAPTER 1 INTRODUCING JAVA PLATFORM, ENTERPRISE EDITION

➤ Java Message Service (JMS) 1.0

➤ Java Transaction API (JTA) 1.0

➤ JavaMail API 1.1

➤ JavaBeans Activation Framework (JAF) 1.0.

Like J2SE, J2EE was a mere specifi cation. Sun provided a reference implementation of
the specifi cation’s components, but companies were free to create their own as well. Many
implementations evolved, and you learn about some of them in the next chapter. These
implementations included and still include open source and commercial solutions. The J2EE quickly
became a successful complement to the J2SE, and over the years some components were deemed so
indispensable that they have migrated from J2EE to J2SE.

Java SE and Java EE Evolving Together
J2EE 1.3 released in September 2001, a little more than a year after Java and J2SE 1.3 and before
Java/J2SE 1.4. Most of its components received minor upgrades, and new features were added into
the fold. The following joined the J2EE specifi cation, and the array of implementations expanded
and upgraded:

➤ Java API for XML Processing (JAXP) 1.1

➤ JavaServer Pages Standard Tag Library (JSTL) 1.0

➤ J2EE Connector Architecture 1.0

➤ Java Authentication and Authorization Service (JAAS) 1.0

At this point the technology was maturing considerably, but it still had plenty of room for
improvement.

J2EE 1.4 represented a major leap in the evolution of the Java Platform, Enterprise Edition. Released
in November 2003 (approximately a year before Java/J2SE 5.0 and 2 years after Java/J2SE 1.4), it
included Servlet 2.4 and JSP 2.0. It was in this version that the JDBC Extension API, JNDI, and
JAAS specifi cations were removed because they had been deemed essential to Java and moved to
Java/J2SE 1.4. This version also represented the point at which J2EE components were broken up
into several higher-level categories:

➤ Web Services Technologies: Included JAXP 1.2 and the new Web Services for J2EE 1.1, Java
API for XML-based RPC (JAX-RPC) 1.1, and Java API for XML Registries (JAXR) 1.0

➤ Web Application Technologies: Included the Servlet, JSP, and JSTL 1.1 components, as well
as the new Java Server Faces (JSF) 1.1

➤ Enterprise Application Technologies: Included EJB 2.1, Connector Architecture 1.5, JMS
1.1, JTA, JavaMail 1.3, and JAF

➤ Management and Security Technologies: Included Java Authorization Service Provider
Contract for Containers (JACC) 1.0, Java Management Extensions (JMX) 1.2, Enterprise
Edition Management API 1.0, and Enterprise Edition Deployment API 1.1

c01.indd 6c01.indd 6 11/6/2019 6:18:40 PM11/6/2019 6:18:40 PM

A Timeline of Java Platforms ❘ 7

The Era of the Name Changes
Enter the era of the name changes, which are often a source of confusion for Java developers. They
are highlighted here so that you fully understand the naming conventions used in this book and how
they relate to the previous naming conventions you may already be familiar with. Java and J2SE
5.0 were released in September 2004, and included generics, annotations, and enums, three of the
most radical language syntax changes in Java history. This version number was a departure from
previous patterns, made more confusing by the fact that the J2SE APIs and the java command-
line tool reported the version number as being 1.5. Sun had made the decision to drop the 1 from
the publicized version number and go by the minor version, instead. It quickly recognized that the
“dot-oh” on the end of the version number was a source of confusion and quickly began referring to
it as simply version 5.

About the same time, the decision was made to retire the name Java 2 Platform, Standard Edition
in favor of Java Platform, Standard Edition and to abbreviate this new name Java SE. The changes
were made formal with Java SE 6, released in December 2006, and to this day the name and version
convention has remain unchanged. Java SE 6 is internally 1.6, Java SE 7 is internally 1.7, and Java
SE 8 is internally 1.8.

The same name and number change decisions were applied to J2EE, but because J2EE 1.5 was set
to release between J2SE 5.0 and Java SE 6, the changes were applied a version early. Java Platform,
Enterprise Edition 5, or Java EE 5, was released in May 2006, approximately 18 months after J2SE
5.0 and 7 months before Java SE 6. Internally Java EE 5 is 1.5, Java EE 6 is 1.6, and Java EE 7 is
1.7. Whenever you see the terms J2SE or Java SE, they are interchangeable, and the preferred and
accepted name today is Java SE. Likewise, J2EE and Java EE are interchangeable, but Java EE is
preferred today. The rest of this book refers to them exclusively as Java SE and Java EE.

Java EE 5 grew and included numerous changes and improvements again, and today it is still one of
the most widely deployed Java EE versions. It included the following changes and additions:

➤ JAXP and JMX moved to J2SE 5.0 and were not included in Java EE 5.

➤ Java API for XML-based Web Services (JAX-WS) 2.0, Java Architecture for XML Binding
(JAXB) 2.0, Web Service Metadata for the Java Platform 2.0, SOAP with Attachments API
for Java (SAAJ) 1.2, and Streaming API for XML (StAX) 1.0 were added to Web Services
Technology.

➤ Java Persistence API (JPA) 1.0 and Common Annotations API 1.0 were added to Enterprise
Applications Technology.

The Java SE and EE Droughts
The release of Java SE 6 in December 2006, marked the beginning of a drought for Java SE releases
that lasted approximately 5 years. This time was a period of frustration and even anger for many
in the Java community. Sun continued to promise new language features and APIs for Java SE 7, but
the schedule continued to slip year after year with no end in sight. Meanwhile other technologies,
such as the C# language and .NET platform, caught up to and surpassed Java in language features
and platform APIs, causing some to speculate whether Java had reached the end of its useful life.
To make matters worse, Java EE entered its own drought period and by 2009, more than 3 years

c01.indd 7c01.indd 7 11/6/2019 6:18:40 PM11/6/2019 6:18:40 PM

8 ❘ CHAPTER 1 INTRODUCING JAVA PLATFORM, ENTERPRISE EDITION

had passed since Java EE 5 was released. All was not lost, however. Java EE 6 development picked
up in early 2009, and it released in December 2009, 3 years and 7 months after Java EE 5, and 3
years almost to the day after Java SE 6.

By this time, Java Enterprise Edition became enormous:

➤ SAAJ, StAX, and JAF moved to Java SE 6.

➤ The Java API for RESTful Web Services (JAX-RS) 1.1 and Java APIs for XML Messaging
(JAXM) 1.3 specifi cations were added to Web Services Technologies.

➤ The Java Unifi ed Expression Language (JUEL or just EL) 2.0 was added to Web Application
Technologies.

➤ Management and Security Technologies saw the addition of Java Authentication Service
Provider Interface for Containers (JASPIC) 1.0.

➤ Enterprise Application Technologies realized the most dramatic increase in features,
including Contexts and Dependency Injection for Java (CDI) 1.0, Dependency Injection
for Java 1.0, Bean Validation 1.0, Managed Beans 1.0, and Interceptors 1.1, in addition to
updates to all its other components.

Java EE 6 also represented a major turning point in the architecture of Java EE on two fronts:

➤ This version introduced annotation-based and programmatic application confi guration to
complement the traditional XML confi guration used for more than a decade.

➤ This version marked the introduction of the Java EE Web Profi le.

To account for the fact that Java EE had become so large (and maintaining and updating certifi ed
implementations was becoming increasingly diffi cult), the Web Profi le certifi cation program offered
the opportunity to certify Java EE implementations that included only a subset of the entire Java
EE platform. This subset included the features deemed to be most critical to a large number of
applications and excluded specifi cations that are used only by a small minority of applications. As of
Java EE 6:

➤ None of the Web Services or Management and Security components are part of the Java EE
Web Profi le.

➤ The Web Profi le includes everything from Web Application Technologies and everything
from Enterprise Application Technologies except Java EE Connector Architecture, JMS, and
JavaMail.

It was during the 5-year Java drought that Oracle Corporation bought Sun Microsystems in January
2010. Coupled with the Java SE drought, this brought a whole new set of concerns for the Java
community. Oracle was never known for its agility or willingness to cooperate with open source
projects, and many people feared Oracle had bought Sun to shut Java down. However, this turned
out not to be the case.

Early on, Oracle began reorganizing the Java team, creating communication pipelines with the
open source community, and releasing roadmaps for future Java SE and Java EE versions that were
more realistic than anything Sun had promised. Work began anew on Java SE 7, which released on

c01.indd 8c01.indd 8 11/6/2019 6:18:40 PM11/6/2019 6:18:40 PM

A Timeline of Java Platforms ❘ 9

(Oracle’s) schedule in June 2011, almost 5 years after Java SE 6. A second Java EE drought ended
with the release of Java EE 7 in June 2013, 3 years and 7 months after Java EE 6. Oracle now says
it is on track to begin releasing new versions of both platforms every 2 years, on alternate years. It
remains to be seen whether that will come to pass.

Understanding the Most Recent Platform Features
Java SE 7 and 8 and Java EE 7 have brought major changes to the language and supporting APIs and
resulted in a rejuvenation of Java technologies. You use these new features throughout this book, so
this section provides an overview of them.

J ava SE 7
Originally, Java SE 7 had a very ambitious feature list, but after acquiring Sun, Oracle quickly
admitted that achieving the goals for Java SE 7 would take many, many years. Every feature was the
most important feature to some group of users, so the decision was made to defer some of them to
future versions. The alternative was to delay the release of Java SE 7 until 2015 or later — an option
that was not acceptable.

Java SE 7 included support for dynamic languages as well as compressed 64-bit pointers (for
improved performance on 64-bit JVMs). It also added several language features that made
developing Java applications more productive. Perhaps one of the most useful changes was
diamonds, a shortcut for generic instantiation. Prior to Java 7, both the variable declaration and the
variable assignment for generic types had to include the generic type arguments. For example, here
is a declaration and assignment for a very complex java.util.Map variable:

 Map<String, Map<String, Map<Integer, List<MyBean>>>> map =
 new Hashtable<String, Map<String, Map<Integer, List<MyBean>>>>();

Of course, this declaration contains a lot of redundant information. Assigning anything other than
a Map<String, Map<String, Map<Integer, List<MyBean>>>> to this variable would be illegal,
so why should you have to specify all those type arguments again? Using Java 7 diamonds, this
declaration and assignment becomes much simpler. The compiler infers the type arguments for the
instantiated java.util.Hashtable.

 Map<String, Map<String, Map<Integer, List<MyBean>>>> map = new Hashtable<>();

Another common complaint about Java prior to Java 7 is the management of closable resources as it
relates to try-catch-finally blocks. In particular, consider this nasty bit of JDBC code:

 Connection connection = null;
 PreparedStatement statement = null;
 ResultSet resultSet = null;
 try
 {
 connection = dataSource.getConnection();
 statement = connection.prepareStatement(...);
 // set up statement
 resultSet = statement.executeQuery();
 // do something with result set
 }

c01.indd 9c01.indd 9 11/6/2019 6:18:40 PM11/6/2019 6:18:40 PM

10 ❘ CHAPTER 1 INTRODUCING JAVA PLATFORM, ENTERPRISE EDITION

 catch(SQLException e)
 {
 // do something with exception
 }
 finally
 {
 if(resultSet != null) {
 try {
 resultSet.close();
 } catch(SQLException ignore) { }
 }

 if(statement != null) {
 try {
 statement.close();
 } catch(SQLException ignore) { }
 }

 if(connection != null && !connection.isClosed()) {
 try {
 connection.close();
 } catch(SQLException ignore) { }
 }
 }

Java 7’s try-with-resources has drastically simplifi ed this task. Any class implementing
java.lang.AutoCloseable is eligible for use in a try-with-resources construct. The JDBC
Connection, PreparedStatement, and ResultSet interfaces extend this interface. When you
use try-with-resources as shown in the following example, the resources you declare within the
try keyword’s parentheses are automatically closed in an implicit finally block. Any exceptions
thrown during this cleanup are added to an existing exception’s suppressed exceptions or, if there is
no existing exception, are thrown after the resources have all been closed.

 try(Connection connection = dataSource.getConnection();
 PreparedStatement statement = connection.prepareStatement(...))
 {
 // set up statement
 try(ResultSet resultSet = statement.executeQuery())
 {
 // do something with result set
 }
 }
 catch(SQLException e)
 {
 // do something with exception
 }

Another improvement made to try-catch-fi nally is the addition of multi-catch. As of Java 7 you can
now catch multiple exceptions within a single catch block, separating the exception types with a
single pipe. For example:

 try
 {
 // do something

c01.indd 10c01.indd 10 11/6/2019 6:18:40 PM11/6/2019 6:18:40 PM

A Timeline of Java Platforms ❘ 11

 }
 catch(MyException | YourException e)
 {
 // handle these exceptions the same way
 }

One caveat to keep in mind is that you can’t multi-catch two or more exceptions such that one
inherits from another. For example, the following is prohibited because FileNotFoundException
extends IOException:

 try {
 // do something
 } catch(IOException | FileNotFoundException e) {
 // handle these exceptions the same way
 }

Of course, this can easily be considered a matter of common sense. In this case, you would simply
catch IOException, which would catch both types of exceptions.

A few other miscellaneous language features in Java 7 include binary literals for bytes and integers
(you can write the literal 1928 as 0b11110001000) and underscores in numeric literals (you can
write the same literals as 1_928 and 0b111_1000_1000, if desired). In addition, you can fi nally use
Strings as switch arguments.

Java EE 7
Java EE 7, released on June 12, 2013, contains a number of changes and new features. You’ll cover
many of these new features throughout this book, so they are not detailed here. In summary, the
changes to Java EE 7 are as follows:

➤ JAXB was added to Java SE 7 and is no longer included in Java EE.

➤ Batch Applications for the Java Platform 1.0 and Concurrency Utilities for Java EE 1.0 were
added to Enterprise Application Technologies.

➤ Web Application Technologies picked up Java API for WebSockets 1.0 (which you learn
about in Chapter 10) and Java API for JSON Processing 1.0.

➤ The Java Unifi ed Expression Language has been signifi cantly expanded to include lambda
expressions and an analog of the Java SE 8 Collections Stream API. (You learn more about
this in Chapter 6.)

➤ The Web Profi le was expanded slightly to include specifi cations more likely to be required
in common web applications: JAX-RS, Java API for WebSockets, and Java API for JSON
Processing.

Java SE 8
The new features in Java SE 8 can come in very handy as you work the examples in this book.
Perhaps most visible is the addition of lambda expressions (unoffi cially known as closures). Lambda
expressions are anonymous functions that are defi ned, and possibly called, without being assigned

c01.indd 11c01.indd 11 11/6/2019 6:18:41 PM11/6/2019 6:18:41 PM

12 ❘ CHAPTER 1 INTRODUCING JAVA PLATFORM, ENTERPRISE EDITION

a type name or bound to an identifi er. Lambda expressions are particularly useful for anonymously
implementing those one-method interfaces that are so common in Java applications. For example, a
Thread that was previously instantiated with an anonymous Runnable like this:

 public String doSomethingInThread(String someArgument)
 {
 ...
 Thread thread = new Thread(new Runnable() {
 @Override
 public void run()
 {
 // do something
 }
 });
 ...
 }

can now be simplifi ed with a lambda expression:

 public String doSomethingInThread(String someArgument)
 {
 ...
 Thread thread = new Thread(() -> {
 // do something
 });
 ...
 }

Lambda expressions can have arguments, return types, and generics. And where desired, you can
use a method reference instead of a lambda expression to pass a reference to an interface-matching
method. The following code is also equivalent to the previous two instantiations of Thread. You can
also assign method references and lambda expressions to variables.

 public String doSomethingInThread(String someArgument)
 {
 ...
 Thread thread = new Thread(this::doSomething);
 ...
 }

 public void doSomething()
 {
 // do something
 }

One of the biggest complaints among Java users since its earliest days is the lack of a decent date and
time API. java.util.Date has always been rife with problems, and the addition of java.util
.Calendar just made many problems worse. Java SE 8 fi nally addresses that with JSR 310, a new
date and time API. This API is based largely on Joda Time, but with improvements to the underlying
architecture to fi x problems in it that the Joda Time inventor pointed out. This API is a revolutionary
addition to the Java SE platform APIs and fi nally brings a powerful and well-designed date and time
API to Java.

c01.indd 12c01.indd 12 11/6/2019 6:18:41 PM11/6/2019 6:18:41 PM

Understanding the Basic Web Application Structure ❘ 13

A Continuing Evolution
As you can tell, the Java SE and EE platforms were born together and have evolved hand-in-hand
for nearly two decades. It’s probable that they will continue to evolve together for many years or
decades to come. You should be fairly familiar with Java SE, but it’s possible you know absolutely
nothing about using Java EE. It’s also possible you’re familiar with older Java EE versions but want
to learn more about the new features in Java EE.

Part I of this book teaches you about the most important features in Java EE, including:

➤ Application servers and web containers (Chapter 2)

➤ Servlets (Chapter 3)

➤ JSPs (Chapters 4, 6, 7, and 8)

➤ HTTP sessions (Chapter 5)

➤ Filters (Chapter 9)

➤ WebSockets (Chapter 10).

UNDERSTANDING THE BASIC WEB APPLICATION STRUCTURE

A lot of components go into making a Java EE web application. First, you have your code and
the third-party libraries it depends on. Then you have the deployment descriptor, which includes
instructions for deploying and starting your application. You also have the ClassLoaders
responsible for isolating your application from other web applications on the same server. Finally,
you must package your application somehow, and for that you have WAR and EAR fi les.

Servlets, Filters, Listeners, and JSPs
Servlets are a key component of any Java EE web application. Servlets, which you learn about in
Chapter 3, are Java classes responsible for accepting and responding to HTTP requests. Nearly
every request to your application goes through a Servlet of some type, except those requests that are
erroneous or intercepted by some other component. A fi lter is one such component that can intercept
requests to your Servlets. You can use fi lters to meet a variety of needs, from data formatting, to
response compression, to authentication and authorization. You explore the various uses of fi lters in
Chapter 9.

As with many other different types of applications, web applications have a life cycle. There are
both startup and shutdown processes, and many different things happen during these stages.
Java EE web applications support various types of listeners, which you learn about throughout
Parts I and II. These listeners can notify your code of multiple events, such as application startup,
application shutdown, HTTP session creation, and session destruction.

Perhaps one of the most powerful Java EE tools at your disposal is the JavaServer Pages technology,
or JSP. JSPs provide you with the means to easily create dynamic, HTML-based graphical user
interfaces for your web applications without having to manually write Strings of HTML to an
OutputStream or PrintWriter. The topic of JSPs encompasses many different facets, including the

c01.indd 13c01.indd 13 11/6/2019 6:18:41 PM11/6/2019 6:18:41 PM

14 ❘ CHAPTER 1 INTRODUCING JAVA PLATFORM, ENTERPRISE EDITION

JavaServer Pages Standard Tag Library, the Java Unifi ed Expression Language, custom tags, and
internationalization and localization. You will spend signifi cant time on these features in Chapter 4
and Chapters 6 through 9.

Of course, there are many more features in Java EE than just Servlets, fi lters, listeners, and JSPs.
You will cover many of these in this book, but not all of them.

Directory Structure and WAR Files
Standard Java EE web applications are deployed as WAR fi les or “exploded” (unarchived) web
application directories. You should already be familiar with JAR, or Java Archive, fi les. Recall that a
JAR fi le is simply a ZIP-formatted archive with a standard directory structure recognized by JVMs.
There is nothing proprietary about the JAR fi le format, and any ZIP archive application can create
and read JAR fi les. A Web Application Archive, or WAR, fi le is the equivalent archive fi le for Java
EE web applications.

All Java EE web application servers support WAR fi le application archives. Most also support
exploded application directories. Whether archived or exploded, the directory structure convention,
as shown in Figure 1-2, is the same. Like a JAR fi le, this structure contains classes and other
application resources, but those classes are not stored relative to the application root as in a JAR fi le.
Instead, the class fi les live in /WEB-INF/classes. The WEB-INF directory stores informational and
instructional fi les that Java EE web application servers use to determine how to deploy and run the
application. Its classes directory acts as the package root. All your compiled application class fi les
and other resources live within this directory.

Unlike standard JAR fi les, WAR fi les can contain bundled
JAR fi les, which live in /WEB-INF/lib. All the classes in
the JAR fi les in this directory are also available to the
application on the application’s classpath. The /WEB-
INF/tags and /WEB-INF/tld directories are reserved
for holding JSP tag fi les and tag library descriptors,
respectively. You’ll explore the topic of tag fi les and tag
libraries thoroughly in Chapter 8. The i18n directory
is not actually part of the Java EE specifi cations, but it
is a convention that most application developers follow
for storing internationalization (i18n) and localization
(L10n) fi les.

You probably also noticed the presence of two different
META-INF directories. This can be a source of confusion
for some developers, but if you remember the simple
classpath rules, you can easily differentiate the two. Like
JAR fi le META-INF directories, the root-level /META-INF
directory contains the application manifest fi le. It can
also contain resources for specifi c web containers or
application servers. For example, Apache Tomcat (which
you’ll learn about in Chapter 2) looks for and uses a
context.xml fi le in this directory to help customize how
the application is deployed in Tomcat. None of these fi les FIGURE 1-2

WebApplication Root

META-INF

MANIFEST.MF

Container Resources

WEB-INF

classes

META-INF

Application Resources

Internationalization Files

Bundled JAR Files

JSP Tag Files

Java .class Files and Resources

i18n

lib

tags

JSP Tag Library Descriptors

Other Web-Accessible Files

tld

c01.indd 14c01.indd 14 11/6/2019 6:18:41 PM11/6/2019 6:18:41 PM

Understanding the Basic Web Application Structure ❘ 15

are part of the Java EE specifi cation, and the supported fi les can vary from one application server or
web container to the next.

Unlike JAR fi les, the root-level /META-INF directory is not on the application classpath. You cannot t
use the ClassLoader to obtain resources in this directory. /WEB-INF/classes/META-INF, however,
is on the classpath. You can place any application resources you desire in this directory, and they
become accessible through the ClassLoader. Some Java EE components specify fi les that belong
in this directory. For example, the Java Persistence API (which you’ll learn about in Part III of this
book) specifi es two fi les — one named persistence.xml and another orm.xml — that live in
/WEB-INF/classes/META-INF.

Most fi les contained within a WAR fi le or exploded web application directory are resources directly
accessible through a URL. For example, the fi le /bar.html relative to the root of an application
deployed to http://example.org/foo is accessible from http://example.org/foo/bar.html.
In the absence of any fi lter or security rules to the contrary, this holds true for all resources in your l
application except those resources under the /WEB-INF and /META-INF directories. The fi les in these
directories are protected resources that are not accessible via URL.

The Deployment Descriptor
The deployment descriptor is the metadata that describes the web application and provides
instructions to the Java EE web application server for deploying and running the web application.
Traditionally, all this metadata came from the deployment descriptor fi le, /WEB-INF/web.xml.
This fi le contains defi nitions for Servlets, listeners, and fi lters, and confi guration options for HTTP
sessions, JSPs, and the application in general. Servlet 3.0 in Java EE 6 added the ability to confi gure
web applications using annotations and a Java confi guration API. It also added the notion of web
fragments — JAR fi les within your application can contain Servlets, fi lters, and listeners confi gured
in /META-INF/web-fragment.xml deployment descriptors within the necessary JAR fi les. Web
fragments can also use annotations and the Java confi guration API.

This change to the deployment of web applications in Java EE 6 added signifi cant complexity to
the task of organizing this process. To ease this complexity, you can confi gure the order of your
web fragments so that they are scanned and activated in a specifi c sequence. This happens one of
two ways:

➤ Each web fragment’s web-fragment.xml fi le can contain an <ordering> element that
uses nested <before> and <after> tags to control whether the web fragment activates
before or after other web fragments. These tags contain nested <name> elements to specify
the name of another fragment relative to which the current fragment should be ordered.
<before> and <after> can alternatively contain nested <others> elements to indicate
that the fragment should activate before or after any other fragments not specifi cally
named.

➤ If you didn’t create a particular web fragment and don’t have control over its contents, you
can still control the order of your web fragments within your application’s deployment
descriptor. The <absolute-ordering> element in /WEB-INF/web.xml, together with its
nested <name> and <others> elements, confi gures an absolute order for bundled web
fragments that overrides any order instructions that come with the web fragments.

c01.indd 15c01.indd 15 11/6/2019 6:18:42 PM11/6/2019 6:18:42 PM

16 ❘ CHAPTER 1 INTRODUCING JAVA PLATFORM, ENTERPRISE EDITION

By default, Servlet 3.0 and newer environments scan web applications and web fragments
for Java EE web application annotations for confi guring Servlets, listeners, fi lters, and more.
You can disable this scanning and disable annotation confi guration by adding the attribute
metadata-complete="true" to the root <web-app> or <web-fragment> elements as needed.
You can also disable all web fragments in your application by adding <absolute-ordering />
(without any nested elements) to your deployment descriptor.

You learn more about the web application deployment descriptor and annotation confi guration
throughout Part I of the book. In Part II, you explore the container initializer and programmatic
confi guration with the Java API, and see how it can make bootstrapping Spring Framework easier
and testable.

Class Loader Architecture
When working with Java EE web applications, it’s essential to understand the ClassLoader
architecture because it differs from the architecture to which you are accustomed in standard Java
SE applications. In a typical application, the java.* classes that come with the Java SE platform
are loaded in a special root ClassLoader that cannot be overridden. This is a security measure that
prevents malicious code from, for example, replacing the String class or redefi ning Boolean.TRUE
and Boolean.FALSE.

After this ClassLoader comes the extension ClassLoader, which loads classes from the extensions
JARs in the JRE installation directory. Finally, the application ClassLoader loads all other classes
in the application. This forms a hierarchy of ClassLoaders, with the root serving as the earliest
ancestor for all ClassLoaders. When a lower-level ClassLoader is asked to load a class, it always
delegates to its parent ClassLoader fi rst. This continues up until the root ClassLoader is checked.
With the exception of the root ClassLoader, a ClassLoader loads a class from its collection of
JARs and directories only if its parent ClassLoader fi rst fails to fi nd the class.

This method of class loading is called the parent-fi rst class loader delegation model, and although
it works great for many types of applications, it is not ideal for most Java EE web applications.
A server that runs Java EE web applications is typically extraordinarily complex and a number
of vendors could provide its implementation. The server could use some of the same third-party
libraries that your application uses, but they may be of confl icting versions. In addition, different
web applications could also provide confl icting versions of the same third-party libraries, leading
to even more problems. To solve these problems, you need a parent-last class loader delegation
model.

In Java EE web application servers, each web application is assigned its own isolated ClassLoader

that inherits from the common server ClassLoader. By isolating the applications from each
other, they cannot access each other’s classes. This not only eliminates the risk of confl icting
classes, but it also serves as a security measure preventing web applications from interfering with
or harming other web applications. In addition, a web application ClassLoader (typically) asks
its parent to load a class only if it can’t load the class itself fi rst. In this way, the class loading is
delegated to the parent last instead of the parent fi rst, and web application classes and libraries
are preferred over those that the server supplies. To maintain the protected status of bundled Java
SE classes, web application ClassLoaders still check the root ClassLoader before attempting to
load any classes. Although this delegation model is more preferable for web applications in nearly

c01.indd 16c01.indd 16 11/6/2019 6:18:42 PM11/6/2019 6:18:42 PM

Understanding the Basic Web Application Structure ❘ 17

all cases, there are still rare circumstances in which it is not appropriate. For this reason, Java
EE-compliant servers provide the capability of changing the delegation model from parent-last
back to parent-fi rst.

Enterprise Archives
You’ve learned about WAR fi les, but there’s another type of Java
EE archive that you should know about: EAR fi les. An Enterprise
Archive i s a collection of JAR fi les, WAR fi les, and confi guration
fi les compressed into a single, deployable archive (in ZIP format,
just like JARs and WARs).

Figure 1-3 shows a sample EAR fi le. As with a WAR fi le, the
root /META-INF directory contains the archive manifest and
is not available to the application classpath. The /META-INF/
application.xml fi le is a special deployment descriptor that
describes how to deploy the various components included within the
EAR fi le. At the root level of an EAR fi le are all the web application
modules included within it — one WAR fi le for each module. There
is nothing special about these WAR fi les; they can have all the
same contents and features as a normal, standalone WAR fi le. The EAR fi le can also contain JAR
libraries, which can serve many purposes. The JAR fi les can contain Enterprise JavaBeans declared
in the /META-INF/application.xml deployment descriptor, or they can be simple third-party
libraries that two or more WAR modules share within the enterprise archive.

As you might have fi gured, enterprise archives also come with their own ClassLoader architecture.
Typically, an additional ClassLoader is inserted into the hierarchy between the server ClassLoader
and the web application ClassLoaders assigned to each module. This ClassLoader isolates the
enterprise application from other enterprise applications but enables multiple modules in a single
EAR to share common libraries contained within the EAR. This new ClassLoader can use either
the parent-last (default) or parent-fi rst delegation models. The web application ClassLoaders can
then either delegate parent-fi rst (enabling EAR library classes to take precedence) or parent-last
(enabling WAR classes to take precedence).

Although it is useful to understand enterprise archives, they are a feature of the full Java EE
specifi cation, and most web container-only servers (such as Apache Tomcat) do not support them.
As such, they are not discussed further in this book.

WARNING The ClassLoader examples described in this section are just
that — examples. Though the Java EE specifi cations do describe parent-fi rst and
parent-last class loading, different implementations achieve these models in dif-
ferent ways, and each server could have certain nuances that might cause prob-
lems depending on your needs. You should always read the documentation of the
server you choose so that you can determine whether the ClassLoader architec-
ture of that particular server is appropriate for you.

FIGURE 1-3

EnterpriseApplication.ear

META-INF

application.xml

MANIFEST.MF

Module1.war

Module2.war

SharedClasses.jar

ThirdParty.jar

c01.indd 17c01.indd 17 11/6/2019 6:18:42 PM11/6/2019 6:18:42 PM

18 ❘ CHAPTER 1 INTRODUCING JAVA PLATFORM, ENTERPRISE EDITION

SUMMARY

In this chapter you explored the histories of the Java Platform, Standard Edition and Java Platform,
Enterprise Edition and learned how the two platforms evolved together over the last 19 years. You
were briefl y introduced to some of the topics covered in this book — Servlets, fi lters, listeners, JSPs,
and more — and saw how Java EE applications are structured, both internally and on the fi lesystem.
You then learned about web application archives and enterprise archives and how they serve as
vessels for transporting and deploying Java EE applications.

The rest of the book explores these topics in much greater detail, answering the many questions that
you likely have after reading the last several pages. In Chapter 2 you take a closer look at application
servers and web containers, what they are, and how to choose one for your purposes. You also learn
how to install and use Tomcat for the examples in this book.

c01.indd 18c01.indd 18 11/6/2019 6:18:43 PM11/6/2019 6:18:43 PM

