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Introduction

This chapter addresses the status of the vision architectures in four major fields: computer architec-
tures, vision algorithms, vision devices, and design methodologies. Computer architecture, which is
characterized by serial, parallel, pipelined, and concurrent computation, must be tuned to the under-
lying computational structures — parallel, iterative, and neighborhood computation — that are used in
intermediate computer vision. Vision algorithms, which have evolved from heuristic methods to generic
structured algorithms at each level of computer vision from low level to high level, must be investigated in
terms of computational structures. The vision devices, ranging from CPUs to very-large-scale integration
(VLSI) chips, must be investigated in terms of their flexibility and computational complexity. Finally,
the design flow from vision to chip, which is not well-defined, must be defined and delineated using a
general methodology.

1.1 Computer Architectures for Vision

Vision architectures are special forms of more general computer architectures. In the early 1970s, a
general point of view on computer architecture was to see it as an information flow of data and instructions
into a processor (Figure 1.1). Flynn’s taxonomy (Flynn 1972) is the most universally accepted method of
classifying computer systems. The instruction stream is defined as the sequence of instructions performed
by the processing unit. The data stream is defined as the data traffic exchanged between the memory and
the processing unit. According to Flynn’s classification, the instruction stream and data stream can both
be either singular or multiple in nature.

Flynn’s taxonomy classified architectures into single instruction single data stream (SISD), Single
instruction multiple data stream (SIMD), multiple instruction single data stream (MISD), and multiple
instruction multiple data stream (MIMD). In this classification system, an SISD machine is the traditional
serial architecture where instructions and data are executed serially. This is often referred to as the Von
Neumann architecture. An SIMD machine is a parallel computer, where one instruction is executed many
times with different data in a synchronized manner. An extreme example is the systolic array (Kung
and Leiserson 1980; Kung 1988; Leiserson and Saxe 1991). In an MISD machine, each processing unit
operates on the data independently via independent instruction streams. This computational technique is
also called pipelining. A set of pipelined vectors is referred to as a superscalar. An MIMD machine is a
fully parallel machine where multiple processors execute different instructions and data independently.

This concept can be formalized by a set of state machines, such as the Moore machine or the Mealy
machine. Suppose a processing element (PE) in a state Q, receives date D, and instruction /, and
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Figure 1.1 Flynn—Johnson taxonomy of computer architectures

generates output O,, (k = 0, 1, ...) according to the state transition 7'(-) and output generation H(-). Then,
the SISD machine is modeled by a Mealy machine:

Or1 =T(Qy, Dy, 1), (1.1)
O0,=HQ,.,D,. 1), k=0,1,2,.... '

Other machines can be modeled by a set of PEs by combining data and instructions in various ways.
As such, an SIMD machine is modeled as a set of identical PEs, operating on different data but controlled
by the same instruction set:

o =T (G DL .
O, =H(Q..D\.I,), VI€[0,N-1],
where N denotes the number of PEs. The MISD machine is modeled as
o =7'(0,07".1). .
O =H'(Q,,0-'.1I'), VIe[0,N-1],

where the data input is 05{" = Di and the output is OkN’l. The MIMD machine is a set of different
machines:

(B -ri2o. "

0, =H'(Q,.D\.I,), VIe[O,N-1].
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Nowadays, the MIMD category includes a wide variety of different computer types and as a result,
taxonomies have been added to the MIMD class. The Flynn—Johnson taxonomy, which is one of many
classification methods, proposed a further classification of such machines based on their memory structure
(global or distributed) and the mechanism used for communications/synchronization (shared variables
or message passing).

A global memory shared variable (GMSV) machine is a machine with shared memory multiprocessors.
A global memory message passing (GMMP) machine is a machine that uses global memory and message
passing. This type of machine is rarely used. In distributed memory shared variables (DMSV) machines,
memory resources are distributed to the processors and the variables are shared. In distributed memory
message passing (DMMP) machines, memory resources are distributed and message passing is used. In
this classification system, DMSV and DMMP machines are loosely coupled machines, and GMSV and
GMMP machines are tightly coupled machines. In addition to data and instructions, this classification
system introduces two more variables: memory M and message m,

{Q,gl =1 (0L D . ). s

O, =H'(Q,,D\.Il, M., m\), VIe€[O,N-1].

The differences between the four machine types are based on the various combinations of the memory
M, shared by a set of processors, and the messages m, passed between a set of processors.

Modern computer processors, such as central processing units (CPUs), digital signal processors
(DSPs), field-programmable gate arrays (FPGAs), embedded processors (EPs), and graphics processing
units (GPUs), tend to evolve into huge systems that use more computational resources — more pipelines,
multi cores, more shared memory, more distributed memory, and multi-threading.

For computer vision, the computational architectures depend on the levels of vision (early, interme-
diate, and high-level vision) and the algorithms (relaxation, graph cut, belief propagation, etc). Starting
from serial algorithms for general computers, we usually search for more structured algorithms and
architectures for better implementation. The passage from low to intermediate vision is characterized
by high-levels of resource usage for numerical computations and memory space, and the structures
that are used are usually parallel, repetitive, or local neighborhood structures. High-level vision, on the
other hand, is characterized by high-level resource usage for symbolic computation, and the structures
that are used are usually concurrent, heterogeneous, modular, and hierarchical computational structures.
The intermediate level is closer to the regular, SIMD, and MISD architectures and the high level is
closer to the general, SISD, and MIMD architectures. From early to intermediate level, the computa-
tional structures are characterized by pixel or local neighborhood computations, recursive updating, and
scale-dependent (hierarchical or pyramidal) and parallel computations. We will concentrate on designing
architectures for such early- to intermediate-level operations that are parallel and iterative and rely on
neighborhood computations.

Similar to general computer architecture, vision architecture can be modeled by state machines.
Assume an image plane P = {(x,y)|x € [0, N — 1],y € [0,M — 1]} and an image defined over P, [ =
{I(p)lp € P}. A neighborhood N, is a set of (topologically) connected pixels around p € P, and a
window A, is a set of pixels around p € P. A typical operation is to update the state of a pixel using
the neighborhood values along with the image input. The operation is repeated for all pixels until the
values converge. The outputs are the pixel states in equilibrium. The state equation for parallel iterative
neighborhood computation is defined as follows:

{Q<k+'>(Ap) =T(QV(N@A)).IA,), k=0,1,....,K~-1, 06

0,) = 05N (A,), ¥p e P,
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where the superscript denotes the iteration and K denotes the maximum number of iterations. The
parallelism can be achieved by the set of window A,,. The iteration means the recursive computation
of the states. The neighborhood computation is represented by the local neighborhood function N(A,).
This is a basic computational structure in low to intermediate vision that generally uses large amounts of
spatial and temporal resources. The run-time is O(MN AN 'K), which is proportional to the image size
MN, the window size A, and the number of iterations. The required space is O(MN), which is proportional
to the image size MN.

1.2 Algorithms for Computer Vision

With regards to stereo vision, there are survey papers (Brown et al. 2003; Kappes et al. 2013; Scharstein
and Szeliski 2002; Szeliski et al. 2008) and a site (Middlebury 2013), where state-of-the-art algorithms
are listed and test datasets are stored.

The algorithms can be categorized into local matching and the global matching methods. Local
matching algorithms use matching costs from a small neighborhood of target pixels. Most local matching
algorithms adopt a three-step procedure for matching — cost computation, aggregation, and disparity
computation. The first and the third steps are common both in local and global matching methods. The
aggregation step gathers measured matching costs in pre-defined matching support, whose definition
varies depending on the kind of algorithm. On the other hand, global matching algorithms use matching
costs from every pixels on the image to determine single-pixel correspondence. Global matching methods
commonly consist of the optimization step instead of the aggregation step. In the optimization step, the
algorithm aims to search acceptable solution that minimizes or maximizes some kind of energy function.
Energy functions have various constraints about geometries and appearances of two views.

Though some of the local matching algorithms show acceptable performance based on error rate and
processing speed, most top-ranked algorithms are global matching methods, such as belief propagation
(BP) and graph cuts (GC), which are based on energy functional models. In general, global matching
methods require more computations and more memory than local methods.

The vision algorithms consist of a set of basic general algorithms that can be combined in various
manners. Some of the general algorithms are listed in Table 1.1.

Conceptually, the exhaustive search is a kind of benchmark for the global solution, ignoring all
the other practical requirements such as time and space requirements. The Gauss-Seidel and Jacobi
methods and relaxation algorithm are the fundamental algorithms in iterative optimization methods.
The dynamic programming algorithm is an efficient algorithm for divide-and-conquer type problems.
The simulated annealing (SA) algorithm is an intelligent sampling strategy for statistical optimization,

Table 1.1 Comparison of major vision algorithms

Technology Performance Parallelism Time Flexibility
Exhaustive Search Ultimate goal No NP-hard General
Gauss—Seidel Low Serial Fast General

Jacobi Low Parallel Fast General
Relaxation Medium Parallel Medium General

Dp Good Parallel Fast 1D problem only
SA Good No Slow General

BP Near best Parallel Slow General

GC Best Serial Slow General

cf. DP: dynamic programming, SA: simulated annealing, BP: belief propagation, and GC: graph cuts.
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which is guaranteed to converge to the global minima if some ideal conditions, such as generation
probability, acceptance probability, and annealing schedules, are satisfied. The BP is the result of the
long evolution of stochastic relaxation that determines marginal distributions iteratively in a Bayesian
tree. The GC algorithm has evolved from max-flow min-cut problems to the current swap move and
expansion move algorithms (Boykov ez al. 2001). Owing to the BP and GC algorithms, the performance
of vision algorithms has improved dramatically. Some research has even reported that due to the two
algorithms there may be no more margins than a few percent to the global optimum. The two algorithms
are general problem solvers but require vast resources for computation and space. The GC algorithm
requires global communication that may in turn require serial computation. The BP algorithm is based
on MRF and neighborhood computation that may require parallel computation.

There are also common optimization techniques in computer vision fields such as expectation
maximization (EM), Bayesian filtering, Kalman filtering, particle filtering, and linear programming
relaxation (LPR).

1.3 Computing Devices for Vision

The lifespan of hardware systems is very short compared to the life spans of algorithms and software
systems. In spite of the poor documentation and the difficulty of surveying the field, we can get a feel
for the state of the field from the survey lists for device types, performance, and trends (Lazaros et al.
2008; Nieto et al. 2012; Tippetts et al. 2011, 2013).

In image processing, the most dedicated devices are FPGAs and ASICs (refer to the books on FPGAs
and image processing (Ashfaq et al. 2012; Bailey 2011; Gorgon 2013, 2014; Samanta et al. 2011). They
are fast enough for real-time processing, yet small enough for portability and mass production.

The flow from algorithm to architecture to device is characterized by the constraints and requirements.
The algorithms and architectures are closer to concepts, and the device is the reality with a smaller
degree of freedom. Therefore, any algorithm, targeted for implementation, must be developed from the
beginning so as to satisfy the device constraints.

Although there are numerous types of devices, they can be classified into roughly six categories:
Generic CPUs, EPs, DSPs, GPUs, FPGAs, and ASICs. All of these six platforms, except dedicated digital
circuits, are common tools for hardware realization. The major differences between these platforms are
speed, flexibility, and development time. In addition, there may be other relevant factors such as cost,
power consumption, and time required for updates.

The major devices and factors are summarized in Table 1.2. With regards to performance and cost,
single-purpose, dedicated ASICs are rated best, and the generic processors, which are targeted for general
application, are rated lowest. However, with regards to flexibility, which deals with major updates or
modifications, the order is reversed: ASICs are rated lowest and the generic processors are the best.

Table 1.2 Comparison of major devices

Technology Performance/cost Time until running Speed Flexibility
ASIC Very High Very long Very high No

FPGA Medium Long High Low

GPU High Medium High Medium
DSP High Medium Medium High

EP Low Short Low High
Generic CPU Low to medium Very short Very low Very high

cf. EP: Embedded Processor.
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In terms of development time, ASICs take the longest amount of time and the generic processors only
require programming time.

We want to explore the pure computational structures of the vision algorithms and use them as
much as possible in developing dedicated architectures. Because of this, we exclude algorithms that
need sophisticated software control. Devices such as GPU, DSP, EP, and generic processor are heavily
dependent on software. This book focuses on the FPGA/ASIC because they are genuinely dedicated
hardware solutions that do not require software interventions.

1.4 Design Flow for Vision Architectures

The task of researchers is to define vision problems, explore vision algorithms, and build software or
hardware systems. For hardware realization, the vision algorithm can be coded into devices such as
embedded processors, GPUs and CPUs with hyper-threading, and streaming SIMD extensions (SSE).
ASICs, FPGAs, and programmable logic devices (PLD) are more dedicated devices. The chip design
process is separate from the vision algorithms. The algorithms cannot be applied directly to chip design.
The vision algorithm is inherently serial and the chip is inherently concurrent.

There must be an intermediate stage between the vision algorithm and the chip design. This stage,
called vision architecture, must integrate the vision algorithm, which is mostly serial, into the design
architectures, which are concurrent. The overall design flow is illustrated in Figure 1.2.

The design flow consists of the three parts: vision, architecture, and chip design. The vision part
means the ordinary vision research and the algorithms for programming. In the vision architecture, the
vision algorithms are analyzed in terms of computational structure, and redesigned using processing
elements, memory, and connections into architecture. Given the architecture and specifications, the chip

Vision problem

Vision 12
Algorithm design
12
Architecture design

Vision architecture Y
Architecture algorithm
¥
HDL coding
(1 HDL coding
Simulation, function verification
Y
Gate/transistor-level design
Chip design ¥ Synthesis
Simulation, timing verification
¥
Implementation (board, FPGA, ASICs)
(1 Implementation
Prototype testing

Figure 1.2 Design flow from vision to chip
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design progresses sequentially from hardware description language (HDL) coding, to synthesis, and
then to implementation. The HDL coding programs the architecture description into the register transfer
language (RTL) format. This code is converted into circuits, i.e. net list, in the synthesis stage. Each
stage is a loop consisting of design and testing. There are variety of potential realizations for the net list,
such as FPGA (i.e. programming) and ASICs (i.e. hard copy) and full custom.

The FPGA design consists of the following stages.

1. Define a new project and enter the design using VHDL or Verilog HDL languages. The design can
also be entered using schematic diagrams that can be translated to any HDL.

2. Compile and simulate the design. Find and fix timing violations. Obtain power consumption estimates
and perform the synthesis.

3. Download the design to the FPGA using either a parallel port or a USB cable. Designs can also be
downloaded via the Internet to a target device.

Once an FPGA design is verified, validated, and used successfully, there is an option to migrate it to a
structured ASIC. This option is known as hard copy. Using hard copy, FPGA design can be migrated to
a hard-wired design removing all configuration circuitry and programmability so that the target chip can
be produced in high volume. Hard-copied chips use 40% less power than FPGAs and the internal delays
are reduced.

Vision algorithms can be implemented using computational structures that are either serial or parallel
and either iterative or recursive. Therefore, we have to reinterpret the vision algorithms in terms of
architectural modalities and describe them in architectural terms. To expand the vision research to
architecture, vision engineers have to learn two principles:

® Architecture design: Given an algorithm, analyze the computational structures in terms of data
structures — memory, queue, stack, and processing — and express them in a hardware algorithm.
® HDL coding: Code the algorithm in HDL and test.

The first task is to convert vision algorithms into hardware algorithms. Vision algorithms are free from
the constraints of a specific realization and as a result can rely on generic programming. The hardware,
on the other hand, must be described in terms of memory, data structure, communication, and control.
Likewise, the vision algorithm can be coded in a high-level programming language, but the architecture
must be designed using the lower-level HDL programming language.

There are integrated programming environments such as Quatus by Altera, Inc. and ISE by Xilinx,
Inc. They are the software tools for synthesis and analysis of HDL designs, which enable the developer
to synthesize their designs, perform timing analysis, examine RTL diagrams, simulate a design’s reaction
to different stimuli, and configure the target device. We will use Quartus tools as a reference design tool
and Verilog as a design language. Verilog is preferred in this book because it closely resembles C, which
is one of the most prominent languages in vision research.

Problems

1.1 [Architecture] Explain the advantages and disadvantages of SISD. How are problems addressed
in DSP?

1.2 [Architecture] What are the pros and cons of SIMD and MISD?
1.3 [Architecture] What are the problems with shared and distributed memory systems?
1.4 [Architecture] For GMSV and GMMP, how must Equation (1.5) be defined?

1.5 [Architecture] Express an average operation (one-pass) in terms of Equation (1.6).
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1.6 [Architecture] Express a difference operation (one-pass) for %1 and 0%1 in terms of Equation (1.6).

1.7 [Devices] Explain the processors — CPU, DSP, EP, GPU, FPGA, and ASIC - in terms of their
core functions and specifications. In addition, what are the state-of-the-art technologies for each
device?

1.8 [Algorithm] Understanding vision algorithms in terms of computational structure is very impor-
tant. Name some vision algorithms that make use of (1) one-pass/multi-pass, (2) neighborhood
operation, (3) iteration, and (4) hierarchical structures.

1.9 [Algorithm] The labeling problem assigns labels [ € [0,L — 1] to the pixels in P = {(x,y)|x €
[0,N — 1],y € [0,M — 1]}. How many cases are there in labeling? If the labels of the neighbors
are equal, how many cases are there? Discuss the role of constraints in the labeling problem.

1.10 [Design] Download Altera Quartus or Xilinx ISE and acquaint yourself with the tools. What are
the major functions of these tools? How can vision algorithms be designed into circuits?
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