
Trim Size: 170mm x 244mm Sakiyama c01.tex V3 - 06/29/2015 1:58 P.M. Page 1

1
Introduction to Block Ciphers

1.1 Block Cipher in Cryptology

1.1.1 Introduction

Information includes our private data that we desire to protect from unwilling leakage depend-
ing on the application. Cryptology is a field of research that offers appropriate solutions for
the data protection by exploring how to construct a secure communication for fair informa-
tion exchange. Modern cryptology often deals with digitalized data rather than analog data
that cannot be expressed simply with a series of 0s and 1s. In our daily life, information is
exchanged by digital devices such as radio frequency identification (RFID) tags, smart cards,
and smart phones, where a computational resource is limited. Therefore, it is one of the most
important challenges in cryptology to realize an efficient implementation of cryptosystems.

1.1.2 Symmetric-Key Ciphers

There are various ways to realize encryption that is a kind of computational process for infor-
mation to be protected. In a symmetric-key cipher, information is encrypted with a secret key,
and it is expected that the owner of the secret key can decrypt the encrypted information cor-
rectly. For instance, let us see the situation, where Alice would like to send a message to Bob
in a secure way. If the secret key, K, is shared only with Alice and Bob, only Bob can decrypt
the message from the encrypted message. The original and the encrypted messages are called
plaintext and ciphertext, respectively. Figure 1.1 illustrates the encryption and decryption
processes.

The encryption by Alice can be written as

C = EK(P ). (1.1)

The ciphertext is decrypted by Bob as

P = DK(C). (1.2)

Only Bob can decrypt and read the message, and Eve, who does not own the secret key, cannot
decrypt it.

Security of Block Ciphers: From Algorithm Design to Hardware Implementation, First Edition.
Kazuo Sakiyama, Yu Sasaki and Yang Li.
c© 2015 John Wiley & Sons Singapore Pte Ltd. Published 2015 by John Wiley & Sons Singapore Pte Ltd.

CO
PYRIG

HTED
 M

ATERIA
L



Trim Size: 170mm x 244mm Sakiyama c01.tex V3 - 06/29/2015 1:58 P.M. Page 2

2 Security of Block Ciphers

Eve

I send
secret message

to Bob

Shared secret key k
(prior exchange)

Alice P P
C

I cannot read
message

EK (P) BobDK (C)

I receive and read
message from Alice

Figure 1.1 Basic model for a symmetric-key cryptosystem

Alice and Bob need to compute the cryptographic operations based on the functions, EK(·)
and DK(·). The simpler the functions are, the more efficiently they can compute. For instance,
Vernam cipher, invented in 1917, uses just XOR operations as

C = P ⊕ K, P = C ⊕ K (1.3)

to convert plaintext and ciphertext. The XOR operation is explained in Section 1.2.1.
However, in order to guarantee the security, that is, in order that Eve cannot obtain any

information of message from C, the secret key needs to be refreshed with a random number
for each encryption/decryption. In other words, in order to communicate securely with the
Vernam cipher, a very long key, which is the same size as M , is required. This is significantly
inefficient. In general, encryption and decryption processes are based on the trade-offs between
cost, performance, and security.

1.1.3 Efficient Block Cipher Design

The fundamental idea to achieve an efficient encryption scheme is designing a fixed-input size
encryption scheme, and iteratively applying this scheme to encrypt arbitrary length messages.
Such a fixed-input size encryption scheme is called block cipher, and the group of bits with
the fixed-input size is called block. If the unit of operation is small enough, for example, 1 bit
or 1 byte, such a symmetric-key cipher is called stream cipher. As block ciphers are expected to
compute encryption and decryption efficiently, they have an iterated structure, and repeat the
same function several times. Such a function is called round function. The iterated structure
contributes to achieving a small program code in software and implementing a compact circuit
design in hardware.

Modern block ciphers are mainly categorized into two kinds: Feistel structure and
substitution-permutation network (SPN) structure. Feistel structure was employed in data
encryption standard (DES) block cipher proposed in 1977. Including FEAL and Camellia,
the Feistel structure has been employed by many block ciphers.



Trim Size: 170mm x 244mm Sakiyama c01.tex V3 - 06/29/2015 1:58 P.M. Page 3

Introduction to Block Ciphers 3

On the contrary, Advanced Encryption Standard (AES) employed SPN structure. AES is
the main target of this book as it is one of the most widely used block ciphers, and it contains
fundamental ideas of SPN structure. The basic mathematics to understand SPN structure and
AES specification will be explained later in this chapter.

1.2 Boolean Function and Galois Field

Boolean functions are used in most of the block ciphers including AES. A Boolean function,
f , is described as

f : {0, 1}n → {0, 1}, (1.4)

where {0, 1} is called Boolean domain and {0, 1}n is the set of all n-tuples (x1, . . . , xn),
where x1, . . . , xn are all in Boolean domain.1

1.2.1 INV, OR, AND, and XOR Operators

The most simple Boolean function is inversion or the INV operation that is a bit complement.
It operates as

¬x =

{
1 (x = 0), (1.5a)

0 (x = 1), (1.5b)

where ¬ is used for representing the INV operation. Alternatively, the logic symbol, −, is also
used for INV. In this book, we allow both usage, that is, ¬x = x̄.

For the case of n = 2, representative Boolean functions are OR, AND, and XOR. OR is
defined as

x ∨ y =

{
0 (x = y = 0), (1.6a)

1 (else). (1.6b)

Likewise, AND and XOR are defined, respectively, as

x ∧ y =

{
1 (x = y = 1), (1.7a)

0 (else), (1.7b)

x ⊕ y =

{
0 (x = y), (1.8a)

1 (x �= y). (1.8b)

“∨,” “∧,” and “⊕” are used for representing OR, AND, and XOR operations.
The truth table for OR, AND, and XOR is described in Table 1.1.

1.2.2 Galois Field

Finite filed orGalois field deals with a finite number of elements. Over a Galois filed, addition,
subtraction, multiplication, and division are defined. Galois field with the smallest order is

1 For the case n = 0, Boolean function denotes a constant, 0 or 1.



Trim Size: 170mm x 244mm Sakiyama c01.tex V3 - 06/29/2015 1:58 P.M. Page 4

4 Security of Block Ciphers

Table 1.1 Truth table for basic operators

x y x ∨ y x ∧ y x ⊕ y

0 0 0 0 0
0 1 1 0 1
1 0 1 0 1
1 1 1 1 0

Table 1.2 Operations over GF (2)

x y x + y x × y −x x−1

0 0 0 0 0 –
0 1 1 0 0 –
1 0 1 0 1 1
1 1 0 1 1 1

called a binary field or GF (2). For instance, addition, multiplication, additive inverse, and
multiplicative inverse over GF (2) are defined in Table 1.2.

As can be found from Tables 1.1 and 1.2, addition and multiplication over GF (2) are real-
ized, respectively, with XOR and AND.

Exercise 1.1 Complete Table 1.3, that is, for addition, multiplication, additive
inverse, and multiplicative inverse over GF (5).

1.2.3 Extended Binary Field and Representation of Elements

Binary field, GF (2), can be extended to a large field size called extended binary field,
GF (2n), where n is a positive integer. Especially, in the case of AES, operations in GF (28)
are of special interest. The number of elements of GF (2n) is 2n. There are several different
representations for the elements, which affect the cost and speed performance of software and
hardware implementations.

1.2.3.1 Polynomial Basis Representation

As the number of elements of GF (2n) is a power of 2, each bit of the binary representation can
be used for each coefficient of a polynomial whose degree is n − 1. Any element in GF (2n)
can be expressed with the so-called polynomial basis as

an−1x
n−1 + an−2x

n−2 + · · · + a0, (1.9)



Trim Size: 170mm x 244mm Sakiyama c01.tex V3 - 06/29/2015 1:58 P.M. Page 5

Introduction to Block Ciphers 5

Table 1.3 Operations over GF (5)

x y x + y x × y −x x−1

0 0
0 1
0 2
0 3
0 4
1 0
1 1
1 2
1 3
1 4
2 0
2 1
2 2
2 3
2 4
3 0
3 1
3 2
3 3
3 4
4 0
4 1
4 2
4 3
4 4

where ai ∈ {0, 1}. For instance, 16 elements in GF (24) can be expressed with the binary
representation, (a3, a2, a1, a0)2. By assigning each bit to the coefficient of a polynomial of
x, we have a3x

3 + a2x
2 + a1x + a0. Addition of two field elements, for example, (x + 1) +

(x3 + 1), can be calculated as

(x + 1) + (x3 + 1) = x3 + x, (1.10)

as 1 + 1 = 0 over GF (2).
Multiplication of the two field elements, for example, (x + 1)(x3 + 1), needs modular

reduction with an irreducible polynomial, for example, x4 + x3 + 1, which specifies the
field.2 Therefore, the multiplication result becomes as

(x + 1)(x3 + 1) ≡ x4 + x3 + x + 1 ≡ x
(
mod (x4 + x3 + 1)

)
. (1.11)

1.2.3.2 Normal Basis Representation

Alternatively, elements in GF (2n) are described using normal basis as

bn−1α
2n−1

+ bn−2α
2n−2

+ · · · + b0α
20

, (1.12)

2 In this case, we also use the expression, GF (2)[x]/(x4 + x3 + 1).



Trim Size: 170mm x 244mm Sakiyama c01.tex V3 - 06/29/2015 1:58 P.M. Page 6

6 Security of Block Ciphers

where bi ∈ {0, 1} and α are roots of an irreducible polynomial, P (x), that is,

P (α) = 0. (1.13)

Furthermore,
α2n−1 ≡ 1 (mod P (α)) . (1.14)

This can be confirmed by Fermat little theorem.
For the case of GF (24), suppose that P (x) = x4 + x3 + 1, that is, P (α) = α4 + α3 +

1 = 0. Addition in the normal basis representation of α7 + α11 can be calculated simply by
XORing each coefficient of two elements in the form of Equation (1.12 ). That is,

α7 + α11 = (α8 + α4) + (α4 + α2) = α8 + α2 = α10, (1.15)

where the normal basis representations of α7 and α11 can be found in Table 1.4.
This is correct as α7 + α11 = α7(1 + α4) = α10. By using the fact of α15 = 1, multiplica-

tion in GF (24), for example, α7α11 is calculated as

α7α11 = α18 = α3. (1.16)

The most advantageous point to use the normal basis representation lies in the fact
that squaring is easy to compute in GF (2n). As can be found in Table 1.4, squaring for
(b3, b2, b1, b0) is (b2, b1, b0, b3). More precisely, in squaring, the elements in the normal basis
representation are derived as

(bn−1α
2n−1

+ bn−2α
2n−2

+ · · · + b0α
20

)2 (1.17)

= bn−1α
2n

+ bn−2α
2n−1

+ · · · + b0α
21

(1.18)

= bn−2α
2n−1

+ · · · + b0α
21

+ bn−1α
20

. (1.19)

Table 1.4 Representations of elements for irreducible polynomial x4 + x3 + 1 in GF (24)

Binary
(a3, a2, a1, a0)2

Bit
concatenation

Hex. Polynomial
basis

Power
of α

Normal basis
(b3, b2, b1, b0)

(0, 0, 0, 0) 0‖0‖0‖0 0 0 0 (0, 0, 0, 0)
(0, 0, 0, 1) 0‖0‖0‖1 1 1 1 (1, 1, 1, 1)
(0, 0, 1, 0) 0‖0‖1‖0 2 x α (0, 0, 0, 1)
(0, 1, 0, 0) 0‖1‖0‖0 4 x2 α2 (0, 0, 1, 0)
(1, 0, 0, 0) 1‖0‖0‖0 8 x3 α3 (1, 0, 1, 1)
(1, 0, 0, 1) 1‖0‖0‖1 9 x3 + 1 α4 (0, 1, 0, 0)
(1, 0, 1, 1) 1‖0‖1‖1 b x3 + x + 1 α5 (0, 1, 0, 1)
(1, 1, 1, 1) 1‖1‖1‖1 f x3 + x2 + x + 1 α6 (0, 1, 1, 1)
(0, 1, 1, 1) 0‖1‖1‖1 7 x2 + x + 1 α7 (1, 1, 0, 0)
(1, 1, 1, 0) 1‖1‖1‖0 e x3 + x2 + x α8 (1, 0, 0, 0)
(0, 1, 0, 1) 0‖1‖0‖1 5 x2 + 1 α9 (1, 1, 0, 1)
(1, 0, 1, 0) 1‖0‖1‖0 a x3 + x α10 (1, 0, 1, 0)
(1, 1, 0, 1) 1‖1‖0‖1 d x3 + x2 + 1 α11 (0, 1, 1, 0)
(0, 0, 1, 1) 0‖0‖1‖1 3 x + 1 α12 (1, 1, 1, 0)
(0, 1, 1, 0) 0‖1‖1‖0 6 x2 + x α13 (0, 0, 1, 1)
(1, 1, 0, 0) 1‖1‖0‖0 c x3 + x2 α14 (1, 0, 0, 1)



Trim Size: 170mm x 244mm Sakiyama c01.tex V3 - 06/29/2015 1:58 P.M. Page 7

Introduction to Block Ciphers 7

This merit is often used in both software and hardware implementations. However, in gen-
eral, implementing modular multiplication in the normal basis requires more computation than
that in the polynomial basis. Hereafter, we mainly use polynomial basis representation.

1.3 Linear and Nonlinear Functions in Boolean Algebra

1.3.1 Linear Functions

Addition and multiplication by a constant are linear functions in GF (2n). Suppose that
A(x) = an−1x

n−1 + · · · + a0 and B(x) = bn−1x
n−1 + · · · + b0, where ai, bi ∈ {0, 1}. Addi-

tion of A(x) and B(x) is

A(x) + B(x) = (an−1 ⊕ bn−1)x
n−1 + · · · + a0 ⊕ b0. (1.20)

From the fact that ai ⊕ bi ∈ {0, 1}, it is confirmed that addition in GF (2n) is a linear function.
For multiplication by a constant B, there exist cn−1, . . . , c0 ∈ {0, 1} such that

A(x) × B = cn−1x
n−1 + · · · + c0. (1.21)

Therefore, we know that such multiplication in GF (2n) is also a linear function. It can be
easily understood considering the fact that multiplication by a constant can be computed with
multiple additions of A(x) in GF (2n).

Exercise 1.2 Suppose that A(x) = x3 + x2 and B(x) = x3 + x are repre-
sented in the polynomial basis. Calculate A(x) + B(x), 2A(x), and 3B(x) in
GF (24) when the irreducible polynomial is x4 + x3 + 1. Note that 2 and 3 are
hexadecimal representations of x and x + 1, respectively.

Exercise 1.3 Confirm that modular additive inverse is a linear function.

1.3.2 Nonlinear Functions

On the contrary, (normal) modular multiplication and multiplicative inverse in GF (2n) are
nonlinear functions. The AES block cipher uses a nonlinear function in a part of the design
that is based on modular multiplicative inversion in GF (2)[x]/x8 + x4 + x3 + x + 1. The
multiplicative inverse computation can be done with Fermat’s (little) theorem as

a−1 ≡ a28−2 ≡ a254, (1.22)

for a �= 0. In AES, multiplicative inverse of 0 is mapped to 0.



Trim Size: 170mm x 244mm Sakiyama c01.tex V3 - 06/29/2015 1:58 P.M. Page 8

8 Security of Block Ciphers

One of the most optimal ways to compute the inversion is to find addition chain. On the
basis of the Itoh–Tsujii algorithm, the computation can be performed with four multiplications
and seven modular squarings as ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a)2 = a2, (1.23a)

a2a = a3, (1.23b)

(a3)22
= a12, (1.23c)

a12a3 = a15, (1.23d)

(a15)24
= a240, (1.23e)

a240a2a12 = a254. (1.23f)

Itoh–Tsujii algorithm utilizes the relationship of

a22t−1 = (a22t−1−1)22t−1

(a22t−1−1). (1.24)

1.4 Linear and Nonlinear Functions in Block Cipher

As discussed in Section 1.3, logical operations are classified into linear operations and non-
linear operations. Composition of linear operations is also linear. Hence, if all the cipher’s
operations are linear, the resulting cipher is also linear, which is insecure. In order to break the
linearity of the cipher, nonlinear operations need to be introduced. However, in general, the
cost of implementing nonlinear operations is more expensive than the one for linear operations.

The strategy of the block cipher design is alternately applying nonlinear and linear opera-
tions several times. To avoid the heavy cost, nonlinear operation is designed to be weak but its
cost is small. In many cases, a nonlinear operation is designed to be operated on a smaller size
than the block size, and the operation is applied in parallel to all the data. Then, in order to
compensate the weak nonlinear computations, a linear operation mixes the entire block. The
strategy is depicted in Figure 1.2. In the following, each of the nonlinear layer and linear layer
is further detailed.

1.4.1 Nonlinear Layer

In order to reduce the implementation cost, a nonlinear operation is designed to work on
a fraction of the data. Typical choices of the size are 64 bits, 32 bits, 8 bits (called byte),

Input Output

LinearLinear Linear
Non

linear
Non

linear
Non

linear

Figure 1.2 Block cipher design strategy. Nonlinear operations and linear operations are alternately
applied



Trim Size: 170mm x 244mm Sakiyama c01.tex V3 - 06/29/2015 1:58 P.M. Page 9

Introduction to Block Ciphers 9

Table 1.5 An example of 4-bit to 4-bit S-box, S(·)
Input x 0 1 2 3 4 5 6 7 8 9 a b c d e f
Output S(x) c 0 f a 2 b 9 5 8 3 d 7 1 e 6 4

All values are described in the hexadecimal format.

4 bits (called nibble), and 1 bit. The size of the nonlinear operation is determined depending
on the following two aspects.

• type of nonlinear operation
• target platform in which the cipher is implemented.

1.4.1.1 Modular Operation

When the cipher is designed for being used in high-end CPUs, the implementation cost is
not a big issue but the operation should be optimized for instructions adopted in such a CPU.
Currently, many CPUs operate on 64 or 32 bits, thus the size of the nonlinear operation is also
adjusted to 64 or 32 bits. The high-end CPUs can perform the modular addition or subtraction
efficiently. The nonlinearity is often introduced by addition or subtraction on modulo 264 or 232.

1.4.1.2 Substitution Table (S-box)

When the cipher is designed for more resource-constrained hardwares such as
micro-controllers, the balance of the implementation cost and the computation effi-
ciency is important. When the CPU register size is smaller than 32 bits, the 32- or 64-bit
modular addition cannot be performed efficiently. The hardware implementation also faces
some problems for those operations. Typical choices of the size of the nonlinear operation
are 8 or 4 bits. Because the size is small, using the substitution table is a popular approach to
introduce the nonlinearity. The substitution table, or S-box, is a pre-specified mapping from
the input values to the output values. An example of 4-bit to 4-bit S-box is given in Table 1.5.

Exercise 1.4 Answer the output value of the following computations.

1. S(2)
2. S(a)
3. S(2) ⊕ a
4. S(2⊕ a)
5. S(2) ⊕ S(a)
6. S(S(2) ⊕ S(a))

Exercise 1.5 Prove that any 1-bit to 1-bit bijective S-box is a linear mapping
rather than nonlinear mapping.



Trim Size: 170mm x 244mm Sakiyama c01.tex V3 - 06/29/2015 1:58 P.M. Page 10

10 Security of Block Ciphers

In this S-box, the input value 5 is transformed to b according to the table. A 4-bit to 4-bit
S-box is implemented only with 16 × 4 = 64 bits of memory, which is very small. An 8-bit to
8-bit S-box is implemented only with 256 × 8 = 2048 bits of memory, which is bigger than
the 4-bit to 4-bit S-box but can mix the data faster than the 4-bit to 4-bit S-box.

1.4.1.3 Boolean Function

A Boolean function is the smallest tool to introduce the nonlinearity. By using an AND or OR
operation, the nonlinearity is introduced in 1 bit. When the cipher is designed to be a very
resource constraint environment such as RFID, a Boolean function is a typical choice as a
source of the nonlinearity. A Boolean function can also fit the high-end CPUs. Thirty two-bit
CPUs can operate bit-wise for each of the 32 bits in parallel. If this is combined with modular
additions (not bit-wise), the nonlinearity can be introduced quickly.

It is also a popular approach to specify the input and output correspondence of some Boolean
functions as an S-box. If the cipher is implemented with some memory, the S-box can be
implemented, and the nonlinearity of several bits can be introduced with 1 table look-up. If the
cipher is implemented with small hardware, the logic of the Boolean function is implemented
to minimize the implementation cost.

1.4.1.4 Balanced Choice

Unfortunately, there is no obvious choice that shows the overwhelming performance in any
implementation environment. When the cipher is designed in multi-platforms, that is, both
the high- and low-end environment, an S-box maybe chosen as the source of nonlinearity that
shows a relatively good performance in both the environments. The popular choices of the
nonlinear operations are summarized in Figure 1.3.

Note that the data is mixed by alternately applying a nonlinear operation and a linear opera-
tion. The choice of the nonlinear operation also depends on the choice of the linear operation.

High-endLow-end

1 bit 4 bits 8 bits 32 bits

Modular addition

S-box

Boolean function

64 bits Size of 
nonlinear
operations

Figure 1.3 Substitution-permutation network. Popular choices of size and type of nonlinear operations



Trim Size: 170mm x 244mm Sakiyama c01.tex V3 - 06/29/2015 1:58 P.M. Page 11

Introduction to Block Ciphers 11

1.4.2 Linear Layer

The purpose of the linear layer is mixing all the output data from the nonlinear layer in which
the data is updated in a small part independently. The linear layer is required to be performed
efficiently and implemented lightly.

One of the simplest linear operations is XOR. A part of the nonlinear layer output is XORed
to another part to mix the data from different parts. The XOR operation can be performed
several times between different parts to mix the data more.

The bit-rotation and bit-shift are also simple linear operations. For example, by applying
the 1-bit rotation to the entire data, 1-bit from each part will be moved to the next part. The
XOR, bit-shift, and bit-rotation can be implemented efficiently in various platforms, thus they
are suitable for the block cipher design.

Another important example is a multiplication over a finite field or modular multiplication.
Suppose that the size of the nonlinear operation is n bits and each bit of n-bit value represents
each coefficient of a polynomial whose degree is n − 1. As explained in Section 1.3, multipli-
cation over a finite field with some irreducible polynomial P (x) is a linear function. Suppose
that the entire data consists of m parts of n-bit data, that is, its size is mn bits. The purpose of
the linear function is mixing m independent outputs from the nonlinear layer. In order to mix
all the m outputs, m × m matrices are often used.

For instance, when m = 4, four n-bit values x0, x1, x2, x3 are updated to four n-bit values
y0, y1, y2, y3 by the following matrix operation:⎡

⎢⎢⎢⎣
c0 c4 c8 c12

c1 c5 c9 c13

c2 c6 c10 c14

c3 c7 c11 c15

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

x0

x1

x2

x3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

y0

y1

y2

y3

⎤
⎥⎥⎥⎦ , (1.25)

where each ci is a constant number.
Any combination of linear operations is a linear operation. A popular design approach is

combining different types of light linear operations to introduce a strong mixing effect. An
example of the linear layer is depicted in Figure 1.4.

Input

XOR Rotation Matrix multiplication

Output× M<<< 1

Figure 1.4 An example of linear layer consisting of three linear operations. Nonlinear layer is supposed
to update data in eight parts independently



Trim Size: 170mm x 244mm Sakiyama c01.tex V3 - 06/29/2015 1:58 P.M. Page 12

12 Security of Block Ciphers

1.4.2.1 Maximum Distance Separable Matrix (MDS Matrix)

A maximum distance separable matrix (in short MDS matrix) is a matrix with some special
property useful for block cipher’s design. Considering the usage in block cipher AES, only the
case with the same input and output size is discussed here. Let x be the m-component input to
the matrix, M , and y be the m-component output from the matrix, that is, y = Mx. The matrix
M is called MDS if no distinct input-output pairs (x, y) collide in m or more components.

For the application to cryptology, the fact that at least m + 1 components differ in distinct
pairs of (x, y) is important. In other words, the MDS matrix guarantees a certain amount of
change in different input and output values. For instance, suppose that the value of x is slightly
modified to x′, which differs only 1 bit from x, and the corresponding output value y′ is com-
puted. The multiplication by the MDS matrix can guarantee that all the m components of
the outputs y and y′ have different values, meaning that the 1-bit change of the input always
changes all the m components of the output.

1.4.3 Substitution-Permutation Network (SPN)

Substitution-permutation network, which is often called SPN, is a design approach to mix a
fixed-length input data. SPN is a special form of the iterative application of nonlinear and
linear computations.

The substitution layer (or S-layer), which applies a nonlinear operation, is supposed to be an
S-box application in a small size. The permutation layer (or P-layer) applies a linear operation
to mix the results of the S-layer efficiently.

The SPN structure is adopted in many block ciphers. AES, which is a main target of this
book, also adopts the SPN structure.

1.5 Advanced Encryption Standard (AES)

AES is the most widely used block cipher in present time in both governmental and commercial
purposes. AES is standardized internationally, and a lot of academic researches and industrial
developments have been proposed about AES. This section explains the specification of AES.

The block cipher AES supports three different key sizes: 128 bits, 192 bits, and 256 bits. The
corresponding AES algorithms are called AES-128, AES-192, and AES-256, respectively.
AES supports a fixed block size: 128 bits. That is to say, when the key is determined, AES
provides a bijective map from 128-bit plaintext to 128-bit ciphertext, that is, for a key K,
AES-128K , AES-192K , AES-256K :{0, 1}128 → {0, 1}128 (Figure 1.5).

1.5.1 Specification of AES-128 Encryption

In high level, the 128-bit key K is expanded to eleven 128-bit subkeys sk0, sk1, . . . , sk10
according to the key schedule function, or KSF.

1. The 128-bit key K is set to the first 128-bit subkey sk0.
2. The KSF is computed to update 128-bit subkey sk0 to another 128-bit subkey sk1.



Trim Size: 170mm x 244mm Sakiyama c01.tex V3 - 06/29/2015 1:58 P.M. Page 13

Introduction to Block Ciphers 13

plaintext

AES-128

128

ciphertext

128

ciphertext

128

ciphertext

128

128
K AES-192

192
K AES-256

256
K

plaintext

128

plaintext

128

Figure 1.5 Three algorithms of AES

3. Similarly, the KSF is iterated nine times. In each time, 128-bit subkey ski−1 is updated to
another 128-bit subkey ski for i = 2, 3, . . . , 10.

Then, a plaintext is encrypted to a ciphertext as follows:

1. An XOR of the plaintext and the first subkey sk0 is computed, and this value is set to a
128-bit internal state value state1. This operation is often called whitening.

2. The 128-bit internal state value state1 is updated to state2 by computing a round function,
which also takes as input subkey sk1. This operation is called round 1 or the first round.

3. The round function is iterated nine times to update the internal state value state2 to
state3, state4, . . . , state11. In round i, where i = 2, 3, . . . , 10, the round function takes
as input (statei, ski) and outputs statei+1. Note that the round function in the last round
is slightly different from the other rounds. The last state that is state11 is the ciphertext.

The computation structure of AES-128 in a function level is described in Figure 1.6.
In practice, it is not necessary to compute all the 11 subkeys at the very beginning. For

example, the last subkey will not be used until the very end of the encryption process. Thus,
generating the last subkey and keeping it in a register is a waste of computation resource.
In order to minimize the computation resource, the KSF and the round function updates are
computed in parallel round by round. The AES-128 encryption algorithm in the function level
can be described as Algorithm 1.1.

1.5.1.1 Preliminaries to Describe Computation Details

In AES, byte represents 8-bit values. AES is a byte-oriented cipher. All operations are defined
at byte level. Let v be a byte value and v7‖v6‖v5‖v4‖v3‖v2‖v1‖v0 be its bit-wise representation,
of which the corresponding vector representation is (v7v6v5v4v3v2v1v0)2. In AES, each bit of
a byte represents coefficients of polynomial of GF (28):

v7x
7 + v6x

6 + v5x
5 + v4x

4 + v3x
3 + v2x

2 + v1x + v0. (1.26)

A byte value can be represented in hexadecimal. For example, the byte 9b represents the
polynomial x7 + x4 + x3 + x + 1.



Trim Size: 170mm x 244mm Sakiyama c01.tex V3 - 06/29/2015 1:58 P.M. Page 14

14 Security of Block Ciphers

Whitening

Round 1

Round 2

Round 3

Round 4

Round 5

Round 6

Round 7

Round 8

Round 9

Round 10

plaintext key

128

128

128
sk0

RF

KSF128

128
sk1

RF

KSF128

128
sk2

RF

KSF128

128
sk3

RF

KSF128

128
sk4

RF

KSF128

128
sk5

RF

KSF128

128
sk6

RF

KSF128

128
sk7

RF

KSF128

128

sk8

RF

KSF128

128
sk9

RFlast

KSF128

128
sk10

ciphertext

128

Figure 1.6 High-level computation structure of the encryption of AES-128. RF and KSF denote the
round function and KSF, respectively. RFlast is the last round function, which is different from the other
rounds

Algorithm 1.1 AES-128 Encryption Algorithm in the Function Level

Input: Plaintext P , 128-bit key K, round function RF, the last round function RFlast, key
schedule function KSF

Output: Ciphertext C
1: sk0 ← K;
2: state1 ← P ⊕ sk0;
3: for i = 1, 2, . . . , 9 do
4: ski ← KSF(ski−1);
5: statei+1 ← RF(statei, ski);
6: end for
7: C ← RFlast(state10, sk10);
8: return C;



Trim Size: 170mm x 244mm Sakiyama c01.tex V3 - 06/29/2015 1:58 P.M. Page 15

Introduction to Block Ciphers 15

Addition
Addition of two bytes, v7‖v6‖v5‖v4‖v3‖v2‖v1‖v0 and u7‖u6‖u5‖u4‖u3‖u2‖u1‖u0, returns

(v7 ⊕ u7)‖(v6 ⊕ u6)‖(v5 ⊕ u5)‖(v4 ⊕ u4)‖(v3 ⊕ u3)‖(v2 ⊕ u2)‖(v1 ⊕ u1)‖(v0 ⊕ u0).
(1.27)

Multiplication
Multiplication in GF (28) corresponds with multiplication of polynomials modulo, an irre-
ducible binary polynomial of degree 8. The irreducible polynomial of AES is defined as

P (x) = x8 + x4 + x3 + x + 1. (1.28)

Because the multiplication by v(x) · 02 and v(x) · 03 is later introduced inside the round
function, more details of the operation v(x) · 02 are explained here. v(x) · 02 is written as

(v7x
7 + v6x

6 + v5x
5 + v4x

4 + v3x
3 + v2x

2 + v1x + v0) · x (1.29)

= v7x
8 + v6x

7 + v5x
6 + v4x

5 + v3x
4 + v2x

3 + v1x
2 + v0x. (1.30)

When v7 = 0, the result is v6‖v5‖v4‖v3‖v2‖v1‖v0‖0 according to the definition of byte. When
v7 = 1, the irreducible polynomial P (x) is subtracted from the result. Subtraction is the inverse
of the addition. Because the addition is the XOR, the subtraction is also a simple application
of the XOR operations. Hence, the result is

(v6x
7 + v5x

6 + v4x
5 + v3x

4 + v2x
3 + v1x

2 + v0x) ⊕ (x4 + x3 + x + 1) (1.31)

= v6x
7 + v5x

6 + v4x
5 + (v3 ⊕ 1)x4 + (v2 ⊕ 1)x3 + v1x

2 + (v0 ⊕ 1)x + 1. (1.32)

According to the definition of byte, the result is v6‖v5‖v4‖v̄3‖v̄2‖v1‖v̄0‖1.

1.5.1.2 S-box

AES uses a substitution-box (S-box) to mix the data. The S-box is used in both of the round
function and the KSF, and thus is defined here. The S-box used in AES is a pre-determined
bijective mapping from an 8-bit value to an 8-bit value. The definition of the AES S-box is
shown in Table 1.6. Hereafter, the S-box transformation is described as S(·). For example,
S(4e) returns 2f, and S(d5) returns 03.

Note that the S-box and the inverse S-box transformations are not identical. As explained
later, AES decryption algorithm requires the look-up table for the inverse of S(·), that is S−1(·).

1.5.1.3 State

The block size of AES is 128 bits. In AES, 128-bit data is called state. The 128-bit state consists
of 16 bytes, and is represented as a 4 × 4 two-dimensional array as depicted in Figure 1.7.



Trim Size: 170mm x 244mm Sakiyama c01.tex V3 - 06/29/2015 1:58 P.M. Page 16

16 Security of Block Ciphers

Table 1.6 AES S-box

Lower four digits

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
4 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
5 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
6 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8

Upper 7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
four digits 8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73

9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
a e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
d 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
f 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

∗ All the numbers in this table are in hexadecimal.

State S

S0,0 S1,0 S2,0 S3,0

S0,1 S1,1 S2,1 S3,1

S0,3 S1,3 S2,3 S3,3

S0,2 S1,2 S2,2 S3,2

Figure 1.7 AES state. Each cell denotes a byte

1.5.1.4 Key Schedule Function (KSF)

The 128-bit key K is loaded into a 128-bit subkey sk0. Then, ski ← KSF(ski−1) is computed
for i = 1, 2, . . . , 10. The input ski−1 is represented as a state. The state is further divided into
four columns: ski−1(Col(0)), ski−1(Col(1)), ski−1(Col(2)), and ski−1(Col(3)). The output
ski is computed column by column. At first, a temporary 4-byte value tmp is generated by
using the value of ski−1(Col(3)).

1. tmp ← ski−1(Col(3)).
2. Apply the S-box defined in Table 1.6 to each of the 4 bytes in tmp.
3. Rotate tmp by 1 byte. Precisely, let tmp0‖tmp1‖tmp2‖tmp3 be the 4 bytes of tmp. Then,

tmp is updated to tmp1‖tmp2‖tmp3‖tmp0.
4. XOR the pre-specified 1-byte constant rcon(i) to the first byte of tmp.



Trim Size: 170mm x 244mm Sakiyama c01.tex V3 - 06/29/2015 1:58 P.M. Page 17

Introduction to Block Ciphers 17

ski−1

ski

S0,0 S1,0 S2,0 S3,0

S-box

rot1

rcon(i)

S0,1 S1,1 S2,1 S3,1

S0,2 S1,2 S2,2 S3,2

S0,3 S1,3 S2,3 S3,3

S0,0 S1,0 S2,0 S3,0

S0,1 S1,1 S2,1 S3,1

S0,2 S1,2 S2,2 S3,2

S0,3 S1,3 S2,3 S3,3

Figure 1.8 Key schedule function of AES-128. The key schedule function is iterated for
i = 1, 2, . . . , 10

Then, by using the 4-byte value tmp, the next subkey ski is generated as follows.

1. ski(Col(0)) ← tmp ⊕ ski−1(Col(0)).
2. ski(Col(1)) ← ski(Col(0)) ⊕ ski−1(Col(1)).
3. ski(Col(2)) ← ski(Col(1)) ⊕ ski−1(Col(2)).
4. ski(Col(3)) ← ski(Col(2)) ⊕ ski−1(Col(3)).

The key schedule procedure for AES-128 is depicted in Figure 1.8.

Exercise 1.6 Write the algorithm of the key schedule function for AES-128. The
similar style as Algorithm 1.1 can be used.

1.5.1.5 Round Function (RF)

The round function takes as input the previous 128-bit state statei and subkey ski, and gener-
ates the next 128-bit state statei+1. The round function consists of four transformations called
SubBytes, ShiftRows, MixColumns, and AddRoundKey. It updates the state by following
Algorithm 1.2.



Trim Size: 170mm x 244mm Sakiyama c01.tex V3 - 06/29/2015 1:58 P.M. Page 18

18 Security of Block Ciphers

Algorithm 1.2 AES Round Function

Input: Previous State Si, subkey ski

Output: New State Si+1
1: Set temporary state Stmp ← Si;
2: Stmp ← SubBytes(Stmp);
3: Stmp ← ShiftRows(Stmp);
4: Stmp ← MixColumns(Stmp);
5: Stmp ← Stmp ⊕ ski;
6: Si+1 ← Stmp;
7: return Si+1;

State: S

ShiftRows

State: S′

S0,0 S1,0 S2,0 S3,0

S0,1 S1,1 S2,1 S3,1

S0,3 S1,3 S2,3 S3,3

S0,2 S1,2 S2,2 S3,2

S0,0 S1,0 S2,0 S3,0

S1,1 S2,1 S3,1 S0,1

S3,3 S0,3 S1,3 S2,3

S2,2 S3,2 S0,2 S1,2

Figure 1.9 ShiftRows operation

SubBytes (SB)
SubBytes is a byte-wise operation. It updates the state by applying the S-box defined in
Table 1.6 to each of the 16 bytes of the state. It is worth noting that the SubBytes operation
is the only nonlinear one in the AES round function.

ShiftRows (SR)
ShiftRows is a row-wise byte positions swap. The state consists of four rows: row 0, row 1,
row 2, and row 3. Each row of the state consists of 4 bytes. The ShiftRows operation applies
a left cyclic shift by i bytes to the 4 bytes of row i. The ShiftRows operation is depicted in
Figure 1.9.

MixColumns (MC)
MixColumns is a column-wise data mixing operation. It takes as input 4 bytes in a column and
computes another 4-byte value. The same computation is applied to all of the four columns.
Let x0, x1, x2, x3 and y0, y1, y2, y3 be the 4-byte input and 4-byte output, respectively. The
y0, y1, y2, y3 is computed by the following matrix operation:⎡

⎢⎢⎣
2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x0
x1
x2
x3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

y0
y1
y2
y3

⎤
⎥⎥⎦. (1.33)



Trim Size: 170mm x 244mm Sakiyama c01.tex V3 - 06/29/2015 1:58 P.M. Page 19

Introduction to Block Ciphers 19

Each element in the matrix is written in hexadecimal.
The MixColumns operation was designed to satisfy the MDS property explained in

Section 1.4.2.1. The impact of modifying 1 input byte always expands to all the 4 output
bytes. More generally, the sum of the number of modified input bytes and the number of
modified output bytes is always greater than or equal to 5.

AddRoundKey (AK)
AddRoundKey updates the state by XORing the subkey ski to the state.

Last Round Function (RFlast)
In the last round (Round 10 for AES-128), the round function is different from the middle
rounds. The MixColumns operation is not computed that is, only the SubBytes,ShiftRows,
and AddRoundKey operations are performed.

Exercise 1.7 Let us consider exchanging the order of two operations in the
round function. Which of the following choices return the same result as the orig-
inal AES specification even if the operations order is exchanged? Why do they
return the same result?

1. SubBytes and ShiftRows
2. ShiftRows and MixColumns
3. MixColumns and AddRoundKey

1.5.2 AES-128 Decryption

To decrypt ciphertext C to P , the round function is applied in reverse order. The KSF is exactly
the same. Eleven subkeys sk0, sk1, . . . , sk10 are generated from K. Different from the encryp-
tion algorithm, sk10 is firstly used, and then the decryption is processed with sk9, sk8, . . . , and
finally with sk0.

Inside the round function, four operations are computed in reverse order. The inverse of
the AddRoundKey operation is exactly the same as the original AddRoundKey operation
because the XOR operation is involution.

For the inverse of the MixColumns operation, the inversion matrix is required.
Let b0, b1, b2, b3 and a0, a1, a2, a3 be the 4-byte input and 4-byte output to the inverse
MixColumns operation, respectively. The a0, a1, a2, a3 is computed by the following matrix
operation: ⎡

⎢⎢⎣
e b d 9
9 e b d
d 9 e b
b d 9 e

⎤
⎥⎥⎦

⎡
⎢⎢⎣

b0
b1
b2
b3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

a0
a1
a2
a3

⎤
⎥⎥⎦. (1.34)

Each element in the matrix is again written in hexadecimal.



Trim Size: 170mm x 244mm Sakiyama c01.tex V3 - 06/29/2015 1:58 P.M. Page 20

20 Security of Block Ciphers

Table 1.7 AES inverse S-box

Lower four digits

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 52 09 6a d5 30 36 a5 38 bf 40 a3 9e 81 f3 d7 fb
1 7c e3 39 82 9b 2f ff 87 34 8e 43 44 c4 de e9 cb
2 54 7b 94 32 a6 c2 23 3d ee 4c 95 0b 42 fa c3 4e
3 08 2e a1 66 28 d9 24 b2 76 5b a2 49 6d 8b d1 25
4 72 f8 f6 64 86 68 98 16 d4 a4 5c cc 5d 65 b6 92
5 6c 70 48 50 fd ed b9 da 5e 15 46 57 a7 8d 9d 84
6 90 d8 ab 00 8c bc d3 0a f7 e4 58 05 b8 b3 45 06

Upper 7 d0 2c 1e 8f ca 3f 0f 02 c1 af bd 03 01 13 8a 6b
four digits 8 3a 91 11 41 4f 67 dc ea 97 f2 cf ce f0 b4 e6 73

9 96 ac 74 22 e7 ad 35 85 e2 f9 37 e8 1c 75 df 6e
a 47 f1 1a 71 1d 29 c5 89 6f b7 62 0e aa 18 be 1b
b fc 56 3e 4b c6 d2 79 20 9a db c0 fe 78 cd 5a f4
c 1f dd a8 33 88 07 c7 31 b1 12 10 59 27 80 ec 5f
d 60 51 7f a9 19 b5 4a 0d 2d e5 7a 9f 93 c9 9c ef
e a0 e0 3b 4d ae 2a f5 b0 c8 eb bb 3c 83 53 99 61
f 17 2b 04 7e ba 77 d6 26 e1 69 14 63 55 21 0c 7d

All the numbers in this table are in hexadecimal.

The inverse of the ShiftRows operation is relatively simple. It applies a right cyclic shift by
i bytes to the 4 bytes of row i.

The inverse of the SubBytes operation requires another table to substitute each byte value.
The inverse S-box, denoted by S(·)−1, is defined in Table 1.7.

Exercise 1.8 Write the AES-128 decryption algorithm. The similar style as
Algorithm 1.1 can be used.

1.5.3 Specification of AES-192 and AES-256

AES supports not only the 128-bit key but also the 192-bit and the 256-bit keys. For all the
key sizes, round function is identical. The differences are the number of rounds computed and
the KSF.

• AES-128 generates eleven 128-bit subkeys sk0, sk1, . . . , sk10 from 128-bit K, and the
number of rounds is 10.

• AES-192 generates thirteen 128-bit subkeys sk0, sk1, . . . , sk12 from 192-bit K, and the
number of rounds is 12.

• AES-256 generates fifteen 128-bit subkeys sk0, sk1, . . . , sk14 from 256-bit K, and the
number of rounds is 14.



Trim Size: 170mm x 244mm Sakiyama c01.tex V3 - 06/29/2015 1:58 P.M. Page 21

Introduction to Block Ciphers 21

1.5.3.1 The Key Schedule Function for AES-192

The 192-bit key K is loaded into a 4 × 6 array of bytes, which is denoted by Kstate0.
Then, Kstatei ← KSF(Kstatei−1) is computed for i = 1, 2, . . . , 8. The state is further
divided into six columns: Kstatei−1(Col(0)), Kstatei−1(Col(1)), Kstatei−1(Col(2)),
Kstatei−1(Col(3)), Kstatei−1(Col(4)), and Kstatei−1(Col(5)). The output Kstatei is
computed column by column. At first, a temporary 4-byte value tmp is generated by using
the value of Kstatei−1(Col(5)).

1. tmp ← Kstatei−1(Col(5)).
2. Apply the S-box defined in Table 1.6 to each of the 4 bytes in tmp.
3. Rotate tmp by 1 byte. Precisely, let tmp0‖tmp1‖tmp2‖tmp3 be the 4 bytes of tmp. Then,

tmp is updated to tmp1‖tmp2‖tmp3‖tmp0.
4. XOR the pre-specified 1-byte constant rcon(i) to the first byte of tmp.

Then, by using the 4-byte value tmp, the next subkey Kstatei is generated as follows.

1. Kstatei(Col(0)) ← tmp ⊕ Kstatei−1(Col(0)).
2. Kstatei(Col(1)) ← Kstatei(Col(0)) ⊕ Kstatei−1(Col(1)).
3. Kstatei(Col(2)) ← Kstatei(Col(1)) ⊕ Kstatei−1(Col(2)).
4. Kstatei(Col(3)) ← Kstatei(Col(2)) ⊕ Kstatei−1(Col(3)).
5. Kstatei(Col(4)) ← Kstatei(Col(3)) ⊕ Kstatei−1(Col(4)).
6. Kstatei(Col(5)) ← Kstatei(Col(4)) ⊕ Kstatei−1(Col(5)).

Among the 192-bit of the Kstate0, the first four columns (128 bits) are set to sk0, and the
remaining two columns (64 bits) are set to the left half of sk1. Among the 192-bit of the
Kstate1, the first two columns (64 bits) are set to the right half of sk1, and the remaining four
columns (128 bits) are set to sk2. Similarly, sk3, sk4, . . . , sk12 are obtained.

Note that sk11 is the last four columns of Kstate7, and then sk12 is the first four columns of
Kstate8. The last two columns of Kstate8 are never used. Thus, in order to omit the redundant
computations, the KSF should be processed up to the first four columns of Kstate8.

The key schedule procedure for AES-192 is depicted in Figure 1.10.

1.5.3.2 The Key Schedule Function for AES-256

The KSF for AES-256 can be similarly defined. The size of the key state is 256 bits consisting
of 4 × 8-byte array. Each key state produces two subkeys, and 15 subkeys sk0, sk1, . . . , sk14
are generated.

The update computation is very similar to the ones for AES-128 and AES-192. In order
to mix the data quickly, another S-box layer is introduced between columns 3 and 4. The
detailed procedure is omitted. The key schedule procedure for AES-256 is depicted in
Figure 1.11.

Note that sk14 is the first four columns of Kstate7. The last four columns of Kstate7 are
never used. Thus, in order to omit the redundant computations, the KSF should be processed
up to the first four columns of Kstate7.



Trim Size: 170mm x 244mm Sakiyama c01.tex V3 - 06/29/2015 1:58 P.M. Page 22

22 Security of Block Ciphers

S0,1

S0,0

S0,2

S0,3

S2,1

S2,0

S2,2

S2,3

S3,1

S3,0

S3,2

S3,3

S4,1

S4,0

S4,2

S4,3

S5,1
S-box

ski−1

ski+1ski

ski

rot1

rcon(i)

S5,0

S5,2

S5,3

S1,1

S1,0

S1,2

S1,3

S0,1

S0,0

S0,2

S0,3

S2,1

S2,0

S2,2

S2,3

S3,1

S3,0

S3,2

S3,3

S4,1

S4,0

S4,2

S4,3

S5,1

S5,0

S5,2

S5,3

S1,1

S1,0

S1,2

S1,3

Figure 1.10 Key schedule function of AES-192. The key schedule function is iterated until 13 subkeys
are generated

S0,3

S0,2

S0,1

S0,0

S1,3

S1,2

S1,1

S1,0

S2,3

S2,2

S2,1

S2,0

S3,3

S3,2

S3,1

S3,0

S4,3

S4,2

S4,1

S4,0

S5,3

S5,2

S5,1

S5,0

S6,3

S6,2

S6,1

S6,0

S7,3

ski−1

ski+1 ski+2

S-box

rot1

rcon(i)

S-box

ski

S7,2

S7,1

S7,0

S0,3

S0,2

S0,0

S0,1

S1,3

S1,2

S1,1

S1,0

S2,3

S2,2

S2,1

S2,0

S3,3

S3,2

S3,1

S3,0

S4,3

S4,2

S4,1

S4,0

S5,3

S5,2

S5,1

S5,0

S6,3

S6,2

S6,1

S6,0

S7,3

S7,2

S7,1

S7,0

Figure 1.11 Key schedule function of AES-256. The key schedule function is iterated until 15 subkeys
are generated



Trim Size: 170mm x 244mm Sakiyama c01.tex V3 - 06/29/2015 1:58 P.M. Page 23

Introduction to Block Ciphers 23

Exercise 1.9 Compare the number of KSF calls per 128-bit subkeys for
AES-128, AES-192, and AES-256 (weak mixing effect of the AES-256 KSF).

Exercise 1.10 Compare the number of S-box calls per 128-bit subkeys for
AES-128, AES-192, and AES-256 (weak nonlinearity of the AES-192 KSF).

1.5.4 Notations to Describe AES-128

The computation of AES-128 with all the operations is described in Figure 1.12. The state
after the first XOR of the plaintext and sk0 is denoted by SI

1 . Similarly in round i, where
i ∈ {1, 2, . . . , 10},

• the state at the beginning of the round is denoted by SI
i ;

• the state after the SubBytes operation is denoted by SSB
i ;

SI
1

S 2
I (= S1

AK)

S9
I (= S8

AK)

S10
I (= S9

AK)

S9
SB S9

MC

S2
SB

S9
SB

S10
SB S10

SR

S2
SR S2

MC

S1
SB S1

SR S1
MC

KSF

KSF

KSF

KSF

KSF

sk1

sk0

sk2

sk9

sk10

plaintext

Round 1 SB SR MC

SB

SB

SR

SR

SB SR

MC

MC

Round 2

Round 9

Round 10

ciphertext

Figure 1.12 Notations for each state of AES-128



Trim Size: 170mm x 244mm Sakiyama c01.tex V3 - 06/29/2015 1:58 P.M. Page 24

24 Security of Block Ciphers

Inverse
diagonal Diagonal

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

Figure 1.13 Notations for inside AES state

• the state after the ShiftRows operation is denoted by SSR
i ;

• the state after the MixColumns operation is denoted by SMC
i ;

• the state after the AddRoundKey operation is denoted by SAK
i , which is equivalent to SI

i+1.

As explained before, the state is represented by a 4 × 4-byte array. Using two subindices
often causes misunderstanding, and thus each byte position is also denoted by a single sequence
{0, 1, . . . , 15}. For state S, the byte Su,v , where 0 ≤ u, v ≤ 3 is converted to the byte S[4 ∗
u + v]. The byte positions in the single sequence are shown in Figure 1.13.

Byte values of state S in several different byte positions [a], [b], [c], . . . are often denoted
by S[a, b, c, . . . ]. For example, the 4-byte value in the column 0 of state S is denoted by
S[0, 1, 2, 3].

• The first column, or column 0, of state S is denoted by S[Col(0)], which is equivalent to
S[0, 1, 2, 3].

• The second column, or column 1, of state S is denoted by S[Col(1)], which is equivalent
to S[4, 5, 6, 7].

• The third column, or column 2, of state S is denoted by S[Col(2)], which is equivalent to
S[8, 9, 10, 11].

• The fourth column, or column 3, of state S is denoted by S[Col(3)], which is equivalent to
S[12, 13, 14, 15].

• The first row, or row 0, of state S is denoted by S[Row(0)], which is equivalent to
S[0, 4, 8, 12].

• The second row, or row 1, of state S is denoted by S[Row(1)], which is equivalent to
S[1, 5, 9, 13].

• The third row, or row 2, of state S is denoted by S[Row(2)], which is equivalent to
S[2, 6, 10, 14].

• The fourth row, or row 3, of state S is denoted by S[Row(3)], which is equivalent to
S[3, 7, 11, 15].

State SSB
i becomes state SSR

i after the ShiftRows operation. During this process, 4 bytes in
SSB

i [Col(j)] are moved to different byte positions in SSR
i . The moved positions are denoted

by SR(Col(j)).



Trim Size: 170mm x 244mm Sakiyama c01.tex V3 - 06/29/2015 1:58 P.M. Page 25

Introduction to Block Ciphers 25

• For state S, 4 bytes of S[SR(Col(0))] are equivalent to S[0, 7, 10, 13].
• For state S, 4 bytes of S[SR(Col(1))] are equivalent to S[1, 4, 11, 14].
• For state S, 4 bytes of S[SR(Col(2))] are equivalent to S[2, 5, 8, 15].
• For state S, 4 bytes of S[SR(Col(3))] are equivalent to S[3, 6, 9, 12].

Those 4-byte positions are called diagonal.
Similarly 4 bytes in SSR

i [Col(j)] are moved to different byte positions in SSB
i through the

inverse of the ShiftRows operation. The moved positions are denoted by SR−1(Col(j)).

• For state S, 4 bytes of S[SR−1(Col(0))] are equivalent to S[0, 5, 10, 15].
• For state S, 4 bytes of S[SR−1(Col(1))] are equivalent to S[3, 4, 9, 14].
• For state S, 4 bytes of S[SR−1(Col(2))] are equivalent to S[2, 7, 8, 13].
• For state S, 4 bytes of S[SR−1(Col(3))] are equivalent to S[1, 6, 11, 12].

Those 4-byte positions are called inverse diagonal.

Further Reading

Daemen J and Rijmen V June 1998 AES submission document on Rijndael.
Daemen J and Rijmen V 2002 The Design of Rijndeal: AES—The Advanced Encryption Standard (AES).

Springer-Verlag.
Deschamps JP 2009 Hardware Implementation of Finite-Field Arithmetic 1st edn. McGraw-Hill, Inc., New York, NY.
Paar C and Pelzl J 2010 Understanding Cryptography: A Textbook for Students and Practitioners. Springer-Verlag,

New York.



Trim Size: 170mm x 244mm Sakiyama c01.tex V3 - 06/29/2015 1:58 P.M. Page 26


