
1
Software Engineering:

A Discipline Like No Other
On the face of it, software engineering sounds like an engineering discipline among
others, such as chemical engineering, mechanical engineering, civil engineering, and
electrical engineering. We will explore, in this chapter, in what way and to what extent
software engineering differs from other engineering disciplines.

1.1 A YOUNG, RESTLESS DISCIPLINE

Civil engineering and mechanical engineering date back to antiquity or before, as one
can see from various sites (buildings, road networks, utility infrastructures, etc.) around
the Mediterranean basin. Chemical engineering (Lavoisier and others) and electrical
engineering (Franklin and others) can be traced back to the eighteenth century. Nuclear
engineering (Pierre and Marie Curie) emerged at the turn of the twentieth century and
industrial engineering emerged around the time of the Second World War, with issues
of logistics. By contrast, software engineering is a comparatively young discipline,
emerging as it did in the second half of the twentieth century. The brief history of this
discipline can be divided into five broad eras, lasting approximately one decade each,
which are as follows:

• The Sixties: The Era of Pioneers. This era marks the first time that practitioners
and researchers came face to face with the complexities, paradoxes, and anomalies
of software engineering. Software projects of this era were ventures into unchar-
tered territory, characterized by high levels of risk, unpredictable outcomes,
and massive cost and schedule overruns. The programming languages that were
dominant in this era are assembler, Fortran, Cobol, and (in academia) Algol.

Software Testing: Concepts and Operations, First Edition. Ali Mili and Fairouz Tchier.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

3

CO
PYRIG

HTED
 M

ATERIA
L

• The Seventies: Structured Software Engineering. This era is characterized by the
general belief that software engineering problems are of a technical nature and
that if we evolved techniques for software specification, design, and verification
to control complexity, all software engineering problems would be resolved.
Given that structure is our main intellectual tool for dealing with complexity, this
era has seen the emergence of a wide range of structured techniques, including
structured programming, structured design, structured analysis, structured speci-
fications, etc. The programming languages that were dominant in this era are
C and (in academia) Pascal.

• The Eighties: Knowledge-Based Software Engineering. This era is characterized
by the realization that software engineering problems are of a managerial and
organizational nature more than a technical nature. This realization was concur-
rent with the emergence of the Fifth Generation Computing initiative, which
started in Japan and spread across the globe (the United States, Europe, Canada),
and was focused on thinking machines designed with extensive use of artificial
intelligence techniques. This general approach permeated the discipline of soft-
ware engineering with the emergence of knowledge-based software engineering
techniques. The programming languages that were dominant in this era are
Prolog, Scheme/Lisp, and Ada.

• The Nineties: Reuse-Based Software Engineering. As it became increasingly
clear that fifth-generation computing was not delivering on its promise, and
worldwide fifth-generation initiatives were fading, software researchers and
practitioners turned their attention to reuse as a possible savior of the discipline.
Software engineering is, after all, the only discipline where reuse is not an inte-
gral part of the routine engineering process. It was felt that if only software engi-
neers had large databases of reusable software components readily available, the
industry would achieve great gains in productivity, quality, time to market, and
reduced process risk. This evolution was concurrent with the emergence of
object-oriented programming, which supports a bottom–up design discipline that
facilitates product reuse. The programming languages that were dominant in this
era are C, C++, Eiffel, and Smalltalk.

• The First Decade of the Millennium: Lightweight Software Engineering.While
software reuse is not practical as a general paradigm in software engineering, it
is feasible in limited application domains, giving rise to product line engineer-
ing. Other attributes of this era include Java programming, with its focus on
web applications; agile programming, with its focus on rapid and flexible
response to change; and component-based software engineering, with its focus
on software architecture and software composition. The programming
languages that were dominant in this era are Java, C++, and (in academia)
Python.

Perhaps as result of this young and eventful history, the discipline of software engi-
neering is characterized by a number of paradoxes and counter-intuitive properties,
which we explore in this chapter.

4 SOFTWARE ENGINEERING

1.2 AN INDUSTRY UNDER STRESS

Nowadays, software runs all aspects of modern life and accounts for a large and
increasing share of the world economy. This trend started slowly with the advent
of computing in the middle of the twentieth century and was further precipitated
by the emergence of the World Wide Web at the end of the twentieth and the begin-
ning of the twenty-first century. This phenomenon has spawned a great demand
for software products and services and generated a market pressure that the software
industry takes great pains to cater to.

Many fields of science and engineering (such as bioinformatics, medical informat-
ics, weather forecasting, and modeling and simulation) are so dependent on software
that they can almost be considered as mere applications of software engineering. Also,
it is possible to observe that many computer science curricula are slowly inching
toward more software engineering contents at the expense of traditional theoretical
material, which may be perceived as less and less relevant to today’s job market.
Some engineering colleges are preempting the trend by starting software engineering
degrees in computer science departments or by starting complete software engineering
departments alongside traditional computer science departments.

Concurrent with a widening demand for software to serve ever-broader needs, we are
also witnessing higher and higher expectations in terms of product quality. As software
takes on ever more vital functions in life-critical and mission-critical applications and in
applications that carry massive financial stakes, it becomes increasingly important to
ensure that software products fulfill their function with a high degree of dependability.
This requires that we deploy a wide range of techniques, including the following:

• Process controls, ensuring that software products are developed and evolved
according to certified, mature processes.

• Product controls, ensuring that software products meet quality standards com-
mensurate with their application domain requirements; this is achieved by a com-
bination of techniques, including static analysis, dynamic testing, reliability
estimation, fault tolerance, etc.

In summary, it is fair to argue that the software industry is under massive stress to
deliver both quantity and quality; as we discuss in subsequent sections, this is both
difficult and expensive.

1.3 LARGE, COMPLEX PRODUCTS

The demand for complex hardware/software systems has increased more rapidly
than the ability to design, implement, test and maintain them.

Michael Lyu, Handbook of Software Reliability Engineering, 1996

Not only is it critical for us to build software products that are of high quality, it
is also very difficult, due to their size and complexity. When it was built in the

51.3 LARGE, COMPLEX PRODUCTS

mid-60s, the IBM operating system OS360 (©IBM Corporation), with a million
lines of code and a price tag of 500 million dollars, was considered as the most
complex human artifact ever produced up to then. This size was subsequently
dwarfed by Microsoft’s Windows operating systems (©Microsoft): The 1993 ver-
sion (Windows NT 3.1) is estimated to be 5 millions lines of code, whereas the
2003 version (Windows Server 2003) is estimated to be 50 million lines of code.
Completing projects of this kind of size is not only a major engineering
undertaking but also a major organizational challenge; it is estimated that the pro-
duction of the Windows Server 2003 involved 2000 software personnel (program-
mers, analysts, engineers) for development and 2400 software personnel for software
testing.

Another example of software size growth is given by NASA’s flight software.
A study published in 2009 by NASA’s Jet Propulsion laboratory under the title
NASA Study on Flight Software Complexity (Jet Propulsion Laboratory, 2009) plots
the evolution of flight software size of the various human and robotic space pro-
grams from 1968 to 2005. Both series (flight software for human missions and flight
software for robotic mission) show a near-perfect linear evolution through the years,
except that they are plotted on a logarithmic scale for size, meaning in effect that
flight software size grows exponentially from year to year. Hence for human mis-
sions, flight software grows from 8.5 kilo lines of code (KLOC) for the Apollo
program in 1968 to 470 KLOC for the space shuttle program in 1980 to 1.5 million
lines of code (MLOC) for the international space station in 1989. For robotic mis-
sions, software size grows from 30 line of code (LOC) for the Mariner-6 mission in
1968 to 3 KLOC for Voyager in 1977 to 8 KLOC for Galileo in 1989 to 349 KLOC
for DS1 (Deep Space 1) in 1999 to 545 KLOC for MRO (Mars Reconnaissance
Orbiter) in 2005. The same Jet Propulsion Laboratory (JPL) report describes the
recent evolution of military avionics software in the following terms: between
1960 and 2000, the percentage of flight control functionality that is delegated to
software jumped from 8 to 80%, leading to an increase in size from one generation
of aircrafts to another; hence it went from 1000 lines of code for the F-4A to 1.7
million lines of code for the F-22 to 5.7 million lines of code for the F-35 Joint Strike
Fighter. The authors of the report argue that the increase in the size and complexity
of flight software stems from software serving as a ‘complexity sponge,’ whereby
complexity migrates from other parts of the system to software, on account of its
flexibility and its adaptability.

A panel convened by the Software Engineering Institute (www.sei.cmu.edu) in
2005–2006 to analyze software systems of the future and draw a research agenda
to manage such systems estimates that future software systems are expected to have
sizes up to a billion lines of code. Along with this dry measure of size, such systems
will be large in terms of other dimensions, such as (www.sei.cmu.edu/uls/) the amount
of data stored, accessed, manipulated, and refined; the number of connections and
interdependencies; the number of hardware elements; the number of computational
elements; the number of system purposes and user perception of these purposes;
the number of routine processes, interactions, and emergent behaviors; the number
of overlapping policy domains and enforceable mechanisms; and the number of

6 SOFTWARE ENGINEERING

parties involved in the operation of the system (developers, maintainers, end users,
stakeholders, etc.).

Size changes everything: such systems (referred to as ultra-large–Scale (ULS)
systems) challenge all our knowledge and assumptions about software and are estimated
to have a number of distinguishing features, such as the following:

• Decentralization in fundamental dimensions, such as decentralized development,
decentralized evolution, and decentralized operation.

• Conflicting, unknown, and diverse requirements: Whereas the traditional view in
software engineering is that requirements must be analyzed, compiled, and spe-
cified prior to software design and development, the view taken by the ULS
approach is that at no time can we claim that all relevant requirements have been
collected and specified.

• Continuous evolution and deployment: Whereas the traditional view of software
engineering is that a software product proceeds sequentially through successive
phases of development, then maintenance, then phase out, ULS systems are
developed, evolved, and deployed concurrently (made up of parts that are at dif-
ferent stages in their evolutionary process).

• Heterogeneous, inconsistent, changing elements: Whereas a traditional software
product is developed as a cohesive monolithic system by a development team,
ULS systems emerge as the aggregate of many components, which may have
evolved independently, using different paradigms and different technologies,
by different teams, and from different stakeholder classes. Also, different com-
ponents of the system are expected to evolve relatively independently.

• Deep erosion of the people-system boundary: Whereas traditional systems are
defined in terms of a distinct boundary that separates them from the outside
world, ULS systems are envisioned to include human users as an integral part
so that when a user interacts with a ULS system, she/he may be engaging human
actors along with system behavior.

• Failure is normal and frequent: Whereas in traditional software systems we think
of failures as exceptional events and consider that failure avoidance is contin-
gent upon fault removal, in ULS systems, we take a broader view of successful
(failure-free) operation, which does not exclude the presence of faults but makes
provisions for system redundancy and requirements nondeterminacy to make up
for the presence of faults.

1.4 EXPENSIVE PRODUCTS

Not only are software products very large and complex, they are also very expensive
to produce. Of course, if a product is large, one expects it to be costly, but what is
surprising is that the unitary cost of software, that is, the cost per LOC, does, itself,
increase with size. Whereas any programmer one asks may say that they can produce a
hundred lines of code in a day or more, a more realistic figure, across all areas of

71.4 EXPENSIVE PRODUCTS

software development, is closer to about 10 lines of code per day, or about 200 lines
of code per person-month. This figure includes all costs that are spent producing
software, including the cost of all phases of the software lifecycle, from requirements
analysis and specification to software testing. If we assume the cost of a person-month
to be 20,000 dollars (in salary, fringe benefits, and related expenses), this amounts to
about $100 per LOC. If, for the sake of argument, we apply Boehm’s COnstructive
COst MOdel (COCOMO) cost estimation model to a bespoke (custom-tailored) soft-
ware project of size 500,000 source lines of code developed in embedded mode
(the hardest/most costly development mode), we find 80 source lines of code per
person-month.

In most other engineering disciplines, one way to mitigate costs is to use economies
of scale, that is, to produce in such a large volume as to lower the unitary cost. Econo-
mies of scale are possible because in most engineering disciplines, the production
process requires an initial up-front cost that is all the better amortized as the volume
of production increases. The same process applies in software engineering: If we
invest resources to acquire software tools, to train software professionals, or to set
up a programming environment, then the more software we produce the better our
investment is amortized. But in software we are also dealing with a phenomenon
of diseconomy of scale: the more software we produce within a single product, the
more interdependencies we create between the components of the product so that
the unitary cost (per LOC) of large software products is larger than that of smaller
products. This phenomenon of diseconomy of scale overrides the traditional economy
of scale (that comes from amortizing up-front investments); the net result is a disecon-
omy of scale, which is all the more acute that the software product is larger or more
complex; see Figure 1.1.

Many of these costs are mitigated nowadays by the use of a variety of coarse-
grained software development methods, which proceed to build software by compos-
ing existing components, rather than by painstakingly writing code from scratch line

Production cost as a function
of production size

Production volume

Production cost

Unitary cost as a function
of production size

Production volume

Unitary cost

Software engineering
Other engineering disciplines

Figure 1.1 Diseconomies of scale in software engineering.

8 SOFTWARE ENGINEERING

by line. Another trend that is emerging recently to address software cost and quality is
the use of so-called Agile methodologies. These methodologies control the costs and
risks of traditional lifecycles by following an iterative, incremental, flexible lifecycle,
where the user participates actively in the specification and development of successive
versions of the targeted software product.

1.5 ABSENCE OF REUSE PRACTICE

In the absence of economies of scale, one would hope to control costs by a routine
discipline of reuse; in the case of software, it turns out that reuse is also very difficult
to achieve on a routine basis. In any engineering discipline, reuse is made possible by
the existence of a standard product architecture that is shared between the producer
and the consumer of reusable assets: for example, automobiles have had a basic archi-
tecture that has not changed for over a century; all cars have a chassis, four wheels, an
engine, a battery, a transmission, a cab, a steering column, a braking system, a horn, an
exhaust system, shock absorbers, etc. Thanks to this architecture, the design of a new
car is relatively straightforward and is driven primarily by design and marketing con-
siderations; the designer of a new model does not have to reinvent a car from scratch
and can depend on a broad market of companies that provide standard components,
such as batteries, tires, and spare parts. The standard architecture of a car dictates mar-
ket structure and creates great efficiencies in the production and maintenance of a car.

Unfortunately, no standard architecture exists in software products; this explains,
to a large extent, why the expectations that software engineering researchers and prac-
titioners pinned on a discipline of software reuse never fully materialized. Several
software reuse initiatives were launched in the last decade of the last century, making
available a wide range of software products and sophisticated search and assessment
algorithms; but they were unsuccessful because software reuse requires not only func-
tional matching between the available components and the requirements of the user
but also architectural matching, which was often lacking. The absence of a standard
architecture of software products also explains why software product lines have
achieved some degree of success: product line engineering is a form of software reuse
that is practiced in the context of a narrow application domain, in which it is possible
to define and enforce a reference architecture. As an example, if we define a product
line of e-commerce systems, wemay want to define the reference architecture as being
composed of the following components: a web front-end; a shopping cart component;
an order-processing component; a banking component; a marketing and recommen-
dations component; a network interface; and a database interface.

1.6 FAULT-PRONE DESIGNS

In other engineering disciplines, the presence of a standard product architecture, the
availability of usable product components, the availability of compiled engineering
knowledge, and the application of mandated safety requirements all contribute to

91.6 FAULT-PRONE DESIGNS

reducing the design space of a product so as to make it manageable. The design of an
engineering product (e.g., a bridge, a road, or a car) within this limited design space is
a fairly straightforward operation that proceeds from requirements to finished product
in a systematic, predictable manner.

In software engineering, the situation is significantly more complex, for several
reasons, which are as follows:

• There is no standard software architecture, except perhaps for some vague archi-
tectures of broad families of software products, such as data-processing applica-
tions, transaction-processing applications, event-processing applications, and
language-processing applications.

• There is little or no availability of software reusable assets, in the traditional
sense of engineering assets that can be used to compose software products;
the only assets that may be used widely across the industry are small assets
(such as abstract data types (ADTs)) that deliver limited gains in terms of reduced
lifecycle costs or reduced process risk.

• There is little software engineering knowledge that may be used across applica-
tions in the same way that engineering knowledge is reused in complied form
across products in other engineering disciplines.

• Software specifications are very complex artifacts that typically involve vast
amounts of detailed functional information; the breadth of the specification space
precludes the ability to organize the design space in a systematic manner.

Because the design space of software products is so vast, software design is sig-
nificantly more error prone than design in other engineering disciplines.

1.7 PARADOXICAL ECONOMICS

While technology can change quickly, getting your people to change takes a great deal
longer. That is why the people-intensive job of developing software has had essentially

the same problems for over 40 years.
Watts Humphrey, Winning with Software: An Executive Strategy, 2001

1.7.1 A Labor-Intensive Industry

If we consider the cost of an automobile, for example, and ponder the question of what
percentage of this cost is due to the design process and what percentage is due to man-
ufacturing, we find that most of the cost (more than 99%, perhaps) is due to manu-
facturing. Typically, by the time one buys a car, the effort that went into designing
the new model has long since been amortized by the number of cars sold; what
one is paying for is all the raw materials and the processing that went into manufac-
turing the car. By contrast, when one is buying a software product, one is paying

10 SOFTWARE ENGINEERING

essentially for the design effort, as there are no manufacturing costs to speak of
(loading compact disks or downloading program files). Table 1.1 shows, summarily,
how the cost of a software product differs from the cost of another engineering product
in terms of distribution between design and manufacturing.

1.7.2 Absence of Automation

The labor-intensive nature of software engineering has an immediate impact on the
potential to automate software engineering processes. In all engineering processes,
one can achieve savings in manufacturing by automating the manufacturing process
or at least streamlining it, as in assembly lines. This is possible because manufacturing
follows a simple, systematic process that requires little or no creativity. By contrast,
design cannot be automated because it requires creativity, artistic appreciation, aes-
thetic sense, and so on. Automating the manufacturing process has an impact in tra-
ditional engineering disciplines because it helps reduce a cost factor that accounts for
more than 99% of production costs; but it has no impact in software engineering
because it affects less than 1% of production costs. Hence the automated development
of software products is virtually impossible in general.

The only exception to this general rule is the development of applications within a
limited application domain, where many of the design decisions may be taken a priori
when the automated tool is developed and hardwired into the operation of the tool.
One of the most successful areas of automated software development is compiler con-
struction, where it is possible (thanks to several decades of intensive research) to pro-
duce compilers automatically, from a syntactic definition of the source language and
relevant semantic definitions of its statements. Not surprisingly, this is a very narrow
application domain.

1.7.3 Limited Quality Control

The lack of automation and hence the absence of process control make it difficult to
control product quality. Whereas in traditional engineering disciplines, the production
process is a systematic, repeatable process, one can control quality analytically by cer-
tifying the process or empirically by statistical observation. Because the production of
software proceeds through a creative process, neither approach is feasible, since the
process is neither systematic nor repeatable. This shifts the control of product quality
to product controls, such as static analysis, or dynamic program testing.

TABLE 1.1 Lifecycle cost distribution: design versus
manufacturing

Software engineering, % Other engineering, %

Design >99 <1
Manufacturing <1 >99

111.7 PARADOXICAL ECONOMICS

1.7.4 Unbalanced Lifecycle Costs

In most other engineering disciplines, products are produced in large volume and are
generally assumed to behave as expected; in software engineering, due to the forego-
ing discussion, such an assumption is unfounded, and the only way to ensure the qual-
ity of a software product is to subject that product to extensive analysis. This turns out
to be an expensive proposition, in practice, and the source of another massive paradox
in software engineering economics. Whereas testing (and more generally, verification
and quality assurance) takes up a small percentage of the production cost of any engi-
neering artifact, it accounts for a large percentage of the lifecycle cost of a software
product. As a practical example, consider that the development of Windows Server
2003 (©Microsoft Corp.) was carried out by a team of 4400 software engineers, of
whom 2000 formed the development team and a staggering 2400 formed the test team.
More generally, testing accounts for around 50% of lifecycle costs, which is much
higher than traditional manufacturing industries (where the likelihood of a defective
product is so low as to make any significant amount of testing wasteful) (Table 1.2).

Good software engineering practice dictates that more effort ought to be spent
on up-front specification and design activities and that such up-front investment
enhances product quality and lessens the need for massive investment in a posteriori
testing. While these practices appear to be promising, they have not been used suffi-
ciently widely to make a tangible impact; so that software testing remains a major cost
factor in software lifecycles.

1.7.5 Unbalanced Maintenance Costs

It is common to distinguish in software maintenance between several types of main-
tenance activity; the two most important types (in terms of cost) are as follows:

• Corrective maintenance, which aims to remove software faults

• Adaptive maintenance, which aims to adapt the software product to evolving
requirements

Empirical studies show that adaptive maintenance accounts for the vast majority of
maintenance costs. This contrasts with other engineering disciplines, where there is
virtually no adaptive maintenance to speak of: it is not possible for a car buyer to
return to the dealership to make her/his car more powerful, add seats to it, or make
it more fuel-efficient. Hence, it is possible to distinguish between software products

TABLE 1.2 Lifecycle cost distribution: development versus
testing

Software engineering, % Other engineering, %

Development ≈50 >99
Testing ≈50 <1

12 SOFTWARE ENGINEERING

and other engineering products by the distribution of maintenance, as shown in
Table 1.3.

While it is not realistic to expect a car dealership to change a car to meet different
specifications, it is certainly their responsibility to repair if it no longer meets its orig-
inal specifications. Another distinguishing feature arises when one considers correc-
tive maintenance: Whereas in software products corrective maintenance consists in
changing the design or implementation of the product, in other engineering disciplines
products need (corrective) maintenance due to wear and tear (Table 1.4).

The only cases where a maintenance action on a brick-and-mortar product (e.g.,
a car) is of type design are cases where a manufacturer makes a product recall; these
are sufficiently rare that they are usually newsworthy and are broadly advertised in
public forums.

1.8 CHAPTER SUMMARY

This chapter introduces the discipline of software engineering with all its specific
characteristics and paradoxes, contrasts it with more traditional engineering disci-
plines, and elucidates the role that software testing plays within this discipline.

1.9 BIBLIOGRAPHIC NOTES

For more information on the COCOMO cost model, consult (Boehm, 1981) or (Boehm
et al., 2000); for more information on the JPL report on the evolution of avionics and
space flight software, consult (Jet Propulsion Laboratory, 2009); for more information
on the classification of software products into broad families of applications, consult
(Somerville, 2004).

TABLE 1.3 Maintenance cost distribution: corrective versus adaptive

Software engineering, % Other engineering, %

Corrective ≈20 >99
Adaptive ≈80 <1

TABLE 1.4 Corrective maintenance cost distribution: design versus
wear and tear

Software engineering, % Other engineering, %

Design ≈100 1
Wear and tear ≈0 99

131.9 BIBLIOGRAPHIC NOTES

