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1
INTRODUCTION

A time series is a sequence of observations taken sequentially in time. Many sets of data
appear as time series: a monthly sequence of the quantity of goods shipped from a factory, a
weekly series of the number of road accidents, daily rainfall amounts, hourly observations
made on the yield of a chemical process, and so on. Examples of time series abound in
such fields as economics, business, engineering, the natural sciences (especially geophysics
and meteorology), and the social sciences. Examples of data of the kind that we will be
concerned with are displayed as time series plots in Figures 2.1 and 4.1. An intrinsic
feature of a time series is that, typically, adjacent observations are dependent. The nature
of this dependence among observations of a time series is of considerable practical interest.
Time series analysis is concerned with techniques for the analysis of this dependence. This
requires the development of stochastic and dynamicmodels for time series data and the use
of such models in important areas of application.

In the subsequent chapters of this book, we present methods for building, identifying,
fitting, and checking models for time series and dynamic systems. The methods discussed
are appropriate for discrete (sampled-data) systems, where observation of the system occurs
at equally spaced intervals of time.

We illustrate the use of these time series and dynamic models in five important areas of
application:

1. The forecasting of future values of a time series from current and past values.

2. The determination of the transfer function of a system subject to inertia---the deter-
mination of a dynamic input--output model that can show the effect on the output of
a system of any given series of inputs.

3. The use of indicator input variables in transfer function models to represent and
assess the effects of unusual intervention events on the behavior of a time series.
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4. The examination of interrelationships among several related time series variables of
interest and determination of appropriate multivariate dynamic models to represent
these joint relationships among the variables over time.

5. The design of simple control schemes by means of which potential deviations of
the system output from a desired target may, so far as possible, be compensated by
adjustment of the input series values.

1.1 FIVE IMPORTANT PRACTICAL PROBLEMS

1.1.1 Forecasting Time Series

The use at time 𝑡 of available observations from a time series to forecast its value at some
future time 𝑡 + 𝑙 can provide a basis for (1) economic and business planning, (2) production
planning, (3) inventory and production control, and (4) control and optimization of industrial
processes. As originally described by Holt et al. (1963), Brown (1962), and the Imperial
Chemical Industries (ICI) monograph on short term forecasting (Coutie, 1964), forecasts
are usually needed over a period known as the lead time, which varies with each problem.
For example, the lead time in the inventory control problemwas defined byHarrison (1965)
as a period that begins when an order to replenish stock is placed with the factory and lasts
until the order is delivered into stock.

We will assume that observations are available at discrete, equispaced intervals of
time. For example, in a sales forecasting problem, the sales 𝑧𝑡 in the current month 𝑡 and
the sales 𝑧𝑡−1, 𝑧𝑡−2, 𝑧𝑡−3,… in previous months might be used to forecast sales for lead
times 𝑙 = 1, 2, 3,… , 12 months ahead. Denote by 𝑧̂𝑡(𝑙) the forecast made at origin 𝑡 of
the sales 𝑧𝑡+𝑙 at some future time 𝑡 + 𝑙, that is, at lead time 𝑙. The function 𝑧̂𝑡(𝑙), which
provides the forecasts at origin 𝑡 for all future lead times, based on the available information
from the current and previous values 𝑧𝑡, 𝑧𝑡−1, 𝑧𝑡−2, 𝑧𝑡−3,… through time 𝑡, will be called the
forecast function at origin 𝑡. Our objective is to obtain a forecast function such that the mean
square of the deviations 𝑧𝑡+𝑙 − 𝑧̂𝑡(𝑙) between the actual and forecasted values is as small as
possible for each lead time 𝑙.

In addition to calculating the best forecasts, it is also necessary to specify their accuracy,
so that, for example, the risks associated with decisions based upon the forecasts may
be calculated. The accuracy of the forecasts may be expressed by calculating probability
limits on either side of each forecast. These limits may be calculated for any convenient
set of probabilities, for example, 50 and 95%. They are such that the realized value of the
time series, when it eventually occurs, will be included within these limits with the stated
probability. To illustrate, Figure 1.1 shows the last 20 values of a time series culminating at
time 𝑡. Also shown are forecasts made from origin 𝑡 for lead times 𝑙 = 1, 2,… , 13, together
with the 50% probability limits.

Methods for obtaining forecasts and estimating probability limits are discussed in detail
in Chapter 5. These forecasting methods are developed based on the assumption that the
time series 𝑧𝑡 follows a stochastic model of known form. Consequently, in Chapters 3
and 4 a useful class of such time series models that might be appropriate to represent the
behavior of a series 𝑧𝑡, called autoregressive integrated moving average (ARIMA) models,
are introduced and many of their properties are studied. Subsequently, in Chapters 6, 7,
and 8 the practical matter of how these models may be developed for actual time series data
is explored, and the methods are described through the three-stage procedure of tentative
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FIGURE 1.1 Values of a time series with forecast function and 50% probability limits.

model identification or specification, estimation of model parameters, and model checking
and diagnostics.

1.1.2 Estimation of Transfer Functions

A topic of considerable industrial interest is the study of process dynamics discussed, for
example, by Aström and Bohlin (1966, pp. 96--111) and Hutchinson and Shelton (1967).
Such a study is made (1) to achieve better control of existing plants and (2) to improve the
design of new plants. In particular, several methods have been proposed for estimating the
transfer function of plant units from process records consisting of an input time series 𝑋𝑡

and an output time series 𝑌𝑡. Sections of such records are shown in Figure 1.2, where the
input 𝑋𝑡 is the rate of air supply and the output 𝑌𝑡 is the concentration of carbon dioxide
produced in a furnace. The observations were made at 9-second intervals. A hypothetical
impulse response function 𝑣𝑗 , 𝑗 = 0, 1, 2,…, which determines the transfer function for the
system through a dynamic linear relationship between input 𝑋𝑡 and output 𝑌𝑡 of the form
𝑌𝑡 =

∑∞
𝑗=0 𝑣𝑗𝑋𝑡−𝑗 , is also shown in the figure as a bar chart. Transfer function models that

FIGURE 1.2 Input and output time series in relation to a dynamic system.



Box3G Date: April 30, 2015 Time: 2:53 pm

4 INTRODUCTION

relate an input process 𝑋𝑡 to an output process 𝑌𝑡 are introduced in Chapter 11 and many
of their properties are examined.

Methods for estimating transfer function models based on deterministic perturbations of
the input, such as step, pulse, and sinusoidal changes, have not always been successful. This
is because, for perturbations of a magnitude that are relevant and tolerable, the response
of the system may be masked by uncontrollable disturbances referred to collectively as
noise. Statistical methods for estimating transfer function models that make allowance for
noise in the system are described in Chapter 12. The estimation of dynamic response is of
considerable interest in economics, engineering, biology, and many other fields.

Another important application of transfer function models is in forecasting. If, for
example, the dynamic relationship between two time series 𝑌𝑡 and 𝑋𝑡 can be determined,
past values of both series may be used in forecasting 𝑌𝑡. In some situations, this approach
can lead to a considerable reduction in the errors of the forecasts.

1.1.3 Analysis of Effects of Unusual Intervention Events to a System

In some situations, it may be known that certain exceptional external events, intervention
events, could have affected the time series 𝑧𝑡 under study. Examples of such interven-
tion events include the incorporation of new environmental regulations, economic policy
changes, strikes, and special promotion campaigns. Under such circumstances, we may
use transfer function models, as discussed in Section 1.1.2, to account for the effects of
the intervention event on the series 𝑧𝑡, but where the ‘‘input’’ series will be in the form
of a simple indicator variable taking only the values 1 and 0 to indicate (qualitatively) the
presence or absence of the event.

In these cases, the intervention analysis is undertaken to obtain a quantitative measure
of the impact of the intervention event on the time series of interest. For example, Box
and Tiao (1975) used intervention models to study and quantify the impact of air pollution
controls on smog-producing oxidant levels in the Los Angeles area and of economic
controls on the consumer price index in the United States. Alternatively, the intervention
analysis may be undertaken to adjust for any unusual values in the series 𝑧𝑡 that might
have resulted as a consequence of the intervention event. This will ensure that the results
of the time series analysis of the series, such as the structure of the fitted model, estimates
of model parameters, and forecasts of future values, are not seriously distorted by the
influence of these unusual values. Models for intervention analysis and their use, together
with consideration of the related topic of detection of outlying or unusual values in a time
series, are presented in Chapter 13.

1.1.4 Analysis of Multivariate Time Series

For many problems in business, economics, engineering, and physical and environmental
sciences, time series data may be available on several related variables of interest. A more
informative and effective analysis is often possible by considering individual series as
components of a multivariate or vector time series and analyzing the series jointly. For
𝑘-related time series variables of interest in a dynamic system, we may denote the series as
𝑧1𝑡, 𝑧2𝑡,… , 𝑧𝑘𝑡, and let 𝒁 𝑡 = (𝑧1𝑡,… , 𝑧𝑘𝑡)′ denote the 𝑘 × 1 time series vector at time 𝑡.

Methods ofmultivariate time series analysis are used to study the dynamic relationships
among the several time series that comprise the vector 𝒁𝑡. This involves the development
of statistical models and methods of analysis that adequately describe the interrelationships
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among the series. Two main purposes for analyzing and modeling the vector of time series
jointly are to gain an understanding of the dynamic relationships over time among the
series and to improve accuracy of forecasts for individual series by utilizing the additional
information available from the related series in the forecasts for each series. Multivariate
time series models and methods for analysis and forecasting of multivariate series based
on these models are considered in Chapter 14.

1.1.5 Discrete Control Systems

In the past, to the statistician, the words ‘‘process control’’ have usually meant the quality
control techniques developed originally by Shewhart (1931) in the United States (see
also Dudding and Jennet, 1942). Later on, the sequential aspects of quality control were
emphasized, leading to the introduction of cumulative sum charts by Page (1957, 1961) and
Barnard (1959) and the geometric moving average charts of Roberts (1959). Such basic
charts are frequently employed in industries concerned with the manufacture of discrete
‘‘parts’’ as one aspect of what is called statistical process control (SPC). In particular (see
Deming, 1986), they are used for continuousmonitoring of a process. That is, they are used
to supply a continuous screening mechanism for detecting assignable (or special) causes
of variation. Appropriate display of plant data ensures that significant changes are quickly
brought to the attention of those responsible for running the process. Knowing the answer to
the question ‘‘when did a change of this particular kind occur?’’ we may be able to answer
the question ‘‘why did it occur?’’ Hence a continuous incentive for process stabilization
and improvement can be achieved.

By contrast, in the process and chemical industries, various forms of feedback and
feedforward adjustment have been used in what we will call engineering process control
(EPC). Because the adjustments made by engineering process control are usually computed
and applied automatically, this type of control is sometimes called automatic process
control (APC). However, the manner in which these adjustments are made is a matter of
convenience. This type of control is necessary when there are inherent disturbances or
noise in the system inputs that are impossible or impractical to remove. When we can
measure fluctuations in an input variable that can be observed but not changed, it may
be possible to make appropriate compensatory changes in some other control variable.
This is referred to as feedforward control. Alternatively, or in addition, we may be able
to use the deviation from target or ‘‘error signal’’ of the output characteristic itself to
calculate appropriate compensatory changes in the control variable. This is called feedback
control. Unlike feedforward control, this mode of correction can be employed even when
the source of the disturbances is not accurately known or the magnitude of the disturbance
is not measured.

In Chapter 15, we draw on the earlier discussions in this book, on time series and
transfer function models, to provide insight into the statistical aspects of these control
methods and to appreciate better their relationships and different objectives. In particular,
we show how some of the ideas of feedback control can be used to design simple charts
for manually adjusting processes. For example, the upper chart of Figure 1.3 shows hourly
measurements of the viscosity of a polymer made over a period of 42 hours. The viscosity
is to be controlled about a target value of 90 units. As each viscosity measurement comes
to hand, the process operator uses the nomogram shown in the middle of the figure to
compute the adjustment to be made in the manipulated variable (gas rate). The lower chart
of Figure 1.3 shows the adjustments made in accordance with the nomogram.
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FIGURE 1.3 Control of viscosity. Record of observed viscosity and of adjustments in gas rate
made using nomogram.

1.2 STOCHASTIC AND DETERMINISTIC DYNAMIC
MATHEMATICAL MODELS

The idea of using a mathematical model to describe the behavior of a physical phenomenon
is well established. In particular, it is sometimes possible to derive a model based on
physical laws, which enables us to calculate the value of some time-dependent quantity
nearly exactly at any instant of time. Thus, we might calculate the trajectory of a missile
launched in a known direction with known velocity. If exact calculation were possible,
such a model would be entirely deterministic.

Probably no phenomenon is totally deterministic, however, because unknown factors
can occur such as a variable wind velocity that can throw a missile slightly off course. In
many problems, we have to consider a time-dependent phenomenon, such as monthly sales
of newsprint, in which there are many unknown factors and for which it is not possible
to write a deterministic model that allows exact calculation of the future behavior of the
phenomenon. Nevertheless, it may be possible to derive amodel that can be used to calculate
the probability of a future value lying between two specified limits. Such a model is called
a probability model or a stochastic model. The models for time series that are needed,
for example, to achieve optimal forecasting and control, are in fact stochastic models. It
is necessary in what follows to distinguish between the probability model or stochastic
process, as it is sometimes called, and the actually observed time series. Thus, a time series
𝑧1, 𝑧2,… , 𝑧𝑁 of 𝑁 successive observations is regarded as a sample realization from an
infinite population of such time series that could have been generated by the stochastic



Box3G Date: April 30, 2015 Time: 2:53 pm

STOCHASTIC AND DETERMINISTIC DYNAMIC MATHEMATICAL MODELS 7

process. Very often we will omit the word ‘‘stochastic’’ from ‘‘stochastic process’’ and
talk about the ‘‘process.’’

1.2.1 Stationary and Nonstationary Stochastic Models for Forecasting and Control

An important class of stochastic models for describing time series, which has received a
great deal of attention, comprises what are called stationary models. Stationary models
assume that the process remains in statistical equilibrium with probabilistic properties
that do not change over time, in particular varying about a fixed constant mean level
and with constant variance. However, forecasting has been of particular importance in
industry, business, and economics, where many time series are often better represented as
nonstationary and, in particular, as having no natural constant mean level over time. It is not
surprising, therefore, that many of the economic forecasting methods originally proposed
by Holt (1957, 1963), Winters (1960), Brown (1962), and the ICI monographs (Coutie,
1964) that used exponentially weighted moving averages can be shown to be appropriate
for a particular type of nonstationary process. Although such methods are too narrow to
deal efficiently with all time series, the fact that they often give the right kind of forecast
function supplies a clue to the kind of nonstationary model that might be useful in these
problems.

The stochastic model for which the exponentially weighted moving average forecast
yields minimum mean square error (Muth, 1960) is a member of a class of nonstationary
processes called autoregressive integrated moving average processes, which are discussed
in Chapter 4. This wider class of processes provides a range of models, stationary and
nonstationary, that adequately represent many of the time series met in practice. Our
approach to forecasting has been first to derive an adequate stochastic model for the
particular time series under study. As shown in Chapter 5, once an appropriate model has
been determined for the series, the optimal forecasting procedure follows immediately.
These forecasting procedures include the exponentially weighted moving average forecast
as a special case.

Some Simple Operators. We employ extensively the backward shift operator 𝐵, which
is defined by 𝐵𝑧𝑡 = 𝑧𝑡−1; hence 𝐵𝑚𝑧𝑡 = 𝑧𝑡−𝑚. The inverse operation is performed by
the forward shift operator 𝐹 = 𝐵−1 given by 𝐹𝑧𝑡 = 𝑧𝑡+1; hence 𝐹𝑚𝑧𝑡 = 𝑧𝑡+𝑚. Another
important operator is the backward difference operator, ∇, defined by ∇𝑧𝑡 = 𝑧𝑡 − 𝑧𝑡−1.
This can be written in terms of 𝐵, since

∇𝑧𝑡 = 𝑧𝑡 − 𝑧𝑡−1 = (1 − 𝐵)𝑧𝑡

Linear Filter Model. The stochastic models we employ are based on an idea originally
due to Yule (1927) that an observable time series 𝑧𝑡 in which successive values are highly
dependent can frequently be regarded as generated from a series of independent ‘‘shocks’’
𝑎𝑡. These shocks are random drawings from a fixed distribution, usually assumed normal
and having mean zero and variance 𝜎2

𝑎
. Such a sequence of independent random variables

𝑎𝑡, 𝑎𝑡−1, 𝑎𝑡−2,… is called a white noise process.
The white noise process 𝑎𝑡 is supposed transformed to the process 𝑧𝑡 by what is called a

linear filter, as shown in Figure 1.4. The linear filtering operation simply takes a weighted
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FIGURE 1.4 Representation of a time series as the output from a linear filter.

sum of previous random shocks 𝑎𝑡, so that

𝑧𝑡 = 𝜇 + 𝑎𝑡 + 𝜓1𝑎𝑡−1 + 𝜓2𝑎𝑡−2 +⋯

= 𝜇 + 𝜓(𝐵)𝑎𝑡 (1.2.1)

In general, 𝜇 is a parameter that determines the ‘‘level’’ of the process, and

𝜓(𝐵) = 1 + 𝜓1𝐵 + 𝜓2𝐵
2 +⋯

is the linear operator that transforms 𝑎𝑡 into 𝑧𝑡 and is called the transfer function of the filter.
The model representation (1.2.1) can allow for a flexible range of patterns of dependence
among values of the process {𝑧𝑡} expressed in terms of the independent (unobservable)
random shocks 𝑎𝑡.

The sequence𝜓1, 𝜓2,… formed by the weights may, theoretically, be finite or infinite. If
this sequence is finite, or infinite and absolutely summable in the sense that

∑∞
𝑗=0 |𝜓𝑗| < ∞,

the filter is said to be stable and the process 𝑧𝑡 is stationary. The parameter 𝜇 is then the
mean about which the process varies. Otherwise, 𝑧𝑡 is nonstationary and 𝜇 has no specific
meaning except as a reference point for the level of the process.

Autoregressive Models. A stochastic model that can be extremely useful in the represen-
tation of certain practically occurring series is the autoregressivemodel. In this model, the
current value of the process is expressed as a finite, linear aggregate of previous values
of the process and a random shock 𝑎𝑡. Let us denote the values of a process at equally
spaced times 𝑡, 𝑡 − 1, 𝑡 − 2, … by 𝑧𝑡, 𝑧𝑡−1, 𝑧𝑡−2,…. Also let 𝑧̃𝑡 = 𝑧𝑡 − 𝜇 be the series of
deviations from 𝜇. Then

𝑧̃𝑡 = 𝜙1𝑧̃𝑡−1 + 𝜙2𝑧̃𝑡−2 +⋯ + 𝜙𝑝𝑧̃𝑡−𝑝 + 𝑎𝑡 (1.2.2)

is called an autoregressive (AR) process of order 𝑝. The reason for this name is that a linear
model

𝑧̃ = 𝜙1𝑥̃1 + 𝜙2𝑥̃2 +⋯ + 𝜙𝑝𝑥̃𝑝 + 𝑎

relating a ‘‘dependent’’ variable 𝑧 to a set of ‘‘independent’’ variables 𝑥1, 𝑥2,… , 𝑥𝑝, plus
a random error term 𝑎, is referred to as a regressionmodel, and 𝑧 is said to be ‘‘regressed’’
on 𝑥1, 𝑥2,… , 𝑥𝑝. In (1.2.2) the variable 𝑧 is regressed on previous values of itself; hence
the model is autoregressive. If we define an autoregressive operator of order 𝑝 in terms of
the backward shift operator 𝐵 by

𝜙(𝐵) = 1 − 𝜙1𝐵 − 𝜙2𝐵
2 −⋯ − 𝜙𝑝𝐵

𝑝

the autoregressive model (1.2.2) may be written economically as

𝜙(𝐵)𝑧̃𝑡 = 𝑎𝑡
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The model contains 𝑝 + 2 unknown parameters 𝜇, 𝜙1, 𝜙2,… , 𝜙𝑝, 𝜎
2
𝑎
, which in practice

have to be estimated from the data. The additional parameter 𝜎2
𝑎
is the variance of the white

noise process 𝑎𝑡.
It is not difficult to see that the autoregressive model is a special case of the linear filter

model of (1.2.1). For example, we can eliminate 𝑧̃𝑡−1 from the right-hand side of (1.2.2) by
substituting

𝑧̃𝑡−1 = 𝜙1𝑧̃𝑡−2 + 𝜙2𝑧̃𝑡−3 +⋯ + 𝜙𝑝𝑧̃𝑡−𝑝−1 + 𝑎𝑡−1

Similarly, we can substitute for 𝑧̃𝑡−2, and so on, to yield eventually an infinite series in
the 𝑎’s. Consider, specifically, the simple first-order (𝑝 = 1) AR process, 𝑧̃𝑡 = 𝜙𝑧̃𝑡−1 + 𝑎𝑡.
After 𝑚 successive substitutions of 𝑧̃𝑡−𝑗 = 𝜙𝑧̃𝑡−𝑗−1 + 𝑎𝑡−𝑗 , 𝑗 = 1,… , 𝑚 in the right-hand
side we obtain

𝑧̃𝑡 = 𝜙𝑚+1𝑧̃𝑡−𝑚−1 + 𝑎𝑡 + 𝜙𝑎𝑡−1 + 𝜙2𝑎𝑡−2 +⋯ + 𝜙𝑚𝑎𝑡−𝑚

In the limit as 𝑚 → ∞ this leads to the convergent infinite series representation 𝑧̃𝑡 =∑∞
𝑗=0 𝜙

𝑗𝑎𝑡−𝑗 with 𝜓𝑗 = 𝜙𝑗 , 𝑗 ≥ 1, provided that |𝜙| < 1. Symbolically, in the general AR
case we have that

𝜙(𝐵)𝑧̃𝑡 = 𝑎𝑡

is equivalent to

𝑧̃𝑡 = 𝜙−1(𝐵)𝑎𝑡 = 𝜓(𝐵)𝑎𝑡

with 𝜓(𝐵) = 𝜙−1(𝐵) =
∑∞

𝑗=0 𝜓𝑗𝐵
𝑗 .

Autoregressive processes can be stationary or nonstationary. For the process to be
stationary, the 𝜙’s must be such that the weights 𝜓1, 𝜓2,… in 𝜓(𝐵) = 𝜙−1(𝐵) form a
convergent series. The necessary requirement for stationarity is that the autoregressive
operator,𝜙(𝐵) = 1 − 𝜙1𝐵 − 𝜙2𝐵

2 −⋯ − 𝜙𝑝𝐵
𝑝, considered as a polynomial in𝐵 of degree

𝑝, must have all roots of 𝜙(𝐵) = 0 greater than 1 in absolute value; that is, all roots must
lie outside the unit circle. For the first-order AR process 𝑧̃𝑡 = 𝜙𝑧̃𝑡−1 + 𝑎𝑡 this condition
reduces to the requirement that |𝜙| < 1, as the argument above has already indicated.

Moving Average Models. The autoregressive model (1.2.2) expresses the deviation 𝑧̃𝑡 of
the process as a finite weighted sum of 𝑝 previous deviations 𝑧̃𝑡−1, 𝑧̃𝑡−2,… , 𝑧̃𝑡−𝑝 of the
process, plus a random shock 𝑎𝑡. Equivalently, as we have just seen, it expresses 𝑧̃𝑡 as an
infinite weighted sum of the 𝑎’s.

Another kind of model, of great practical importance in the representation of observed
time series, is the finite moving average process. Here we take 𝑧̃𝑡, linearly dependent on a
finite number 𝑞 of previous 𝑎’s. Thus,

𝑧̃𝑡 = 𝑎𝑡 − 𝜃1𝑎𝑡−1 − 𝜃2𝑎𝑡−2 −⋯ − 𝜃𝑞𝑎𝑡−𝑞 (1.2.3)

is called a moving average (MA) process of order 𝑞. The name ‘‘moving average’’ is
somewhat misleading because the weights 1,−𝜃1,−𝜃2,… ,−𝜃𝑞, which multiply the 𝑎’s,
need not total unity nor need they be positive. However, this nomenclature is in common
use, and therefore we employ it.
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If we define a moving average operator of order 𝑞 by

𝜃(𝐵) = 1 − 𝜃1𝐵 − 𝜃2𝐵
2 −⋯ − 𝜃𝑞𝐵

𝑞

the moving average model may be written economically as

𝑧̃𝑡 = 𝜃(𝐵)𝑎𝑡

It contains 𝑞 + 2 unknown parameters 𝜇, 𝜃1,… , 𝜃𝑞, 𝜎2
𝑎
, which in practice have to be

estimated from the data.

Mixed Autoregressive--Moving Average Models. To achieve greater flexibility in fitting
of actual time series, it is sometimes advantageous to include both autoregressive and
moving average terms in themodel. This leads to themixedautoregressive--moving average
(ARMA) model:

𝑧̃𝑡 = 𝜙1𝑧̃𝑡−1 +⋯ + 𝜙𝑝𝑧̃𝑡−𝑝 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 −⋯ − 𝜃𝑞𝑎𝑡−𝑞 (1.2.4)

or

𝜙(𝐵)𝑧̃𝑡 = 𝜃(𝐵)𝑎𝑡

The model employs 𝑝 + 𝑞 + 2 unknown parameters 𝜇, 𝜙1,… , 𝜙𝑝, 𝜃1,… , 𝜃𝑞 , 𝜎
2
𝑎
, that are

estimated from the data. Thismodelmay also bewritten in the formof the linear filter (1.2.1)
as 𝑧̃𝑡 = 𝜙−1(𝐵)𝜃(𝐵)𝑎𝑡 = 𝜓(𝐵)𝑎𝑡, with𝜓(𝐵) = 𝜙−1(𝐵)𝜃(𝐵). In practice, it is frequently true
that an adequate representation of actually occurring stationary time series can be obtained
with autoregressive, moving average, or mixed models, in which 𝑝 and 𝑞 are not greater
than 2 and often less than 2. We discuss the classes of autoregressive, moving average, and
mixed models in much greater detail in Chapters 3 and 4.

Nonstationary Models. Many series actually encountered in industry or business (e.g.,
stock prices and sales figures) exhibit nonstationary behavior and in particular do not vary
about a fixed mean. Such series may nevertheless exhibit homogeneous behavior over time
of a kind. In particular, although the general level about which fluctuations are occurring
may be different at different times, the broad behavior of the series, when differences in
level are allowed for, may be similar over time.We show in Chapter 4 and later chapters that
such behaviormay often be represented by a model in terms of a generalized autoregressive
operator𝜑(𝐵), in which one or more of the zeros of the polynomial𝜑(𝐵) [i.e., one or more
of the roots of the equation 𝜑(𝐵) = 0] lie on the unit circle. In particular, if there are 𝑑 unit
roots and all other roots lie outside the unit circle, the operator 𝜑(𝐵) can be written

𝜑(𝐵) = 𝜙(𝐵)(1 − 𝐵)𝑑

where 𝜙(𝐵) is a stationary autoregressive operator. Thus, a model that can represent
homogeneous nonstationary behavior is of the form

𝜑(𝐵)𝑧𝑡 = 𝜙(𝐵)(1 − 𝐵)𝑑𝑧𝑡 = 𝜃(𝐵)𝑎𝑡

that is,

𝜙(𝐵)𝑤𝑡 = 𝜃(𝐵)𝑎𝑡 (1.2.5)
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where

𝑤𝑡 = (1 − 𝐵)𝑑𝑧𝑡 = ∇𝑑𝑧𝑡 (1.2.6)

Thus, homogeneous nonstationary behavior can sometimes be represented by a model that
calls for the 𝑑th difference of the process to be stationary. In practice, 𝑑 is usually 0, 1, or
at most 2, with 𝑑 = 0 corresponding to stationary behavior.

The process defined by (1.2.5) and (1.2.6) provides a powerful model for describing
stationary and nonstationary time series and is called an autoregressive integrated moving
average process, of order (𝑝, 𝑑, 𝑞), or ARIMA(𝑝, 𝑑, 𝑞) process. The process is defined by

𝑤𝑡 = 𝜙1𝑤𝑡−1 +⋯𝜙𝑝𝑤𝑡−𝑝 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 −⋯ − 𝜃𝑞𝑎𝑡−𝑞 (1.2.7)

with 𝑤𝑡 = ∇𝑑𝑧𝑡. Note that if we replace 𝑤𝑡, by 𝑧𝑡 − 𝜇, when 𝑑 = 0, the model (1.2.7) in-
cludes the stationarymixedmodel (1.2.4), as a special case, and also the pure autoregressive
model (1.2.2) and the pure moving average model (1.2.3).

The reason for inclusion of the word ‘‘integrated’’ (which should perhaps more ap-
propriately be ‘‘summed’’) in the ARIMA title is as follows. The relationship, which is
the inverse to (1.2.6), is 𝑧𝑡 = 𝑆𝑑𝑤𝑡, where𝑆 = ∇−1 = (1 − 𝐵)−1 = 1 + 𝐵 + 𝐵2 +⋯ is the
summation operator defined by

𝑆𝑤𝑡 =
∞∑
𝑗=0

𝑤𝑡−𝑗 = 𝑤𝑡 +𝑤𝑡−1 +𝑤𝑡−2 +⋯

Thus, the general ARIMA process may be generated by summing or ‘‘integrating’’ the
stationary ARMA process 𝑤𝑡𝑑 times. In Chapter 9, we describe how a special form of the
model (1.2.7) can be employed to represent seasonal time series. The chapter also includes
a discussion of regressionmodels where the errors are autocorrelated and follow an ARMA
process.

Chapter 10 includes material that may be considered more specialized and that either
supplements or extends the material presented in the earlier chapters. The chapter begins
with a discussion of unit root testing that may be used as a supplementary tool to determine
if a time series is nonstationary and can be made stationary through differencing. This
is followed by a discussion of conditionally heteroscedastic models such as the ARCH
and GARCHmodels. These models assume that the conditional variance of an observation
given its past vary over time and are useful formodeling time varying volatility in economic
and financial time series, in particular. In Chapter 10, we also discuss nonlinear time series
models and fractionally integrated long-memory processes that allow for certain more
general features in a time series than are possible using the linear ARIMA models.

1.2.2 Transfer Function Models

An important type of dynamic relationship between a continuous input and a continuous
output, for which many physical examples can be found, is that in which the deviations of
input 𝑋 and output 𝑌 , from appropriate mean values, are related by a linear differential
equation. In a similar way, for discrete data, in Chapter 11 we represent the transfer
relationship between an output 𝑌 and an input 𝑋, each measured at equispaced times, by
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the difference equation

(1 + 𝜉1∇ +⋯ + 𝜉𝑟∇𝑟)𝑌𝑡 = (𝜂0 + 𝜂1∇ +⋯ + 𝜂𝑠∇𝑠)𝑋𝑡−𝑏 (1.2.8)

in which the differential operator 𝐷 = 𝑑∕𝑑𝑡 is replaced by the difference operator ∇ =
1 − 𝐵. An expression of the form (1.2.8), containing only a few parameters (𝑟 ≤ 2, 𝑠 ≤ 2),
may often be used as an approximation to a dynamic relationship whose true nature is more
complex.

The linear model (1.2.8) may be written equivalently in terms of past values of the input
and output by substituting 𝐵 = 1 − ∇ in (1.2.8), that is,

(1 − 𝛿1𝐵 −⋯ − 𝛿𝑟𝐵
𝑟)𝑌𝑡 = (𝜔0 − 𝜔1𝐵 −⋯ − 𝜔𝑠𝐵

𝑠)𝑋𝑡−𝑏

= (𝜔0𝐵
𝑏 − 𝜔1𝐵

𝑏+1 −⋯ − 𝜔𝑠𝐵
𝑏+𝑠)𝑋𝑡 (1.2.9)

or

𝛿(𝐵)𝑌𝑡 = 𝜔(𝐵)𝐵𝑏𝑋𝑡 = Ω(𝐵)𝑋𝑡

Alternatively, we can say that the output 𝑌𝑡 and the input 𝑋𝑡 are linked by a linear filter

𝑌𝑡 = 𝑣0𝑋𝑡 + 𝑣1𝑋𝑡−1 + 𝑣2𝑋𝑡−2 +⋯

= 𝑣(𝐵)𝑋𝑡 (1.2.10)

for which the transfer function

𝑣(𝐵) = 𝑣0 + 𝑣1𝐵 + 𝑣2𝐵
2 +⋯ (1.2.11)

can be expressed as a ratio of two polynomial operators,

𝑣(𝐵) = Ω(𝐵)
𝛿(𝐵)

= 𝛿−1(𝐵)Ω(𝐵)

The linear filter (1.2.10) is said to be stable if the series (1.2.11) converges for |𝐵|
≤ 1, equivalently, if the coefficients {𝑣𝑗} are absolutely summable,

∑∞
𝑗=0 |𝑣𝑗| < ∞. The

sequence of weights 𝑣0, 𝑣1, 𝑣2,…, which appear in the transfer function (1.2.11), is called
the impulse response function. We note that for the model (1.2.9), the first 𝑏 weights
𝑣0, 𝑣1,… , 𝑣𝑏−1, are zero. A hypothetical impulse response function for the system of
Figure 1.2 is shown in the center of that diagram.

Models with Superimposed Noise. We have seen that the problem of estimating an appro-
priate model, linking an output 𝑌𝑡 and an input 𝑋𝑡, is equivalent to estimating the transfer
function 𝑣(𝐵) = 𝛿−1(𝐵)Ω(𝐵), for example, specifying the parametric form of the transfer
function 𝑣(𝐵) and estimating its parameters. However, this problem is complicated in prac-
tice by the presence of noise 𝑁𝑡, which we assume corrupts the true relationship between
input and output according to

𝑌𝑡 = 𝑣(𝐵)𝑋𝑡 +𝑁𝑡

where 𝑁𝑡 and 𝑋𝑡 are independent processes. Suppose, as indicated by Figure 1.5, that the
noise 𝑁𝑡 can be described by a stationary or nonstationary stochastic model of the form
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FIGURE 1.5 Transfer function model for dynamic system with superimposed noise model.

(1.2.5) or (1.2.7), that is,

𝑁𝑡 = 𝜓(𝐵)𝑎𝑡 = 𝜑−1(𝐵)𝜃(𝐵)𝑎𝑡

Then the observed relationship between output and input will be

𝑌𝑡 = 𝑣(𝐵)𝑋𝑡 + 𝜓(𝐵)𝑎𝑡
= 𝛿−1(𝐵)Ω(𝐵)𝑋𝑡 + 𝜑−1(𝐵)𝜃(𝐵)𝑎𝑡 (1.2.12)

In practice, it is necessary to estimate the transfer function

𝜓(𝐵) = 𝜑−1(𝐵)𝜃(𝐵)

of the linear filter describing the noise, in addition to the transfer function 𝑣(𝐵) =
𝛿−1(𝐵)Ω(𝐵), which describes the dynamic relationship between the input and the
output. Methods for doing this are discussed in Chapter 12.

1.2.3 Models for Discrete Control Systems

As stated in Section 1.1.5, control is an attempt to compensate for disturbances that infect
a system. Some of these disturbances are measurable; others are not measurable and only
manifest themselves as unexplained deviations from the target of the characteristic to be
controlled. To illustrate the general principles involved, consider the special case where
unmeasured disturbances affect the output𝑌𝑡 of a system, and suppose that feedback control
is employed to bring the output as close as possible to the desired target value by adjustments
applied to an input variable𝑋𝑡. This is illustrated in Figure 1.6. Suppose that𝑁𝑡 represents
the effect at the output of various unidentified disturbances within the system, which in the
absence of control could cause the output to drift away from the desired target value or set
point 𝑇 . Then, despite adjustments that have been made to the process, an error

𝜀𝑡 = 𝑌𝑡 − 𝑇

= 𝑣(𝐵)𝑋𝑡 +𝑁𝑡 − 𝑇

will occur between the output and its target value 𝑇 . The object is to choose a control
equation so that the errors 𝜀 have the smallest possible mean square. The control equation
expresses the adjustment 𝑥𝑡 = 𝑋𝑡 −𝑋𝑡−1 to be taken at time 𝑡, as a function of the present
deviation 𝜀𝑡, previous deviations 𝜀𝑡−1, 𝜀𝑡−2,…, and previous adjustments 𝑥𝑡−1, 𝑥𝑡−2,….
The mechanism (human, electrical, pneumatic, or electronic) that carries out the control
action called for by the control equation is called the controller.
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FIGURE 1.6 Feedback control scheme to compensate an unmeasured disturbance 𝑁𝑡.

One procedure for designing a controller is equivalent to forecasting the deviation from
target which would occur if no control were applied, and then calculating the adjustment
that would be necessary to cancel out this deviation. It follows that the forecasting and
control problems are closely linked. In particular, if a minimummean square error forecast
is used, the controller will produce minimum mean square error control. To forecast the
deviation from target that could occur if no control were applied, it is necessary to build a
model

𝑁𝑡 = 𝜓(𝐵)𝑎𝑡 = 𝜑−1(𝐵)𝜃(𝐵)𝑎𝑡

for the disturbance. Calculation of the adjustment 𝑥𝑡 that needs to be applied to the input
at time 𝑡 to cancel out a predicted change at the output requires the building of a dynamic
model with transfer function

𝑣(𝐵) = 𝛿−1(𝐵)Ω(𝐵)

which links the input with output. The resulting adjustment 𝑥𝑡 will consist, in general, of a
linear aggregate of previous adjustments and current and previous control errors. Thus the
control equation will be of the form

𝑥𝑡 = 𝜁1𝑥𝑡−1 + 𝜁2𝑥𝑡−2 +⋯ + 𝜒0𝜀𝑡 + 𝜒1𝜀𝑡−1 + 𝜒2𝜀𝑡−2 +⋯ (1.2.13)

where 𝜁1, 𝜁2,…, 𝜒0, 𝜒1, 𝜒2,… are constants.
It turns out that, in practice, minimum mean square error control sometimes results in

unacceptably large adjustments 𝑥𝑡 to the input variable. Consequently, modified control
schemes are employed that restrict the amount of variation in the adjustments. Some of
these issues are discussed in Chapter 15.

1.3 BASIC IDEAS IN MODEL BUILDING

1.3.1 Parsimony

We have seen that the mathematical models we need to employ contain certain constants or
parameters whose values must be estimated from the data. It is important, in practice, that
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we employ the smallest possible number of parameters for adequate representations. The
central role played by this principle of parsimony (Tukey, 1961) in the use of parameters
will become clearer as we proceed. As a preliminary illustration, we consider the following
simple example.

Suppose we fitted a dynamic model (1.2.9) of the form

𝑌𝑡 = (𝜔0 − 𝜔1𝐵 − 𝜔2𝐵
2 −⋯ − 𝜔𝑠𝐵

𝑠)𝑋𝑡 (1.3.1)

when dealing with a system that was adequately represented by

(1 − 𝛿𝐵)𝑌𝑡 = 𝜔0𝑋𝑡 (1.3.2)

The model (1.3.2) contains only two parameters, 𝛿 and 𝜔0, but for 𝑠 sufficiently large, it
could be represented approximately by the model (1.3.1), through

𝑌𝑡 = (1 − 𝛿𝐵)−1𝜔0𝑋𝑡 = 𝜔0(1 + 𝛿𝐵 + 𝛿2𝐵2 +⋯)𝑋𝑡

with |𝛿| < 1. Because of experimental error, we could easily fail to recognize the rela-
tionship between the coefficients in the fitted equation. Thus, we might needlessly fit a
relationship like (1.3.1), containing 𝑠 + 1 parameters, where the much simpler form (1.3.2),
containing only two, would have been adequate. This could, for example, lead to unneces-
sarily poor estimation of the output 𝑌𝑡 for given values of the input𝑋𝑡,𝑋𝑡−1,….

Our objective, then, must be to obtain adequate but parsimonious models. Forecasting
and control procedures could be seriously deficient if these models were either inadequate
or unnecessarily prodigal in the use of parameters. Care and effort is needed in selecting the
model. The process of selection is necessarily iterative; that is, it is a process of evolution,
adaptation, or trial and error and is outlined briefly below.

1.3.2 Iterative Stages in the Selection of a Model

If the physical mechanism of a phenomenon were completely understood, it would be
possible theoretically to write down a mathematical expression that described it exactly.
This would result in a mechanistic or theoretical model. In most instances the complete
knowledge or large experimental resources needed to produce a mechanistic model are not
available, andwemust resort to an empiricalmodel. Of course, the exactmechanisticmodel
and the exclusively empirical model represent extremes.Models actually employed usually
lie somewhere in between. In particular, we may use incomplete theoretical knowledge to
indicate a suitable class of mathematical functions, which will then be fitted empirically
(e.g., Box and Hunter, 1965); that is, the number of terms needed in the model and the
numerical values of the parameters are estimated from experimental data. This is the
approach that we adopt in this book. As we have indicated previously, the stochastic and
dynamic models we describe can be justified, at least partially, on theoretical grounds as
having the right general properties.

It is normally supposed that successive values of the time series under consideration or
of the input--output data are available for analysis. If possible, at least 50 and preferably
100 observations or more should be used. In those cases where a past history of 50 or more
observations is not available, one proceeds by using experience and past information to
derive a preliminary model. This model may be updated from time to time as more data
become available.
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FIGURE 1.7 Stages in the iterative approach to model building.

In fitting dynamic models, a theoretical analysis can sometimes tell us not only the
appropriate form for the model, but may also provide us with good estimates of the
numerical values of its parameters. These values can then be checked later by analysis of
data.

Figure 1.7 summarizes the iterative approach to model building for forecasting and
control, which is employed in this book.

1. From the interaction of theory and practice, a useful class of models for the purposes
at hand is considered.

2. Because this class is too extensive to be conveniently fitted directly to data, rough
methods for identifying subclasses of these models are developed. Such methods
of model identification employ data and knowledge of the system to suggest an
appropriate parsimonious subclass of models that may be tentatively entertained. In
addition, the identification process can be used to yield rough preliminary estimates
of the parameters in the model.

3. The tentatively entertained model is fitted to data and its parameters estimated. The
rough estimates obtained during the identification stage can now be used as starting
values in more refined iterative methods for estimating the parameters, such as the
nonlinear least squares and maximum likelihood methods.

4. Diagnostic checks are applied with the goal of uncovering possible lack of fit and
diagnosing the cause. If no lack of fit is indicated, the model is ready to use. If any
inadequacy is found, the iterative cycle of identification, estimation, and diagnostic
checking is repeated until a suitable representation is found.



Box3G Date: April 30, 2015 Time: 2:53 pm

USE OF THE R SOFTWARE 17

Identification, estimation, and diagnostic checking are discussed for univariate time
series models in Chapters 6, 7, 8, and 9, for transfer function models in Chapter 12, for
intervention models in Chapter 13, and for multivariate time series models in Chapter 14.

Themodel building procedureswill be illustrated using actual time series with numerical
calculations performed using the R software and other tools. A brief description of the R
software is included in Appendix A1.1 along with references for further study. Exercises
at the end of the chapters also make use of the software.

APPENDIX A1.1 USE OF THE R SOFTWARE

The R software for statistical computing and graphics is a common choice for data analysis
and development of new statistical methods. R is available as Free Software under the terms
of the Free Software Foundations’s GNU General Public License in source code form. It
compiles and runs on all common operating systems including Windows, MacOS X, and
Linux. The main website for the R project is http://www.r-project.org.

The R environment consists of a base system, which is developed and maintained by the
R Core Team, and a large set of user contributed packages. The base system provides the
source code that implements the basic functionality of R. It also provides a set of standard
packages that include commonly used probability distributions, graphical tools, classic
datasets from the literature, and a set of statistical methods that include regression analysis
and time series analysis. In addition to these base packages, there are now thousands of
contributed packages developed by researchers around the world. Packages useful for time
seriesmodeling and forecasting include the stats package that is part of the base distribution
and several contributed packages that are available for download. These include the TSA
package by K-S Chan and Brian Ripley, the astsa package by David Stoffer, theRmetrics
packages fGarch and fUnitRoots for financial time series analysis by Diethelm Wuertz
and associates, and the MTS package for multivariate time series analysis by Ruey Tsay.
We use many functions from these packages in this book. We also use datasets available
for download from the R datasets package, and the TSA and astsa packages.

Both the base system and the contributed packages are distributed through a network
of servers called the Comprehensive R Archive Network (CRAN) that can be accessed
from the official R website. Contributed packages that are not part of the base distribution
can be installed directly from the R prompt ‘‘>’’ using the command install.package().
Under the Windows system, the installation can also be done from a drop-down list. The
command will prompt the user to select a CRAN Mirror, after which a list of packages
available for installation appears. To use a specific package, it also needs to be loaded into
the system at the start of each session. For example, the TSA package can be loaded using
the commands library(TSA) or require(TSA). The command data() will list all datasets
available in the loaded packages. The command data(airquality) will load the dataset
airquality from the R datasets package into memory. Data stored in a text file can be read
into R using the command is read.table. For a .csv file, the command is read.csv. To get
help on specific functions, e.g. the arima function which fits an ARIMA model to a time
series, type help(arima) or ?arima.

R is object-oriented software and allows the user to create many objects. For example,
the command ts() will create a time series object. This has advantages for plotting the time
series and for certain other applications. However, it is not necessary to create a time series
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object for many of the applications discussed in this book. The structure of the data in R
can be examined using commands such as class(), str(), and summary().

The data used for illustration in this book, as well as in some of the exercises, include
a set of time series listed in Part Five of the book. These series are also available at
http://pages.cs.wisc.edu/ reinsel/bjr-data/index.html. At least three of the series are also
included in the R datasets package and can be accessed using the data() command
described above. Some of the exercises require the use of R and it will be assumed
that the reader is already familiar with the basics of R, which can be obtained by working
through relevant chapters of texts such as Crawley (2007) andAdler (2010). Comprehensive
documentation in the form of manuals, contributed documents, online help pages, and FAQ
sheets is also available on the Rwebsite. SinceR builds on the S language, a useful reference
book is also Venables and Ripley (2002).

EXERCISES

1.1. The dataset airquality in the R datasets package includes information on daily air
quality measurements in New York, May to September 1973. The variables included
aremean ozone levels at Roosevelt Island, solar radiation at Central Park, averagewind
speed at LaGuardia Airport, and maximum daily temperature at LaGuardia Airport;
see help(airquality) for details.
(a) Load the dataset into R.

(b) Investigate the structure of the dataset.

(c) Plot each of the four series mentioned above using the plot() command in R; see
help(plot) for details and examples.

(d) Comment on the behavior of the four series. Do you see any issues that may
require special attention in developing a time series model for each of the four
series.

1.2. Monthly totals of international airline passengers (in thousands of passengers), January
1949--December 1960, are available as Series G in Part Five of this book. The data
are also available as series AirPassengers in the R datasets package.

(a) Load the dataset into R and examine the structure of the data.

(b) Plot the data using R and describe the behavior of the series.

(c) Perform a log transformation of the data and plot the resulting series. Compare
the behavior of the original and log-transformed series. Do you see an advantage
in using a log transformation for modeling purposes?

1.3. Download a time series of your choosing from the Internet. Note that financial and
economic time series are available from sources such as Google Finance and the Fed-
eral Reserve Economic Data (FRED) of Federal Reserve Bank in St. Louis, Missouri,
while climate data is available from from NOAA’s National Climatic Data Center
(NCDC).

(a) Store the data in a text file or a .csv file and read the data into R.

(b) Examine the properties of your series using plots or other appropriate tools.

(c) Does your time series appear to be stationary? If not, would differencing and/or
some other transformation make the series stationary?


