
One of the most basic forms of protection that any web application must utilize is the enforcement
of an authentication and authorization policy.

Authentication deals with identifying users to the application; in APEX this is provided by a number
of default authentication schemes and can be extended using a custom authentication scheme.
Authorization is the process of assessing whether the authenticated user is privileged to access
certain data or perform a particular action.

The term access control covers both aspects, and access-control vulnerabilities arise when either
authentication can be abused to allow access to an application without valid credentials, or
when authorization is incorrectly applied, allowing valid users to access parts of the application
for which they should not have privileges.

One of the great things about APEX is the capability to apply authorization schemes to a wide
range of components. At a simple level, pages within an APEX application can be protected by your
authorization scheme to prevent access to certain sets of users. The applicability of authorization
schemes is a lot more granular: reports, buttons, and processes can all also be protected. Users
with different privileges can then only view or access specifi c components on a page. While APEX
provides a great access control model, there are some common mistakes that are made where data
and functionality do not get protected as you might expect. This chapter will guide you through the
various access control features and show how they can be used securely in your applications.

THE PROBLEM

When authentication or authorization is not applied correctly, an unauthenticated user with no
access to the application may be able to view and interact with the data it is intended to protect.
Valid (but malicious) users of the application may also be able to invoke operations that should be
restricted to a limited subset of users.

In our experience performing security assessments of APEX applications, we can say that although
APEX provides fantastic fl exibility and granularity with authorization, in many cases such
protection is not defi ned or applied correctly. As an APEX application grows and matures, we often
see newer pages and components that do not have the protection they require. In one (extreme!)
case, we analyzed an application where the Create Admin User page was not protected, and could
be accessed by any authenticated user of the application.

Access Control1

c01.indd 1 4/2/2013 12:05:58 PM

CO
PYRIG

HTED
 M

ATERIA
L

CHAPTER 1 ACCESS CONTROL

2

THE SOLUTION

By ensuring that the authentication scheme used by your APEX application is robust and conforms
to best practice, you can be confi dent that only legitimate users of the application should have
access. Of course, other attacks against an APEX application can allow those malicious attackers
to get in even when authentication is defi ned correctly, but these attacks (such as using Cross-Site
Scripting to steal a valid user’s credentials, or SQL Injection to access arbitrary data within the
database) can be mitigated in other ways and are discussed later in this book.

Authorization should be applied to those areas within an application that need to be protected
from subsets of valid authenticated users. Only very simple applications are designed with one
generic user level; most have at least some notion of “role” with base-level users, and administrative
functionality for a specifi c group of users.

We’re not going to cover designing and documenting an application’s access-control model, as this is
very dependent on the specifi c requirements of the application. However, this is a crucial step when
developing any system. Such requirements should be captured when the system is planned, and then
once implemented, the access-control structure can be compared with the initial intentions.

Instead, we present some common access-control mishaps that we’ve observed across a number of
APEX applications, and discuss how the simple addition of access-control settings can secure
the APEX application.

AUTHENTICATION

The fi rst stage is to defi ne a reasonable authentication scheme for the application. In general, any
authentication scheme should be capable of identifying users based on some description of who they
are (their username) and a secret that nobody except the user should know (such as a password).

Depending on the requirements of the APEX application, you defi ne authentication using one of the
built-in methods or via a custom scheme, as shown in Figure 1-1.

FIGURE 1-1: Available authentication schemes

c01.indd 2 4/2/2013 12:05:59 PM

Authentication

3

No rules exist for which of these schemes to use or avoid (although choosing Open Door Credentials
would require confi dence that the data and operations of the application were truly intended for
everybody).

When authenticating users based on the traditional credentials of username and password, here is
some “best practice” guidance that you should consider:

 ➤ Account lockout: If a user attempts authentication with an invalid password a number of
times, consider rejecting future access for a certain period (the chosen threshold and timeout
depends on the sensitivity of the application and the corporate security policy).

 ➤ Password complexity: Users invariably choose the simplest password they can, so an
application should enforce a level of complexity so attackers cannot guess valid user
credentials (again, the chosen policy depends on the application).

 ➤ Password reset: Where an application allows users to reset their password if they forget, it
should either require some additional confi rmation or send a reset link with a unique token
to their confi gured e-mail address. The application should not allow a reset based on some
publicly available information (for example, birth date or mother’s maiden name), and
should never e-mail users their actual password.

 ➤ Password storage: The application should not store user credentials in clear text, but
instead should store passwords that are cryptographically “hashed” and preferably
“salted” with a unique value. This limits the damage of the worst-case-scenario of your
account information being compromised, because an attacker would still not be able to
authenticate as other users without “cracking” the password hashes. Storing passwords
that are encrypted, rather than hashed, is not considered good practice because they can be
decrypted should the key be discovered.

With authentication defi ned and adhering to these guidelines and applied to an APEX application,
any non-public page should be protected so that only legitimate users have access. This is the fi rst
part of the story of access control; the next stage is applying authorization to provide more granular
control over the functionality available to users.

Application Authentication

You can defi ne the authentication scheme in the Security section of an APEX application’s
properties, as shown in Figure 1-2. This scheme is used whenever a page that requires authentication
is requested by a user who is not logged in. It is possible to specify No Authentication, effectively
making all pages publicly accessible; needless to say, you should not use this without very careful
consideration about the data and features within an application.

c01.indd 3 4/2/2013 12:05:59 PM

CHAPTER 1 ACCESS CONTROL

4

Page Authentication

You can apply authentication to pages within an APEX application via the Security section of the
page properties, as shown in Figure 1-3.

FIGURE 1-2: Application authentication settings

FIGURE 1-3: Setting page authentication

This setting dictates simply whether a user needs to be authenticated to access the page. If a page
doesn’t require authentication, it is considered a public page.

Generally, an application requires only a single public page: the login page. Having more public
pages is not a security problem as long as those pages contain only information and functions that
are really intended for access by anyone whose browser can reach the application.

Given page numbering is generally sequential in APEX applications, public pages can be trivially
enumerated by a simple attack that iterates through the pages of the application. Do not assume that
because some public page is not immediately obvious to visitors of the site that it will not be found
by a more investigative user!

Reducing the public pages in an application serves to reduce the attack surface that is available to
hackers looking to break into the site; as always, unless it really has to be public, make sure that the
page requires authentication.

c01.indd 4 4/2/2013 12:05:59 PM

Authorization

5

AUTHORIZATION

Once users are identifi ed through authentication, the application can continue to make access-control
decisions, to limit access to certain sections or functionality. This is what authorization schemes are
used for within an APEX application. As a developer, you can defi ne a number of schemes based
on the complexity of the required access-control model. Generally, an authorization scheme would
check the groups that a user is a member of, or query some privileges table to ascertain the roles and
permissions for the user.

For the purposes of this chapter, defi ne a dummy authorization scheme (see Figure 1-4) called
IS_USER_AN_ADMIN that you can apply to various areas to observe the effect of this form of
access control. This scheme will always return false (because the ISADMIN item is not defi ned), but
demonstrates certain attacks that could occur when authorization is not applied correctly.

FIGURE 1-4: Create a dummy authorization scheme to experiment with

Application Authorization

You can apply an authorization scheme at an application level to be enforced across all (non-public)
pages. Optionally, this can cover public pages also, although that somewhat defeats the purpose of
marking them as public.

With minimal public pages and an application-level authorization scheme, the APEX application
is well protected against unauthenticated (anonymous) users. Applying authorization at this
level can also defend against the accidental creation of pages that are not confi gured to require
authentication.

c01.indd 5 4/2/2013 12:05:59 PM

CHAPTER 1 ACCESS CONTROL

6

Page Authorization

The authorization scheme setting by default has two options: either the page does not require
authorization, or only non-public users can access the page. With authentication defi ned (Page
Requires Authentication), these two settings are equal.

TIP There is a reason to specifi cally choose Must Not Be Public User even in this case.
Because the default authorization is No Page Authorization Required, if you explicitly
set it to Must Not Be Public User, it shows you have considered the security of the page
and have made the conscious decision that this page is accessible to every authenticated
user of the application.

Though not strictly required, this step assists the security review process because pages
with No Page Authorization Required are most likely pages where the developer has not
considered the authorization requirements, and potentially the content needs to be pro-
tected further.

Authorization gets more interesting when you add a custom authorization scheme (see Figure 1-5).

FIGURE 1-5: Applying authorization to a page

With the IS_USER_AN_ADMIN authorization scheme defi ned in the application, you can now specify
that the page should be available only to users who pass the checks implemented by the scheme.

The access-control structure of a general application would therefore be as follows:

 ➤ Login page: Public

 ➤ All other pages: Must Not Be Public User

 ➤ Administrative pages: Defi ned with a custom authorization scheme

More complex APEX applications implementing many user roles would apply the relevant more
granular authorization scheme to pages.

You can defi ne the same authorization scheme attribute for regions of a page, so that the displayed
page differs based on user privileges.

It is also possible to use Conditions on page components as a form of authorization. See Figure 1-6.

c01.indd 6 4/2/2013 12:05:59 PM

Authorization

7

There is nothing necessarily incorrect about using Conditions in this way, except perhaps that it
is not immediately obvious that the Condition is acting as part of the APEX application’s security
boundary.

TIP Unless there is a valid reason not to, the application’s access-control model should
be enforced using the security attributes rather than as a condition.

Button and Process Authorization

In APEX, a process can be defi ned on a page that operates On Submit, when the HTML form
contained on the page is submitted. These processes execute whenever the page is submitted, unless
linked to a specifi c button using the When Button Pressed attribute.

Imagine a page that is accessible to two different levels of user (say, any authenticated user and also
an administrator). You might have a button that has access control so only the higher-privilege user
can access some functionality (such as deleting some data). The page has a Delete Row process that
occurs On Submit and is linked to the Delete button (using When Button Pressed).

By applying an admin-only authorization scheme to the button, APEX renders the button only when
the user passes the authorization test.

This situation occurs often, and actually contains an access-control vulnerability. The crux of the
problem is that the process is not protected by an authorization scheme. It is technically possible
to invoke the imaginary Delete Row process without actually clicking the Delete button, through a
JavaScript call.

WARNING When applying security to a button, remember to also apply equal security
constraints to the process that is invoked when the button is clicked.

To demonstrate, create a blank page (20) with an HTML region, and two items: a button
(P20_BUTTON) and a display-only item (P20_STRING).

FIGURE 1-6: Conditions

c01.indd 7 4/2/2013 12:05:59 PM

CHAPTER 1 ACCESS CONTROL

8

Now create a process (APPEND_STRING) with a process point of “On Submit – After Computations
and Validations,” with the following process source:

begin
 select :P20_STRING || 'Recx!' into :P20_STRING from dual;
end;

Select P20_BUTTON for the When Button Pressed attribute to link this process’s execution to occur
when the button is clicked. See Figure 1-7.

FIGURE 1-7: Setting to invoke the process when the button is clicked

The page should contain the button, the display-only item, and the process that is executed when the
button is clicked, as shown in Figure 1-8.

FIGURE 1-8: Page structure

The resulting page should now display a button and the empty P20_STRING item. When the button
is clicked, the string is modifi ed so your text is appended. We’re using the simplest possible example
here to get the core access-control issue across — in real-world applications we’ve seen this same
structure implementing actions such as deleting data, modifying site content, and even disabling
user accounts.

c01.indd 8 4/2/2013 12:06:00 PM

Authorization

9

The button within the page is defi ned by the following HTML:

<input type="button" value="Button" onclick="apex.submit('P20_BUTTON');"
id="P20_BUTTON"/>

This means when the button is clicked, the JavaScript apex.submit() method is called.

If you now apply the IS_USER_AN_ADMIN dummy authorization scheme to this button and then run
the page, the button is no longer displayed. See Figure 1-9.

FIGURE 1-9: Apply an authorization scheme to the button

FIGURE 1-10: Forcing a button click using JavaScript

At fi rst, it appears that this means the process can no longer be executed by non-administrative users.
But, what an attacker can do is simulate a button click by executing the JavaScript in the browser’s
JavaScript console (even when the actual button defi nition does not appear in the HTML!).
Figure 1-10 shows the simple JavaScript command that an attacker can enter into their browser.

c01.indd 9 4/2/2013 12:06:00 PM

CHAPTER 1 ACCESS CONTROL

10

If you enter this JavaScript and press enter you will notice that the page refreshes. The displayed
string is also now longer than before, indicating that the process has executed a second time, even
without the physical click of the button.

The only caveat here is that an attacker would need to know in advance the name of the button. The
access-control model of the APEX application should not rely simply on the unpredictability of
a button name, and it would certainly be possible for an attacker to iterate through a list of likely
button names.

To resolve the access-control vulnerability here, the process should have an authorization scheme
that matches the button. When set, the preceding JavaScript still refreshes the page but the string
output does not change, because the process is no longer executing.

NOTE The same applies to the Validations and Branches that are linked to button
presses, although generally there is less of a security impact if Validations or Branches
can be executed by unprivileged users.

NOTE A similar attack against Dynamic Actions that execute server-side PL/SQL code
is theoretically possible, but cannot realistically be performed by an attacker. A Dynamic
Action that is protected with an authorization scheme means the JavaScript to invoke
the action is not included in the page displayed in the browser, much like with the
button in the preceding example. Although the code to hook up a dynamic action could
be specifi ed manually by an attacker in the JavaScript console as before, there is a com-
plex ajaxIdentifier component that uniquely represents the Dynamic Action:

"ajaxIdentifier":"D22C8577EE8C8066BA70874E0B814467D23F5CD274C23A349148DCB
297EF7295"

This value is actually encrypted with the widely used Advanced Encryption Standard
(AES) algorithm, using a server-side secret as the key. Therefore this value cannot
be determined by an attacker. Without this identifi er the attacker cannot invoke the
dynamic action, so the server-side PL/SQL code cannot be executed.

Process Authorization — On-Demand

Within the Shared Components section of an APEX application’s defi nition are application
processes (Figure 1-11). These application-wide processes can have access-control security concerns
when they are defi ned as having a Process Point of On-Demand.

FIGURE 1-11: Application-level On-Demand processes

Create an application process called PrintHello that executes on-demand, and runs some PL/SQL to
simply display a message as shown in Figure 1-12.

c01.indd 10 4/2/2013 12:06:00 PM

Authorization

11

In APEX 4.2, a default authorization scheme is applied which requires users to be authenticated
(“Must Not Be Public User”).

For this example, edit the process and change the authorization scheme to No Authorization
Required. This was the default for any application created in APEX prior to version 4.2, and the
scheme will not be changed when these applications are imported and upgraded to APEX 4.2.

You can invoke the On-demand process via the URL on any accessible page:

f?p=12556:101:0:APPLICATION_PROCESS=PrintHello:::

You can also invoke it via an Ajax call in the browser’s JavaScript console:

var get = new htmldb_Get(null,
 $x('pFlowId').value,
 'APPLICATION_PROCESS=PrintHello',
 101);
get.get();

Either way, the response is a simple HTML page with the “Hello World” message.

When no authorization scheme is applied, any on-demand application process can be invoked
by an attacker, prior to authentication. All that is required is the name of the process, and one
publicly accessible page (the login page 101 can generally be used). Again, the security of the APEX
application should not only depend on the complexity of the name used.

The security threat posed by processes defi ned in this way depends on the implementation
details of the PL/SQL within the process. Some APEX applications have had unprotected on-
demand processes that list user accounts, send e-mails to users, and even contain SQL Injection
vulnerabilities, giving unauthenticated attackers control over the data within the database!

FIGURE 1-12: An example on-demand process

c01.indd 11 4/2/2013 12:06:00 PM

CHAPTER 1 ACCESS CONTROL

12

The new default setting of Must Not Be Public User in APEX 4.2 reduces, but does not remove, this
threat. This scheme applies to any authenticated user, and again depending on the implementation
details of the process PL/SQL code, this could still represent an access-control vulnerability where
the process performs some privileged action.

Resolving the issue is simply a matter of ensuring that all application processes that execute
on-demand have appropriate authorization schemes applied, so they do not expose privileged
functionality to unprivileged users.

TIP When creating a process (under Shared Components, Application Processes),
APEX 4.2 even suggests that on-demand processes should be created on pages, rather
than as application shared items. When declared on a page, the On-Demand Process is
accessible by users only if they can access the page, and this simplifi es the access-control
model by grouping similarly privileged actions together.

Creating on-demand processes at a page level limits the chance that a process may be
unintentionally accessible to some users.

File Upload

In APEX before version 4.0, any uploaded fi le content (received using the File Browse item type) was
inserted into the WWV_FLOW_FILES table (also referred to as APEX_APPLICATION_FILES). File content
was accessed using the p function on the URL with a single parameter representing the ID of the fi le:

p?n=2928618714505864969

In later versions of APEX, this method of receiving and accessing uploaded fi les is still possible,
although you have another option of allowing storage in a custom table, as show in Figure 1-13.

FIGURE 1-13: File upload storage options

Applications that use the WWV_FLOW_FILES table can exhibit access-control security issues.

There is a pattern to the values for the n parameter that represents the ID of the fi le that was
uploaded. The following three values were captured by uploading fi les in quick succession:

c01.indd 12 4/2/2013 12:06:01 PM

Authorization

13

p?n=2931268814589196184
p?n=2931268914935196284
p?n=2931269015281196367

There are three blocks that are incrementing within this identifi ed: from left-to-right in the fi rst
example there are: 29312688, 14589, and 196184.

There was more of a delay between the fi rst two requests than the second, and the distance between
the fi nal six digits is greater, suggesting a time-based sequence.

This suggests that the identifi er for uploaded fi les is made of up three components:

 ➤ A incrementing counter

 ➤ A 5-digit number that increases in value

 ➤ A 6-digit number that increases in value

For an attacker this is interesting because he could keep uploading fi les until the value he expects
in the fi rst block is skipped, indicating that another user of the APEX environment has uploaded a
fi le. For example, between the two following identifi ers, the initial counter value 29316565 has been
skipped, indicating that someone has uploaded content between the two upload requests:

p?n=2931656420176226210
p?n=2931656620523226290

A number of possible values for the full identifi er of the upload exist, calculated as follows:

Total possibilities = (20523 – 20176 – 1) × (226290 – 226210 – 1) = 346 × 79 = 27,334

If the attacker makes a request for each possible identifi er, he would (eventually) be able to access
the fi le uploaded by the other user.

You have basically two concerns here:

 ➤ The unique identifi er for uploaded fi les is sequential and potentially predictable.

 ➤ The method of accessing uploaded content (via a request to the p function in the URL)
offers no mechanism of requiring authentication or enforcing authorization.

The Oracle documentation for older versions of APEX indicates that fi les uploaded to the
WWV_FLOW_FILES table should not be left there:

“Note: Don’t forget to delete the record in WWV_FLOW_FILES after you have copied it into another
table.”

The newer documentation recommends that the alternate binary large object (BLOB) storage
mechanism is used, because otherwise unauthenticated access to uploaded fi les may be possible.

For an APEX application that deals with fi les uploaded by users, ensure the content has correct
access control:

 ➤ For APEX version before 4.0, ensure that a page process copies the content from the
WWV_FLOW_FILES table to another location and deletes the original row.

 ➤ For newer APEX versions, 4.0 and above, use the alternative BLOB storage mechanism.

c01.indd 13 4/2/2013 12:06:01 PM

CHAPTER 1 ACCESS CONTROL

14

SUMMARY

Access control is critical to any application’s security, and APEX provides simple mechanisms to
apply authentication and authorization to your applications.

For authentication, whichever mechanism you use, consider the following:

 ➤ Limit password guessing and dictionary attacks on user credentials (account lockout).

 ➤ Ensure users choose suitably complex passwords (password complexity).

 ➤ Users who forget their passwords should be able to regain access securely (password reset).

 ➤ Stored user credentials should not be immediately usable if they are compromised (password
storage).

As well as authentication, an APEX application should apply authorization to protect areas so that
only a subset of users has access. The authorization schemes should be designed to identify users
based on their privilege or role. The schemes should then be applied throughout the application, to
each page and component that requires access control.

Remember the following:

 ➤ Apply the authorization scheme Must Not Be Public User to any page that is really intended
to be accessible to any authenticated user; this allows the security review process to quickly
pick up pages that may require protection but have no authorization policy applied.

 ➤ Where possible, use the APEX authorization scheme attributes to protect pages and
components, rather than using conditions, to ensure the security enforcement policy is
clearly indicated.

 ➤ Ensure that processes linked to button clicks have matching authorization schemes, to
prevent attacks from initiating processes even when the button is not displayed.

 ➤ Check all application-level on-demand processes to ensure they are protected with an
authorization scheme to prevent unauthenticated users (or all authenticated users) from
executing the process.

 ➤ When handling fi le uploads, avoid the WWV_FLOW_FILES table where possible; for older
versions of APEX, remove content immediately after upload.

c01.indd 14 4/2/2013 12:06:01 PM

		2013-04-30T06:04:05-0400
	Certified PDF 2 Signature

