
◆ Chapter 1: Recording and Running Macros in the Offi ce Applications
◆ Chapter 2: Getting Started with the Visual Basic Editor
◆ Chapter 3: Editing Recorded Macros
◆ Chapter 4: Creating Code from Scratch in the Visual Basic Editor

CO
PYRIG

HTED
 M

ATERIA
L

Chapteerrr 1111

g gRecording and Running Macros
in the Offi ce Applications
In this chapter, you’ll learn the easiest way to get started with Visual Basic for Applications

(VBA): recording simple macros using a Macro Recorder that is built into the Offi ce applications.

Then you’ll see how to run your macros to perform useful tasks.

I’ll defi ne the term macro in a moment. For now, just note that by recording macros, you can

automate straightforward but tediously repetitive tasks and speed up your regular work. You

can also use the Macro Recorder to create VBA code that performs the actions you need and

then edit the code to customize it—adding fl exibility and power. In fact, VBA is a real power-

house if you know how to use it. This book shows you how to tap into that power.

In this chapter you will learn to do the following:

◆ Record a macro

◆ Assign a macro to a button or keyboard shortcut

◆ Run a macro

◆ Delete a macro

What Is VBA and What Can You Do with It?
Visual Basic for Applications is a programming language created by Microsoft that can be built

into applications. You use VBA to automate operations in applications that support it. All the

main Offi ce applications—Word, Excel, Outlook, Access, and PowerPoint—include VBA, so you

can automate operations through most Offi ce applications.

And please don’t be put off by the notion that you’ll be programming: As you’ll see shortly,

working with VBA is nearly always quite easy. In fact, quite often you need not actually write

any VBA yourself; you can merely record it—letting the Offi ce application write all the VBA

“code.” The phrase automate operations in applications is perhaps a bit abstract. VBA allows you

to streamline many tasks, avoid burdensome repetition, and improve your effi ciency. Here are

some examples:

◆ You can record a macro that automatically carries out a series of actions that you frequently

perform. Let’s say that you often edit Word documents written by a co-worker, but she sets

the zoom level to 100. You prefer a zoom level of 150. All you need to automatically fi x this

is this VBA code:
 ActiveWindow.ActivePane.View.Zoom.Percentage = 150

4 | CHAPTER 1 RECORDING AND RUNNING MACROS IN THE OFFICE APPLICATIONS

And don’t worry, you need not even know these programming terms like ActiveWindow
or View.Zoom. When you turn on the Macro Recorder, then perform these actions (click-

ing View, then clicking Zoom, then setting the percentage), all your actions are translated

into the necessary VBA code. You write no code at all.

◆ You can write code that performs actions a certain number of times and that makes deci-

sions depending on the situation in which it is running. For example, you could write code

that takes a series of actions on every presentation that’s open in PowerPoint.

◆ You can have your macros interact with the user by displaying forms, or custom dialog

boxes, that enable the user to make choices and specify settings while the macro is

running. For example, you might display a set of formatting options—showing captioned

controls such as check boxes and option buttons—that the user can select. Then when

the user closes the dialog box, your macro takes appropriate actions based on the user’s

input.

◆ You can take actions via VBA that you can’t take (or take easily) by directly manipulating

the user interface. For example, when you’re working interactively in most applications,

you’re limited to working with the active fi le—the active document in Word, the active

workbook in Excel, and so on. By using VBA, you can manipulate fi les that aren’t active.

◆ You can make one application manipulate another application. For example, you can make

Word place a table from a Word document into an Excel worksheet.

Th e Diff erence between Visual Basic and Visual Basic for Applications
VBA is based on Visual Basic, a programming language derived from BASIC. BASIC stands

for Beginner’s All-Purpose Symbolic Instruction Code. BASIC is designed to be user-friendly

because it employs recognizable English words (or variations on them) rather than the abstruse

and incomprehensible programming terms found in languages like COBOL. In addition to its

English-like diction, BASIC’s designers endeavored to keep its punctuation and syntax as simple

and familiar as possible.

Visual Basic is visual in that it offers effi cient shortcuts such as drag-and-drop programming

techniques and many graphical elements.

Visual Basic for Applications is a version of Visual Basic tailored to Microsoft Offi ce applica-

tions. The set of objects (features and behaviors) available in each application differs because no

two applications share the same features and commands.

For example, some VBA objects available in Word are not available in Excel (and vice versa)

because some of Word’s features, like the Table of Contents generator, are not appropriate in

Excel.

However, the large set of primary commands, fundamental structure, and core program-

ming techniques of VBA in Word and VBA in Excel are the same. So you’ll fi nd that it’s often

quite easy to translate your knowledge of VBA in Word to VBA in Excel (or indeed in any

VBA-enabled application).

For example, you’d use the Save method (a method is essentially an action that can be car-

ried out) to save a fi le in Excel VBA, Word VBA, or PowerPoint VBA. What differs is the object
involved. In Excel VBA, the command would be ActiveWorkbook.Save, whereas in Word VBA

it would be ActiveDocument.Save and in PowerPoint it would be ActivePresentation.Save.

UNDERSTANDING MACRO BASICS | 5

VBA always works with a host application (such as Access or Word). With the exception of

some stand-alone programs that are usually best created with Visual Studio Tools for Offi ce, a

host application always needs to be open for VBA to run. This means that you can’t build stand-

alone applications with VBA the way you can with Visual Basic .NET or Visual Studio Tools for

Offi ce (VSTO). If you wish, you can hide the host application from the user so that all they see is

the interface (typically user forms) that you give to your VBA procedures. By doing this, you can

create the illusion of a stand-alone application. Whether you need to employ this technique will

depend on the type of programming you do.

What Are Visual Basic .NET and Visual Basic Express?

Visual Basic .NET (VB .NET) is just one version of Microsoft’s long history of BASIC language
implementations. BASIC contains a vast set of libraries of prewritten code that allow you to do
pretty much anything that Windows is capable of. Although VB .NET is generally employed to write
stand-alone applications, you can tap into its libraries from within a VBA macro. Just remember,
each Offi ce application has its own object library, but the .NET libraries themselves contain many
additional capabilities (often to manipulate the Windows operating system). So, if you need a
capability that you can’t fi nd within VBA or an Offi ce application’s object library, the resources of
the entire .NET library are also available to you. Visual Basic Express is a free version of VB .NET.
After you’ve worked with VBA in this book, you might want to explore VB .NET at

www.microsoft.com/visualstudio/eng/products/visual-studio-express-products

You’ll fi nd versions for both traditional desktop Windows as well as Windows 8.

Understanding Macro Basics
A macro is a sequence of commands you or a user can repeat at will. That’s exactly the defi nition

of a computer program. Macros, however, are generally short programs—dedicated to a single

task. Think of it like this: A normal computer program, such as Photoshop or Internet Explorer

(IE), has many capabilities. IE can prevent pop-up ads, block websites, display full-screen when

you press F11, and so on. A macro is smaller, dedicated to accomplishing just one of these tasks,

such as displaying full-screen.

In some applications, you can set a macro to run itself automatically. For instance, you might

create a macro in Word to automate basic formatting tasks on a type of document you regularly

receive incorrectly formatted. As you’ll see in Chapter 6, “Working with Variables, Constants,

and Enumerations,” in a discussion of the AutoExec feature, you can specify that a macro run

automatically upon opening a document of that type.

A macro is a type of subroutine (sometimes also called a subprocedure). Generally, people tendee
to use the shorter, more informal terms sub, b procedure, and routine. In the Visual Basic Editor,

each of your macros starts with the word Sub. Note that a macro is a single procedure, whereas a

computer program like IE is a collection of many procedures.

A macro used to be defi ned as recorded code rather than written code, but most people today

use the word in its wider sense, so it can include written code as well. For example, if you record

a macro and then edit it to make it more effi cient, or to add commands to make it take further

actions, most people still consider it a macro.

6 | CHAPTER 1 RECORDING AND RUNNING MACROS IN THE OFFICE APPLICATIONS

In an Offi ce application that supports the VBA Macro Recorder (such as Word or Excel), you

can create macros in two ways:

◆ Turn on the Macro Recorder and just perform the sequence of actions you want the macro

to perform. Clicks, typing, dragging, dropping—whatever you do is recorded.

◆ Open the Visual Basic Editor and type the VBA commands into it.

There’s also a useful hybrid approach that combines recording with editing. First record

the sequence of actions, and then later, in the Visual Basic Editor, you can view and edit your

macro. You could delete any unneeded commands. Or type in new commands. Or use the

editor’s Toolbox feature to drag and drop user-interface elements (such as message boxes and

dialog boxes) into your macro so users can make decisions and choose options for how to run it.

Macros are marvelously fl exible, and the VBA Editor is famously powerful yet easy to use.

Once you’ve created a macro, you specify how you want the user to trigger it. In most appli-

cations, you can assign a macro to the Ribbon, to the Quick Access Toolbar, or to a shortcut key

combination. This makes it very easy to run the macro by merely clicking an icon or pressing

a shortcut key (such as Alt+R). You can also optionally assign your macro to a Quick Access

Toolbar button or keyboard shortcut when you fi rst record the macro, via a dialog box that

automatically appears when you begin a recording. You’ll see how all this works shortly. It’s

simple. (To assign a macro to the Ribbon, fi rst record it, then right-click the Ribbon and choose

Customize The Ribbon. Locate and click the Choose Commands From drop-down box, then

click the Macros entry to display all your macros.)

Recording a Macro
The easiest way to create VBA code is to record a macro using the Macro Recorder. Only Word

and Excel include a Macro Recorder.

You switch on the Macro Recorder, optionally assign a trigger that will later run the macro (a

toolbar button or a shortcut key combination), perform the actions you want in the macro, and

then switch off the Macro Recorder. As you perform the actions, the Macro Recorder translates

them into commands—code—in the VBA programming language.

Once you fi nish recording the macro, you can view the code in the Visual Basic Editor and

change it if you wish. If the code works perfectly as you recorded it, you never have to look at

it—you can just run the macro at any time by clicking the toolbar button or key combination you

assigned to the macro.

Displaying the Developer Tab on the Ribbon
Before going any further, ensure that the Developer (programmer) tab is visible in your Ribbon.

This tab is your gateway to macros, VBA, and the VBA Editor. By default, the Offi ce applications

do not display this tab. (Access doesn’t even have this tab. Word, Excel, PowerPoint, and Outlook

do.) To add this tab to your Ribbon, click the File tab, and then click Options. Click Customize

Ribbon. In the list box on the right, click Developer to select it. Click the OK button to close the

Options dialog box.

In the following sections, you’ll look at the stages involved in recording a macro. The pro-

cess is easy, but you need to be familiar with some background if you haven’t recorded macros

before. After the general explanations, you’ll record example macros in Word and Excel. (Later

in the book you’ll examine and modify those macros, after you learn how to use the Visual Basic

Editor. So don’t delete them.)

RECORDING A MACRO | 7

Planning the Macro
Before you even start the Macro Recorder, it’s sometimes a good idea to do a little planning.

Think about what you will do in the macro. In most cases, you can just record a macro and not

worry about the context. You can just record it with a document open and some text visible.

But in some situations you need to ensure that a special context is set up before you start the

recording. For example, you might want to create a macro in Word that does some kind of edit-

ing, such as italicizing and underlining a word. To do this, you’ll want to fi rst have the blinking

“insertion” cursor on a word that’s not italicized or underlined. You don’t want to record the actions

of moving the insertion cursor to a particular word. That would make your macro specifi c to

this document and this word in that document. You usually want a macro to work well with

more than just one particular document.

Your macro is intended to just italicize and underline whatever word is currently under the

blinking cursor in any document. Nevertheless, most simple macros can be recorded without

any special planning. Just record whatever you want the macro to do.

Pausing a Macro

Word (but not Excel) lets you pause the Macro Recorder if you need to stop while recording to do
something that you do not want to record. Th is capability allows you to deal with problems you
hadn’t anticipated when planning the macro—for example, having to open a document that should
have been open before you started recording the macro.

Some macros should perform any necessary setup themselves. The setup will be part of the

macro. In these cases, you should make sure the application is in the state that the macro expects

before you start recording the macro. For example, if, to do its job, a macro needs a blank active

workbook in Excel, the macro itself should create that blank workbook rather than using which-

ever workbook happens to be active at the time. This saves a step when the macro runs. So to do

this, start recording before launching a blank active workbook.

A Warning about Security

Macros are computer programs, albeit usually small. You can even tap into all the features in the
Windows operating system itself from within a macro. Th e result is that viruses and other harm-
ful code can be contained within macros (and such code can execute automatically merely by the
user opening an infected document via the AutoExec feature discussed in Chapter 6 and via other
techniques, such as employing the application’s Startup folder). For example, a virus embedded in
a macro could delete fi les on the hard drive if the user opened an infected Word document. Th is is
obviously dangerous.

Offi ce 2013 applications, not to mention the Windows operating systems, contain multiple layers
of security to protect against such viruses and harmful code. Specifi c to macros is a macro “trust”
technology that’s built into Offi ce applications. To see or modify these trust settings, open the
Trust Center dialog box by clicking the Developer tab on the Ribbon, and then click the Macro
Security icon (in the Code section of the Ribbon) in Word, Excel, Outlook, or PowerPoint. (Access,
as is often the case, does things a bit diff erently than the other Offi ce applications. Access has no
Developer tab. To manage macro security in Access you click the File tab, click the Options link on
the left side, click Trust Center, click the Trust Center Settings button, then click Macro Settings.)

8 | CHAPTER 1 RECORDING AND RUNNING MACROS IN THE OFFICE APPLICATIONS

Th e main point here is that you might have to make some adjustments if you can’t run macros or if
you get mysterious error messages such as “Th e Macro Could Not Be Created” or “Access is denied.”
If this happens, your fi rst step should be to look at the Trust Center and choose Disable All Macros
With Notifi cation. Th is setting asks the user for permission to run macros. Or, while you’re work-
ing with macros in this book, you might want to just select Enable All Macros in the Trust Center.
Th en deselect this option before closing a document that you worked on in this book. Th e idea is
that you can trust your own macros but you don’t want to trust all macros from l all documents you l
might get from outside sources.

If you are working on a document that you created and it contains macros that you wrote, you
can trust that document and agree to activate the macros. However, if you open a document from
someone else, you have to be careful.

Additional security issues can be solved by managing the various strata of security that now,
out of necessity, are embedded within operating systems and applications. One way to deal with
security issues is to explore security topics in Windows 7 or 8 applications’ Help features. You can
also sometimes get good answers by posting questions in online user groups or searching expert
websites such as Wikipedia. Also, you can fi nd a good overview of Offi ce 2013 security here:

http://technet.microsoft.com/en-us/library/ee857085(v=office.15).aspx

Chapter 19, “Securing Your Code with VBA’s Security Features,” covers Offi ce 2013 security issues
in depth.

Starting the Macro Recorder
Start the Macro Recorder by clicking the Developer tab on the Ribbon and then clicking the

Record Macro button. You can also click the Macro Record button on the status bar at the bot-

tom of the application. (With this approach, you don’t have to open the Developer tab. Just click

the button on the status bar.)

As soon as you start the Macro Recorder, the Record Macro dialog box opens. You see that

this new macro has been given a default macro name (Macro1, Macro2, and so on). You can

accept that default name or change it. There’s also an optional description to fi ll in if you wish.

To stop the Macro Recorder, you can click the Stop Recording button in the Developer tab.

You can alternatively stop the recording by clicking the square button that appears during

recording on the status bar, down on the bottom left of the application’s window. Once the

Recorder is stopped, the square button is replaced with an icon that you can click to start record-

ing a new macro. In Word for the Mac, click the REC indicator rather than double-clicking it.

The appearance of the Record Macro dialog box varies somewhat from one application to

another because the dialog box must offer suitable options to accommodate the varying capabilities

particular to each application. In each case, you get to name the macro and add a description of it.

In most cases, you can also specify where to save the macro—for example, Word offers two options.

For global use (making the macro available to all Word documents), store it in the fi le named

normal.dotm. Or, if it is merely to be used in the currently active document, choose to store it in a

fi le with the document’s name and the .dotm fi lename extension. An ordinary Word template has a

.dotx fi lename extension, but macros are stored in a fi le with the fi lename extension .dotm.
Other applications differ somewhat in how the dialog works when you begin recording a

macro. For example, Excel allows you three options: to store macros in the current workbook, or

in a new workbook, or for use with all Excel workbooks, in the Personal Macro Workbook. That’s

RECORDING A MACRO | 9

the equivalent of Word’s Normal.dotm fi le, and Excel’s Personal Macro workbook is saved in a

fi le named Personal.xlsb.

Where to Store Macros in PowerPoint

You can’t record macros in the 2013 version of PowerPoint, but you can create them by writing
programming code using the Visual Basic Editor. Th en you can store macros in the currently active
presentation or in any other open presentation or template. PowerPoint also provides a global
macro storage container (similar to Word’s Normal.dotm fi le). In PowerPoint, choose the All Open
Presentations option in the Macro list box, which is found by clicking the Macros icon in the Code
section of the Ribbon’s Developer tab.

The Record Macro dialog box also lets you specify how you want the macro triggered. Word

displays buttons you can click to either open a dialog for entering a shortcut key combination

or open the Word Options dialog where you can create a button for this macro that will appear

on the Quick Access Toolbar. Excel limits you to Ctrl+ shortcut key combinations as a way of

launching macros, so there is no button to display a full keyboard shortcut dialog like the one in

Word. Excel has only a small text box where you can enter the key that will be paired with Ctrl

as the shortcut.

Most of the Microsoft applications that host VBA have the Developer tab from which you

control macro recording, launch the Visual Basic Editor, and otherwise manage macros. Access,

however, groups several of its macro-related tools in a Database Tools tab (which is visible by

default) and also has a Macro option on its Create tab.

Figure 1.1 shows the Record Macro dialog box for Word with a custom name and description

entered. Figure 1.2 shows Word’s version of the Developer tab on the Ribbon.

Figure 1.1
In the Record
Macro dialog box,
enter a name for the
macro you’re about
to record. Type a
concise but helpful
description in the
Description box.
Th is is the Record
Macro dialog box
for Word.

Figure 1.2
You can use the
Developer tab on
the Ribbon to work
with macros.

10 | CHAPTER 1 RECORDING AND RUNNING MACROS IN THE OFFICE APPLICATIONS

Here’s what the primary Visual Basic features on the Ribbon’s Developer tab (or Access’s

Database Tools tab) do:

Run Macro button Only Access has this Ribbon button. It displays a Run Macro dialog box,

in which you can choose the macro to run. Many aspects of VBA in Access are unique only to

Access, and Chapter 28, “Understanding the Access Object Model and Key Objects,” covers

this topic in depth.

Record Macro button Displays the Record Macro dialog box in Word or Excel.

Macro Security button Displays the Trust Center macro settings dialog. You’ll examine

this in detail in Chapter 19. This button allows you to specify whether and how you want

macros enabled.

Visual Basic button Starts or switches to the Visual Basic Editor. You’ll begin working

in the Visual Basic Editor in Chapter 2, “Getting Started with the Visual Basic Editor” (and

you’ll spend most of the rest of the book employing it).

Macros button Opens the classic Macros dialog from which you can run, step into (start

the Visual Basic Editor in Break mode, more about this in Chapter 3, “Editing Recorded

Macros”), edit, create, delete, or open the macro project organizer dialog. (Not all of these

options are available in all applications. For example, PowerPoint has no organizer.) Word

and Excel have a similar Macros button in the Ribbon’s View tab. This button has the ability

to open the Macros dialog but can also start recording a macro. Note that Break mode is also

referred to as Step mode.

Add-Ins This is where you can access templates, styles, and specialized code libraries.

Controls A set of control buttons that, when clicked, insert user-interface

components—such as a drop-down list box—into an open document. Similar components

can also be added to macros that you create in the VBA Editor. Chapters 14 and 15 explore

this user-interface topic.

Design Mode button Toggles between Design mode and Regular mode. When Design mode

you can add or edit embedded controls in documents. In Regular mode you can

interact normally with controls (controls can accept information from the user via typing

or mouse clicks).

Properties button This button is enabled only if you’re in Design mode. It allows you to

edit the properties of the document (such as removing personal information).

The Emergence of XML

XML has become an industry standard for storing and transmitting data. With Offi ce 2007, the
Offi ce applications’ documents began to employ XML extensively. Th is switch to XML is the pri-
mary reason that documents created in versions of Offi ce 2007, 2010, and 2013 are not compatible
with earlier versions of Offi ce, such as Offi ce 2003 documents. Th us, you must convert old Offi ce
documents to the newer Offi ce formats. And people still using older versions of Offi ce must install
the Microsoft Offi ce Compatibility Pack for Word, Excel, and PowerPoint File Formats. Note that
Word 2010 and 2013 document fi les are saved with a .docx fi lename extension, the x refl ecting
the underlying XML format on which Offi ce 2007, 2010, and 2013 rest.

RECORDING A MACRO | 11

Naming the Macro
Next, enter a name for the new macro in the Macro Name text box in the Record Macro dialog

box. The name must comply with the following conventions:

◆ It must start with a letter; after that, it can contain both letters and numbers.

◆ It can be up to 80 characters long.

◆ It can contain underscores, which are useful for separating words, such as File_Save.

◆ It cannot contain spaces, punctuation, or special characters, such as ! or *.

Name and Describe Your Macros

Some people insist that to properly manage your set of macros, you must follow some clerical
procedures that involve giving your macros descriptive names and also typing in a narrative
description of each macro’s purpose. Th ey claim that if you create many macros, you should
organize them carefully. Recording macros is so easy; you can create code so quickly that you
can end up with a pile of macros—as Southerners say—making it easy to get confused about
which macro does what.

You may be tempted not to assign a macro description when you’re in a hurry or when you’re playing
with diff erent ways to approach a problem and you’re not sure which (if any) of your test macros
you’ll keep. And for simple, obvious code, perhaps using the Macro12, Macro13 default names and
not typing in a description isn’t a problem. If you fi nd it easy to read VBA code, you can usually just
look at a macro and read what it does.

Even so, for more complex macros, and for people who fi nd code hard to read—go ahead and enter
a few notes for each macro that you record. Otherwise, you can end up with that pile of recorded
macros that have the cryptic default names and no descriptions. To fi gure out what each macro
does and which ones you can safely delete, you’ll have to plow through the code—and a recorded
macro’s code can be surprisingly long, even if the macro does nothing more than adjust a few
options in a couple of dialog boxes.

You might also want to employ a macro-naming convention to indicate which are test macros that
you can delete without remorse. Start the name with a word like Temp, then add numeric values
sequentially to keep track of the versions—for example, Scratch (Scratch01, Scratch02, and so on)
and Temp (Temp01, Temp02, and so on).

Each new macro you record is by default placed at the bottom of the set of macros in the VBA Editor.
You can, however, always open the Visual Basic Editor and rename or add a description anytime
you want because macros are fully editable.

Personally, I like to put a little descriptive note inside more complicated macros’ code, right at the
top, under the Sub line. It looks like this:

Sub AltH()
‘ Applies Heading 1 style
 Selection.Style = ActiveDocument.Styles(“Title1”)
End Sub

12 | CHAPTER 1 RECORDING AND RUNNING MACROS IN THE OFFICE APPLICATIONS

Any text following a single-quote symbol (‘) on a line of code is ignored by VBA. Th e single quote
indicates that what follows is a comment to assist the programmer in understanding the code
rather than actual code that should be executed. (VBA would not know what to make of the words
Applies Heading 1 style. Th ey are not part of VBA’s dictionary.)

Note that if you type a description in the Description fi eld of the Record Macro dialog when you
fi rst start recording, that comment is automatically inserted into your code—complete with the
single-quote symbol.

Also, my preferred way to name any macros that are triggered by keyboard shortcuts is to use the
name of the keyboard shortcut itself. Th us, Sub AltH tells me that this macro is triggered by the
Alt+H keyboard shortcut.

But whatever system you adopt, it’s generally better to err on the side of greater description or
commenting within the code rather than too little. It only takes a moment to provide an expressive,
meaningful name and a clear description of the purpose of the macro.

Invalid Macro Names
Word and Excel, the two Offi ce applications that permit macro recording, raise objections to

invalid macro names when you click the OK button to start recording the macro. If you enter

an invalid macro name in the Record Macro dialog box, these applications let you know—in their

own way. Word displays a brief, rather cursory message, while Excel gives more helpful info.

Figure 1.3 shows how these applications respond to an invalid macro name once it’s entered.

Figure 1.3
Th e dialog boxes
supplied by Word
and Excel show-
ing invalid macro
names.

Describing Your Macros
Type a description for the macro in the Description text box. Recall that this description is to

help you (and anyone you share the macro with) identify the macro and understand when to use

it. If the macro runs successfully only under particular conditions, you can note them briefl y in

the Description text box. For example, if the user must make a selection in the document before

running the macro in Word, mention that.

RECORDING A MACRO | 13

You now need to choose where to store the macro. Your choices with Word and Excel are as

follows:

Word Recall that in Word, if you want to restrict availability of the macro to just the cur-

rent template (.dotm fi le) or document (.docm fi le), choose that template or document from

the Store Macro In drop-down list in the Record Macro dialog box shown in Figure 1.1. If

you want the macro to be available no matter which template you’re working in, make sure

the default setting—All Documents (Normal.dotm)—appears in the Store Macro In combo

box. (If you’re not clear on what Word’s templates are and what they do, see the sidebar

“Understanding Word’s Normal.dotm, Templates, and Documents” later in this chapter).

Excel In Excel, you can choose to store the macro in This Workbook (the active workbook),

a new workbook, or Personal Macro Workbook. The Personal Macro Workbook is a special

workbook named Personal.xlsb. Excel creates this Personal Macro Workbook the fi rst time

you choose to store a macro in the Personal Macro Workbook. By keeping your macros and

other customizations in the Personal Macro Workbook, you can make them available to any

of your procedures. Recall that the Personal Macro Workbook is similar to Word’s global

macros storage fi le named Normal.dotm. If you choose New Workbook, Excel creates a new

workbook for you and creates the macro in it.

Storing Your Macros
Word and Excel automatically store recorded macros in a default location in the specifi ed docu-

ment, template, workbook, or presentation:

Word Word stores each recorded macro in a module named NewMacros in the selected

template or document, so you’ll always know where to fi nd a macro after you’ve recorded

it. This can be a bit confusing because there can be multiple NewMacros folders visible in

the Project Explorer pane in the Visual Basic Editor. (This happens because there can be

more than one project open—such as several documents open simultaneously, each with

its own NewMacros folder holding the macros embedded within each document.) Think of

NewMacros as merely a holding area for macros—until you move them to another module

with a more descriptive name. (Of course, if you create only a handful of macros, you don’t

need to go to the trouble of creating various special modules to subdivide them into catego-

ries. You can just leave everything in a NewMacros module. As always, how clerical you need

to be depends on how organized your mind and memory are.)

If a NewMacros module doesn’t yet exist, the Macro Recorder creates it. Because it receives each

macro recorded into its document or template, a NewMacros module can soon grow large if you

record many macros. The NewMacros module in the default global template, Normal.dotm, is

especially likely to grow bloated, because it receives each macro you record unless you specify

another document or template prior to recording. Some people like to clear out the NewMacros
module from time to time, putting recorded macros you want to keep into other modules and

disposing of any useless or temp recorded macros. I don’t have that many macros, so I fi nd no

problem simply leaving them within the NewMacros module.

Excel Excel stores each recorded macro for any given session in a new module named Module
n, where n is the lowest unused number in ascending sequence (Module1, Module2, and so

on). Any macros you create in the next session go into a new module with the next available

number. If you record macros frequently with Excel, you’ll most likely need to consolidate the

macros you want to keep so that they’re not scattered across many modules like this.

14 | CHAPTER 1 RECORDING AND RUNNING MACROS IN THE OFFICE APPLICATIONS

Understanding Word’s Normal.dotm, Templates, and Documents

Word 2007, 2010, and 2013 store data diff erently than previous versions of Word. For one thing,
in Word 2003 you could create custom menus and toolbars that you stored in templates. Later ver-
sions of Word do not permit menus, nor do they permit any toolbars other than the Quick Access
Toolbar. What’s more, customizing that toolbar has a global impact. Custom toolbar buttons are
not stored in templates. In other words, any modifi cations you make to the Quick Access Toolbar
will be visible in any Word document, no matter which template(s) is currently active.

Word 2007, 2010, and 2013 feature three kinds of templates:

◆ Legacy templates from Word 2003 and earlier versions. Th ese have a .dot fi lename extension.
If you are working with one of these templates, [Compatibility Mode] appears on the Word
title bar.

◆ Word 2010 templates that contain no macros (.dotx fi lename extension). You can save mac-
ros in a document that employs a .dotx template, but the macro will not be saved within the
template.

◆ Templates with a .dotm fi lename extension contain macros. Recall that because macros writ-
ten by malicious people can do damage just like a virus, recent versions of Word segregate
macros into this special kind of template with a .dotm fi lename extension. A .dotm template
can do anything that a .dotx template can do, but the .dotm template features the additional
capability of hosting macros.

Word has a four-layer architecture. Starting from the bottom, these layers are the application
itself, the global template (Normal.dotm), the active document’s template, and fi nally, the active
document itself (the text and formatting). Each of the four layers can aff ect how Word appears and
how it behaves, but all four layers are not necessarily active at any given time.

Th e bottom layer, which is always active, is the Word application itself. Th is layer contains all the
Word objects and built-in commands, such as Open. Also always active are objects such as Word’s
Quick Access Toolbar, the Ribbon, and so on. Th is layer is the most diffi cult to picture because
usually you don’t see it directly. Normal.dotm, the global template, forms the second layer and is
also always active.

When you start Word, it loads Normal.dotm automatically, and Normal.dotm stays loaded until
you exit Word. (Th ere’s a special switch you can use—winword /n—to prevent the macros in
Normal.dotm from being active if you need to troubleshoot it. Press the Start key [the Windows
key] in Windows 8, and type Run to launch Word in this special way.)

Normal.dotm contains styles (such as the default paragraph style), AutoText entries, formatted
AutoCorrect entries, and customizations. Th ese customizations show up in the other layers unless
specifi cally excluded.

Default blank documents (such as the document that Word normally creates when you start it and
any document you create by clicking Ctrl+N or by clicking the Ribbon’s File tab and then choosing
New and Blank Document) are based on Normal.dotm. So when you’re working in a default blank
document, you see the Word interface as it is specifi ed in Normal.dotm.

Th e currently active template sits on top of the Word application and Normal.dotm. Th is tem-
plate can contain styles, macro modules (if it is a macro-enabled .dotm fi le type), and settings for
the template, along with any boilerplate text needed for this particular type of document. Th is is the

RECORDING A MACRO | 15

third layer, but it is used only if the current document (or active document) is attached to a templatet
other than Normal.dotm.

On top of the current template sits the current document, which contains the text and graphics
in the document, its formatting, and its layout. Documents can also contain macro modules and
custom keyboard shortcuts, so the document itself can act as a fourth layer. Th is layer is always
present when a document is open, but it has no eff ect on Word’s interface or behavior unless the
document contains customizations.

Because these layers might contain confl icting information (such as two diff erent font styles with
the same name), there has to be an order of precedence that defi nes which layer “wins” in any
such confl ict. Customized settings work from the top layer downward. So customized settings in
the active document take precedence over those in the active template. Likewise, any settings
in the current template take precedence over any global templates (templates that automatically
apply to all Word documents) or add-ins other than Normal.dotm. Customized settings in those
global templates or add-ins take precedence over those in Normal.dotm.

As another example, say you have the key combination Ctrl+Shift+K assigned to diff erent actions
in Normal.dotm, in a loaded global template, in a document’s template, and in the document itself.
When you press that key combination, only the procedure assigned in the document runs because
that is the topmost layer. If you remove the key-combination assignment from the document, the
template then becomes the topmost layer containing a defi nition of this key combination, so
the procedure assigned in the template runs. If you remove the key combination from the template
as well, the procedure in the loaded global template runs. Finally, if you remove that template’s key
combination too, the procedure in Normal.dotm runs.

Choosing How to Run a New Macro
Continuing our exploration of the Record Macro dialog box shown in Figure 1.1, at this point,

after you’ve named the macro, typed a description, and chosen where to store it, it’s time to

choose how to trigger the macro. In other words, which way do you want to run the macro: via

a shortcut key or the Quick Access Toolbar button? Good typists generally prefer shortcut keys,

but buttons provide at least a visual hint of the macro’s purpose, and hovering your mouse on

the button also displays the name of the macro.

Shortcut keys and buttons are handy for people who record a moderate number of macros

and don’t organize them in complex ways—moving them from one module to another. If you

create a great number of macros and feel the need to move them into other modules, assigning

a shortcut key or button prior to recording becomes less useful. This is because moving a macro

from one module to another disconnects any way you’ve assigned for running the macro.

This limitation means that it makes sense to assign a way of running a macro—prior to

recording—only if you’re planning to use the macro in its recorded form (as opposed to, say,

using part of it to create another macro) and from its default location. If you plan to move the

macro or rename it, don’t assign a way of running it now. Instead, wait until the macro is in

its fi nal form and location, and then assign the means of running it. See “Specifying How to

Trigger an Existing Macro,” later in this chapter, for details.

Personally, I don’t have more than a couple dozen macros that I use all the time, so I avoid

the complications described in the previous paragraph and the sidebar on managing your mac-

ros. Instead, I just add shortcut keys when I fi rst create the macro, and leave them all in a single

16 | CHAPTER 1 RECORDING AND RUNNING MACROS IN THE OFFICE APPLICATIONS

version of Normal.dotm. However, if you face more complicated situations—such as managing a

big set of macros for a company—you might want to manage your macros with modules.

Manage Your Macros with Modules

By moving your recorded macros into diff erent modules, you can group related macros so you can
compare the code, adjust them, or distribute them easily.

To assign a way to run the macro, follow the instructions in the next sections.

You don’t have to assign a button or keyboard shortcut prior to recording a macro. You can

do it later, or at any time. In Word, Access, Excel, and other Offi ce 2013 applications, you use the

Options dialog box to assign a button on the Quick Access Toolbar to a macro. PowerPoint and

Access do not permit you to assign keyboard shortcuts to macros, but for applications that do

permit this—such as Word and Excel—you use the Customize Keyboard dialog box to assign a

shortcut key to a macro. Excel limits you to Ctrl+ or Ctrl+Shift key combinations.

Running a Macro from the Ribbon
Although it’s not available in the Record Macro dialog box, you can add a macro to the Ribbon,

like this:

 1. Right-click anywhere on the Ribbon.

 2. Click Customize The Ribbon on the menu. The Word Options dialog box appears.

 3. In the Choose Commands From drop-down list, select Macros.

 4. Click a macro’s name to select it in the list.

 5. Click an existing tab in the list of tabs in the right dialog box where you want to locate

your macro.

 6. Then click the New Group button and specify the name of your custom group.

 7. Click the rename button to give your new group a name.

 8. Click OK to close the Rename dialog box.

 9. Click the Add button to add your macro.

 10. Click the rename button to give your macro an easily understood name, and optionally

an icon.

 11. Click OK to close the Rename dialog box.

 12. Click OK to close the Word Options dialog box.

Running a Macro from the Quick Access Toolbar
Here’s how to use the Word Options dialog box to assign a macro to a button on the Quick

Access Toolbar:

 1. Right-click anywhere on the Quick Access Toolbar (it’s the set of icons in the upper-left

corner, above the Ribbon), and a menu will appear. (This toolbar will be just below the

RECORDING A MACRO | 17

Ribbon if you’ve previously selected the Show Quick Access Toolbar Below The Ribbon

option from this menu.)

2. Click Customize Quick Access Toolbar on the menu. The Word Options dialog box

appears.

3. In the Choose Commands From drop-down list, select Macros.

4. Click a macro’s name to select it in the list, as shown in Figure 1.4.

5. Click the Add button to insert this macro’s name in the Customize Quick Access Toolbar

list, as shown in Figure 1.4.

Figure 1.4
Choose a way to run
the macro in Word’s
Options dialog box.

6. Word adds a button to the toolbar for the macro, giving it the macro’s fully qualifi ed

name (its location plus its name), such as Normal.NewMacros.CreateDailyReport.

This name consists of the name of the template or document in which the macro is

stored, the name of the module that contains the macro, and the macro’s name, respec-

tively. You don’t need all this information displayed when you hover your mouse

pointer over the button.

7. So rename the button or menu item: Click the Modify button at the bottom of the

Customize Quick Access Toolbar list (see Figure 1.5). Whatever macro is highlighted (cur-

rently selected) in the list of toolbar items will be the one you’re modifying.

Macro Button Labels Need Not Match Their Official Names

Notice that a macro’s button name (displayed as its tooltip caption when you hover your mouse
over it) doesn’t have to bear any relation to the macro’s actual name as it appears in the Visual
Basic Editor or the Macro dialog.

18 | CHAPTER 1 RECORDING AND RUNNING MACROS IN THE OFFICE APPLICATIONS

Figure 1.5
Word gives the
menu item or tool-
bar button the full
name of the macro.
Use this Modify
Button dialog to
change the name to
something shorter
and better.

 8. While you’re modifying the macro’s name, you might also want to choose a different but-

ton icon that visually cues you about the macro’s purpose. To do that, just double-click

whatever icon you want to use, then click OK.

Running a Macro via a Shortcut Key Combination
To assign the macro to a key combination, follow these steps:

 1. Right-click the Ribbon and choose Customize The Ribbon from the menu that appears.

This opens the Word Options dialog.

 2. Click the Customize button next to Keyboard Shortcuts in the bottom left of the Word

Options dialog box.

 3. Scroll down the Categories list box until you see Macros, then click Macros to select it.

 4. Click to select the name of the macro you want to assign a shortcut key combination to.

 5. Check the Current Keys list box to see if a key combination is already assigned. If it is,

you can press the Backspace key to clear the key combination if you wish, or you can

employ multiple key combinations to launch the macro.

 6. In the Press New Shortcut Key fi eld, type the key combination you want to use to trigger

the macro (see Figure 1.6).

 7. Check to see if this key combination is already used for another purpose. If so, you can

reassign it, or you can choose a different combination by pressing the Backspace key in

the Press New Shortcut Key fi eld.

 8. Be sure to click the Assign button when you’re fi nished. Just closing this dialog does not
assign the key combination.

RECORDING A MACRO | 19

Figure 1.6
Set a shortcut
key combination
for the macro in
the Customize
Keyboard
dialog box.

You Can Postpone Assigning a Shortcut Key Combination

Remember that, as with the other ways of running a macro, you can assign a key combination to
run a macro either at the time you record the macro or at any point after you fi nish recording it.
If you intend to move the macro from the NewMacros module to another module, remember that
you need not assign the key combination until the macro has reached its ultimate destination.

A key combination in Word can be any of the following:

◆ Alt plus either a function key or a regular key not used as a menu-access key.

◆ Ctrl plus a function key or a regular key.

◆ Shift plus a function key.

◆ Ctrl+Alt, Ctrl+Shift, Alt+Shift, or even Ctrl+Alt+Shift plus a regular key or function key.

Pressing Ctrl+Alt+Shift and another key tends to be too awkward for practical use.

Specify Two-Step Key Combinations

You can set up shortcut keys that have two steps—for example, Ctrl+Alt+F, 1 and Ctrl+Alt+F, 2—by
pressing the second key (in this case, the 1 or the 2) after pressing the key combination. However,
these shortcuts tend to be more trouble than they’re worth, unless you’re assigning literally hun-
dreds of extra shortcut keys.

20 | CHAPTER 1 RECORDING AND RUNNING MACROS IN THE OFFICE APPLICATIONS

Running a Macro the Old-Fashion Way
A clumsy, rarely used way to run a macro is to click the Developer tab in the Ribbon. To see how

this works, follow these steps:

 1. Click the Macros icon.

 2. Click the name of the macro in a displayed list.

 3. Finally, click the Run button.

By the way, you can also run a macro from within the Visual Basic Editor by pressing F5.

This is how you test macros while you’re editing them.

Assigning a Way to Run a Macro in Excel
When you’re recording a macro, Excel allows you to assign only a Ctrl shortcut key, not a button,

to run it. If you want to assign a Quick Access Toolbar button to the macro, you need to do so

after recording the macro (using the Customize feature as described shortly).

To assign a Ctrl shortcut key to run the macro you’re recording, follow these steps:

 1. Start recording the macro, then click the Shortcut Key text box to display the blinking

insertion cursor. Press the shortcut key you want to use. (Press the Shift key at the same

time if you want to include Shift in the shortcut.)

 2. In the Store Macro In drop-down list, specify where you want the Macro Recorder to

store the macro. Your choices are as follows:

◆ This Workbook stores the macro in the active workbook. This option is useful for mac-k
ros that belong to a particular workbook and do not need to be used elsewhere.

◆ New Workbook causes Excel to create a new workbook for you and store the macro in it. k
This option is useful for experimental macros that you’ll need to edit before unleash-

ing them on actual work.

◆ Personal Macro Workbook stores the macro in the Personal Macro Workbook, a

special workbook named PERSONAL.XLSB. By keeping your macros and other cus-

tomizations in the Personal Macro Workbook, you can make them available to

any of your procedures—in that way, the Personal Macro Workbook is similar to

Word’s Normal.dotm. If the Personal Macro Workbook does not exist yet, the Macro

Recorder creates it automatically.

 3. Click the OK button to start recording the macro.

Assigning a Way to Run a Macro in PowerPoint
PowerPoint does not let you record macros, but you can assign a way to run macros written

in the Visual Basic Editor, as discussed in the section “Specifying How to Trigger an Existing

Macro” later in this chapter.

Assigning a Way to Run a Macro in Outlook
Outlook doesn’t let you record macros, and by default macros are disabled. To enable macros

in Outlook, click the Developer tab on the Ribbon, then click the Macro Security icon (it’s on the

RUNNING A MACRO | 21

left in the Code section of the Ribbon). The Trust Center dialog box opens. Click the Notifi cation

For All Macros option or the Enable All Macros option. To see how to assign a way to run mac-

ros, see the section “Specifying How to Trigger an Existing Macro” later in this chapter.

Recording the Actions in a Macro
When you close the Record Macro dialog box, the Macro Recorder begins recording the macro.

The Macro Recorder displays the Stop Recording icon (a white square) in the status bar at the

bottom left of the screen (and a Stop Recording button in the Developer tab on the Ribbon). In

addition, a small symbol of a cassette tape appears in the mouse pointer (these tapes were used

in the old days, prior to the invention of the CD).

Now you should perform the sequence of actions you want to record. What exactly you can

do varies from application to application, but in general, you can use the mouse to select items,

make choices in dialog boxes, and select defi ned items in documents (such as cells in spread-

sheets). You’ll fi nd a number of things that you can’t do with the mouse, such as select items

within a document window in Word. To select items in a Word document window, you have to

use the keyboard (Shift+arrow keys, for example). You can select cells with the mouse in Excel

during recording.

The Macro Recorder Records Everything—The Complete
Current Status

When you make choices in a dialog box and click the OK button, the Macro Recorder records
the current settings for all the options on that page of the dialog box. So, for example, when you
change the left indentation of a paragraph in the Paragraph dialog box in Word, the Macro Recorder
records all the other settings on the Indents And Spacing page as well (Alignment, Before and After
spacing, and so forth).

In Word, if you need to perform any actions that you don’t want recorded, pause the Macro

Recorder by clicking the Pause Recording button on the Ribbon. The button changes to Resume

Recording. Click the button again to start recording again.

To stop recording, click either the Stop Recording button on the Ribbon, or the other one on

the status bar.

The Macro Recorder has now recorded your macro and assigned it to a key combination or

button, if you made that choice.

Running a Macro
To run a macro you’ve recorded, you can use four methods to run it within the application:

◆ If you assigned a Quick Access Toolbar button, use that.

◆ If you added your macro to the Ribbon, you can use that.

◆ If you specifi ed a shortcut-key-combination macro, use it.

◆ A less convenient approach is to press Alt+F8 to display the Macros dialog box, select the

macro, and then click the Run button. (Alternatively, you could double-click the macro

name in the list box.)

22 | CHAPTER 1 RECORDING AND RUNNING MACROS IN THE OFFICE APPLICATIONS

Running in the Editor

You can also run a macro from the Visual Basic Editor, which is useful when you’re working in the
Editor. Just press F5.

The macro runs, performing the actions in the sequence in which you recorded them. For

example, suppose you create a macro in Excel that selects cell A2 in the current worksheet, bold-

faces that cell, enters the text Yearly Sales, selects cell B2, and enters the number 100000 in it.

The Macro Recorder recognizes and saves those fi ve actions. VBA then performs all fi ve actions,

step-by-step, each time you run the macro—albeit quite rapidly.

How to Stop an Executing Macro

To stop a running macro, press Ctrl+Break (Break is usually the unshifted Pause key on the key-
board). VBA stops running the code and displays a dialog box telling you that code execution has
been interrupted. Click the End button to dismiss this dialog box.

Some applications (such as Word) let you undo most actions executed via VBA after the

macro stops running (by pressing Ctrl+Z or clicking the Undo button on the Quick Access

Toolbar, undoing one command at a time); other applications do not.

Macro Errors Are Often Caused by Incorrect Contexts

If running the macro results in an error, often this means that the macro is trying to do something
to a fi le or an object that isn’t available. For example, if you record a macro in Excel that works on
the active workbook, the macro causes an error if you run it when no workbook is open (thus there
is no such thing as an active workbook). Likewise, if you write a macro in PowerPoint that works
with the third shape on the active slide, that macro fails if you run it on a slide that has no third
shape. To get the macro to run properly, re-create the conditions it needs, and then try it again.

Recording a Sample Word Macro
In this section, you’ll record a sample macro in Word that you can work with later in the book.

This macro selects the current word, cuts it, moves the insertion point one word to the right, and

pastes the word back in. This is a straightforward sequence of actions that you’ll later view and

edit in the Visual Basic Editor.

Follow these steps to record the macro:

 1. Create a new document by pressing Ctrl+N.

 2. Start the Macro Recorder by clicking the Developer tab on the Ribbon, then clicking the

Record Macro button. Or click the Macro Record button on the status bar at the bottom of

the application. (With this approach, you don’t have to open the Developer tab. Just click

the button on the status bar.)

RECORDING A SAMPLE WORD MACRO | 23

 3. In the Macro Name text box, enter Transpose_Word_Right.

 4. In the Store Macro In drop-down list, make sure All Documents (Normal.dotm) is

selected, unless you want to assign the macro to a different template. (This and future

examples in this book assume this macro is located in Normal.dotm, so do store it there.)

 5. In the Description box, enter a description for the macro (see Figure 1.7). Be fairly explicit

and enter a description such as Transposes the current word with the word to its right.

Created 5/5/13 by Nanci Selest-Gomes.

Figure 1.7
Creating the sample
macro in Word

 6. Assign a method of running the macro, as described in the previous section, if you want

to. Create a toolbar button or assign a keyboard shortcut. (The method or methods you

choose is strictly a matter of personal preference.) If you’ll need to move the macro to a

different module (or a different template or document) later, don’t assign a method of

running the macro at this point.

 7. Click the OK button to dismiss the Word Options dialog box or the Customize Keyboard

dialog box (or just click the OK button to dismiss the Record Macro dialog box if you

chose not to assign a way of running the macro). Now you’re ready to record the macro.

The Stop Recording option appears on the Ribbon and on the status bar, and the mouse

pointer has a cassette-tape icon attached to it.

 8. As a quick demonstration of how you can pause recording, click the Pause Recording

button on the Ribbon. The cassette-tape icon disappears from the mouse pointer, and the

Pause Recording button changes into a Resume Recording button. Enter a line of text in

the document: The quick brown fox jumped over the lazy dog. Position the insertion

point anywhere in the word quick, and then click the Resume Recording button on thek
Ribbon to reactivate the macro recorder.

24 | CHAPTER 1 RECORDING AND RUNNING MACROS IN THE OFFICE APPLICATIONS

 9. Record the actions for the macro as follows:

 a. Use Word’s extend selection feature to select the word quick by pressing the F8 key k
twice.

 b. Press the Esc key to cancel Extend mode.

 c. Press Shift+Delete to cut the selected word to the Clipboard.

 d. The insertion point is now at the beginning of the word brown. Press Ctrl+right

arrow to move the insertion point right by one word so that it’s at the beginning of

the word dog.gg

 e. Press Shift+Insert to paste in the cut word from the Clipboard.

 f. Press Ctrl+left arrow to move the insertion point one word to the left. This restores the

cursor to its original position.

 10. Click the Stop Recording button on the Ribbon or status bar. Your sentence now reads,

“The brown quick fox jumped over the lazy dog.”

Finding Built-In Keyboard Shortcuts

You can fi nd a complete list of the built-in keyboard shortcuts (such as Ctrl+left arrow) by searching
an application’s Help system for “Keyboard Shortcuts.” If available, click the Show All option to
expand the complete list, then use Ctrl+F to search for whatever you’re interested in.

You can now run this macro by using the toolbar button or keyboard shortcut that you

assigned (if you chose to assign one). Alternatively, click the Macros button in the Developer tab

and run the macro from the Macros dialog box. Try positioning the insertion point in the word

brown and running the macro to restore the words in the sentence to their original order.

At this point, Word has stored the macro in Normal.dot. If you don’t save macros until

you exit Word (or until an automated backup takes place), Word doesn’t, by default, prompt

you to save them then. It just does so automatically. But it’s best to click the Save button in the

File tab to store Normal now. That way, if Word or Windows crashes, you will avoid losing

the macro.

You Can Force Word to Prompt You to Save the Normal Template

Word, by default, automatically saves new macros added to the Normal template. But if you prefer to
have Word prompt you to save any changes to the Normal template, choose Options on the File tab,
then click the Advanced button and scroll down until you see the section of Save options. Select the
Prompt Before Saving Normal Template check box, and then click the OK button. Th is option was
selected by default in early versions of Offi ce, but ever since Offi ce 2007 it is turned off by default.

RECORDING A SAMPLE EXCEL MACRO | 25

Recording a Sample Excel Macro
In the following sections, you’ll record a sample Excel macro. This macro creates a new work-

book, enters a sequence of months into it, and then saves it. You’ll work with this macro again in

Chapter 3, so don’t delete it.

Create a Personal Macro Workbook If You Don’t Have One Yet
If you don’t already have a Personal Macro Workbook in Excel, you’ll need to create one before

you can create this procedure. (If you do have a Personal Macro Workbook, skip to the next

section.) Follow these steps:

 1. Click the Developer tab in the Ribbon, then click the Record Macro button on the Ribbon

(or just click the Record Macro button on the status bar) to display the Record Macro

dialog box.

 2. Accept the default name for the macro because you’ll be deleting it momentarily.

 3. In the Store Macro In drop-down list, choose Personal Macro Workbook.

 4. Click the OK button to close the Record Macro dialog box and start recording the macro.

 5. Type a single character in whichever cell is active, and press the Enter key.

 6. Click the Stop Recording button on the Ribbon or status bar to stop recording the macro.

 7. Click the Unhide button on the View tab to display the Unhide dialog box. Select

PERSONAL.XLSB and click the OK button.

 8. Click the Developer tab in the Ribbon, then click the Macros button on the Ribbon to dis-

play the Macros dialog box.

 9. Select the macro you recorded and click the Delete button to delete it. Click the Yes but-

ton in the confi rmation message box.

You now have caused Excel to generate a Personal Macro Workbook that you can use from

now on to hold your global macros.

Record the Macro
To create this macro, start Excel and follow these steps:

 1. Click the Developer tab in the Ribbon, then click the Record Macro button on the Ribbon

(or just click the Record Macro button on the status bar). This displays the Record Macro

dialog box, shown in Figure 1.8, with information entered.

 2. Enter the name for the macro in the Macro Name text box: New_Workbook_with_Months.

 3. In the Shortcut Key text box, enter a shortcut key if you want to. (Remember that you can

always change the shortcut key later, so you’re not forced to enter one at this point.)

 4. In the Store Macro In drop-down list, choose whether to store the macro in your Personal

Macro Workbook, in a new workbook, or in this active workbook. As discussed a little

earlier in this chapter, storing the macro in the Personal Macro Workbook gives you the

26 | CHAPTER 1 RECORDING AND RUNNING MACROS IN THE OFFICE APPLICATIONS

most fl exibility because it is Excel’s global macro container. For this example, don’t store

the macro in the active workbook, because you’re going to delete the active workbook

almost immediately. Instead, store it in your Personal Macro Workbook. Remember, we’ll

use this macro in future examples.

Figure 1.8
Display the Record
Macro dialog box
for Excel and make
your choices in it.

 5. Type a description for the macro in the Description text box.

 6. Click the OK button to dismiss the Record Macro dialog box and start recording the

macro.

 7. Click the File tab on the Ribbon and click New to display the available templates for a

new workbook.

 8. Double-click the Blank workbook icon. Excel creates a new workbook and selects the fi rst

sheet on it.

 9. Click cell A1 to select it. (It may already be selected; click it anyway because you need to

record this click instruction.)

 10. Enter January 2014 and press the right arrow key to select cell B1. Excel automatically

changes the date to your default date format. That’s fi ne.

 11. Enter February 2014 and press the left arrow key to select cell A1 again.

 12. Drag from cell A1 to cell B1 so that the two cells are selected.

 13. Drag the fi ll handle from cell B1 to cell L1 so that Excel’s AutoFill feature enters the

months March 2014 through December 2014 in the cells. (The fi ll handle is the small black

dot in the lower-right corner of the selection frame. You’ll know you’re on it when the

cursor changes from a white to a black cross.)

 14. Click the File tab on the Ribbon, then click the Save As option to display the Save As

dialog box. Save the workbook in a convenient folder (for example, the My Documents

folder) under a name such as Sample Workbook.xlsx.

 15. Click the Stop Recording button on the Ribbon or status bar to stop recording the macro.

DELETING A MACRO | 27

Close the sample workbook, and use Windows Explorer to navigate to the new .xlsx fi le you

just saved, and delete the fi le. Then run the macro and watch what happens. (If you don’t delete

the existing workbook, Excel prompts you to decide whether to overwrite it when in step 14 it

tries to save the new workbook using the same name as the existing workbook.)

Specifying How to Trigger an Existing Macro
If you didn’t assign a way of running the macro when you recorded it, you can assign a way of

running it as described here.

Assigning a Macro to a Quick Access Toolbar Button in Word
To assign a macro to the Quick Access Toolbar, follow these steps:

 1. Right-click anywhere on the Quick Access Toolbar (it’s the set of icons in the upper-left

corner, above the Ribbon). A menu appears.

 2. Click Customize Quick Access Toolbar on the menu. The Word Options dialog box

appears.

 3. In the Choose Commands From drop-down list, select Macros.

 4. Click the name of the macro you want to assign a button to.

 5. Click the Add button to copy the macro name into the list of buttons on the right.

 6. Click the Modify button if you want to assign a different icon or modify the button’s

name.

 7. Click OK to close the dialog.

Assigning a Macro to a Shortcut Key Combination
The section “Running a Macro via a Shortcut Key Combination,” earlier in this chapter,

explained how to do this in Word. PowerPoint and Access do not let you assign a macro to a

key combination. Excel uses a slightly different approach than Word, limiting you to Ctrl and

Shift combinations, as described earlier in this chapter in the section “Assigning a Way to Run a

Macro in Excel.”

Deleting a Macro
To delete a macro you no longer need, follow these steps:

 1. Press Alt+F8 to display the Macros dialog box.

 2. Choose the macro in the Macro Name list box.

 3. Click the Delete button.

 4. In the warning message box that appears, click the Yes button. Figure 1.9 shows Excel’s

variation of this warning message box.

28 | CHAPTER 1 RECORDING AND RUNNING MACROS IN THE OFFICE APPLICATIONS

Figure 1.9
When you delete a
macro, the applica-
tion checks to make
sure you mean to
do so.

 5. Click the Close button or the Cancel button to close the Macros dialog box.

Organizing Macros in Word with the Organizer Dialog Box

Most VBA-enabled applications require you to use the Visual Basic Editor (which is discussed in
the next chapter) to move code modules, user forms, and other code items from one fi le to another
fi le. (A code module is a virtual container used for storing macros. A user form is a custom dialog box
displayed to the user for input.) But Word provides a useful tool called the Organizer
dialog box that you can use to copy, move, rename, and delete code modules, user forms, and other
code items directly in the Word interface without opening the Visual Basic Editor.

To use the Organizer dialog box, follow these steps:

 1. In Word, press Alt+F8.

 2. Click the Organizer button to display the Organizer dialog box, and click the Macro Project Items
tab if the Macro Project Items page (shown here) isn’t automatically displayed.

 3. Look at the two documents or templates listed in the readouts above the two list boxes. Usually,
the left list box shows the active document, and the right one shows Normal.dotm. Change
these so that one list box shows the document or template that contains the code you want to
copy or move and the other list box shows the destination document or template. (If you want
only to delete or rename code items, you need only make the Organizer dialog box list the
document or template that contains the items.) To change the document or template listed,
click the Close File

THE BOTTOM LINE | 29

 button underneath the list box on the corresponding side. Th e Close File button changes to an Open
File button. Click this button to display the Open dialog box, navigate to and select the document
or template you want, and then click the Open button. Th e Open dialog will automatically default
to displaying the Templates folder.

 4. You can then delete, rename, copy, and move macro project items. Th e following list details how
to do this:

◆ To delete one or more macro project items from a template, choose the item or items from
either panel of the Organizer dialog box and click the Delete button. Click the Yes button
in the confi rmation message box. Any copies of the items in other templates are unaff ected.

◆ To rename a macro project item, select it from either panel and click the Rename button
to open the Rename dialog box. Enter the new name and click the OK button. Any copies
of the same item in other templates are unaff ected.

◆ To copy one or more macro project items from one template to another, open the templates
in the Organizer dialog box. Select the item or items to copy in either panel of the dialog box
(the arrows on the Copy button change direction to point to the other panel). Th en click the
Copy button. If the recipient template contains a macro project item of the same name as
one you’re copying, Word displays a warning message box telling you that it can’t copy the
item. If you still want to copy the item, rename either the item you’re copying or the item
with the same name in the destination template, and then perform the copy operation.

◆ To move a macro project item from one template to another, copy it as described in the
previous paragraph, and then delete the macro project item from the source template.

 5. Once you’ve deleted, renamed, copied, or moved macro project items, click the Close button to
close the Organizer dialog box. If Word prompts you to save any changes to aff ected documents
or templates that aren’t open in your Word session, click the Yes button.

Th e Bottom Line
Record a macro. The easiest way to create a macro is to simply record it. Whatever you type

or click—all your behaviors—are translated into VBA automatically and saved as a macro.

Master It Turn on the macro recorder in Word and create a macro that moves the in-

sertion cursor up three lines. Then turn off the macro recorder and view the code in the

Visual Basic Editor.

Assign a macro to a button or keyboard shortcut. You can trigger a macro using three

convenient methods: clicking an entry on the Ribbon, clicking a button in the Quick Access

Toolbar, or using a keyboard shortcut. You are responsible for assigning a macro to any or all

of these methods.

Master It Assign an existing macro to a new Quick Access Toolbar button.

Run a macro. Macros are most effi ciently triggered via a Ribbon entry, by clicking a but-

ton on the Quick Access Toolbar, or by pressing a shortcut key combination such as Alt+N

or Ctrl+Alt+F. When you begin recording a macro, the Record Macro dialog has buttons that

30 | CHAPTER 1 RECORDING AND RUNNING MACROS IN THE OFFICE APPLICATIONS

allow you to assign the new macro to a shortcut key or toolbar button. However, if you are

using the Visual Basic Editor, you can run a macro by simply pressing F5.

Master It Execute a macro from within the Visual Basic Editor.

Delete a macro. It’s useful to keep your collection of macros current and manageable. If

you no longer need a macro, remove it. Macros can be directly deleted from the Visual Basic

Editor or by clicking the Delete button in the Macros dialog (opened by pressing Alt+F8).

Master It Temporarily remove a macro, then restore it, using the Visual Basic Editor.

