
CHAPTER 1

Introduction to Partial
Differentiation Equation
Analysis: Chemotaxis

1.1 Introduction

This chapter serves as an introduction to the analysis of biomedical
science and engineering (BMSE) systems based on partial differen-
tial equations (PDEs) programmed in R. The general format of this
chapter and the chapters that follow consists of the following steps:

• Presentation of a PDE model as a system of PDEs, possibly with
the inclusion of some additional ordinary differential equations
(ODEs).

• Review of algorithms for the numerical solution of the PDE
model.

• Discussion of a set of R routines that implement the numerical
algorithms as applied to the model.

• Review of the computed output.

• Conclusions concerning the model, computer implementation,
output, and possible extensions of the analysis.

This format is introductory and application oriented with a mini-
mum of mathematical formality. The intention is to help the reader
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2 Introduction to Partial Differentiation Equation Analysis: Chemotaxis

start with PDE analysis of BMSE systems without becoming deeply
involved in the details of PDE numerical methods and their computer
implementation (e.g., coding). Also, the presentation is self-contained
so that the reader will not have to go to other sources such as a soft-
ware download to find the routines that are discussed and used in
a particular application. Our final objective then is for the detailed
discussions of the various applications to facilitate a start in the PDE
analysis of BMSE systems.

In this chapter, we consider the following topics.

• A brief introduction to PDEs.

• Application of PDE analysis to chemotaxis.

• Algorithms for the numerical solution of a simultaneous 2-PDE
nonlinear chemotaxis model.

• Computer routines for implementation of the numerical algo-
rithms.

• Traveling wave features of the 2-PDE chemotaxis model numer-
ical solution.

1.2 Linear Diffusion Model

Inanimate systems have the general feature wherein chemical species
move from regions of high concentration to regions of low concen-
tration by mechanisms that are often modeled as diffusion, that is,
according to Fick’s first and second laws. In 1D, this diffusion is
described (according to Fick’s second law) as

∂c

∂t
= ∂

∂x

[
D

∂c

∂x

]
(1.1a)

where

c volume concentration
x spatial coordinate
t time
D diffusivity
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In accordance with the usual convention for PDE notation, the
dependent variable will subsequently be denoted as u rather than c.
Thus, eq. (1.1a) will be

∂u

∂t
= ∂

∂x

[
D

∂u

∂x

]
(1.1a)

We can note the following features of eq. (1.1a).

• Eq. (1.1a) is a PDE because it has two independent variables, x
and t . A differential equation with only one independent variable
is termed an ordinary differential equation (ODE). Note also that
∂ is used to denote a partial derivative.

• The solution of eq. (1.1a) is the dependent variable u as a func-
tion of the independent variables x and t , that is, u(x , t) in
numerical form (rather than analytical form).

• Eq. (1.1a) is linear for constant D because the dependent variable
u and its partial derivatives are to the first degree (not to be
confused with order because eq. (1.1a) is first order in t because
of the first-order derivative in t and second order in x because
of the second-order derivative in x ). Classifying eq. (1.1a) as
linear presupposes that the diffusivity D is not a function of
u . Eq. (1.1a) is nonlinear if D = D(u) because of the product
D(u)∂u/∂x .

• The diffusivity D is inside the first (left most) differentiation to
handle the case when D is a function of x and/or u . If D is a
constant, it can be moved outside the first differentiation.

Eq. (1.1a) models ordinary diffusion because of, for example, ran-
dom motion of molecules. A distinguishing feature of this type of
diffusion is net movement in the direction of decreasing concentration
as reflected in Fick’s first law

qx = −D
∂u

∂x
(1.1b)

qx is a component of the diffusion flux vector (with additional com-
ponents qy and qz in Cartesian coordinates) and is therefore denoted
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with boldface. The minus sign signifies diffusion in the direction of
decreasing concentration (as for ∂u/∂x < 0, qx > 0).

Since eq. (1.1a) is first order in t and second order in x , it requires
one initial condition (IC) and two boundary conditions (BCs). For
example,

u(x , t = 0) = f (x), 0 ≤ x ≤ xL (1.1c)

u(x = 0, t) = g1(t), u(x = xL, t) = g2(t), t > 0 (1.1d,e)

where xL is a constant (length) to be specified and f1, g1, g2 are
functions to be specified. Since BCs (1.1d,e) specify the dependent
variable u(x , t) at two particular (boundary) values of x , that is,
x = 0, xL, they are termed Dirichlet BCs. The derivatives in x can
be specified as BCs, for example,

∂u(x = 0, t)

∂x
= g3(t),

∂u(x = xL, t)

∂x
= g4(t) (1.1f,g)

Eqs. (1.1f) and (1.1g) are termed Neumann BCs. Also, the depen-
dent variable and its derivative can be specified at a boundary, for
example,

−u(x = 0, t)

∂x
+ u(x = 0, t) = g5(t), (1.1h)

u(x = xL, t)

∂x
+ u(x = xL, t) = g6(t) (1.1i)

Eqs. (1.1h) and (1.1i) are termed third-type, Robin, or natural BCs.
All of these various forms of BCs (eqs. (1.1d)–(1.1i)) are useful in
applications.

Finally, note that t is defined over an open-ended interval or
domain, t > 0, and is termed an initial value variable (typically time
in an application). x is defined between two different (boundary) val-
ues in x , denoted here as 0, xL or more generally x0, xL (typically
physical boundaries in an application). However, the interval in x
can be semi-infinite, for example, −∞ < x ≤ 0, 0 ≤ x ≤ ∞ or fully
infinite, −∞ < x < ∞.
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1.3 Nonlinear Chemotaxis Model

Eqs. (1.1a) and (1.1b) can be extended to a nonlinear form of Fick’s
first and second laws. Also, we can consider more than one dependent
variable, and we now consider two dependent variables u1(x , t) and
u2(x , t) in place of just u(x , t). The 2-PDE model for chemotaxis is
([2], p 68)

u1t = −ku2 (1.2a)

u2t = D
∂

∂x

[
u2x − 2

u2

u1
u1x

]
(1.2b)

Here, we have employed subscript notation for some of the partial
derivatives. For example,

∂u1

∂t
⇒ u1t ,

∂u1

∂x
⇒ u1x ,

∂u2

∂t
⇒ u2t

Note that the PDE variables can have two subscripts. The first
is a number denoting a particular dependent variable. The second
is a letter denoting a partial derivative with respect to a particular
independent variable. For example, u1t denotes the first dependent
variable u1 differentiated with respect to t . Also, the second (letter)
subscript can be repeated to denote a higher order derivative. For
example, subscript notation can be used in eq. (1.2b),

∂

∂x
[u2x ] = u2xx

∂

∂x

[
−2

u2

u1
u1x

]
=

[
−2

u2

u1
u1x

]
x

This compact subscript notation for partial derivatives can be use-
ful in conveying a correspondence between the mathematics and the
associated computer coding. This will be illustrated in the subsequent
programming of eqs. (1.2).
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The variables and parameters in eqs. (1.2) are

u1 attractant concentration
u2 bacteria concentration
x spatial coordinate
t time
k rate constant
D diffusivity

Eqs. (1.2) defines the volume concentration of a microorganism
(such as bacteria), u2(x , t), when responding to an attractant (such
as a nutrient or food supply), u1(x , t). Eq. (1.2a) reflects the rate of
consumption of u1, that is, u1t , due to u2; the rate constant is taken
as k > 0 so that the minus is required for consumption (u1t ≤ 0 with
u2 ≥ 0).

Eq. (1.2b) is an extension of eq. (1.1b) and implies a diffusion flux
q in the x -direction.

q = −D

[
u2x − 2

u2

u1
u1x

]
(1.2c)

(the subscript x in qx has been dropped). Eq. (1.2c) can be consid-
ered an extension of eq. (1.1b). It is nonlinear because of the term
(u2/u1)u1x . We can note the following details about eq. (1.2c).

• The first RHS term, −Du2x , is just Fick’s first law, eq. (1.1b).
In other words, the flux of eq. (1.2c), q, is composed partly of
the usual flux in the direction of decreasing gradient (Du2x < 0,
which tends to make q > 0 because of the minus sign in eq.
(1.2c)).

• The second RHS term is opposite in sign to the first and, there-
fore, gives the opposite effect for the flux q. Note that the
gradient in this term is u1x , not u2x . Thus, this term causes the
bacteria flux q to increase with increasing attractant concentra-
tion u1. Also, the ratio u2/u1 is a factor in determining the flux
q. This ratio causes the rate of transfer (flux) of the bacteria, q,
to increase with increasing bacteria concentration, u2, and also
to increase with a decrease in the attractant concentration, u1;
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for the latter, the bacteria apparently move faster when facing
decreasing availability of the attractant (e.g., nutrient or food).
Clearly, this nonlinear RHS term is a significant departure from
the diffusion term of Fick’s first law, eq. (1.1b). This is a unique
feature of chemotaxis by which the bacteria seek higher concen-
trations of the attractant; this seems plausible if, for example,
the attractant is a nutrient such as food. This effect is clearly
a feature of an animate (living) system, such as bacteria, rather
than an inanimate system.

• As the second RHS term has a rather unconventional form, we
would expect that it will introduce unusual features in the solu-
tion when compared with the usual diffusion modeled by Fick’s
first and second laws. These features will be considered when the
routines for the solution of eqs. (1.2a) and (1.2b) are discussed
subsequently.

• As the nonlinear diffusion term −2D(u2/u1)u1x requires u1(x , t),
it is necessary to integrate eq. (1.2a) along with (1.2b); in other
words, u1 and u1x come from eq. (1.2a). But the solution of eq.
(1.2a) requires u2 from eq. (1.2b) (in the RHS term of eq. (1.2a)).
Thus, eqs. (1.2a) and (1.2b) must be integrated together to give
u1(x , t) and u2(x , t) simultaneously. This requirement might be
designated as a 2 × 2 system (two PDEs, eqs. (1.2a) and (1.2b),
in two unknowns, u1, u2).

Eqs. (1.2a) and (1.2b) are first order in t and therefore each requires
an IC

u1(x , t = 0) = f1(x), u2(x , t = 0) = f2(x) (1.3a,b)

where f1 and f2 are functions to be specified.
Eq. (1.2b) is second order in x and, therefore, requires two BCs.

As u1(x , t) is a function of x , and it appears in a second derivative
term in eq. (1.2b), we will also assign it two BCs.

∂u1(x → −∞, t)

∂x
= ∂u1(x → ∞, t)

∂x
= 0 (1.4a,b)

∂u2(x → −∞, t)

∂x
= ∂u2(x → ∞, t)

∂x
= 0 (1.4c,d)
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The analytical solution to eqs. (1.2)–(1.4) is ([2], p 68)

u1(z ) = [1 + e−cz/D ]−1 (1.5a)

u2(z ) = c2

kD
e−cz/D [1 + e−cz/D ]−2 (1.5b)

where z = x − ct ; c is a constant to be specified (a velocity). Note
that u1(z ) and u2(z ) are a function of the single Lagrangian variable z .
In other words, these solutions are invariant for a constant value of
z , regardless of how x and t may vary. A solution with this property
is termed a traveling wave [1]. We will discuss this property further
when the numerical solution to eqs. (1.2) is discussed subsequently.

We will use eqs. (1.5) for ICs (1.3) with t = 0, z = x .

f1(x) = u1(x , t = 0) = [1 + e−cx/D ]−1 (1.3c)

f2(x) = u2(x , t = 0) = c2

kD
e−cx/D [1 + e−cx/D ]−2 (1.3d)

Eqs. (1.2)–(1.4) constitute the 2-PDE model to be studied numeri-
cally. Also, the analytical solutions, eqs. (1.5), will be used to evaluate
the numerical solution.

1.4 Method of Lines Solution of 2-PDE Chemotaxis Model

The method of lines (MOL) is a general procedure for the numerical
integration of PDEs in which the derivatives in the boundary value
(spatial) independent variables are approximated algebraically, in the
present case, by finite differences (FDs). Then only one independent
variable remains, in this case, the initial value t . As we have now
only one independent variable, the original PDEs are replaced with
an approximating set of ODEs. These ODEs can then be integrated
(solved) numerically by any established initial value ODE integrator.
In the discussion that follows, we will use the R ODE integrator
lsodes [3]. This is the essence of the numerical MOL.

The R routines for PDEs (1.2), ICs (1.3), and BCs (1.4) follow. The
numerical solution from these routines will then be compared with
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the analytical solution, eqs. (1.5). A main program for the numerical
MOL solution is in Listing 1.1.

1.4.1 Main Program

The following main program is for eqs. (1.2), (1.3) and (1.4).

#
# Access ODE integrator
library("deSolve");

#
# Access functions for analytical solutions
setwd("c:/R/bme_pde/chap1");
source("chemo_1.R");
source("u1_anal.R");
source("u2_anal.R");
source("dss004.R");

#
# Level of output
#
# ip = 1 - graphical (plotted) solutions
# (u1(x,t), u2(x,t)) only
#
# ip = 2 - numerical and graphical solutions
#
ip=3;

#
# Grid (in x)
nx=101;xl=-10;xu=15
xg=seq(from=xl,to=xu,by=0.25);

#
# Parameters
k=1;D=1;c=1;
cat(sprintf("\n\n k = %5.2f D = %5.2f c = %5.2f\n",

k,D,c));
#
# Independent variable for ODE integration
nout=6;
tout=seq(from=0,to=5,by=1);

#
# Initial condition (from analytical solutions,t=0)
u0=rep(0,2*nx);
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for(i in 1:nx){
u0[i] =u1_anal(xg[i],tout[1],k,D,c);
u0[i+n]=u2_anal(xg[i],tout[1],k,D,c);

}
ncall=0;

#
# ODE integration

out=lsodes(y=u0,times=tout,func=chemo_1,parms=NULL)
nrow(out)
ncol(out)

#
# Arrays for plotting numerical, analytical solutions

u1_plot=matrix(0,nrow=nx,ncol=nout);
u2_plot=matrix(0,nrow=nx,ncol=nout);

u1a_plot=matrix(0,nrow=nx,ncol=nout);
u2a_plot=matrix(0,nrow=nx,ncol=nout);
for(it in 1:nout){
for(ix in 1:nx){

u1_plot[ix,it]=out[it,ix+1];
u2_plot[ix,it]=out[it,ix+1+nx];
u1a_plot[ix,it]=u1_anal(xg[ix],tout[it],k,D,c);
u2a_plot[ix,it]=u2_anal(xg[ix],tout[it],k,D,c);

}
}

#
# Display numerical solution

if(ip==2){
for(it in 1:nout){

cat(sprintf("\n t x u1(x,t) u1_ex(x,t)
u1_err(x,t)"));

cat(sprintf("\n u2(x,t) u2_ex(x,t)
u2_err(x,t)\n"));

for(ix in 1:nx){
cat(sprintf("%5.1f%8.2f%10.5f%12.5f%13.6f\n",

tout[it],xg[ix],
u1_plot[ix,it],u1a_plot[ix,it],u1_plot[ix,it]-

u1a_plot[ix,it]));
cat(sprintf(" %10.5f%12.5f%13.6f\n",
u2_plot[ix,it],u2a_plot[ix,it],u2_plot[ix,it]-

u2a_plot[ix,it]));
}
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}
}

#
# Calls to ODE routine
cat(sprintf("\n\n ncall = %5d\n\n",ncall));

#
# Plot u1 numerical, analytical
par(mfrow=c(1,1));
matplot(x=xg,y=u1_plot,type="l",xlab="x",

ylab="u1(x,t), t=0,1,2,3,4,5", xlim=c(xl,xu),lty=1,
main="u1(x,t); solid - num, points - anal;

t=0,1,2,3,4,5;",lwd=2);
matpoints(x=xg,y=u1a_plot,xlim=c(xl,xu),col="black",

lwd=2)
#
# Plot u2 numerical, analytical
par(mfrow=c(1,1));
matplot(x=xg,y=u2_plot,type="l",xlab="x",

ylab="u2(x,t), t=0,1,2,3,4,5", xlim=c(xl,xu),lty=1,
main="u2(x,t), solid - num, points - anal;

t=0,1,2,3,4,5;",lwd=2);
matpoints(x=xg,y=u2a_plot,xlim=c(xl,xu),col="black",

lwd=2)

Listing 1.1 Main program for the solution of eqs. (1.2).

We can note the following details about Listing 1.1.

• The library of ODE solvers, deSolve (with lsodes for the sub-
sequent integration of the MOL ODEs), is accessed. Also, four
files with the routines to calculate the numerical and analytical
solutions of eqs. (1.2) are accessed. Note the use of the forward
slash / in setwd (set working directory).

#
# Access ODE integrator

library("deSolve");
#
# Access functions for analytical solutions

setwd("c:/R/bme_pde/chap1");
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source("chemo_1.R");
source("u1_anal.R");
source("u2_anal.R");
source("dss004.R");

• Two cases are programmed: ip=1 for graphical output only and
ip=2 for graphical and numerical outputs.

#
# Level of output
#
# ip = 1 - graphical (plotted) solutions
# (u1(x,t), u2(x,t)) only
#
# ip = 2 - numerical and graphical solutions
#
ip=2;

• A grid in x is defined over the interval −10 ≤ x ≤ 15 with
nx=101 points. This x domain was selected to be essentially
infinite as required by BCs (1.4). This characteristic will be
explained later. 101 points were determined to be adequate to
achieve acceptable accuracy (spatial resolution), and this accu-
racy is confirmed by comparing the numerical solution to the
analytical solution of eqs. (1.5).

#
# Grid (in x)
nx=101;xl=-10;xu=15
xg=seq(from=xl,to=xu,by=0.25);

• The model parameters (constants) are defined numerically and
displayed. These parameters appear in eqs. (1.2) and (1.5).

#
# Parameters
k=1;D=1;c=1;
cat(sprintf("\n\n k = %5.2f D = %5.2f c =

%5.2f\n",k,D,c));

• Six output values of t are placed in vector tout, that is,
tout=0,1,2,3,4,5.
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#
# Independent variable for ODE integration

nout=6;
tout=seq(from=0,to=5,by=1);

A total of six outputs (counting the IC) provides parametric plots
in t (for t = 0, 1, . . . , 5) as explained subsequently.

• The ICs of eqs. (1.3) are computed from the analytical
solutions of eqs. (1.5) with t = tout[1] = 0 (in routines
u1_anal,u2_anal) and placed in a single vector u0 for
subsequent use as an input to the ODE integrator lsodes to
start the numerical solution.

#
# Initial condition (from analytical solutions,t=0)

u0=rep(0,2*nx);
for(i in 1:nx){
u0[i] =u1_anal(xg[i],tout[1],k,D,c);
u0[i+nx]=u2_anal(xg[i],tout[1],k,D,c);

}
ncall=0;

Note that there are 2*nx = 2*101 = 202 ICs and MOL ODEs
that approximate the PDEs, eqs. (1.2). The length of u0 informs
the ODE integrator, lsodes, of the number of ODEs to be inte-
grated (202). The counter for the calls to the ODE routine (dis-
cussed subsequently) is also initialized.

• The integration of the 202 ODEs is accomplished by a call to
lsodes.

#
# ODE integration

out=lsodes(y=u0,times=tout,func=chemo_1,parms=NULL)
nrow(out)
ncol(out)

We can note the following details about the call to lsodes.

• The IC vector u0 is used to start the ODE integration (the
parameter y is a reserved name for lsodes).
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• The output values of t are in vector tout defined previously.
These values of t are also returned through the 2D solution
array out (times is a reserved name for lsodes).

• The ODE routine chemo_1 discussed subsequently is used for
the calculation of the 202 ODE derivatives (func is a reserved
name for lsodes).

• The parameter parms is unused. It could pass the parameters
k,D,c to chemo_1 but these parameters are already global (a
feature of R) and therefore are available in chemo_1 (parms is
a reserved name for lsodes).

• The ODE solution is returned in a 2D array out. In other
words, all n = 202 ODE solutions are returned in out at each
of the nout=6 values of t . However, the dimensions of out are
out(6,203) with an additional value in the second dimension
(203 rather than 202) for t . This dimensioning of out is con-
firmed by the R utilities nrow,ncol; note that if a concluding ;

is not used in calling nrow,ncol, the numerical values of the
number of rows and columns (6,203) are displayed.

• The ODE solution returned in out is placed in two 2D arrays,
u1_plot,u2_plot.

#
# Arrays for plotting numerical, analytical solutions
u1_plot=matrix(0,nrow=nx,ncol=nout);
u2_plot=matrix(0,nrow=nx,ncol=nout);

u1a_plot=matrix(0,nrow=nx,ncol=nout);
u2a_plot=matrix(0,nrow=nx,ncol=nout);
for(it in 1:nout){

for(ix in 1:nx){
u1_plot[ix,it]=out[it,ix+1];
u2_plot[ix,it]=out[it,ix+1+nx];

u1a_plot[ix,it]=u1_anal(xg[ix],tout[it],k,D,c);
u2a_plot[ix,it]=u2_anal(xg[ix],tout[it],k,D,c);

}
}

Also, the analytical solutions of eqs. (1.5) are placed in two
2D arrays, u1a_plot and u2a_plot so that the numerical and
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analytical solutions can be compared. The routines for the analyt-
ical solutions, u1_anal and u2_anal, are discussed subsequently.
Note the offset of 1 in the second subscript of out, for example,
ix+1. This offset is required because the first value of this sub-
script is used for the values of t , that is, out[it,1] has the
values t = 0, 1, 2, 3, 5 corresponding to it=1,2,...,6 (this is a
property of the numerical solution in out from lsodes).

• For ip=2, the numerical solution is displayed in a tabulated for-
mat (Table 1.1).

#
# Display numerical solution

if(ip==2){
for(it in 1:nout){

cat(sprintf("\n t x u1(x,t) u1_ex
(x,t) u1_err(x,t)"));

cat(sprintf("\n u2(x,t) u2_ex
(x,t) u2_err(x,t)\n"));

for(ix in 1:nx){
cat(sprintf("%5.1f%8.2f%10.5f%12.5f%13.6f\n",

tout[it],xg[ix],
u1_plot[ix,it],u1a_plot[ix,it],u1_plot[ix,it]

-u1a_plot[ix,it]));
cat(sprintf(" %10.5f%12.5f%

13.6f\n",
u2_plot[ix,it],u2a_plot[ix,it],u2_plot[ix,it]

-u2a_plot[ix,it]));
}

}
}

• The number of calls to chemo_1 is displayed at the end of the
solution.

#
# Calls to ODE routine

cat(sprintf("\n\n ncall = %5d\n\n",ncall));

• u1(x , t) and u2(x , t) are plotted against x with t as a parameter
in Figs. 1.1 and 1.2.
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#
# Plot u1 numerical, analytical
par(mfrow=c(1,1));
matplot(x=xg,y=u1_plot,type="l",xlab="x",

ylab="u1(x,t), t=0,1,...,5",xlim=c(xl,xu),lty=1,
main="u1(x,t); t=0,1,...,5; lines - num, points -

anal",lwd=2);
matpoints(x=xg,y=u1a_plot,xlim=c(xl,xu),col="black",

lwd=2)
#
# Plot u2 numerical, analytical
par(mfrow=c(1,1));
matplot(x=xg,y=u2_plot,type="l",xlab="x",

ylab="u2(x,t), t=0,1,...,5",xlim=c(xl,xu),lty=1,
main="u2(x,t), t=0,1,...,5; lines - num, points -

anal",lwd=2);
matpoints(x=xg,y=u2a_plot,xlim=c(xl,xu),col="black",

lwd=2)

par(mfrow=c(1,1)) specifies a 1 × 1 array of plots, that is,
a single plot. The R utility matplot plots the 2D array with
the numerical solutions, u1_plot,u2_plot, and the utility
matpoints superimposes the analytical solutions in u1a_plot

and u2a_plot as points. These details plus the others specified
with the various arguments (e.g., axis labels, x axis limits, main
heading) are clear when considering Figs. 1.1 and 1.2.

We now consider the routines called by the main program of Listing
1.1, starting with chemo_1. The numerical and graphical output from
Listing 1.1 is then considered.

1.4.2 ODE Routine

The ODE routine for the MOL solution of eqs. (1.2) follows.

chemo_1=function(t,u,parms){
#
# Function chemo_1 computes the t derivative vectors of

u1(x,t), u2(x,t)
#
# One vector to two vectors
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u1=rep(0,nx);u2=rep(0,nx);
for(i in 1:nx){

u1[i]=u[i];
u2[i]=u[i+nx];

}
#
# u1x, u2x
u1x=rep(0,nx);u2x=rep(0,nx);
u1x=dss004(xl,xu,nx,u1);
u2x=dss004(xl,xu,nx,u2);

#
# BCs
u1x[1]=0; u1x[nx]=0;
u2x[1]=0; u2x[nx]=0;

#
# Nonlinear term
u1u2x=rep(0,nx);
for(i in 1:nx){

u1u2x[i]=2*u2[i]/u1[i]*u1x[i];
}

#
# u1u2xx, u2xx
u2xx=rep(0,nx);u1u2xx=rep(0,nx);
u2xx =dss004(xl,xu,nx, u2x);
u1u2xx=dss004(xl,xu,nx,u1u2x);

#
# PDEs
u1t=rep(0,nx);u2t=rep(0,nx);
for(i in 1:nx){

u1t[i]=-k*u2[i];
u2t[i]=D*(u2xx[i]-u1u2xx[i]);

}
#
# Two vectors to one vector
ut=rep(0,2*nx);
for(i in 1:nx){

ut[i] =u1t[i];
ut[i+nx]=u2t[i];

}
#
# Increment calls to chemo_1
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ncall <<- ncall+1;
#
# Return derivative vector

return(list(c(ut)));
}

Listing 1.2 ODE routine chemo_1 called by the main program of
Listing 1.1.

We can note the following details about Listing 1.2.

• The function is defined.

chemo_1=function(t,u,parms){
#
# Function chemo_1 computes the t derivative vectors

of u1(x,t), u2(x,t)

The three input arguments are required by lsodes, which calls
chemo_1 (even though parms is not used). u is the input vector
of the 202 dependent variables of ODE. t is the current value of
the independent variable t .

• The single solution vector u is placed in two vectors u1 and u2

to facilitate the programming in terms of the dependent variables
of eqs. (1.2).

#
# One vector to two vectors
u1=rep(0,nx);u2=rep(0,nx);
for(i in 1:nx){

u1[i]=u[i];
u2[i]=u[i+nx];

}

• The first derivatives of u1,u2 with respect to x are computed by
calls to the library differentiator dss004.

#
# u1x, u2x
u1x=rep(0,nx);u2x=rep(0,nx);
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u1x=dss004(xl,xu,nx,u1);
u2x=dss004(xl,xu,nx,u2);

The boundary values of x , xl=-10,xu=15, are set in Listing 1.1
and are effectively for the interval −∞ ≤ x ≤ ∞.

• BCs (1.4) are programmed at xl=-10,xu=15. Note that this inter-
val is not symmetric with respect to x = 0 because of the move-
ment of the traveling wave solutions of eqs. (1.5) in the positive
x -direction so that more distance is required for x > 0 than for
x < 0. This feature of the interval in x will be clear when the
numerical solution is examined graphically (plotted).

#
# BCs

u1x[1]=0; u1x[nx]=0;
u2x[1]=0; u2x[nx]=0;

The first derivatives of u1 and u2 are set to zero at the boundaries
according to BCs (1.4).

• The nonlinear term in eqs. (1.2b) and (1.2c), 2(u2/u1)u1x , is
computed and placed in array u1u2x

#
# Nonlinear term

u1u2x=rep(0,nx);
for(i in 1:nx){
u1u2x[i]=2*u2[i]/u1[i]*u1x[i];

}

• The second derivatives in eq. (1.2b) are computed by dss004.
The calculation of the second derivative as the derivative of the
first derivative is termed stagewise differentiation. This procedure
is put to good use to calculate the derivative of the nonlinear
term 2(u2/u1)u1x . This demonstrates a major advantage of the
numerical solution of PDEs, that is, nonlinear terms of virtually
any form can be accommodated.

#
# u1u2xx, u2xx

u2xx=rep(0,nx);u1u2xx=rep(0,nx);
u2xx =dss004(xl,xu,nx, u2x);
u1u2xx=dss004(xl,xu,nx,u1u2x);
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• Eqs. (1.2) are programmed

#
# PDEs
u1t=rep(0,nx);u2t=rep(0,nx);
for(i in 1:nx){

u1t[i]=-k*u2[i];
u2t[i]=D*(u2xx[i]-u1u2xx[i]);

}

Note the resemblance of this programming to the PDEs (eqs.
(1.2a) and (1.2b)), which is an important advantage of the
MOL approach to the numerical solution of PDEs. If the term
-u1u2xx[i] is not included, the resulting PDE u2t[i]=D*(u2xx

[i]) is just Fick’s second law, eq. (1.1a) (with constant D).

• The two derivative vectors u1t and u2t are placed in a single
derivative vector ut to be returned from chemo_1.

#
# Two vectors to one vector
ut=rep(0,2*nx);
for(i in 1:nx){

ut[i] =u1t[i];
ut[i+nx]=u2t[i];

}

• The counter for the calls to chemo_1 is incremented (and returned
to the main program with <<-).

#
# Increment calls to chemo_1
ncall <<- ncall+1;

• The derivative vector ut is returned to lsodes as a list (a require-
ment of lsodes).

#
# Return derivative vector
return(list(c(ut)));
}

The final } concludes chemo_1.
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In summary, chemo_1 receives the independent variable t and the
dependent variable vector u (of length 2(101) = 202) as RHS (input)
arguments and returns a derivative vector ut. Note that u and ut must
be of the same length and the derivative of a particular dependent
variable u[i] must be in position ut[i] in vector ut.

The straightforward coding in chemo_1 demonstrates the versatility
of the MOL solution of eqs. (1.2), a 2 × 2 system of simultaneous
nonlinear PDEs. Extensions to more complex PDE systems follows
directly from the ideas expressed in chemo_1.

To complete the discussion of the R routines, we consider u1_anal
and u2_anal for the analytical solutions of eqs. (1.5) (u1_anal and
u2_anal are called in the main program of Listing 1.1 for numeri-
cal definition of the ICs of eqs. (1.3) and plotting of the analytical
solutions (1.5)).

u1_anal=function(x,t,k,D,c){
#
# Function u1_anal computes the analytical solution for
# u1(x,t)
#
z=x-c*t;
u1a=1/(1+exp(-c*z/D));

#
# Return solution
return(c(u1a));
}

Listing 1.3a Routine u1_anal for the analytical solution of eq. (1.5a).

The programming of eq. (1.5a) in u1_anal is straightforward. We
can note two details.

• The use of the Lagrangian variable z=x-c*t so that the solution
is invariant for a particular value of z even though x and t vary.
This produces a traveling wave solution as demonstrated in the
graphical output described next.

• The value of the solution, u1a, is returned to the calling
program—in this case, the main program of Listing 1.1—as
a numerical vector (with one element, i.e., as a scalar). This
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contrasts with chemo_1 in Listing 1.2 for which the derivative
vector is returned as a list (as required by lsodes).

Function u2_anal is similar to u1_anal and follows directly from
eq. (1.5b).

u2_anal=function(x,t,k,D,c){
#
# Function u2_anal computes the analytical solution for
# u2(x,t)
#

z=x-c*t;
u2a=(c^2/(k*D))*exp(-c*z/D)/(1+exp(-c*z/D))^2;

#
# Return solution

return(c(u2a));
}

Listing 1.3b Routine u2_anal for the analytical solution of eq. (1.5b).

This completes the programming of eqs. (1.2) with the associated
ICs of eqs. (1.3) and the BCs of eqs. (1.4). We now consider the
output from the routines in Listings 1.1–1.3.

1.5 Model Output

Execution of the main program in Listing 1.1 with ip=2 gives the
abbreviated numerical output.

We can note the following details of the numerical output in
Table 1.1.

• The model parameters are displayed.

k = 1.00 D = 1.00 c = 1.00

• The dimensions of the output array from lsodes are out[6,

203] as explained previously.

> nrow(out)
[1] 6
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TABLE 1.1 Selected numerical output from the routines of
Listings 1.1–1.3.

k = 1.00 D = 1.00 c = 1.00

> nrow(out)
[1] 6
> ncol(out)
[1] 203

Output for t=0,1,2,3,4 removed

t x u1(x,t) u1_ex(x,t) u1_err(x,t)
u2(x,t) u2_ex(x,t) u2_err(x,t)

5.0 -10.00 0.00000 0.00000 0.000001
0.00000 0.00000 0.000003

5.0 -9.75 0.00000 0.00000 0.000001
0.00000 0.00000 0.000003

5.0 -9.50 0.00000 0.00000 0.000001
0.00000 0.00000 0.000003

5.0 -9.25 0.00000 0.00000 0.000001
0.00000 0.00000 0.000003

5.0 -9.00 0.00000 0.00000 0.000001
0.00000 0.00000 0.000003
. .
. .
. .

Output for x = -8.75 to 3.75 removed
. .
. .
. .

5.0 4.00 0.26894 0.26894 -0.000003
0.19657 0.19661 -0.000044

5.0 4.25 0.32081 0.32082 -0.000007
0.21787 0.21789 -0.000029

5.0 4.50 0.37754 0.37754 -0.000006
0.23500 0.23500 -0.000009

5.0 4.75 0.43782 0.43782 0.000001
0.24614 0.24613 0.000009

(continued )



24 Introduction to Partial Differentiation Equation Analysis: Chemotaxis

TABLE 1.1 (Continued)

5.0 5.00 0.50001 0.50000 0.000010
0.25002 0.25000 0.000018

5.0 5.25 0.56220 0.56218 0.000019
0.24615 0.24613 0.000013

5.0 5.50 0.62248 0.62246 0.000024
0.23500 0.23500 0.000000

5.0 5.75 0.67920 0.67918 0.000024
0.21788 0.21789 -0.000015

5.0 6.00 0.73108 0.73106 0.000019
0.19659 0.19661 -0.000025
. .
. .
. .

Output for x = 6.25 to 13.75 removed
. .
. .
. .

5.0 14.00 0.99986 0.99988 -0.000016
0.00014 0.00012 0.000017

5.0 14.25 0.99988 0.99990 -0.000021
0.00012 0.00010 0.000021

5.0 14.50 0.99990 0.99993 -0.000027
0.00010 0.00007 0.000027

5.0 14.75 0.99991 0.99994 -0.000035
0.00009 0.00006 0.000035

5.0 15.00 0.99991 0.99995 -0.000044
0.00009 0.00005 0.000045

ncall = 295

> ncol(out)
[1] 203

In particular, the second dimension of out is 203 rather than
2*101 = 202 in order to include the value of t .

• The output for t = 0, 1, 2, 3, 4 is deleted to conserve space.
Abbreviated output for t = 5 is displayed. In particular, the
output for x = 4 to x = 6 demonstrates the following properties
of the numerical and analytical solutions.
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• For x = 5, t = 5, with c = 1, the Lagrangian variable is z =
x − ct = 5 − (1)(5) = 0. For this value of z , the numerical
and analytical solutions for u1(x,t) and u2(x,t) have the
following values.

5.0 5.00 0.50001 0.50000 0.000010
0.25002 0.25000 0.000018

The numerical solution for u1(x=5,t=5) = 0.50001, whereas
the analytical solution for u1(x=5,t=5) = 0.50000. Similarly,
the numerical solution for u2(x=5,t=5) = 0.25002, whereas
the analytical solution for u2(x=5,t=5) = 0.25000. This agree-
ment between the numerical and analytical solutions is partic-
ularly noteworthy because at x=5,t=5, u1(x,t) and u2(x,t)

are changing most rapidly (i.e., z = 0). In particular, u2(x,t)
goes through a maximum with rapid change as indicated in
Fig. 1.2.

• The computational effort to produce the numerical solution is
modest.

ncall = 295

The plotted output from Listing 1.1 follows as Figs. 1.1 and 1.2.
We can note the following details about Figs. 1.1 and 1.2.

• The agreement between the numerical (solid line) and the ana-
lytical solution of eq. (1.5a) (numbers) is quite satisfactory (as
confirmed by Table 1.1). Thus, the grid with nx=101 points
appears to give acceptable spatial resolution in x . Of course,
the number of grid points could be changed and the effect on
the numerical solution of Table 1.1 could then be observed, a
form of h refinement (because h is often used to denote the grid
spacing in the numerical analysis literature). An alternative for
evaluating the solution would be to compare the solution from
dss004 in chemo_1 (based on five-point fourth-order FDs) with,
for example, the solution from dss006 (based on seven-point
sixth-order FDs). This is a form of p refinement because p is
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Figure 1.1 u1(x , t) versus x with t as a parameter.

often used to denote the order of an approximation; in the case
of dss004 and dss006, p = 4, 6, respectively.

• The boundary values x = −10, 15 appear to be effectively at
−∞, ∞ in the sense that the solution does not change near these
boundaries (note the zero derivative conditions of BCs (1.4)).

• The traveling wave characteristic of eqs. (1.2) and (1.5) is clear.
That is, the solution moves left to right with a velocity c = 1 (in
z = x − ct); the curves are for the six values t = 0, 1, . . . , 5. The
previous use of characteristic is more mathematical than might
be appreciated. The Lagrangian variable z = x − ct is generally
termed a characteristic of the solution, and for a constant value
of z , the solution is invariant; for example, the RHSs of eqs.
(1.5) are invariant for a given value of z even though x and t
may change.

In conclusion, the MOL solutions from the R routines in List-
ings 1.1–1.3 are in good agreement with the analytical solutions of
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Figure 1.2 u2(x , t) versus x with t as a parameter.

eqs. (1.5). We now consider some additional programming to eluci-
date the origin of the solution properties in Table 1.1 and Figs. 1.1
and 1.2.

1.6 Computation of PDE Terms

One approach to understanding the solutions in Figs. 1.1 and 1.2
would be to derive an analytical solution such as eqs. (1.5) and then
study these solutions mathematically. While this approach was possi-
ble in the case of eqs. (1.2)–(1.4), generally, the PDE problems that
are studied numerically are so complex (e.g., too many nonlinear
PDEs) as to preclude an analytical approach. We, therefore, consider
a numerical approach to PDE analysis that can generally be used
without an analytical solution but, rather, requires only the numerical
solution.

Specifically, we consider PDEs such as eqs. (1.2) that have LHS
terms that are functions of the derivatives in the initial value variable
t and RHS terms that are functions of the derivatives in the spatial
(boundary value) variable x (there could be more than one spatial
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variable). Then, a detailed examination of the RHS terms gives an
indication of the mathematical details that define the variation of
the dependent variables of PDE (the PDE solutions) with x . Also, a
summation of the RHS terms according to the PDE gives an indication
of the details of the LHS that define the variation of the numerical
solutions with t . The only requirement to do this analysis in x and t
is the availability of the numerical solution.

We now consider how this approach can be applied to eqs.
(1.2)–(1.4) as an example of the detailed analysis of PDE numerical
solutions. The programming for this analysis is the following code
that is added to the end of Listing 1.1; nothing else changes in
Listing 1.1 except the addition of a third value of the output index
ip, that is, ip=3, to initiate the execution of the following code.

#
# Plotting of PDE RHS terms

if(ip==3){
#
# 1D arrays of various PDE RHS terms (denoted 1d)

u1_1d =rep(0,nx); u2_1d =rep(0,nx);u1u2_1d=rep(0,nx);
u1x_1d =rep(0,nx);u2x_1d =rep(0,nx);
u1u2x_1d=rep(0,nx);u2xx_1d=rep(0,nx);

#
# 2D arrays for plotting (denoted 2d)

u1x_2d =matrix(0,nrow=nx,ncol=nout);
u2x_2d =matrix(0,nrow=nx,ncol=nout);
u1u2_2d =matrix(0,nrow=nx,ncol=nout);
u2xx_2d =matrix(0,nrow=nx,ncol=nout);
u1u2x_2d=matrix(0,nrow=nx,ncol=nout);
u1t_2d =matrix(0,nrow=nx,ncol=nout);
u2t_2d =matrix(0,nrow=nx,ncol=nout);
u1x_2d_anal=matrix(0,nrow=nx,ncol=nout);
u2x_2d_anal=matrix(0,nrow=nx,ncol=nout);
u1t_2d_anal=matrix(0,nrow=nx,ncol=nout);
u2t_2d_anal=matrix(0,nrow=nx,ncol=nout);

#
# PDE RHS terms

for(it in 1:nout){
for(ix in 1:nx){

u1_1d[ix]=u1_plot[ix,it];
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u2_1d[ix]=u2_plot[ix,it];
}
u1x_1d=dss004(xl,xu,nx,u1_1d);
u2x_1d=dss004(xl,xu,nx,u2_1d);
u1x_1d[1]=0;u1x_1d[nx]=0;
u2x_1d[1]=0;u2x_1d[nx]=0;
for(ix in 1:nx){
u1u2_1d[ix]=u2_1d[ix]/u1_1d[ix]*u1x_1d[ix];

}
u1u2x_1d=dss004(xl,xu,nx,u1u2_1d);
u2xx_1d=dss004(xl,xu,nx, u2x_1d);

#
# 2D arrays for plotting

for(ix in 1:n){
#
# Derivatives of solutions in x

u1x_2d[ix,it]=u1x_1d[ix];
u2x_2d[ix,it]=u2x_1d[ix];
u1u2_2d[ix,it]=u1u2_1d[ix];
u2xx_2d[ix,it]=u2xx_1d[ix];
u1u2x_2d[ix,it]=u1u2x_1d[ix];

#
# Derivatives of solutions in t

u1t_2d[ix,it]=-k*u2_1d[ix];
u2t_2d[ix,it]=D*(u2xx_1d[ix]-2*u1u2x_1d[ix]);

#
# Analytical derivatives of solutions in t

expz=exp(-c*(xg[ix]-c*tout[it])/D);
u1x_2d_anal[ix,it] =(1/c)*(1/(1+expz)^2)*expz*

(c^2/D);
u2x_2d_anal[ix,it]=-(1/c)* (c^4/(k*D^2))*expz*

(1-expz)/(1+expz)^3;
u1t_2d_anal[ix,it]=-c*u1x_2d_anal[ix,it];
u2t_2d_anal[ix,it]=-c*u2x_2d_anal[ix,it];

}
#
# Next t
}

#
# Plot Du2_{xx}
par(mfrow=c(1,1));
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matplot(x=xg,y=D*u2xx_2d,type="l",xlab="x",
ylab="Du2_{xx},t=0,1,2,3,4,5",xlim=c(xl,xu),

lty=1,main="Du2_{xx};t=0,1,2,3,4,5;",lwd=2);
#
# Plot -2D((u2/u1)u1_x)_x

par(mfrow=c(1,1));
matplot(x=xg,y=-2*D*u1u2x_2d,type="l",xlab="x",ylab=

"-2D((u2/u1)u1_x)_x,t=0,1,2,3,4,5",xlim=c(xl,xu),
lty=1,main="-2D((u2/u1)u1_x)_x,;t=0,1,2,3,4,5;",

lwd=2);
#
# Plot u1 derivative in x numerical, analytical

par(mfrow=c(1,1));
matplot(x=xg,y=u1x_2d,type="l",xlab="x",ylab="u1(x,t)_x,

t=0,1,2,3,4,5",xlim=c(xl,xu),lty=1,main="u1(x,t)_x;
solid - num, points - anal;t=0,1,2,3,4,5;",

lwd=2);
matpoints(x=xg,y=u1x_2d_anal,xlim=c(xl,xu),col="black",

lwd=2)
#
# Plot u2 derivative in x numerical, analytical

par(mfrow=c(1,1));
matplot(x=xg,y=u2x_2d,type="l",xlab="x",ylab="u2(x,t)_t,

t=0,1,2,3,4,5",xlim=c(xl,xu),lty=1,main="u2(x,t)_x,
solid - num, points - anal;t=0,1,2,3,4,5;",

lwd=2);
matpoints(x=xg,y=u2x_2d_anal,xlim=c(xl,xu),col="black",

lwd=2)
#
# Plot u1 derivative in t numerical, analytical

par(mfrow=c(1,1));
matplot(x=xg,y=u1t_2d,type="l",xlab="x",ylab="u1(x,t)_t,

t=0,1,2,3,4,5",xlim=c(xl,xu),lty=1,main="u1(x,t)_t;
solid - num, points - anal;t=0,1,2,3,4,5;",

lwd=2);
matpoints(x=xg,y=u1t_2d_anal,xlim=c(xl,xu),col="black",

lwd=2)
#
# Plot u2 derivative in t numerical, analytical



Computation of PDE Terms 31

par(mfrow=c(1,1));
matplot(x=xg,y=u2t_2d,type="l",xlab="x",ylab="u2(x,t)_t,

t=0,1,2,3,4,5",xlim=c(xl,xu),lty=1,main="u2(x,t)_t,
solid - num, points - anal;t=0,1,2,3,4,5;",

lwd=2);
matpoints(x=xg,y=u2t_2d_anal,xlim=c(xl,xu),col="black",

lwd=2)
#
# End ip = 3
}

Listing 1.4 Additional programming to study the individual terms of
eqs. (1.2).

We can note the following details of Listing 1.4.

• The execution of the code for ip=3 is initiated with an if. Then,
seven 1D arrays (vectors) are defined via the rep utility (these
arrays are identified with 1d in the names). The length of each
vector equals the number of points in x , that is, nx, which is the
length of vector xg in Listing 1.1.

#
# Plotting of PDE RHS terms

if(ip==3){
#
# 1D arrays of various PDE RHS terms (denoted 1d)

u1_1d =rep(0,nx); u2_1d =rep(0,nx);u1u2_1d=
rep(0,nx);

u1x_1d =rep(0,nx);u2x_1d =rep(0,nx);
u1u2x_1d=rep(0,nx);u2xx_1d=rep(0,nx);

Initially, the elements in all of the 1D arrays are zero, and they
are then reset (computed) in the subsequent code.

• Similarly, 11 2D arrays are defined via the matrix utility (these
arrays are identified with 2d in the names).
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#
# 2D arrays for plotting (denoted 2d)
u1x_2d =matrix(0,nrow=nx,ncol=nout);
u2x_2d =matrix(0,nrow=nx,ncol=nout);
u1u2_2d =matrix(0,nrow=nx,ncol=nout);
u2xx_2d =matrix(0,nrow=nx,ncol=nout);
u1u2x_2d=matrix(0,nrow=nx,ncol=nout);
u1t_2d =matrix(0,nrow=nx,ncol=nout);
u2t_2d =matrix(0,nrow=nx,ncol=nout);
u1x_2d_anal=matrix(0,nrow=nx,ncol=nout);
u2x_2d_anal=matrix(0,nrow=nx,ncol=nout);
u1t_2d_anal=matrix(0,nrow=nx,ncol=nout);
u2t_2d_anal=matrix(0,nrow=nx,ncol=nout);

The column dimension is the number of output points in t , that
is, nout, which is the length of vector tout in Listing 1.1. In
this way, the variation of the PDE terms in x and t can be plot-
ted. Initially, all nx × nout = 101 × 6 = 606 elements in these
2D arrays are zero and then are reset through the subsequent
computations.

• The calculations are performed for the six values of t ,
t=0,1,2,3,4,5, with a for in it. Then, the n=101 values in x ,
x=-10,-9.75,...,15, are included with a for in ix.

#
# PDE RHS terms
for(it in 1:nout){

for(ix in 1:nx){
u1_1d[ix]=u1_plot[ix,it];
u2_1d[ix]=u2_plot[ix,it];

}

The numerical solutions computed previously (in Listing 1.1)
are placed in two 1D arrays u1_1d,u2_1d for the variation of
the numerical solutions u1(x , t) and u2(x , t) with x (index ix).

• First-order derivatives in x are computed by the library differen-
tiator dss004.

u1x_1d=dss004(xl,xu,nx,u1_1d);
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u2x_1d=dss004(xl,xu,nx,u2_1d);
u1x_1d[1]=0;u1x_1d[nx]=0;
u2x_1d[1]=0;u2x_1d[nx]=0;

where
Derivative R Variable
∂u1/∂x u1x_1d

∂u2/∂x u2x_1d

BCs (1.4) are then imposed (to correct the boundary derivatives
from dss004).

• The nonlinear term and the second derivative in eq. (1.2b) are
computed.

for(ix in 1:nx){
u1u2_1d[ix]=u2_1d[ix]/u1_1d[ix]*u1x_1d[ix];

}
u1u2x_1d=dss004(xl,xu,nx,u1u2_1d);
u2xx_1d=dss004(xl,xu,nx, u2x_1d);

where

Derivative R Variable
(u2/u1)∂u1/∂x u1u2_1d

∂[(u2/u1)∂u1/∂x ]/∂x u1u2x_1d

∂2u2/∂x 2 u2xx_1d

• The 1D terms in x are placed in 2D arrays for subsequent plot-
ting.

#
# 2D arrays for plotting

for(ix in 1:nx){
#
# Derivatives of solutions in x
#
# Derivatives of solutions in x

u1x_2d[ix,it]=u1x_1d[ix];
u2x_2d[ix,it]=u2x_1d[ix];
u1u2_2d[ix,it]=u1u2_1d[ix];
u2xx_2d[ix,it]=u2xx_1d[ix];
u1u2x_2d[ix,it]=u1u2x_1d[ix];
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• The derivatives in t according to eqs. (1.2a) and (1.2b) are com-
puted and placed in 2D arrays.

#
# Derivatives of solutions in t

u1t_2d[ix,it]=-k*u2_1d[ix];
u2t_2d[ix,it]=D*(u2xx_1d[ix]-2*u1u2x_1d[ix]);

where

Derivative R Variable
∂u1/∂t u1t_2d

∂u2/∂t u2t_2d

• The analytical derivatives in t are computed by differentiation
of eqs. (1.5) with respect to t and placed in 2D arrays.

#
# Analytical derivatives of solutions in t

expz=exp(-c*(xg[ix]-c*tout[it])/D);
u1x_2d_anal[ix,it] =(1/c)*(1/(1+expz)^2)*expz*

(c^2/D);
u2x_2d_anal[ix,it]=-(1/c)* (c^4/(k*D^2))*expz*

(1-expz)/(1+expz)^3;
u1t_2d_anal[ix,it]=-c*u1x_2d_anal[ix,it];
u2t_2d_anal[ix,it]=-c*u2x_2d_anal[ix,it];

}
#
# Next t
}

Note the use of the Lagrangian variable z = x − ct . The first }
concludes the for in ix. The second } concludes the for in it.

• Six terms with 2D arrays are plotted against x with t as a param-
eter.

D∂2u2/∂x 2 Fig. 1.3
−2D∂[(u2/u1)∂u1/∂x ]/∂x Fig. 1.4
∂u1/∂x Fig. 1.5
∂u2/∂x Fig. 1.6
∂u1/∂t Fig. 1.7
∂u2/∂t Fig. 1.8
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#
# Plot Du2_{xx}

par(mfrow=c(1,1));
matplot(x=xg,y=D*u2xx_2d,type="l",xlab="x",
ylab="Du2_{xx}, t=0,1,...,5",xlim=c(xl,xu),

lty=1,main="Du2_{xx}; t=0,1,...,5;",lwd=2);
. .
. .
. .

Coding for Figs. (1.4) to (1.8) removed to
conserve space

. .

. .

. .
#
# End ip = 3

}

The for with ip=3 is then concluded.

We can note the following details about the graphical output.

For Fig. 1.3,

• D∂2u2/∂x 2 moves left to right as a traveling wave (a function
of only z = x − vt);

• The form of D∂2u2/∂x2 is relatively complex with positive and
negative values.

For Fig. 1.4,

• −2D∂[(u2/u1)∂u1/∂x ]/∂x moves left to right as a traveling
wave (a function of only z = x − vt);

• −2D∂[(u2/u1)∂u1/∂x ]/∂x also changes sign as D∂2u2/∂x 2 of
Fig. 1.3. The sum of the terms in Figs. 1.3 and 1.4 produces
∂u2/∂t of eq. (1.2b) in a rather complicated way as reflected in
Fig. 1.6.
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Figure 1.3 D∂2u2/∂x2 versus x with t as a parameter.
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Figure 1.4 −2D∂[(u2/u1)∂u1/∂x ]/∂x versus x with t as a parameter.

For Fig. 1.5,

• ∂u1/∂x moves left to right as a traveling wave (a function of
only z = x − vt);
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Figure 1.5 ∂u1/∂x versus x with t as a parameter.

• The numerical solution ∂u1/∂x ≥ 0, which follows from the cal-
culation by dss004. The analytical ∂u1/∂x ≥ 0 which follows
from the analytical solution of eq. (1.5a).

• The solution in Fig. 1.1, u1(x , t), has only a positive derivative
in x as reflected in Fig. 1.5. Also, the location of the largest
and smallest values of the derivatives in Fig. 1.5 is reflected in
Fig. 1.1.

For Fig. 1.6,

• ∂u2/∂x moves left to right as a traveling wave (a function of
only z = x − vt) and it changes sign;

• The numerical solution ∂u2/∂x follows from the calculation by
dss004. The analytical solution ∂u2/∂x follows from the analyt-
ical solution of eq. (1.5b).

• The solution in Fig. 1.2, u2(x , t), has positive and negative
derivatives in x as reflected in Fig. 1.6. In other words, the
change in the sign of the derivative in Fig. 1.6 produces a pulse
in Fig. 1.2.
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Figure 1.6 ∂u2/∂x versus x with t as a parameter.

For Fig. 1.7,

• ∂u1/∂t moves left to right as a traveling wave (a function of
only z = x − vt);

• The numerical solution ∂u1/∂t ≤ 0 follows from the RHS of
eq. (1.2a) with k > 0. The analytical solution ∂u1/∂t ≤ 0 follows
from the analytical solution of eq. (1.5a).

For Fig. 1.8,

• ∂u2/∂t moves left to right as a traveling wave (a function of
only z = x − vt);

• The numerical ∂u2/∂t which follows from the RHS of eq. (1.2b).
The analytical ∂u2/∂t which follows from the analytical solution
of eq. (1.5b).

Figures 1.1–1.8 give a detailed explanation of Figs. 1.1 and 1.2.
In particular, all of the terms in eqs. (1.2a) and (1.2b) are func-
tions of only z = x − vt , that is, u1(z ) and u2(z ), which follows
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Figure 1.7 ∂u1/∂t versus x with t as a parameter.
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Figure 1.8 ∂u2/∂t versus x with t as a parameter.
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from eqs. (1.5). And u1(x , t) and u2(x , t) ≥ 0 as required physically
because these two dependent variables represent concentrations.

Since the solutions of eqs. (1.5) are functions of z only, we have
the following relationships.

∂u1

∂x
= du1

dz

∂z

∂x
= du1

dz
(1)

∂u1

∂t
= du1

dz

∂z

∂t
= du1

dz
(−c)

from which it follows that
∂u1

∂t
= (−c)

∂u1

∂x
(1.6a)

Also, for u2,

∂u2

∂t
= (−c)

∂u2

∂x
(1.6b)

Eqs. (1.6) were used previously to compute the analytical
∂u1/∂t , ∂u2/∂t (in Figs. 1.7 and 1.8) from the analytical solution
∂u1/∂x , ∂u2/∂x (in Figs. 1.5 and 1.6).

u1t_2d_anal[ix,it]=-c*u1x_2d_anal[ix,it];
u2t_2d_anal[ix,it]=-c*u2x_2d_anal[ix,it];

(from Listing 1.4). However, the numerical solutions ∂u1/∂x and
∂u2/∂x were computed by numerical differentiation of the solutions,
u1(x , t) and u2(x , t) (using dss004), whereas the numerical solu-
tions ∂u1/∂t and ∂u2/∂t were calculated as the LHS derivatives of
eqs. (1.2a) and (1.2b). The agreement of the various derivatives in
Figs. 1.5–1.8 illustrates the property that the solutions of eqs. (1.2)
are a function of only the Lagrangian variable z = x − ct (a traveling
wave solution); this property is stated with eqs. (1.5).

In other words, ∂u1/∂t and ∂u2/∂t could have been calculated
directly from the analytical solutions of eqs. (1.5) (rather than from
eqs. (1.6)), but this variation indicates an important property of trav-
eling wave solutions, that is, the partial derivatives in x and t are
multiples of (−c)±p) where p is the order of the derivatives, as
illustrated by eq. (1.6) with p = 1. The change in the sign of the
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derivatives in x and t according to eq. (1.6) is evident by comparing
Figs. 1.5 and 1.7 and Figs. 1.6 and 1.8.

As a point of terminology, u1(x , t), u2(x , t) is termed the Eulerian
solution (fixed frame in x ), whereas the equivalent u1(z ), u2(z ) is
termed the Lagrangian solution (moving frame in x ).

1.7 Conclusions

The preceding example of eqs. (1.2) indicates that the calculation of a
numerical solution for a nonlinear system of PDEs is straightforward.
Further, experimentation with the PDEs can be easily accomplished
such as variation of the parameters k , D , c and even the form of
the PDEs is straightforward, for example, variation in the RHS of
eq. (1.2b).

Additionally, we could drop the nonlinear term in eq. (1.2b),
((u2/u1)u1x )x , and compute a solution to the simplified eq. (1.2b)
(now just Fick’s second law, eq. (1.1a)). Comparison of the two
solutions (with and without ((u2/u1)u1x )x ) would give another
indication of the effect of this term. For example, eq. (1.1a) would
not have a traveling wave solution; rather just conventional diffusion
would cause a smoothing of u2(x , t) to a constant value in x , a
fundamentally different type of solution.

In the present example, the analytical solution that could be used to
evaluate the accuracy of the numerical solution is available, but this
usually is not the case. Rather, we use numerical methods because
analytical solutions are generally not available.

The use of library routines such as lsodes [3] and dss004 [1]
substantially facilitates the calculation of a numerical PDE solution.
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