
CHAPTER 1

THE COMPLEX NUMBERS

In this chapter, we introduce the complex numbers and their interpretation as points
in a number plane, an analog to the real number line. We develop the algebraic,
geometric, and topological properties of the set of complex numbers, many of which
mirror those of the real numbers. These properties, especially the topological ones,
are connected to sequences, and thus we conclude the chapter by studying the basic
nature of sequences and series. At the conclusion of the chapter, we will possess the
tools necessary to begin the study of functions of a complex variable.

1.1 Why?

Our work in this text can best be understated as follows: Let’s throw
√
−1 into

the mix and see what happens to the calculus. The result is a completely different
flavor of analysis, a separate field distinguished from its real-variable sibling in some
striking ways.

The use of
√
−1 as an intermediate step in finding solutions to real-variable prob-

lems goes back centuries. In the Renaissance, Italian mathematicians used complex
numbers as a tool to find real roots of cubic equations. The algebraic use of complex
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2 THE COMPLEX NUMBERS

numbers became much more mainstream due to the work of Leonhard Euler in the
18th century and later, Carl Friedrich Gauss. Euler and Jean le Rond d’Alembert
are generally credited with the first serious considerations of functions of a complex
variable – the former considered such functions as an intermediate step in the calcu-
lation of certain real integrals, while the latter saw these functions as useful in his
study of fluid mechanics.

Introducing complex numbers as a stepping stone to solve real problems is a com-
mon historical theme, and it is worth recalling how other familiar systems of num-
bers can be viewed to solve particular algebraic and analytic problems. The natural
numbers, integers, rational numbers, and real numbers satisfy the set containments
N ⊆ Z ⊆ Q ⊆ R, but each subsequent set has characteristics not present in its pre-
decessor. Where the natural numbers N = {1, 2, . . . } are closed under addition and
multiplication, extending to the integers Z = {. . . ,−2,−1, 0, 1, 2, . . . } provides an
additive identity and inverses. The set of rational numbers Q, consisting of all frac-
tions of integers, has multiplicative inverses of its nonzero elements and hence is an
algebraic field under addition and multiplication.

The move from Q to the real numbers R is more analytic than algebraic. Although
Q is a field, it is not complete, meaning there are “holes” that need to be filled. For
instance, consider the equation x2 = 2. Since 12 = 1 and 22 = 4, it seems that a
solution to the equation should exist and lie somewhere in between. Further analysis
reveals that a solution should lie between 5/4 and 3/2. Successive subdivisions
may be used to target where a solution should lie, but that point is not in Q. Beyond
unsolvable algebraic equations lies the number π, the ratio of a circle’s circumference
to its diameter, which can also be shown not to lie in Q. The alleviation of these
problems comes by allowing the set R of real numbers to be the completion of Q. In
satisfyingly imprecise terms, R is equal to Q with the “holes filled in.” This is done
so that the axiom of completeness (i.e. the least upper bound property) holds. See
Appendix B for more detail. The result is that R is a complete ordered field.

The upgrade from the real numbers to the complex numbers has both algebraic
and analytic motivation. The real numbers are not algebraically complete, meaning
there are polynomial equations such as x2 = −1 with no solutions. The incorpora-
tion of

√
−1 mentioned earlier is a direct response to this. But the work of Euler and

d’Alembert shows how moving outside R facilitates analytic methods as well. While
their work did much for bringing credibility to the use of complex numbers, it was
during the 19th century, in the movement to deliver rigor to mathematical analysis,
that complex function theory gained its footing as a separate subject of mathematical
study, due largely to the work of Augustin-Louis Cauchy, Bernhard Riemann, and
Karl Weierstrass.

Function theory is the study of the calculus of complex-valued functions of a com-
plex variable. The analysis of functions on this new domain will quickly distinguish
itself from real-variable calculus. As the reader will soon see, by combining the al-
gebra and geometry inherent in this new setting, we will be able to perform a great
deal of analysis that is not available on the real domain. Such analysis will include
some intuition-bending results and techniques that solve problems from calculus that
are not easily accessible otherwise.
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Before setting out on our study of complex analysis, we must agree on a starting
point. We assume that the reader is familiar with the fundamentals of differential,
integral, and multivariable calculus. The language of sets and functions is freely
used; the unfamiliar reader should examine Appendix A.

Lastly, to whet our appetites for what is to come, here are a handful of exercises
appearing later in the text the statements of which are understandable from calculus,
but whose solutions are either made possible or much simpler by the introduction of
complex numbers.

Forthcoming Exercises
1. Derive triple angle identities for sin 3θ and cos 3θ. [Section 2.4, Exercise 6]
2. Find a continuous one-to-one planar transformation that maps the region lying inside the

circles (x − 1)2 + y2 = 4 and (x + 1)2 + y2 = 4 onto the upper half-plane y ≥ 0.
[Section 2.6, Exercise 13]

3. Find the radius of convergence of the Taylor series expansion of the function

f(x) =
sinx

1 + x4

about a = 2. [Section 3.2, Exercise 3]
4. Verify the summation identity, where c ∈ R is a constant.

∞∑
n=1

1

n2 + c2
=


π2

6
if c = 0,

π

2c
cothπc− 1

2c2
if c ̸= 0

[Section 5.3, Exercise 11]
5. Evaluate the following integrals, where n ∈ N and a, b > 0.

(a)
∫ 2π

0

cosn t dt, [Section 2.8, Exercise 4]

(b)
∫ ∞

−∞

sin ax

x(x2 + b2)
dx, [Section 5.4, Exercise 7]

(c)
∫ ∞

0

n
√
x

x2 + a2
dx, [Section 5.4, Exercise 10]

6. Find a real-valued function u of two variables that satisfies

∂2u

∂x2
+
∂2u

∂y2
= 0

inside the unit circle and continuously extends to equal 1 for points on the circle with
y > 0 and 0 for points on the circle with y < 0. [Section 6.2, Exercise 3]

1.2 The Algebra of Complex Numbers

As alluded to in Section 1.1, we desire to expand from the set of real numbers in a
way that provides solutions to polynomial equations such as x2 = −1. One may be
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tempted to simply define a number that solves this equation. The drawback to doing
so is that the negative of this number would also be a solution, and this could cause
some ambiguity in the definition. We therefore choose a different method.

1.2.1 Definition. A complex number is an ordered pair of real numbers. The set of
complex numbers is denoted by C.

By definition, any z ∈ C has the form z = (x, y) for numbers x, y ∈ R. What
distinguishes complex numbers from their counterparts, the two-dimensional vectors
in R2, is their algebra – specifically, their multiplication.

1.2.2 Definition. If (a, b) and (c, d) are complex numbers, then we define the alge-
braic operations of addition and multiplication by

(a, b) + (c, d) = (a+ c, b+ d)

(a, b)(c, d) = (ac− bd, ad+ bc).

Clearly, C is closed under both of these operations. (Adding or multiplying two
complex numbers results in another complex number.)

Notice that if a, b ∈ R, then (a, 0)+ (b, 0) = (a+ b, 0) and (a, 0)(b, 0) = (ab, 0).
Therefore a 7→ (a, 0) is a natural algebraic embedding of R into C. Accordingly,
it is natural to write a for the complex number (a, 0), and in this way, we consider
R ⊆ C.

For any complex number z = (x, y),

z = (x, 0) + (0, 1)(y, 0) = x+ (0, 1)y.

In other words, each complex number can be written uniquely in terms of its two real
components and the complex number (0, 1). This special complex number gets its
own symbol.

1.2.3 Definition. The imaginary unit is the complex number i = (0, 1). A complex
number z expressed as

z = x+ iy (1.2.1)

is said to be in rectangular form.

Because every complex number can be written uniquely as above, we (usually)
refrain from using the ordered pair notation in favor of using the rectangular form.
Notice that i is a solution to the equation z2 = −1.

It is left as an exercise to verify that 0 is the additive identity and 1 is the mul-
tiplicative identity, every member of C has an additive inverse, both operations are
associative and commutative, multiplication distributes over addition, and if z ̸= 0
is written as in (1.2.1), then it has the multiplicative inverse

z−1 =
1

z
=

x

x2 + y2
+ i

(
−y

x2 + y2

)
(1.2.2)

in C. This shows that C is a field.
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1.2.4 Definition. For a complex number z written as in (1.2.1), we call the real
numbers x and y the real part and imaginary part of z, respectively, and use the
symbols x = Re z and y = Im z. If Re z = 0, then z is called imaginary (or purely
imaginary). The conjugate of z is the complex number z = x− iy. The modulus (or
absolute value) of z is the nonnegative real number |z| =

√
x2 + y2.

It is a direct calculation to verify the relationship

|z|2 = zz (1.2.3)

for all z ∈ C. Other useful identities involving moduli and conjugates of complex
numbers are left to the exercises.

1.2.5 Example. The identity (1.2.3) is useful for finding the rectangular form of a
complex number. For instance, consider the quotient

z =
1 + 2i

2 + i
.

To find the expressions from Definition 1.2.4, we multiply by the conjugate of the
denominator over itself,

z =
1 + 2i

2 + i

2− i

2− i
=

4 + 3i

5
,

to get a positive denominator. We see that Re z = 4/5, Im z = 3/5, |z| = 1, and
z = (4− 3i)/5.

Summary and Notes for Section 1.2.
The set of complex numbers C consists of ordered pairs of real numbers. The real
numbers are the those complex numbers of the form (x, 0) for x ∈ R, and i = (0, 1)
is the imaginary unit. Algebraic operations are defined to make C a field and so
that i2 = −1. We write the complex number z = (x, y) in the rectangular form
z = x+ iy, and the conjugate of z is z = x− iy.

In their attempts to find real solutions to cubic equations, Italian mathematicians
found it necessary to manipulate complex numbers. Perhaps the first to consider
them was Gerolamo Cardano in the 16th century, who named them “fictitious num-
bers.” Rafael Bombelli introduced the algebra of complex numbers shortly thereafter.
At that time, the square roots of negative numbers were just manipulated as a means
to an end. The ordered pair definition can be traced to William Rowan Hamilton
almost three centuries later.

Exercises for Section 1.2.
1. For the following complex numbers z, calculate Re z, Im z, |z|, and z.

(a) z = 3 + 2i

(b) z =
1 + i

i
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(c) z =
2− i

1 + i
+ i

(d) z = (4 + 2i)(3 + i)

2. Verify the following algebraic properties of C.

(a) The complex numbers 0 and 1 are the additive and multiplicative identities of C,
respectively.

(b) Each z ∈ C has an additive inverse.

(c) Addition and multiplication of complex numbers is associative. In other words,
z + (w + v) = (z + w) + v and z(wv) = (zw)v for all z, w, v ∈ C.

(d) Addition and multiplication of complex numbers is commutative. That is, z + w =
w + z and zw = wz for all z, w ∈ C.

(e) Multiplication of complex numbers distributes over addition. That is, a(z + w) =
az + aw for all a, z, w ∈ C.

(f) If z ∈ C is nonzero, then its multiplicative inverse is as given in (1.2.2).

3. ◃ Verify the following identities involving the conjugate.

(a) For each z ∈ C, z = z.

(b) For each z ∈ C,

Re z =
z + z

2
, Im z =

z − z

2i
.

(c) For all z, w ∈ C,
z + w = z + w, zw = z w.

4. ◃ Verify the following identities involving the modulus. For each, let z, w ∈ C.

(a) |zw| = |z||w|

(b) |z/w| = |z|/|w| if w ̸= 0

(c) |z| = |z|

(d) −|z| ≤ Re z ≤ |z|

5. ◃ Prove that for all z, w ∈ C,

|z + w|2 = |z|2 + 2Re zw + |w|2.

6. Let p : C → C be a polynomial. That is, p(z) =
∑n

k=0 akz
k for a0, . . . , an ∈ C and

an ̸= 0. A root (or zero) of p is a number r ∈ C such that p(r) = 0. Show that if
a0, . . . , an ∈ R, then r is a root of p whenever r is a root of p.

7. Let a, b ∈ R. Consider the function T : R2 → R2 given by

T (x, y) = (Re[(a+ ib)(x+ iy)], Im[(a+ ib)(x+ iy)]).

Prove that T is a linear transformation on R2, and determine a 2× 2 matrix form for T .
What does T represent?

8. For ordered pairs of real numbers (a, b) and (c, d), what drawbacks are there to defining
multiplication of complex numbers by (a, b)(c, d) = (ac, bd)?
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1.3 The Geometry of the Complex Plane

The real number line is the geometric realization of the set of real numbers and ac-
cordingly is a useful tool for conceptualization. Since complex numbers are defined
to be ordered pairs of real numbers, it is only natural to visualize the set of com-
plex numbers as the points in the Cartesian coordinate plane R2. This geometric
interpretation is essential to the analysis of complex functions.

1.3.1 Definition. When its points are considered to be complex numbers, the Carte-
sian coordinate plane is referred to as the complex plane C. The x- and y-axes in the
plane are called the real and imaginary axes, respectively, in C.

Because addition of complex numbers mirrors addition of vectors in R2, we use
vectors to geometrically interpret addition in terms of parallelograms. Continuing
this line of thought, we see that the value |z|, as the distance from the point z ∈ C
to 0, is the length (or magnitude) of the vector z. If z, w ∈ C, then z − w, in
vector form, is the vector pointing from w to z. Therefore |z − w| is equal to the
distance between z and w. Lastly, we note that the operation of complex conjugation
is realized geometrically as reflection in the real axis. See Figure 1.1.

Re

Im

z

w

z

z + w

z − w

Figure 1.1 z + w, z − w, and z for some z, w ∈ C

Another geometric consequence of the parallelogram interpretation is the triangle
inequality, which gives that if z, w ∈ C, then the distance from 0 to z + w is never
greater than the sum of the distances from 0 to z and 0 to w. We prove it as follows.

1.3.2 Triangle Inequality. If z, w ∈ C, then

|z + w| ≤ |z|+ |w|. (1.3.1)

Proof. We use Exercises 4 and 5 of Section 1.2 to calculate

|z + w|2 = |z|2 + 2Re zw + |w|2

≤ |z|2 + 2|zw|+ |w|2
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= |z|2 + 2|z||w|+ |w|2

= (|z|+ |w|)2.

Taking the square root of both sides completes the proof.

If a ∈ C and r > 0, then the circle in C centered at a of radius r is the set of all
points whose distance from a is r. From our above observation, this circle can be
described in set notation by {z ∈ C : |z − a| = r}. The inside of a circle, called a
disk, is a commonly used object and is denoted by

D(a; r) = {z ∈ C : |z − a| < r}. (1.3.2)

The most prominently used disk in the plane is the unit disk – the disk centered at 0
of radius 1. For this, we use the special symbol

D = D(0; 1). (1.3.3)

1.3.3 Example. Let us consider the geometry of the set

E = {z ∈ C : |1 + iz| < 2}

in two ways. First, write z = x+ iy to see that the condition defining E is equivalent
to |1 − y + ix| < 2 or

√
x2 + (y − 1)2 < 2. This describes all planar points of

distance less than 2 from (0, 1) = i. Hence E = D(i; 2).
In this circumstance, there is an advantage to eschewing real and imaginary parts.

Note that
|1 + iz| = |i(−i+ z)| = |i||z − i| = |z − i|.

Thus E = {z ∈ C : |z − i| < 2} = D(i; 2).

Summary and Notes for Section 1.3.
Since the complex numbers are ordered pairs of real numbers, the set C of complex
numbers is geometrically realized as the plane R2. The addition and modulus of
complex numbers parallel the addition and magnitude of planar vectors. The triangle
inequality gives an important bound on sums.

In 1797, a Norwegian surveyor named Caspar Wessel was the first of many to
consider the geometric interpretation of the complex numbers, but his work was
largely unknown as was that of Jean-Robert Argand in 1806. (The complex plane is
often referred to as the Argand plane.) The work of Carl Friedrich Gauss in the first
half of the 19th century brought the concept to the masses.

Exercises for Section 1.3.
1. Geometrically illustrate the parallelogram rule for the complex numbers 2+i and 1+3i.

2. Geometrically illustrate the relationship between the complex number −1 + 2i and its
conjugate.

3. Describe the following sets geometrically. Sketch each.
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(a) {z ∈ C : |z − 1 + i| = 2}
(b) {z ∈ C : |z − 1|2 + |z + 1|2 ≤ 6}
(c) {z ∈ C : Im z > Re z}
(d) {z ∈ C : Re(iz + 1) < 0}

4. Provide a geometric description of complex multiplication for nonzero z, w ∈ C. It is
helpful to write z = r(cos θ+ i sin θ) andw = ρ(cosφ+ i sinφ) and use trigonometric
identities.

5. For which pairs of complex numbers is equality attained in the triangle inequality? Prove
your answer.

6. ◃ Prove that for all z, w ∈ C, ||z| − |w|| ≤ |z − w|.
7. Show that for all z ∈ C, |Re z|+ | Im z| ≤

√
2 |z|.

8. This exercise concerns lines in C.

(a) Let a, b ∈ C with b ̸= 0. Prove that the set

L =
{
z ∈ C : Im

(z − a

b

)
= 0
}

is a line in C. Explain the role of a and b in the geometry of L. (Hint: Recall the
vector form of a line from multivariable calculus.)

(b) Let C be a circle in C with center c and radius r > 0. If a lies on C, write the line
tangent to C at a in the form given in part (a).

1.4 The Topology of the Complex Plane

The topology of a certain space (in our case C) gives a useful alternative to traditional
geometry to describe relationships between points and sets. The key concepts of
limits and continuity from calculus are tied to the topology of the real line, as we
will see is also true in the plane. That connection just scratches the surface of how
powerful a tool we will find planar topology to be for analyzing functions.

We begin by observing that with respect to a given subset of C, each point of C is
of one of three types.

1.4.1 Definition. Let A ⊆ C and a ∈ C. Then a is an interior point of A if A
contains a disk centered at a, a is an exterior point ofA if it is an interior point of the
complement C \A, and a is a boundary point of A if it is neither an interior point of
A nor an exterior point of A. (See Figure 1.2.)

These points form the following sets.

1.4.2 Definition. Let A ⊆ C. The set of interior points of A is called the interior of
A and is denoted A◦. The set of boundary points of A is called the boundary of A
and is denoted ∂A.

Note that the set of exterior points of A is the interior of C \ A, and so we need
not define a new symbol for this set. We have that C can be decomposed into the
disjoint union

C = A◦ ∪ ∂A ∪ (C \A)◦.
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A

a

b

c

r1

r2

D(a; r1)

D(c; r2)

Figure 1.2 a is an interior point of A, b is a boundary point of A, and c is an exterior point
of A

The set A contains all of its interior points, none of its exterior points, and none,
some, or all of its boundary points. The extremal cases are special.

1.4.3 Definition. Let A ⊆ C. If ∂A∩A = ∅, then A is open. If ∂A ⊆ A, then A is
closed.

The following properties can be deduced from the above definitions. Their proofs
are left as an exercise.

1.4.4 Theorem. The following hold for A ⊆ C.

(a) The set A is closed if and only if its complement C \A is open.

(b) The set A is open if and only if for every a ∈ A, there exists r > 0 such that
D(a; r) ⊆ A.

(c) A point a ∈ C is in ∂A if and only if D(a; r) ∩ A ̸= ∅ and D(a; r) \ A ̸= ∅
for all r > 0.

1.4.5 Example. We study the disk D(a; r) for some a ∈ C and r > 0. If z0 ∈
D(a; r), then let ρ = r − |z0 − a|. Then 0 < ρ ≤ r. For all z ∈ D(z0; ρ),

|z − a| = |z − z0 + z0 − a| ≤ |z − z0|+ |z0 − a| < ρ+ (r − ρ) = r

by the triangle inequality, showing z ∈ D(a; r). Therefore D(z0; ρ) ⊆ D(a; r).
This implies that D(a; r) is an open set.

It is left as an exercise (using an argument quite similar to the one just presented)
to show that the exterior points of D(a; r) form the set {z ∈ C : |z − a| > r}.
Therefore the boundary of the disk is

∂D(a; r) = {z ∈ C : |z − a| = r}, (1.4.1)

which is exactly the circle of radius r centered at a.

1.4.6 Definition. Given any set A ⊆ C, the set

A = A ∪ ∂A (1.4.2)
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is called the closure of A.

Many of the properties of the closure are addressed in the exercises.

1.4.7 Example. If D(a; r) is the disk in Example 1.4.5, then its closure is the closed
disk

D(a; r) = D(a; r) = {z ∈ C : |z − a| ≤ r}. (1.4.3)

1.4.8 Definition. Let A ⊆ C and a ∈ C. We say that a is a limit point of A provided
that D(a; r) ∩A \ {a} ̸= ∅ for every r > 0.

In other words, a is a limit point of A if every disk centered at a intersects A at a
point other than a. This leads to another useful characterization of closed sets.

1.4.9 Theorem. A setE ⊆ C is closed if and only ifE contains all of its limit points.

Proof. Suppose that E is closed and that a is a limit point of E. Were a an exterior
point of E, we would have D(a; r) ⊆ C \ E for some r > 0. Since this contradicts
that a is a limit point of E, it must be that a is an interior point or boundary point of
E. Either way, a ∈ E.

Conversely, assume that E contains all of its limit points. Suppose that a ∈
∂E \ E. For any r > 0, D(a; r) ∩ E ̸= ∅ by Theorem 1.4.4. Since a /∈ E,
D(a; r) ∩ E \ {a} ̸= ∅ for all r > 0, and thus a is a limit point of E. This shows
that a ∈ E, a contradiction. Thus ∂E ⊆ E, and hence E is closed.

We continue with two more definitions.

1.4.10 Definition. A set A ⊆ C is bounded if A ⊆ D(0;R) for some R > 0.

1.4.11 Definition. A set K ⊆ C is compact if K is closed and bounded.

One must be careful not to be misled by the simplicity of the above definition and
underestimate the importance of compact sets to the study of analysis. In fact, many
properties of complex functions depend on compactness.

A reader with some previous exposure to topological concepts may have seen
compactness defined in terms of “open covers.” This definition is of great impor-
tance to the study of topology, but does not serve our purpose in this text. That our
definition is equivalent is the content of the Heine–Borel theorem. An outline of the
proof of this theorem is included in the exercises.

We now consider our final topological concept.

1.4.12 Definition. Nonempty sets A,B ⊆ C are separated if A∩B = A∩B = ∅.
A nonempty set E ⊆ C is connected if E is not equal to the union of separated sets.
Otherwise, E is disconnected.

While this definition may seem complicated, it should bring the reader comfort
that the intuitive notion of connectedness matches the rigorous definition. The fol-
lowing observation is key to a method of detecting connectedness that will be suffi-
cient for most circumstances we will encounter.
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1.4.13 Lemma. Let A,B ⊆ C be separated sets, a ∈ A, b ∈ B, and L be the line
segment with endpoints a and b. Then L ̸⊆ A ∪B.

Proof. Suppose L ⊆ A ∪ B. If u = (b − a)/|b − a|, then L = {a + tu : 0 ≤ t ≤
|b− a|}. Set

t0 = sup{t ∈ [0, |b− a|] : a+ tu ∈ A}, c = a+ t0u ∈ L.

(See Appendix B for properties of the supremum.)
If c ∈ A, then c /∈ B, and hence D(c; r) ∩ B = ∅ for some r > 0. Furthermore,

t0 < |b − a|, and if t0 < t < min{t0 + r, |b − a|}, then a + tu ∈ L \ A ⊆ B. But
|(a+ tu)− c| = t− t0 < r, a contradiction.

If c ∈ B, then c /∈ A, and so D(c; r) ∩ A = ∅ for some r > 0. But t0 > 0, and
there must exist max{t0 − r, 0} < t < t0 such that a+ tu ∈ A. (See Theorem B.4.)
But |(a+ tu)− c| = t0 − t < r, a contradiction. Hence L ̸⊆ A ∪B.

We now see that if a nonempty setE ⊆ C is such that the line segment connecting
two arbitrary points in E lies in E, then E is connected. For instance, all open and
closed disks are connected, as are all lines, rays, and line segments. This can be
taken a step further. The proof of the following theorem and related results are
considered in the exercises. See Figure 1.3.

1.4.14 Theorem. LetE ⊆ C be nonempty. If for all a, b ∈ E, there are a0, . . . , an ∈
E such that a0 = a, an = b, and for each k = 1, . . . , n, the line segment with
endpoints ak−1 and ak lies in E, then E is connected.

E
a = a0

a1

a2

a3
a4

a5

b = a6

Figure 1.3 An illustration of Theorem 1.4.14 with n = 6

In our upcoming work, the most important connected sets are also open and war-
rant their own name.

1.4.15 Definition. A connected open subset of C is called a domain.

1.4.16 Theorem. Let Ω ⊆ C be a nonempty open set. Then Ω is a domain if and
only if it is not equal to the union of disjoint nonempty open sets.

Proof. It is equivalent to show that Ω is disconnected if and only if Ω = A ∪ B,
where both A and B are open, nonempty, and A ∩B = ∅.

If Ω is disconnected, then let Ω = A∪B, whereA andB are separated. Let a ∈ A.
Since a is an exterior point of B, there is r1 > 0 such that D(a; r1) ∩B = ∅. Since
a ∈ Ω, there is r2 > 0 such that D(a; r2) ⊆ Ω. If r = min{r1, r2} > 0, then
D(a; r) ⊆ Ω \B = A, showing A is open. A symmetric argument shows B is open.
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Conversely, suppose Ω = A ∪ B for disjoint nonempty open sets A,B. Every
point of A is an exterior point of B and hence A ∩ B = ∅. Similarly, A ∩ B = ∅,
showing A and B are separated. Thus Ω is disconnected.

We conclude this section with one more definition.

1.4.17 Definition. A maximal connected subset of a setE ⊆ C is called a component
of E.

This means that A ⊆ E is a component of E if A is connected and for any
connected set B ⊆ E such that A ⊆ B, it must be that A = B. It is an exercise to
show that every point of E lies in a component of E (and hence components exist).

1.4.18 Example. We know that intervals in R are connected. IfE = (−1, 0)∪(0, 1),
then E is disconnected using the separated sets A = (−1, 0) and B = (0, 1). In fact,
A and B are components of E.

One may easily decompose any set with at least two elements into the union of
two nonempty disjoint subsets, showing the importance of A and B in Definition
1.4.12. Observing that A ∩ B = {0} ̸= ∅ in this example shows why only one
closure is considered at a time.

1.4.19 Example. We conclude by analyzing a set with regard to all concepts in-
troduced in this section. Filling in the details of the statements made is left as an
exercise. Let

E = {z ∈ C : | Im z| < |Re z|}.

(See Figure 1.4.) Each point a ∈ E is an interior point of E, and hence E is open.
Indeed, one may show that D(a; r) ⊆ E, where r = (|Re a| − | Im a|)/2, using the
triangle inequality. Likewise, if a ∈ C is such that |Re a| < | Im a|, then D(a; r) ⊆
C \E if r = (| Im a| − |Re a|)/2, showing a is an exterior point of E. We also have
that ∂E consists of those a ∈ C for which |Re a| = | Im a| since for such a and
r > 0, at least one of a ± r/2 lies in E and a lies in C \ E. We conclude from this
reasoning that the limit points of E are precisely the points in E. Since ∂E ̸⊆ E,
E is not closed. Moreover, E is not bounded, as (0,∞) ⊆ E. Hence E fails both
conditions required of compactness. Lastly, we note that A = {z ∈ E : Re z < 0}
and B = {z ∈ E : Re z > 0} are connected because any pair of points in one set is
connected by a line segment contained within that set. The above logic shows A and
B are open, and hence E is disconnected by Theorem 1.4.16. It follows that A and
B are connected components of E and are each domains.

Summary and Notes for Section 1.4.
We have defined basic topological concepts such as open, closed, compact, bounded,
and connected sets in the complex plane C.

The field of topology is vast and deep and comes in many flavors. Point set
topology is the study of abstract topological spaces where open sets are defined by a
set of axioms. Despite its importance, it is a relatively young area, only coming into
its own in the early 20th century. This particular flavor of topology was motivated
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E

A B

Re

Im

Figure 1.4 The set E and its components A and B from Example 1.4.19

by problems in abstract analysis. Indeed, John L. Kelley, in the preface to his classic
book on general topology [14], wrote, “I have, with difficulty, been prevented by my
friends from labeling [this book]: What Every Young Analyst Should Know.”

Exercises for Section 1.4.
1. For each of the following sets E, determine whether E is open, closed, bounded, com-

pact, connected, a domain. In addition, identifyE◦, ∂E,E, the collection of limit points
of E, and the components of E. Do not include proofs.

(a) E = {z ∈ C : Re z > 0}
(b) E = {z ∈ C : 0 < |z| < 1}
(c) E = {z ∈ C : |Re z| ≤ 1, |z| > 2}
(d) E =

∪
n∈ZD(n; 1/2)

(e) E = {z ∈ C : Re z ̸= |z|}
(f) E = {z ∈ C : Re z, Im z ∈ Q}
(g) E = {1/n+ i/m : n,m ∈ N}

2. Justify the statements made in Example 1.4.19.

3. Let a ∈ C and r > 0. Show that the set of exterior points of the disk D(a; r) is
{z ∈ C : |z − a| > r}.

4. Prove Theorem 1.4.4.

5. Prove the following for a set E ⊆ C.

(a) The set E is a closed set.

(b) The set E is closed if and only if E = E.

6. Let A ⊆ C and a ∈ C. Prove that a is a limit point of A if and only if D(a; r) ∩ A is
infinite for all r > 0.

7. Let A ⊆ C. Show that if B ⊆ A, then B ⊆ A.

8. ◃ Prove that a set A ⊆ C is open if and only if for every a ∈ A, there is a closed disk
D(a; r) ⊆ A for some r > 0.
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9. Let U = {Uα : α ∈ I} be a collection of open subsets of C. (Here, I is an index set.
See Appendix A.)

(a) Prove that
∪

α∈I Uα is open.

(b) Prove that
∩

α∈I Uα is open if I is finite.

(c) Give an example of an infinite collection U where the intersection in part (b) is not
open.

10. Let E = {Eα : α ∈ I} be a collection of closed subsets of C, where I is an index set.

(a) Prove that
∩

α∈I Eα is closed.

(b) Prove that
∪

α∈I Eα is closed if I is finite.

(c) Give an example of an infinite collection E where the union in part (b) is not closed.

11. Find an example of a disconnected set whose closure is connected.

12. Suppose that E,F ⊆ C are connected. Is E ∩ F necessarily connected if E ∩ F ̸= ∅?
Provide a proof or a counterexample.

13. Use the following steps to show that if E ⊆ C, then each a ∈ E lies in a component of
E.

(a) Suppose I is an index set and Eα ⊆ C is connected for each α ∈ I . Show that if∩
α∈I Eα ̸= ∅, then

∪
α∈I Eα is connected.

(b) Let F be the union of all connected subsets of E containing a. Show that F is a
component.

14. Show that every component of an open set is a domain. (Hint: Part (a) of Exercise 13 is
helpful.)

15. Which subsets of C are both open and closed? Prove your answer.

16. Prove Theorem 1.4.14. Show that the converse holds if E is open using the following
strategy: Let a ∈ E and A consist of all b ∈ E such that a and b are connected by a
sequence of line segments as in the statement of Theorem 1.4.14. Show A and E \ A
are open.

17. Let U ⊆ C be a nonempty open set. Prove that U has an exhaustion by compact sets.
That is, show that there are compact setsKn ⊆ U for each n ∈ N such thatKn ⊆ Kn+1

for every n and U =
∪∞

n=1Kn.

18. In this exercise, we consider the abstract topological definition of compactness. Let
K ⊆ C. An open cover of K is a collection U = {Uα : α ∈ I} of open subsets
of C such that K ⊆

∪
α∈I Uα. A subcollection {Uα1 , . . . , Uαn} ⊆ U is said to be a

finite subcover of K if K ⊆
∪n

k=1 Uαk . The Heine–Borel theorem states that a set K is
compact if and only if every open cover of K contains a finite subcover of K. Prove the
Heine–Borel theorem using the following steps.

(a) If every open cover of K contains a finite subcover of K, show that K is bounded.

(b) If every open cover of K contains a finite subcover of K, show that K is closed.

(c) Let S ⊆ C be a closed square with sides parallel to the axes. Show that every open
cover of S contains a finite subcover of S. (Hint: Look ahead to the subdivision
argument in the proof of the Bolzano–Weierstrass theorem [Theorem 1.6.14] and
use something similar in a proof by contradiction.)
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(d) Show that if K is compact, then every open cover of K contains a finite subcover of
K by choosing a square S that contains K and extending the open cover of K to an
open cover of S by adding the set C \K.

1.5 The Extended Complex Plane

In analysis, we frequently need to deal with infinite limits. Even in calculus, one
sees limits approaching ±∞. Unfortunately, there is a multitude of directions in C
in which a limit can approach “infinity.” To escape this problem, we use a clever
topological identification that will relate the complex plane to a sphere.

As is learned in multivariable calculus, R3 is the set (space) of all points of the
form (x1, x2, x3), where x1, x2, x3 ∈ R. The unit sphere in R3 is the set of all points
of distance 1 from the origin; in other words, it is the set

S = {(x1, x2, x3) ∈ R3 : x21 + x22 + x23 = 1}.

We put the elements of C into a one-to-one correspondence with the elements of
S with the exception of the “north pole” N = (0, 0, 1). To do so, we first associate
the plane C to the plane in R3 described by the equation x3 = 0. This is done in
the natural way by writing z ∈ C as x1 + ix2 and identifying this with the point
(x1, x2, 0). If we let L be the line in R3 through the points (x1, x2, 0) and N , then
L ∩ S \ {N} contains exactly one point, which we call Z. This establishes the
desired one-to-one correspondence between z ∈ C and Z ∈ S \{N}. Topologically,
this correspondence “wraps” the plane onto the sphere, leaving only the north pole
uncovered. Note that D is sent to the “lower hemisphere,” ∂D is fixed, and C \ D is
sent to the “upper hemisphere.” See Figure 1.5.

1.5.1 Definition. The one-to-one correspondence described above is called the stere-
ographic projection of C onto S \ {N}.

w

W

z

Z

N

S

C

Figure 1.5 Stereographic projection of z ∈ C \ D onto Z and w ∈ D onto W
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As the north pole is the lone point on the sphere left uncovered by the stereo-
graphic projection, it is natural to identify this point with ∞.

1.5.2 Definition. The extended complex plane is the set C∞ = C ∪ {∞}, where
∞ inherits all of the natural properties from the north pole of the sphere through
the stereographic projection. Because of this correspondence, the extended complex
plane is often called the Riemann sphere.

This method of adding the point ∞ to C is alternatively referred to as the one-
point compactification of C.

Summary and Notes for Section 1.5.
Through the stereographic projection, we can identify the points of the plane C with
the points of a sphere without its “north pole.” This then allows the north pole to
be identified with ∞. Unlike on the real line, where we consider signed infinities,
the complex ∞ is a single geometric point, and the full sphere is called the extended
complex plane, denoted by C∞.

The stereographic projection is certainly not a new idea, and it was not motivated
by complex analysis. Ancient Greeks knew of the projection, and it was used for
centuries for making both celestial and geographic maps.

Exercises for Section 1.5.

1. Which sets in S correspond to the real and imaginary axes in C under the stereographic
projection?

2. Let z = x+ iy ∈ C be given. Calculate the coordinates of the point Z = (x1, x2, x3) ∈
S corresponding to z under the stereographic projection.

3. Let Z = (x1, x2, x3) ∈ S be given. Calculate the complex number z corresponding to
Z under the stereographic projection.

4. For any z, w ∈ C∞ define the spherical distance between z and w, denoted d(z, w), to
be the distance in R3 between the points Z,W ∈ S corresponding to z and w under the
stereographic projection. Use Exercises 2 and 3 to prove the following.

(a) If z, w ∈ C, then

d(z, w) =
2|z − w|√

(1 + |z|2)(1 + |w|2)
.

(b) If z ∈ C, then

d(z,∞) =
2√

1 + |z|2
.

5. ◃ Show that circles on S correspond to circles and lines in C. (Hint: Recall the following
facts from analytic geometry: Every circle in the xy-plane can be expressed by an equa-
tion of the form x2+y2+ax+by+c = 0 for some a, b, c ∈ R. Every circle on S is the
intersection of S with a plane in R3 described by the equation Ax1 +Bx2 +Cx3 = D
for some A,B,C,D ∈ R. Then use Exercise 2.)
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z1

z2

zN

a

ε

D(a; ε)

Figure 1.6 zn → a

1.6 Complex Sequences

Sequences are a fundamental tool in analysis for the purpose of approximation. They
are closely related to the topology of C and essential to the study of series, which lie
at the core of function theory.

1.6.1 Definition. A function of the form z : {m,m+ 1, . . . } → C for some m ∈ Z
is called a sequence of complex numbers.

The function value z(n) for some n ≥ m is denoted by zn. This allows a sequence
to be described, in a more familiar manner, by a list {zm, zm+1, . . . } or {zn}∞n=m.
The subscripts are the indices of the sequence. Although indices can begin at any
integer m, we will typically consider sequences with m = 1 for simplicity. This
does not affect generality, however, since any sequence can be reindexed. In other
words, if a sequence begins at n = m for some m ∈ Z, then we could replace each
index n by n − m + 1 so that the sequence begins with the index n = 1 or vice
versa. In most circumstances, such a maneuver is only used to provide some sort of
algebraic simplification.

1.6.2 Definition. A sequence {zn}∞n=1 of complex numbers converges to a number
a ∈ C, called the limit of {zn}, provided that for any ε > 0, there is some N ∈ N
such that |zn − a| < ε whenever n ≥ N . A sequence diverges if it fails to converge.

Convergence is typically denoted by writing zn → a as n → ∞ (or just zn → a
when the context is clear) or by the expression

lim
n→∞

zn = a. (1.6.1)

Geometrically, zn → a if for any ε > 0, there exists N ∈ N such that for all n ≥ N ,
zn ∈ D(a; ε). See Figure 1.6.

Because of our understanding of ∞ from Section 1.5, we can deal simply with
infinite limits, a special type of divergence.

1.6.3 Definition. The sequence {zn}∞n=1 of complex numbers diverges to ∞, de-
noted by zn → ∞ (as n → ∞) or limn→∞ zn = ∞, if given any R > 0, there is
N ∈ N such that |zn| > R for all n ≥ N .

Exercise 4 of Section 1.5 can be used to show that the set {z ∈ C : |z| > R} cor-
responds to the set of points on the sphere S of distance less than ε = 2/

√
1 +R2
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from the north pole N under the stereographic projection, and therefore this defi-
nition of an infinite limit naturally corresponds to a sequence on S converging to
N .

We now consider some intuitive properties of sequences.

1.6.4 Theorem. A convergent sequence has a unique limit.

Proof. Suppose that {zn}∞n=1 converges to both a and b in C. If a ̸= b, then let
ε = |a−b|/2 > 0. For someN1, N2 ∈ N, n ≥ N1 implies |zn−a| < ε and n ≥ N2

implies |zn − b| < ε. But if n ≥ max{N1, N2}, then by the triangle inequality,

2ε = |a− b| = |a− zn + zn − b| ≤ |a− zn|+ |zn − b| < 2ε,

a contradiction. Thus a = b.

1.6.5 Definition. A sequence {zn}∞n=1 of complex numbers is bounded if there ex-
ists R > 0 such that |zn| ≤ R for all n ∈ N.

1.6.6 Theorem. If a sequence converges, then it is bounded.

Proof. Suppose that the sequence {zn}∞n=1 of complex numbers converges to some
a ∈ C. Then for some N ∈ N, |zn − a| < 1 whenever n ≥ N . Fix

R = max{|z1|, . . . , |zN |, 1 + |a|}.

Clearly, if n ≤ N , then |zn| ≤ R. If n > N , then by the triangle inequality,

|zn| = |zn − a+ a| ≤ |zn − a|+ |a| < 1 + |a| ≤ R.

Hence the sequence is bounded.

Sequences of real numbers are familiar from calculus. The following theorem
shows how our study of complex sequences can rely on their real counterparts.

1.6.7 Theorem. Let {zn}∞n=1 be a sequence of complex numbers. For each n ∈ N,
write zn = xn + iyn. Then {zn} converges if and only if both {xn} and {yn}
converge. In this case,

lim
n→∞

zn = lim
n→∞

xn + i lim
n→∞

yn. (1.6.2)

Proof. Suppose xn → a and yn → b for some a, b ∈ R. Let ε > 0. There are
N1, N2 ∈ N such that |xn − a| < ε/2 for all n ≥ N1 and |yn − b| < ε/2 for all
n ≥ N2. If N = max{N1, N2}, then for all n ≥ N ,

|zn − (a+ ib)| = |xn − a+ i(yn − b)| ≤ |xn − a|+ |yn − b| < ε

2
+
ε

2
= ε

using the triangle inequality. This shows {zn} converges to a+ ib, verifying (1.6.2).
Conversely, suppose zn → c for some c ∈ C. Let ε > 0. There is N ∈ N such

that |zn − c| < ε for all n ≥ N . But for such n,

|xn − Re c| = |Re(zn − c)| ≤ |zn − c| < ε
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using Exercise 4 from Section 1.2. Hence {xn} converges. A similar argument gives
that {yn} converges.

We know from calculus that convergent real sequences satisfy the following al-
gebra rules. The complex versions can be proved by resorting to real and imaginary
parts and using Theorem 1.6.7 and are left as exercises.

1.6.8 Theorem. Suppose that {zn}∞n=1 and {wn}∞n=1 are sequences of complex
numbers such that zn → a and wn → b for some a, b ∈ C as n→ ∞. Furthermore,
let c ∈ C. Then

(a) limn→∞ czn = ca,

(b) limn→∞(zn + wn) = a+ b,

(c) limn→∞ znwn = ab, and

(d) limn→∞ zn/wn = a/b if wn ̸= 0 for all n ∈ N and b ̸= 0.

From calculus, we have techniques, such as l’Hôpital’s rule, for dealing with lim-
its of real sequences. Theorem 1.6.7 gives us one route to apply these real techniques
to find limits of complex sequences. Another method, relying on the modulus, is the
following.

1.6.9 Theorem. Let {zn}∞n=1 be a sequence of complex numbers, {cn}∞n=1 be a
sequence of nonnegative real numbers, and a ∈ C.

(a) If cn → 0 and |zn − a| ≤ cn for all n ∈ N, then zn → a.

(b) If cn → ∞ and |zn| ≥ cn for all n ∈ N, then zn → ∞.

We leave the proof of this theorem as an exercise but consider the following ex-
ample of its helpfulness.

1.6.10 Example. Consider the sequence of complex numbers{
n+ i

(1− 2i)n

}∞

n=1

.

By the triangle inequality, we have∣∣∣∣ n+ i

(1− 2i)n

∣∣∣∣ ≤ n+ 1

|1− 2i|n
=
n+ 1

5n/2
.

An application of l’Hôpital’s rule shows that the right-hand side converges to 0.
Therefore our sequence converges to 0 by Theorem 1.6.9. Note that we do not have
a version of l’Hôpital’s rule for complex sequences to directly apply in these circum-
stances. (Nor will we.)

1.6.11 Definition. Let {zn}∞n=1 be a sequence of complex numbers and {nk}∞k=1 be
a strictly increasing sequence of positive integers. The sequence {znk

}∞k=1 is called
a subsequence of {zn}.
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In looser terms, a subsequence of a sequence is a sequence formed by taking terms
of the original sequence, in order.

1.6.12 Theorem. A sequence {zn}∞n=1 of complex numbers converges to a number
a ∈ C if and only if every subsequence of {zn} converges to a.

Proof. Suppose that zn → a as n→ ∞ and that {znk
}∞k=1 is a subsequence of {zn}.

Then for any ε > 0, there exists N ∈ N such that |zn − a| < ε whenever n ≥ N .
Since {nk}∞k=1 is strictly increasing, nk ≥ k for all k ∈ N. Therefore |znk

− a| < ε
whenever k ≥ N , and hence znk

→ a as k → ∞.
The converse follows because a sequence is a subsequence of itself.

We now present some vital connections between sequences and the topology of
C. The first classifies closed sets in terms of sequences.

1.6.13 Theorem. A set E ⊆ C is closed if and only if every convergent sequence of
elements of E has its limit in E.

Proof. Suppose that E is closed. Let {zn}∞n=1 be a sequence of elements of E that
converges to some a ∈ C. If a /∈ E, then a is an exterior point of E. There exists
ε > 0 such that D(a; ε) ∩ E = ∅. It follows that |zn − a| ≥ ε for all n ∈ N, a
contradiction. Thus a ∈ E.

Conversely, suppose that every convergent sequence in E converges to a point in
E. Let a ∈ ∂E. Then for each n ∈ N, there exists zn ∈ D(a; 1/n) ∩E by Theorem
1.4.4. Since |zn − a| < 1/n for all n ∈ N, zn → a by Theorem 1.6.9. Therefore
a ∈ E, showing E is closed.

We now come to an important theorem that relates compactness to sequences. Its
power is in the impact that a set being closed and bounded has on sequences within
the set.

1.6.14 Bolzano–Weierstrass Theorem. A setK ⊆ C is compact if and only if every
sequence of elements of K has a subsequence that converges to an element of K.

Proof. Suppose that K is compact, and hence bounded, and let {zn}∞n=1 be a se-
quence in K. There is a square S = {z ∈ C : a ≤ Re z ≤ b, c ≤ Im z ≤ d},
where a, b, c, d ∈ R and b − a = d − c = α for some α > 0, such that K ⊆ S. If
S is divided symmetrically into four closed subsquares, then (at least) one subsquare
contains infinitely many terms of {zn}. Call this subsquare S1, and let n1 ∈ N be
such that zn1 ∈ S1. Note that S1 = {z ∈ C : a1 ≤ Re z ≤ b1, c1 ≤ Im z ≤ d1},
where b1 − a1 = d1 − c1 = α/2.

Now continue this process inductively to generate a collection of closed squares
Sk = {z ∈ C : ak ≤ Re z ≤ bk, ck ≤ Im z ≤ dk}, where bk − ak = dk − ck =
α/2k, Sk ⊆ Sk−1 for all k ≥ 2, and each Sk contains infinitely many terms of
{zn}. (See Figure 1.7.) At each step, we choose nk ∈ N such that nk > nk−1 and
znk

∈ Sk. Evidently, ak < bj for all j, k ∈ N. Set x0 = sup{ak : k ∈ N}. Then
ak ≤ x0 ≤ bk for all k. Likewise, set y0 = sup{ck : k ∈ N} so that ck ≤ y0 ≤ dk
for all k. If z0 = x0 + iy0, then z0 ∈ Sk for all k.
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Let ε > 0. Choose N ∈ N such that α/2N < ε/
√
2. Then the distance between

any two points in SN is less than ε, proving SN ⊆ D(z0; ε). It immediately follows
that |znk

− z0| < ε for all k ≥ N , showing znk
→ z0. Because {znk

}∞k=1 ⊆ K
and K is closed, z0 ∈ K by Theorem 1.6.13. Thus {zn} has a subsequence that
converges to an element of K.

Conversely, if every sequence of members of K has a subsequence converging to
an element of K, then every convergent sequence of elements of K must converge
to a member of K by Theorem 1.6.12. Thus K is closed by Theorem 1.6.13. Were
K unbounded, for each n ∈ N, there would exist zn ∈ K such that |zn| ≥ n. But
any subsequence of {zn}∞n=1 would be unbounded and hence divergent by Theorem
1.6.6. Therefore K is compact.

z0

S

Figure 1.7 Possible inductive steps in the proof of Theorem 1.6.14

We immediately use the sequential notion of compactness to prove the following
valuable theorem.

1.6.15 Theorem. Suppose that for each n ∈ N, Kn ⊆ C is a nonempty compact set
and that Kn+1 ⊆ Kn for all n. Then

∞∩
n=1

Kn ̸= ∅.

Proof. For each n ∈ N, let zn ∈ Kn. Then {zn}∞n=1 is a sequence of elements of
K1 and hence there is a subsequence {znk

}∞k=1 that converges to some a ∈ K1 by
the Bolzano–Weierstrass theorem.

Let n ∈ N. Since nk ≥ n when k ≥ n, {znk
}∞k=n is a sequence in Kn that

converges to a. Because Kn is closed, a ∈ Kn by Theorem 1.6.13. But n was
arbitrarily chosen, so a ∈

∩∞
n=1Kn.

We conclude this section with some remarks about Cauchy sequences.

1.6.16 Definition. A sequence {zn}∞n=1 of complex numbers is a Cauchy sequence
if for every ε > 0, there is someN ∈ N such that |zn−zm| < εwheneverm,n ≥ N .
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That every Cauchy sequence of real numbers is convergent is a characteristic
called the completeness of R. We have a similar result in C. Its proof is left as
an exercise.

1.6.17 Completeness of the Complex Numbers. A sequence of complex numbers
converges if and only if it is a Cauchy sequence.

Summary and Notes for Section 1.6.
Sequences of complex numbers and their limits are defined in exactly the same way
as their real counterparts are in calculus, and the algebra of convergent sequences
holds as we would expect, as seen by considering the real and imaginary parts of
their terms. Sequences are ubiquitous in analysis; they are a basic tool for developing
complicated ideas.

Closed sets and compact sets can be characterized using sequences which makes
these sets easier to study. In general topological spaces, these characterizations do
not hold, which leads to calling certain sets sequentially closed or sequentially com-
pact.

Exercises for Section 1.6.
1. Find limits of the following sequences, or explain why they diverge.

(a)
{
i2n − n

(3 + i)n

}∞

n=1

(b)
{
n+ in

n

}∞

n=1

(c)
{

1− in2

n(n+ 1)

}∞

n=1

(d)
{
(1 + i)n

n

}∞

n=1

2. Prove Theorem 1.6.8 by using the real and imaginary parts of {zn} and {wn} and The-
orem 1.6.7.

3. Prove Theorem 1.6.8 using Definition 1.6.2. Theorem 1.6.6 is helpful.

4. Prove Theorem 1.6.9.

5. ◃ Let {zn}∞n=1 be a sequence of complex numbers. Show that if zn → a for some
a ∈ C, then |zn| → |a|.

6. A sequence {xn}∞n=1 of real numbers is monotone if it is either increasing or decreas-
ing. The monotone convergence theorem from calculus states that a bounded monotone
sequence must converge. Prove it.

7. ◃ Let a ∈ C.

(a) Prove that if |a| < 1, then an → 0.

(b) Prove that if |a| > 1, then an → ∞.

8. Let {zn}∞n=1 and {wn}∞n=1 be sequences of complex numbers.
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(a) Show that if {zn} is bounded and wn → ∞, then (zn + wn) → ∞.

(b) If zn → ∞ and wn → ∞, does it follow that (zn + wn) → ∞?

9. ◃ Let {xn}∞n=1 and {yn}∞n=1 be convergent sequences of real numbers such that xn ≤
yn for all n ∈ N. Show that

lim
n→∞

xn ≤ lim
n→∞

yn.

10. Let {zn}∞n=1 and {wn}∞n=1 be sequences in C\{0}. If {1/zn} is bounded andwn → 0,
show that zn/wn → ∞.

11. ◃ LetA ⊆ C and a ∈ C. Prove that a ∈ A if and only if there is a sequence of elements
of A converging to a.

12. Let {zn}∞n=1 be a sequence of complex numbers, and suppose that a is a limit point of
{zn : n ∈ N}. Show that there is a subsequence of {zn} converging to a.

13. ◃ Let a ∈ C and r > 0. If K ⊆ D(a; r) is compact, prove that there is some ρ ∈ (0, r)
such that K ⊆ D(a; ρ).

14. Prove Theorem 1.6.17. (Hint: To show a Cauchy sequence converges, first show it is
bounded, and then turn to the Bolzano–Weierstrass theorem.)

15. Let {zn}∞n=1 be a sequence of complex numbers, and let z ∈ C∞. Prove that zn → z
as n → ∞ if and only if Zn → Z on the Riemann sphere S, where Zn, Z correspond
to zn, z under the stereographic projection.

1.7 Complex Series

A series of complex numbers can intuitively be thought of as an infinite sum, but,
in actuality, is a special kind of sequence. Our approach to studying function theory
will rest squarely on series.

1.7.1 Definition. Let m ∈ Z and {zn}∞n=m be a sequence of complex numbers. We
define the partial sums of {zn} to be the complex numbers

sN =
N∑

n=m

zn = zm + · · ·+ zN , (1.7.1)

for each N ∈ Z such that N ≥ m.

The partial sum sequence {sN}∞N=m is well defined for any complex sequence.

1.7.2 Definition. If the sequence of partial sums in Definition 1.7.1 converges to
some s ∈ C, then we say that the infinite series

∑∞
n=m zn with terms {zn}∞n=m

converges to s. This is denoted by

s =

∞∑
n=m

zn = zm + zm+1 + · · · , (1.7.2)
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and we accordingly also refer to s as the sum of the series. Any series that fails to
converge is said to diverge. If sN → ∞ as N → ∞, then we say that the series
diverges to ∞. This special type of divergence is written

∞∑
n=m

zn = ∞.

Many series we consider will have beginning index m = 1 or m = 0. As with
sequences, series can be reindexed, so there is no loss of generality in proving results
for these specific cases.

The first theorem is a direct result of Theorem 1.6.4.

1.7.3 Theorem. A convergent series has a unique sum.

The next theorem establishes some rules concerning the algebra of series. The
proof follows from the properties of the sequence of partial sums and Theorem 1.6.8
and is left as an exercise.

1.7.4 Theorem. Let
∑∞

n=1 zn and
∑∞

n=1 wn be infinite series of complex numbers
converging to a and b, respectively, and let c ∈ C. Then

(a)
∑∞

n=1 czn = ca and

(b)
∑∞

n=1(zn + wn) = a+ b.

We refer the reader to Appendix B where the concept of a product of two series is
considered.

The central problem when dealing with series is the determination of convergence.
Often, we are only concerned with whether or not a series converges, not to what the
series converges. The following is the first and simplest test. Its proof is left as an
exercise.

1.7.5 Theorem. Let
∑∞

n=1 zn be a convergent series of complex numbers. Then
zn → 0 as n→ ∞.

The usefulness of the preceding theorem lies in the contrapositive. Divergence of
a series can be detected by observing that its sequence of terms fails to converge to 0.
The converse is not addressed; nothing is said about the behavior of the series when
its terms do converge to 0.

1.7.6 Example. Consider the series
∑∞

n=0 z
n, and take note of Exercise 7 in Section

1.6. (We adopt the traditional convention that z0 = 1 for all z ∈ C.) If |z| ≥ 1, then
{zn} fails to converge to 0, and hence the series is divergent by Theorem 1.7.5.

For z ∈ D, consider the partial sums sN =
∑N

n=0 z
n. Observe that

(1− z)sN =
N∑

n=0

zn −
N+1∑
n=1

zn = 1− zN+1.
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Therefore

sN =
1− zN+1

1− z
.

Since zN+1 → 0 as N → ∞, it follows that

∞∑
n=0

zn =
1

1− z
(1.7.3)

for z ∈ D.
This series is called the geometric series. Its elementary nature should not be

underestimated; we will find it to be a useful tool on several upcoming occasions.

Detecting convergence of a series is usually a more difficult task than what we
faced in Example 1.7.6. Here is a start. Its proof is standard from calculus and is left
as an exercise.

1.7.7 Comparison Test. Suppose that {an}∞n=1 and {bn}∞n=1 are sequences of non-
negative real numbers such that an ≤ bn for all n ∈ N.

(a) If
∑∞

n=1 bn converges, then
∑∞

n=1 an converges and

∞∑
n=1

an ≤
∞∑

n=1

bn.

(b) If
∑∞

n=1 an diverges, then
∑∞

n=1 bn diverges.

The comparison test only applies to series of nonnegative real numbers. This
seems to address only a slight number of the series that we are likely to consider in
complex analysis! The following concept helps to make a connection.

1.7.8 Definition. The series
∑∞

n=1 zn of complex numbers is said to be absolutely
convergent if the series

∑∞
n=1 |zn| is convergent.

The phrase “absolutely convergent” seems to imply convergence. That is no acci-
dent.

1.7.9 Theorem. If the series
∑∞

n=1 zn of complex numbers is absolutely convergent,
then it is convergent and ∣∣∣∣∣

∞∑
n=1

zn

∣∣∣∣∣ ≤
∞∑

n=1

|zn|. (1.7.4)

Proof. Let ε > 0. Absolute convergence implies that there is N ∈ N such that∣∣∣∣∣
N∑

n=1

|zn| −
∞∑

n=1

|zn|

∣∣∣∣∣ =
∞∑

n=N+1

|zn| < ε.
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Let {sn} be the sequence of partial sums of the series
∑∞

k=1 zk. Then for any n,m ≥
N with m < n,

|sn − sm| =

∣∣∣∣∣
n∑

k=m+1

zk

∣∣∣∣∣ ≤
n∑

k=m+1

|zk| < ε,

due (inductively) to the triangle inequality. This shows that {sn} is a Cauchy se-
quence, and is thus convergent. Hence

∑∞
n=1 zn is convergent.

Now that we know that both sides of the (triangle) inequality∣∣∣∣∣
n∑

k=1

zk

∣∣∣∣∣ ≤
n∑

k=1

|zk|

converge as n → ∞, taking this limit and using limit inequalities gives (1.7.4). See
Exercises 5 and 9 of Section 1.6 for the properties of sequences used here.

1.7.10 Example. Consider the complex series

∞∑
n=0

(2i)n − 1

3n + 2
= −1

2
− 1− 2i

5
− 5

11
+ · · · .

For each n, the triangle inequality gives∣∣∣∣ (2i)n − 1

3n + 2

∣∣∣∣ ≤ 2n + 1

3n + 2
≤ 2n + 2n

3n
= 2

(
2

3

)n

.

The series
∑∞

n=0 2(2/3)
n is seen to converge using the geometric series and Theo-

rem 1.7.4. Therefore the given series converges absolutely by the comparison test.

1.7.11 Definition. Any series that is convergent but not absolutely convergent is
called conditionally convergent.

While distinguishing between those series that converge absolutely and those that
converge conditionally is a prevalent theme in calculus, absolute convergence will be
our primary need. Many tests for convergence have been purposely postponed until
the discussion of power series in Section 2.3. This will be the setting of most interest
to us. The following exercises are more focused on developing the algebraic aspects
of series, rather than addressing the convergence of specific series.

Summary and Notes for Section 1.7.
An infinite series of complex numbers is nothing more than a special type of se-
quence, the sequence of partial sums. We casually denote the sum (limit) of the
series by the series itself which is terribly convenient and causes no confusion. Ab-
solute convergence allows for comparison to series of nonnegative terms and their
convergence tests learned in calculus. We will see that infinite series, in particular
geometric series, are of essential importance in the study of function theory.
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Infinite series (and sequences) have been considered for millennia, dating back to
the ancient Greeks. The concept of convergence was historically quite fluid until the
19th century efforts to add rigor to analysis. Indeed, for centuries, infinite series were
treated in a casual manner that seems a bit sloppy by today’s standards.

Exercises for Section 1.7.
1. Determine the sum of the series

∞∑
n=0

1

(n+ i)(n+ 1 + i)
.

(Hint: Use partial fractions and the sequence of partial sums.)

2. For each of the following series, list the first three terms of the series and determine
whether or not the series converges. Can you find the sum of some of them?

(a)
∞∑

n=1

(1− 2i)n+2

(4 + i)n

(b)
∞∑

n=1

(3− i)n

(1 + 2i)n+1

(c)
∞∑

n=0

3− (2i)n

42n

(d)
∞∑

n=2

(3i)n

3 + 4n

3. Prove Theorem 1.7.4.

4. Prove Theorem 1.7.5.

5. Prove Theorem 1.7.7.

6. Suppose that
∑∞

n=1 zn is a convergent series of complex numbers. Prove that both of
the real series

∑∞
n=1 Re zn and

∑∞
n=1 Im zn converge and

∞∑
n=1

Re zn = Re

∞∑
n=1

zn,

∞∑
n=1

Im zn = Im

∞∑
n=1

zn.

Is the converse true?

7. Let {zn}∞n=1 and {wn}∞n=1 be sequences of complex numbers.

(a) Prove that if the series
∑∞

n=1 zn and
∑∞

n=1 wn are absolutely convergent, then∑∞
n=1(zn + wn) is absolutely convergent.

(b) If
∑∞

n=1 zn is absolutely convergent and
∑∞

n=1 wn is conditionally convergent,
what can be said about the convergence of

∑∞
n=1(zn + wn)?

(c) If
∑∞

n=1 zn and
∑∞

n=1 wn are conditionally convergent, what can be said about the
convergence of

∑∞
n=1(zn + wn)?




