
CHAPTER 1

Introduction to Ordinary
Differential Equation Analysis:
Bioreactor Dynamics

1.1 Introduction

Mathematical models formulated as systems of ordinary differen-
tial equations (ODEs) and partial differential equations (PDEs) have
been reported for a spectrum of applications in biomedical science
and engineering (BMSE). The intent of this research is to provide
a quantitative understanding of the biological, chemical, and physi-
cal phenomena that determine the characteristics of BMSE systems
and to provide a framework for the analysis and interpretation of
experimental data observed in the study of BMSE systems.

In the subsequent discussion in this chapter, we consider the pro-
gramming of a 7 × 7 (seven equations in seven unknowns) ODE
system to illustrate the integration (solution) of ODE systems using
R, a quality, open source, scientific programming system [10]. The
intent is to provide the reader with a complete and thoroughly doc-
umented example of the numerical integration of an ODE system,
including (i) the use of library ODE integrators, (ii) the program-
ming of ODE integration algorithms, and (iii) graphical output of the
numerical solutions. This example application can then serve as a
prototype or template which the reader can modify and extend for an
ODE model of interest.

Differential Equation Analysis in Biomedical Science and Engineering: Ordinary Differential Equation
Applications with R, First Edition. William E. Schiesser.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.

1

CO
PYRIG

HTED
 M

ATERIA
L



2 Introduction to Ordinary Differential Equation Analysis

1.2 A 7 × 7 ODE System for a Bioreactor

The reaction system for the conversion of xylose to ethanol by fer-
mentation is now formulated and coded (programmed) in R. The
ODE model is discussed in detail in [1, pp 35–42]; this discussion
is recommended as a starting point for the details of the chemical
reactions, particularly the various intermediates, so that the discus-
sion to follow can concentrate on the numerical algorithms and R
programming.

The reaction system is given in Table 1.1.

TABLE 1.1 Summary of reactions.a

Reaction Number Reaction Stoichiometry

1 xylose � xylitol
2 xylitol � xylulose
3 2 xylulose � 3 acetaldehyde
4 acetaldehyde � ethanol
5 acetaldehyde � acetate
6 2 xylulose � 3 glycerol

aFrom [1], Table 2.1, p 39.

The corresponding ODE system is [1, p 39]

d [xylose]

dt
= −J1 (1.1a)

d [xylitol]

dt
= J1 − J2 (1.1b)

d [xylulose]

dt
= J2 − 2J3 − 2J6 (1.1c)

d [acetaldehyde]

dt
= 3J3 − J4 − J5 (1.1d)

d [ethanol]

dt
= J4 (1.1e)
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d [acetate]

dt
= J5 (1.1f)

d [glycerol]

dt
= 3J6 (1.1g)

The concentrations in eqs. (1.1), denoted as [ ], are expressed in total
(intraplus extracellular) moles per unit cell dry weight.

J1 to J6 are the kinetic rates for the six reactions listed in
Table 1.1. The multiplying constants are stoichiometric coefficients.
For example, reaction 3 (with rate J3) in Table 1.1 produces 3 mol
of acetaldehyde for every 2 mol of xylulose consumed. Therefore,
eq. (1.1c) for d [xylulose]/dt has −2 multiplying J3 and eq. (1.1d)
for d [acetaldehyde]/dt has +3 multiplying J3.

The reaction rates, J1 to J6, are expressed through mass action
kinetics.

J1 = k1[xylose] (1.2a)

J2 = k2[xylitol] − k−2[xylulose][ethanol] (1.2b)

J3 = k3[xylulose] − k−3[acetaldehyde][ethanol] (1.2c)

J4 = k4[acetaldehyde] (1.2d)

J5 = k5[acetaldehyde] (1.2e)

J6 = k6[xylulose] (1.2f)

Note in particular the product terms for the reverse reactions in eqs.
(1.2b) and (1.2c), −k−2[xylulose][ethanol] and −k−3[acetaldehyde]
[ethanol], which are nonlinear and therefore make the associated
ODEs nonlinear (with right-hand side (RHS) terms in eqs. (1.1) that
include J2 and J3). This nonlinearity precludes the usual procedures
for the analytical solution of ODEs based on the linear algebra, that
is, a numerical procedure is required for the solution of eqs. (1.1).

k1 to k6, k−2, k−3, in eqs. (1.2) are kinetic constants (adjustable
parameters) that are selected so that the model output matches exper-
imental data in some manner, for example, a least squares sense. Two
sets of numerical values are listed in Table 1.2

BP000 refers to a wild-type yeast strain, while BP10001 refers to
an engineered yeast strain.
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TABLE 1.2 Kinetic constants for two yeast strains.a

Parameter Value (BP000) Value (BP10001) Units

k1 7.67 × 10−3 8.87 × 10−3 h−1

k2 3.60 13.18 h−1

k3 0.065 0.129 h−1

k4 0.867 0.497 h−1

k5 0.045 0.027 h−1

k6 1.15 × 10−3 0.545 × 10−3 h−1

k−2 88.0 88.7 gh−1 mol−1

k−3 99.0 99.9 gh−1 mol−1

aFrom [1], Table 2.2, p 41.

To complete the specification of the ODE system, each of eqs.
(1.1) requires an initial condition (IC) (and only one IC because these
equations are first order in t).

TABLE 1.3 Initial conditions (ICs) for eqs. (1.1).

Equation IC (t=0)

(1.1a) [xylose] = 0.10724
(1.1b) [xylitol] = 0
(1.1c) [xylulose] = 0
(1.1d) [acetaldehyde] = 0
(1.1e) [ethanol] = 0
(1.1f) [acetate] = 0
(1.1g) [glycerol] = 0

The 7 × 7 ODE system is now completely defined and we can
proceed to programming the numerical solution.

1.3 In-Line ODE Routine

An ODE routine for eqs. (1.1) is listed in the following.

#
# Library of R ODE solvers
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library("deSolve")
#
# Parameter values for BP10001
k1=8.87e-03;
k2=13.18;
k3=0.129;
k4=0.497;
k5=0.027;
k6=0.545e-3;
km2=87.7;
km3=99.9;

#
# Initial condition
yini=c(y1=0.10724,y2=0,y3=0,y4=0,y5=0,y6=0,y7=0)
yini
ncall=0;

#
# t interval
nout=51
times=seq(from=0,to=2000,by=40)

#
# ODE programming
bioreactor_1=function(t,y,parms) {
with(as.list(y),

{
#
# Assign state variables:
xylose =y1;
xylitol =y2;
xylulose =y3;
acetaldehyde=y4;
ethanol =y5;
acetate =y6;
glycerol =y7;

#
# Fluxes
J1=k1*xylose;
J2=k2*xylitol-km2*xylulose*ethanol;
J3=k3*xylulose-km3*acetaldehyde*ethanol;
J4=k4*acetaldehyde;
J5=k5*acetaldehyde;
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J6=k6*xylulose;
#
# Time derivatives

f1=-J1;
f2=J1-J2;
f3=J2-2*J3-2*J6;
f4=3*J3-J4-J5;
f5=J4;
f6=J5;
f7=3*J6;

#
# Calls to bioreactor_1

ncall <<- ncall+1
#
# Return derivative vector

list(c(f1,f2,f3,f4,f5,f6,f7))
})

}
#
# ODE integration

out=ode(y=yini,times=times,func=bioreactor_1,parms=NULL)
#
# ODE numerical solution

for(it in 1:nout){
if(it==1){
cat(sprintf(
"\n t y1 y2 y3 y4 y5

y6 y7"))}
cat(sprintf("\n %8.0f%8.4f%8.4f%8.4f%8.4f%8.4f%8.4f

%8.4f",
out[it,1],out[it,2],out[it,3],out[it,4],
out[it,5],out[it,6],out[it,7],out[it,8]))
}

#
# Calls to bioreactor_1

cat(sprintf("\n ncall = %5d\n\n",ncall))
#
# Set of 7 plots

plot(out)

Listing 1.1: ODE routine.
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We can note the following details about Listing 1.1.

• The R library of ODE numerical integrators, deSolve, is speci-
fied. The contents of this library will be discussed subsequently
through examples.

#
# Library of R ODE solvers

library("deSolve")

• The parameters from Table 1.2 for the engineered yeast strain
BP10001 are defined numerically.

#
# Parameter values for BP10001

k1=8.87e-03;
k2=13.18;
k3=0.129;
k4=0.497;
k5=0.027;
k6=0.545e-3;
km2=87.7;
km3=99.9;

• The ICs of Table 1.3 are defined numerically through the use of
the R vector utility c (which defines a vector, in this case yini).
This statement illustrates a feature of R that requires careful
attention, that is, there are reserved names such as c that should
not be used in other ways such as the definition of a variable
with the name c.

#
# Initial condition

yini=c(y1=0.10724,y2=0,y3=0,y4=0,y5=0,y6=0,y7=0)
yini
ncall=0;

Also, the naming of the variables is open for choice (except for
reserved names). Here, we select something easy to program,
that is, y1 to y7 but programming in terms of problem-oriented
variables is illustrated subsequently. Also, the elements in the
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IC vector yini are displayed by listing the name of the vec-
tor on a separate line. This is an obvious but important step to
ensure that the ICs are correct as a starting point for the solution.
Finally, the number of calls to the ODE function, bioreactor_1,
is initialized.

• The values of t (in eqs. (1.1)) at which the solution is to be
displayed are defined as the vector times. In this case, the R
function seq is used to define the sequence of 51 values t =
0, 40, . . . , 2000.

#
# t interval
nout=51
times=seq(from=0,to=2000,by=40)

To give good resolution (smoothness) of the plots of the solu-
tions, 51 was selected (discussed subsequently).

• Eqs. (1.1) are programmed in a function bioreactor_1.

#
# ODE programming
bioreactor_1=function(t,y,parms) {
with(as.list(y),

{

We can note the following details about function bioreactor_1.

— The function is defined with three input arguments,
t,y,parms. Also, a left brace, {, is used to start the function
that is matched with a right brace, }, at the end of the
function.

— The input argument y is a list (rather than a numerical vector)
specified with with(as.list(y), (this statement is optional
and is not used in subsequent ODE routines). The second {

starts the with statement.

— The seven dependent variables, y1 to y7, are placed in
problem-oriented variables, xylose to glycerol, to facilitate
the programming of eqs. (1.1).
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#
# Assign state variables:
xylose =y1;
xylitol =y2;
xylulose =y3;
acetaldehyde=y4;
ethanol =y5;
acetate =y6;
glycerol =y7;

— The fluxes of eqs. (1.2) are programmed.

#
# Compute fluxes
J1=k1*xylose;
J2=k2*xylitol-km2*xylulose*ethanol;
J3=k3*xylulose-km3*acetaldehyde*ethanol;
J4=k4*acetaldehyde;
J5=k5*acetaldehyde;
J6=k6*xylulose;

— The ODEs of eqs. (1.1) are programmed, with the left-hand
side (LHS) derivatives placed in the variables f1 to f7. For
example, d [xylose]/dt → f1.

#
# Time derivatives
f1=-J1;
f2=J1-J2;
f3=J2-2*J3-2*J6;
f4=3*J3-J4-J5;
f5=J4;
f6=J5;
f7=3*J6;

— The number of calls to bioreactor_1 is incremented and
returned to the calling program with <<-.

#
# Calls to bioreactor_1
ncall <<- ncall+1
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This use of <<- illustrates a basic property of R, that is,
numerical values set in a subordinate routine are not shared
with higher level routines without explicit programming such
as <<-.

— The vector of derivatives is returned from bioreactor_1 as
a list.

#
# Return derivative vector

list(c(f1,f2,f3,f4,f5,f6,f7))
})

}

Note the use of the R vector utility c. The }) ends the
with statement and the second } concludes the function
bioreactor_1. In other words, the derivative vector is
returned from bioreactor_1 as a list. This is a requirement
of the ODE integrators in the library deSolve. This
completes the programming of bioreactor_1. We should
note that this function is part of the program of Listing 1.1.
That is, this function is in-line and is defined (programmed)
before it is called (used). An alternative would be to
formulate bioreactor_1 as a separate function; this is done
in the next example.

• Eqs. (1.1) are integrated numerically by a call to the R library
integrator ode (which is part of deSolve).

#
# ODE integration
out=ode(y=yini,times=times,func=bioreactor_1,

parms=NULL)

We can note the following details about this call to ode.

— The inputs to ode are (i) yini, the IC vector; (ii) times, the
vector of output values of t ; and (iii) bioreactor_1 to define
the RHSs of eqs. (1.1). These inputs define the ODE system
of eqs. (1.1) as expected.
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— The fourth input argument, parms, can be used to provide
a vector of parameters. In the present case, it is unused.
However, a vector of parameters, k1 to km3, was defined
previously for use in bioreactor_1. This sharing of the
parameters with bioreactor_1 illustrates a basic property of
R: Numerical values set in a higher level routine are shared
with subordinate routines (e.g., functions) without any special
designation for this sharing to occur.

— ode has as a default the ODE integrator lsoda [10]. The
a in the name lsoda stands for “automatic,” meaning
that lsoda automatically switches between a stiff option
and a nonstiff option as the numerical integration of the
ODE system proceeds. The significance of stiffness will be
discussed in the following and in subsequent chapters. Here
we mention only that this is a sophisticated feature intended
to relieve the analyst of having to specify a stiff or nonstiff
integrator. lsoda also has a selection of options that can be
specified when it is called via ode such as error tolerances
for the ODE integration. Experimentation with these options
(rather than the use of the defaults) may improve the
performance of ode. In the present case, only the defaults
are used.

— The numerical solution of the ODE system is returned from
ode as a 2D array, in this case out. The first index of this
solution array is for the output values of the independent
variable (t). The second index is for the numerical solution
of the ODEs. For example, out in the present case has the
dimensions out[51,1+7] corresponding to (i) the 51 out-
put values t = 0, 40, . . . , 2000 (defined previously) and (ii)
the seven dependent variables of eqs. (1.1) plus the one
independent variable t . For example, out[1,1] is the value
t = 0 and out[51,1] is the value t = 2000. out[1,2] is
(from eq. (1.1a) and Table 1.3) [xylose](t = 0) = 0.10724
and out[51,2] is [xylose](t = 2000). out[1,8] is (from eq.
(1.1g) and Table 1.3) [glycerol](t = 0) = 0 and out[51,8] is
[glycerol](t = 2000). An understanding of the arrangement
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of the output array is essential for subsequent numerical and
graphical (plotted) display of the solution.

— ode receives the number of output values of the solution
from the length of the vector of output values of the inde-
pendent variable. For example, times has 51 elements (t =
0, 40, . . . , 2000) that define the first dimension of the output
array as 51 (in out[51,1+7]).

— ode receives the number of ODEs to be integrated from
the length of the IC vector. For example, yini has seven
elements that define the second dimension of the output array
as out[51,1+7] (with the one added to include t).

• The numerical solution is displayed at the nout =51 output val-
ues of t through a for loop. For it=1 (t = 0), a heading for the
numerical solution is displayed.

#
# ODE numerical solution
for(it in 1:nout){
if(it==1){
cat(sprintf(
"\n t y1 y2 y3 y4

y5 y6 y7"))}
cat(sprintf("\n %8.0f%8.4f%8.4f%8.4f%8.4f%8.4f%8.4f

%8.4f",
out[it,1],out[it,2],out[it,3],out[it,4],
out[it,5],out[it,6],out[it,7],out[it,8]))

}

Note the use of the 51 × (1 + 7) values in out. Also, the com-
bination of the R utilities cat and sprintf provides formatting
that is used in other languages (e.g., C, C++, Matlab).

• The number of calls to bioreactor_1 is displayed at the end
of the solution to give an indication of the computational effort
required to compute the solution.

#
# Calls to bioreactor_1
cat(sprintf("\n ncall = %5d\n\n",ncall))
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• Finally, the solutions of eqs. (1.1) are plotted with the R utility
plot.

#
# Set of 7 plots

plot(out)

A complete plot is produced with just this abbreviated use of
out. plot has a variety of options to format the graphical output
that will be considered in subsequent applications.

1.4 Numerical and Graphical Outputs

Abbreviated numerical output from Listing 1.1 is given in Table 1.4.
We can note the following details about this output.

TABLE 1.4 Abbreviated numerical output from Listing 1.1.

t y1 y2 y3 y4 y5 y6 y7
0 0.1072 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

40 0.0752 0.0020 0.0153 0.0009 0.0195 0.0011 0.0006
80 0.0527 0.0053 0.0221 0.0008 0.0361 0.0020 0.0018
120 0.0370 0.0081 0.0245 0.0006 0.0497 0.0027 0.0034
160 0.0259 0.0101 0.0248 0.0005 0.0608 0.0033 0.0050
200 0.0182 0.0112 0.0239 0.0004 0.0702 0.0038 0.0066

. .

. .

. .
Output for t = 240 to 1760 removed
. .
. .
. .

1800 0.0000 0.0004 0.0004 0.0000 0.1303 0.0071 0.0222
1840 0.0000 0.0003 0.0004 0.0000 0.1304 0.0071 0.0223
1880 0.0000 0.0003 0.0004 0.0000 0.1305 0.0071 0.0223
1920 0.0000 0.0003 0.0003 0.0000 0.1306 0.0071 0.0223
1960 0.0000 0.0003 0.0003 0.0000 0.1306 0.0071 0.0223
2000 0.0000 0.0002 0.0003 0.0000 0.1307 0.0071 0.0223

ncall = 427
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• The ICs (at t = 0) correspond to the values in Table 1.3. While
this may seem to be an obvious fact, it is a worthwhile check to
ensure that the solution has the correct starting values.

• The solutions approach steady-state conditions as t → 2000.
Note in particular that y1 (for xylose from eq. (1.1a)) approaches
zero as the the reactant that drives the system is nearly con-
sumed. Also, y5 (for ethanol from eq. (1.1e)) approaches 0.1307
indicating a significant production of ethanol, the product of
primary interest (e.g., possibly to be used as a fuel). y7 (for
glycerol from eq. (1.1g)) approaches 0.0223 and might represent
a contaminant that would have to be subsequently reduced by
a separation process; this is rather typical of reaction systems,
that is, they usually produce undesirable by-products.

• The computational effort is quite modest, ncall = 427 (the rea-
son for calling this “modest” is explained subsequently).

The graphical output is given in Fig. 1.1. We can note the following
about Fig. 1.1.

• The plotting utility plot provides automatic scaling of each of
the seven dependent variables. Also, the default of plot is the
solid lines connecting the values in Table 1.4; alternative options
provide discrete points, or points connected by lines.

• The initial (t = 0) values reflect the ICs of Table 1.3 and the
final values (t → 2000) reflect the values of Table 1.4.

• The solutions have their largest derivatives at the beginning
which is typical of ODE systems (the LHSs of eqs. (1.2) is
largest initially).

• The plots are smooth with 51 points.

A fundamental question remains concerning the accuracy of the
solution in Table 1.4. As an exact (i.e., analytical, mathematical,
closed form) solution is not available for eqs. (1.1) (primarily because
they are nonlinear as discussed previously), we cannot directly deter-
mine the accuracy of the numerical solution by comparison with an
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Figure 1.1 Solutions to eqs. (1.1).

exact solution (and if such a solution was available, there would really
be no need to compute a numerical solution).

We therefore must use a method of accuracy evaluation that is
built on the numerical approach. For example, we could change the
specified error tolerances for lsoda (via the call to ode) and compare
the solutions as the error tolerances are changed. Or we could use
other ODE integrators (other than lsoda) and compare the solutions
from different integrators (this approach is discussed in a subsequent
example). In any case, some form of error analysis is an essential
part of any numerical procedure to give reasonable confidence that
the numerical solution has acceptable accuracy.

Finally, with the operational code of Listing 1.1, we can now per-
form studies (experiments) that will contribute to an understanding
of the problem system (which is usually the ultimate objective in
developing a mathematical model) on the computer. For example,
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the effect of changing the model parameters, termed the parameter
sensitivity, can be carried out by observing the changes in the solu-
tions as parameters are varied. As an example, the BP000 parameters
of Table 1.2 can be used in place of the BP10001 parameters (in List-
ing 1.1) to investigate the effect of using an engineered yeast strain
(BP10001) in place of a wild-type yeast strain (BP000). Ideally, an
increase in ethanol production would be observed (the final value of
y5 in Table 1.4 would increase), indicating that the engineered yeast
strain can improve the efficiency of ethanol production.

This type of parameter sensitivity analysis presupposes available
values of the model parameters that reflect the performance of the
problem system, and these parameters might have to be measured
experimentally, for example, by comparing the model solution with
laboratory data, and/or estimated using available theory. A good
example of the comparison of the ethanol model solution with
experimental data is given in [1] for BP000 (Fig. 2.7) and BP10001
(Fig. 2.8).

1.5 Separate ODE Routine

Variations of the coding in Listing 1.1 will now be considered. The
intent is to produce a more flexible modular format and to enhance
the graphical output. The main program now is in Listing 1.2 (in
place of Listing 1.1)

#
# Library of R ODE solvers

library("deSolve")
#
# ODE routine

setwd("c:/R/bme_ode/chap1")
source("bioreactor_2.R")

#
# Parameter values for BP10001

k1=8.87e-03;
k2=13.18;
k3=0.129;
k4=0.497;
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k5=0.027;
k6=0.545e-3;
km2=87.7;
km3=99.9;

#
# Initial condition
yini=c(0.10724,0,0,0,0,0,0)
ncall=0;

#
# t interval
nout=51
times=seq(from=0,to=2000,by=40)

#
# ODE integration
out=ode(y=yini,times=times,func=bioreactor_2,parms=NULL)

#
# ODE numerical solution
for(it in 1:nout){
if(it==1){
cat(sprintf(
"\n t y1 y2 y3 y4 y5

y6 y7"))}
cat(sprintf("\n %8.0f%8.4f%8.4f%8.4f%8.4f%8.4f%8.4f

%8.4f",
out[it,1],out[it,2],out[it,3],out[it,4],
out[it,5],out[it,6],out[it,7],out[it,8]))

}
#
# Calls to bioreactor_2
cat(sprintf("\n ncall = %5d\n\n",ncall))

#
# Single plot
par(mfrow=c(1,1))

#
# y1
plot(out[,1],out[,2],type="l",xlab="t",ylab="y1(t),...,

y7(t)",
xlim=c(0,2000),ylim=c(0,0.14),lty=1, main="y1(t),...,

y7(t) vs t",
lwd=2)

#
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# y2
lines(out[,1],out[,3],type="l",lty=2,lwd=2)

#
# y3

lines(out[,1],out[,4],type="l",lty=3,lwd=2)
#
# y4

lines(out[,1],out[,5],type="l",lty=4,lwd=2)
#
# y5

lines(out[,1],out[,6],type="l",lty=5,lwd=2)
#
# y6

lines(out[,1],out[,7],type="l",lty=6,lwd=2)
#
# y7

lines(out[,1],out[,8],type="l",lty=7,lwd=2)

Listing 1.2: Main program with separate ODE routine.

We can note the following details about Listing 1.2.

• library("deSolve") is used again (as in Listing 1.1) in order
to access the ODE integrator ode. In addition, the separate ODE
routine bioreactor_2 is accessed through the setwd and source

R utilities.

#
# Library of R ODE solvers
library("deSolve")

#
# ODE routine
setwd("c:/R/bme_ode/chap1")
source("bioreactor_2.R")

To explain the use of setwd and source:

— setwd, set woking directory, is used to go to a directory
(folder) where the R routines are located. Note in particular
the use of the forward slash / rather than the usual
backslash \.
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— source identifies a particular file within the directory
identified by the setwd; in this case, the ODE routine
bioreactor_2 is called by ode.

— These two statements could be combined as

source("c:/R/bme_ode/chap1/bioreactor_2.R")

If the R application uses a series of files from the same direc-
tory, using the setwd is usually simpler; a series of source

statements can then be used access the required files.

• The sections of Listing 1.2 for setting the parameters, IC and t
interval, are the same as in Listing 1.1 and are therefore not dis-
cussed here. The call to ode uses the ODE routine bioreactor_2

(Listing 1.3) rather than bioreactor_1 (Listing 1.1).

#
# ODE integration

out=ode(y=yini,times=times,func=bioreactor_2,
parms=NULL)

Again, the ODE solution is returned in 2D array out for subse-
quent display. bioreactor_2 is in a separate routine rather than
placed in-line as in Listing 1.1, which makes the coding more
modular and easier to follow.

• The display of the numerical solution is the same as in Listing
1.1 so this code is not discussed here.

• The number of calls to bioreactor_3 (returned from
bioreactor_2 at the end of the solution, i.e., at t = 2000) is
displayed.

#
# Calls to bioreactor_2

cat(sprintf("\n ncall = %5d\n\n",ncall))

• The graphical output is extended to produce a single plot with
the seven ODE solution curves.

#
# Single plot
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par(mfrow=c(1,1))
#
# y1
plot(out[,1],out[,2],type="l",xlab="t",ylab="y1(t),

...,y7(t)",
xlim=c(0,2000),ylim=c(0,0.14),lty=1, main="y1(t),

...,y7(t) vs t",
lwd=2)

#
# y2
lines(out[,1],out[,3],type="l",lty=2,lwd=2)

#
# y3
lines(out[,1],out[,4],type="l",lty=3,lwd=2)

#
# y4
lines(out[,1],out[,5],type="l",lty=4,lwd=2)

#
# y5
lines(out[,1],out[,6],type="l",lty=5,lwd=2)

#
# y6
lines(out[,1],out[,7],type="l",lty=6,lwd=2)

#
# y7
lines(out[,1],out[,8],type="l",lty=7,lwd=2)

To explain this coding,

— A 1 × 1 array of plots is specified, that is, a single plot;

#
# Single plot

par(mfrow=c(1,1))

— plot is used with a series of parameters for y1(t).

#
# y1

plot(out[,1],out[,2],type="l",xlab="t",ylab="y1
(t),...,y7(t)",
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xlim=c(0,2000),ylim=c(0,0.14),lty=1, main="y1
(t),...,y7(t) vs t",

lwd=2)

These parameters are:

out[,1],out[,2] plotted to give a solution curve for eq.
(1.1a) of y1 versus t ;

type="l" designates a line type of the solution curve (rather
than a point type);

xlab="t" specifies the label t on the abcissa (horizontal)
axis;

ylab="y1(t),...,y7(t)" specifies the label on the ordinate
(vertical) axis;

xlim=c(0,2000) scales the horizontal axis for 0 ≤ t ≤ 2000;

ylim=c(0,0.14) scales the vertical axis to include the range
of values from y1 to y7;

lty=1 sets the type of line for the first solution as reflected
in Fig. 1.2;

main="y1(t),...,y7(t) vs t" specifies a main label or
title for the plot as reflected in Fig. 1.2;

lwd=2 sets the line width for the first solution as reflected in
Fig. 1.2.

• y2(t) is included as a second solution with the R utility lines by
plotting out[,1],out[,3]. The parameters are the same as for
the previous call to plot except lty=2, which specifies a second
type of line as reflected in Fig. 1.2.

#
# y2

lines(out[,1],out[,3],type="l",lty=2,lwd=2)

• y3(t) to y7(t) are plotted in the same way with lines. For
example, y7(t) is plotted as

#
# y7
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Figure 1.2 Solutions to eqs. (1.1) using a separate ODE routine.

lines(out[,1],out[,8],type="l",lty=7,lwd=2)

with a line type specified as lty=7, which specifies a seventh
type of line as reflected in Fig. 1.2.

bioreactor_2 in Listing 1.3 is a separate routine called by ode.

bioreactor_2=function(t,y,parms) {
#
# Assign state variables:

xylose =y[1];
xylitol =y[2];
xylulose =y[3];
acetaldehyde=y[4];
ethanol =y[5];
acetate =y[6];
glycerol =y[7];

#
# Compute fluxes

J1=k1*xylose;
J2=k2*xylitol-km2*xylulose*ethanol;
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J3=k3*xylulose-km3*acetaldehyde*ethanol;
J4=k4*acetaldehyde;
J5=k5*acetaldehyde;
J6=k6*xylulose;

#
# Time derivatives
f1=-J1;
f2=J1-J2;
f3=J2-2*J3-2*J6;
f4=3*J3-J4-J5;
f5=J4;
f6=J5;
f7=3*J6;

#
# Calls to bioreactor_2
ncall <<- ncall+1

#
# Return derivative vector
return(list(c(f1,f2,f3,f4,f5,f6,f7)))

}

Listing 1.3: ODE routine bioreactor_2.

bioreactor_2 is the same as bioreactor_1 of Listing 1.1 except
for the following details.

• The function is defined as in Listing 1.1, but the statement spec-
ifying y as a list (with(as.list(y)) is not used.

bioreactor_2=function(t,y,parms) {

• The dependent variables constitute a vector (y[1],...,y[7])
rather than a list of scalars (y1,...,y7) as in Listing 1.1. In
other words, the input argument of bioreactor_2, y, is a vector
and not a list.

• At the end, the calls to bioreactor_3 is incremented and
returned to the main program of Listing 1.2 with <<-.

#
# Calls to bioreactor_2

ncall <<- ncall+1
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• Finally, the derivatives f1 to f7 are placed in a vector with c

that is returned from bioreactor_2 (to lsoda in ode) as a list
(as required by the ODE integrators in deSolve).

#
# Return derivative vector
return(list(c(f1,f2,f3,f4,f5,f6,f7)))

}

The right-hand bracket } concludes bioreactor_2.

The numerical output from Listing 1.2 is identical to that of Listing
1.1 as expected because the only difference in the coding is the use
of the separate ODE routine bioreactor_2. The graphical output is
given in Fig. 1.2. Note the composite plot of Fig 1.2 rather than the
separate plots of Fig 1.1.

This concludes the example with a separate ODE routine. The
intent is primarily to demonstrate the use of subordinate functions to
modularize the code (rather than having it all in one routine such as
in Listing 1.1). This modularization becomes increasingly useful as
the complexity of the application increases because it can be used to
organize the code into small, more easily manageable sections.

1.6 Alternative Forms of ODE Coding

We now consider variations of the coding in the preceding Listings
1.1–1.3. The intention is primarily to introduce alternatives that can
be useful, particularly as the number of ODEs increases (beyond the
7 of eqs. (1.1)).

In the following example, the main program is the same as in List-
ing 1.2 except for the use of bioreactor_3 in place of bioreactor_2.

#
# ODE integration

out=ode(y=yini,times=times,func=bioreactor_3,parms=NULL)

bioreactor_3 is similar to bioreactor_2 in Listing 1.3, except
that the fluxes and the derivatives are programmed as vectors (Listing
1.4).
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bioreactor_3=function(t,y,parms) {
#
# Assign state variables:
xylose =y[1];
xylitol =y[2];
xylulose =y[3];
acetaldehyde=y[4];
ethanol =y[5];
acetate =y[6];
glycerol =y[7];

#
# Compute fluxes
J=rep(0,n)
J[1]=k1*xylose;
J[2]=k2*xylitol-km2*xylulose*ethanol;
J[3]=k3*xylulose-km3*acetaldehyde*ethanol;
J[4]=k4*acetaldehyde;
J[5]=k5*acetaldehyde;
J[6]=k6*xylulose;

#
# Time derivatives
f=rep(0,n)
f[1]=-J[1];
f[2]=J[1]-J[2];
f[3]=J[2]-2*J[3]-2*J[6];
f[4]=3*J[3]-J[4]-J[5];
f[5]=J[4];
f[6]=J[5];
f[7]=3*J[6];

#
# Calls to bioreactor_3
ncall <<- ncall+1

#
# Return derivative vector
return(list(c(f)))

}

Listing 1.4: ODE routine with vectors to facilitate the ODE program-
ming.



26 Introduction to Ordinary Differential Equation Analysis

We can note the following details about bioreactor_3.

• The sizes of the vectors for the fluxes and derivatives are declared
using the R utility rep before the vectors are used.

#
# Compute fluxes
J=rep(0,n)

.

.

.
#
# Time derivatives
f=rep(0,n)

This is in contrast with some other programming languages that
dynamically allocate memory as arrays are defined (first used).
Thus, we might say that the rep “preallocates” the vectors J and
f. In this case, initial values of the n elements of J and f are set
to zero, then reset with the subsequent programming.

• The derivative vector f is returned from bioreactor_3 (to
lsoda in ode) as a list (as required by the ODE integrators in
deSolve).

#
# Return derivative vector
return(list(c(f)))

}

The intent of this example is to demonstrate how vectors can be
used in programming ODEs, which can be particularly useful as the
number of ODEs increases. As expected, the numerical and graphical
outputs are the same as in the preceding discussion.

1.7 ODE Integrator Selection

As mentioned previously, the R utility ode is based (as a default)
on the lsoda ODE integrator which has the distinguishing feature
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of switching between stiff and nonstiff algorithms.1 Another vari-
ation that is quite important for stiff ODE systems is the use of
sparse matrix algorithms to conserve storage (memory) and enhance
computational efficiency.

Here, we will not consider sparse matrix methods other than to
point out that they have been implemented in an ODE integrator
lsodes where the final “s” in this name designates sparse. lsodes
is part of the deSolve library of ODE integrators and can be readily
accessed. To illustrate how this is done, the previous main program
in Listing 1.2 can be modified with the statements for the ODE inte-
gration.

#
# ODE integration
# out= ode(y=yini,times=times,func=bioreactor_4,

parms=NULL,method="lsodes")
out=lsodes(y=yini,times=times,func=bioreactor_4,

parms=NULL)

Listing 1.5: Modification of Listing 1.2 to call ODE integrator
lsodes.

We can note the following details about this code.

• In the call to ode (inactive or commented), lsodes is called
as method="lsodes". This form of argument can be applied
to an extensive set of ODE integrators in ode, both stiff and
nonstiff.

• In the second line (without ode), lsodes is called explicitly.

As expected, both forms give the same numerical output as in
Table 1.4. Also, they are based on the default options for lsodes.
A variety of options are available, particularly pertaining to sparse
matrix ODE integration that might be very effective as the number
of ODEs increases. The details of these options are given in the R

1The concepts of stiffness and explicit integration are discussed in detail in [6];
Appendix C, [8].
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documentation for lsodes and in [10]. The ODE routine called by
lsodes, bioreactor_4, is the same as bioreactor_3 in Listing 1.4
(the number was changed just to keep each case of the programming
distinct and self-contained).

1.8 Euler Method

We have so far numerically integrated eqs. (1.1) by using a library
integrator in deSolve. The integrators that are available in this way
are of high quality and well established. However, we do not have
access to the source code of these integrators and therefore the pro-
grammed details of the numerical integration are not available explic-
itly. We, therefore, now consider the programing of some classic
ODE integration algorithms mainly to demonstrate how systems of
ODEs can be integrated numerically. In other words, the discussion
of numerical ODE integration to follow is intended to be introductory
and instructional, and thereby give some insight into the computation
performed by library integrators such as those in deSolve.2

The Taylor series is the starting point for most numerical inte-
grators. We illustrate this approach starting with the most basic of
all ODE integrators, the Euler method. A single ODE with an IC is
considered in the following development.

dy

dt
= f (y , t); y(t = t0) = y0 (1.3a),(1.3b)

where the derivative function f (y , t) and the IC y0 at t0 are specified
for a particular ODE problem.

The solution of eq. (1.3a) is expressed as a Taylor series at point i

yi+1 = yi + dyi

dt
h + d2yi

dt2

h2

2!
+ · · ·

where h = ti+1 − ti . We can truncate this series after the linear term
in h

yi+1 ≈ yi + dyi

dt
h (1.4)

2Numerical methods for initial-value ODEs are discussed in [2–5 and 9].
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and use this approximation to step along the solution from y0 to y1

(with i = 0), then from y1 to y2 (with i = 1), etc., for a specified
integration step h . This is the famous Euler method, the most basic
of all ODE numerical integration methods. Note that eq. (1.4) requires
only dyi/dt , which is available from eq. (1.3a). The starting value
for this stepping procedure, y0, is available from eq. (1.3b).

Eq. (1.4) is implemented in the following variation of Listing 1.2
(Listing 1.6a) in which the ODE integration via ode is replaced with
in-line coding of eq. (1.4).

#
# ODE routine
setwd("c:/R/bme_ode/chap1")
source("bioreactor_5.R")

#
# Parameter values for BP10001
k1=8.87e-03;
k2=13.18;
k3=0.129;
k4=0.497;
k5=0.027;
k6=0.545e-3;
km2=87.7;
km3=99.9;

#
# Initial condition
n=7;nout=51;t=0;ncall=0;
y=c(0.10724,0,0,0,0,0,0)
cat(sprintf(
"\n t y1 y2 y3 y4 y5

y6 y7"))
cat(sprintf("\n %8.0f%8.4f%8.4f%8.4f%8.4f%8.4f%8.4f

%8.4f",
t,y[1],y[2],y[3],y[4],y[5],y[6],y[7]))

#
# Arrays for output
out=matrix(0,nrow=nout,ncol=(n+1))
out[1,-1]=y
out[1,1]=t

#
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# Parameters for t integration
# nt=400;h=0.10 # unstable

nt=800;h=0.05 # stable
#
# Euler integration

for(i1 in 2:nout){
#
# nt Euler steps

for(i2 in 1:nt){
yt=bioreactor_5(t,y);
y=y+yt*h; t=t+h;

}
#
# Solution after nt Euler steps

cat(sprintf("\n %8.0f%8.4f%8.4f%8.4f%8.4f%8.4f%8.4f
%8.4f",

t,y[1],y[2],y[3],y[4],y[5],y[6],y[7]))
out[i1,-1]=y
out[i1,1]=t

}
#
# Calls to bioreactor_5

cat(sprintf("\n ncall = %5d\n\n",ncall))
#
# Single plot

par(mfrow=c(1,1))
#
# y1

plot(out[,1],out[,2],type="l",xlab="t",ylab="y1(t),...,
y7(t)",

xlim=c(0,2000),ylim=c(0,0.14),lty=1, main="y1(t),...,
y7(t) vs t",

lwd=2)
#
# y2

lines(out[,1],out[,3],type="l",lty=2,lwd=2)
#
# y3

lines(out[,1],out[,4],type="l",lty=3,lwd=2)
#
# y4
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lines(out[,1],out[,5],type="l",lty=4,lwd=2)
#
# y5
lines(out[,1],out[,6],type="l",lty=5,lwd=2)

#
# y6
lines(out[,1],out[,7],type="l",lty=6,lwd=2)

#
# y7
lines(out[,1],out[,8],type="l",lty=7,lwd=2)

Listing 1.6a: Main program with in-line explicit Euler method.

We can note the following details about Listing 1.6a.

• reactor_5.R is the ODE routine (rather than reactor_3.R,
reactor_4.R). The differences in reactor_5.R are considered
subsequently.

#
# ODE routine

setwd("c:/R/bme_ode/chap1")
source("bioreactor_5.R")

• The section for setting the parameters k1 to km3 is the same as
in Listings 1.1 and 1.2 and is therefore not repeated here.

• The IC is placed in vector c, then displayed with a heading.

#
# Initial condition

n=7;nout=51;t=0;ncall=0;
y=c(0.10724,0,0,0,0,0,0)
cat(sprintf(
"\n t y1 y2 y3 y4 y5

y6 y7"))
cat(sprintf("\n %8.0f%8.4f%8.4f%8.4f%8.4f%8.4f%8.4f

%8.4f",
t,y[1],y[2],y[3],y[4],y[5],y[6],y[7]))

Note in particular the number of ODEs, n=7, and the number of
output points nout=51.
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• An array out is defined for the numerical solution that has the
same format as out in Listings 1.1 and 1.2.

#
# Arrays for output
out=matrix(0,nrow=nout,ncol=(n+1))
out[1,-1]=y
out[1,1]=t

To further explain this programming,

— out is defined as a 2D array with the R utility matrix. outs
has nout (= 51) rows for the output points in t set previ-
ously and (n+1) = 7 + 1 columns for the seven dependent
variables of eqs. (1.1) and the independent variable t .

out=matrix(0,nrow=nout,ncol=(n+1))

— The first index of out is 1 corresponding to t = 0.

— The second index (subscript) of out indicates all values
except 1, that is, −1. In this case, there are seven values
corresponding to the ICs for y set previously.

out[1,-1]=y

— The initial value of t(= 0) is placed in out with the second
subscript set to 1.

out[1,1]=t

• The integration step h in eq. (1.4) is set numerically. This is
typically done by some trial and error. For example, because
0 ≤ t ≤ 2000, h = 0.1 corresponds to (2000)/(0.1) = 20, 000
Euler steps. However, when this value is used, the solution is
unstable as will be demonstrated subsequently. With h = 0.05,
the solution is stable (and as we will observe, also accurate). In
other words, h generally has to be selected so that the numerical
solution is stable and accurate.

#
# Parameters for t integration
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# nt=400;h=0.10 # unstable
nt=800;h=0.05 # stable

Once h is defined, the number of Euler steps, nt, to span the
output interval of 40 is nt = 40/0.05 = 800. In other words, 800
Euler steps according to eq. (1.4) are completed for each output
at t = 40, 80, . . . , 2000. This is in contrast with the variable step
integrators in ode which adjust h to achieve a prescribed accuracy
of the numerical solution and therefore may take many fewer
steps than 800 for each output interval 40. For example, lsoda
required ncall = 427 (Table 1.4) calls to the ODE integrator,
whereas the Euler integrator of Listing 1.6a requires 2000/0.05
= 40,000 calls to the ODE routine, bioreactor_5. This larger
number (40,000 rather than 427) is a manifestation of stiffness of
eqs. (1.1). In other words, the Euler method requires 40,000 steps
to main stability of the numerical solution rather than accuracy.
Thus, the effectiveness of the stiff integrator of lsoda for this
example (eqs. (1.1)) is clear.

• The Euler integration proceeds with two for loops.

#
# Euler integration

for(i1 in 2:nout){
#
# nt Euler steps

for(i2 in 1:nt){
yt=bioreactor_5(t,y);
y=y+yt*h; t=t+h;

}

The first loop with index i1 steps through the 50 output points
t = 40, 80, . . . , 2000 (after t = 0). The second loop with index
i2 steps through the 800 Euler steps for each output (so that there
are a total of 50 × 800 = 40, 000 Euler steps for the complete
solution to t = 2000). Within this second loop, the derivative
vector dyi/dt in eq. (1.4) is computed by a call to the ODE
routine bioreactor_5 (yt has seven elements but the vector
facility of R is used so that subscripting is not required). Then,
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the solution is advanced from i to i + 1 according to eq. (1.4).
Also, t is advanced by the integration step h , that is, ti+1 =
ti + h .

• After each pass of the loop in i1, the solution is put into array
out for subsequent plotting.

#
# Solution after nt Euler steps

cat(sprintf("\n %8.0f%8.4f%8.4f%8.4f%8.4f%8.4f
%8.4f%8.4f",

t,y[1],y[2],y[3],y[4],y[5],y[6],y[7]))
out[i1,-1]=y
out[i1,1]=t

}

Note the use of index i1 when writing out. The final } completes
the loop in i1.

• Since array out is used in the same way as in Listings 1.1, 1.2,
and 1.5 (with ode and lsodes), the plotting used previously can
be used again (listed above but not here).

bioreactor_5 called by the main program in Listing 1.6a is in List-
ing 1.6b. It is the same as bioreactor_3 and bioreactor_4 except
for the final line that returns the derivative vector f.

bioreactor_5=function(t,y,parms) {
. .
. .

(same as bioreactor_3, bioreactor_4)
. .
. .

#
# Return derivative vector

return(c(f))
}

Listing 1.6b: bioreactor_5.R called in Listing 1.6a.

The difference in the return statements

From Listing 1.4
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return(list(c(f))

From Listing 1.6b
return(c(f))

is small but important.
For Listing 1.4, return(list(c(f)) returns the derivative vector

f as a list that is required by the integrators in deSolve, for example,
ode, lsodes. For Listing 1.6b, return(c(f)) returns the derivative
vector f as a numerical vector, which is required in the programming
of the Euler method in Listing 1.6a. In particular, the arithmetic mul-
tiplication * used in y=y+yt*h must operate on two numerical objects,
in this case yt and h. If yt is a list rather than a numerical vector, the
multiplication * will not function (an error message results). While
this may seem like a minor detail, the distinction between a list and
a numerical object must be taken into consideration.

Abbreviated numerical output from Listings 1.6a and 1.6b is in
Table 1.5.

This output is identical to the output in Table 1.4 to four figures,
for example, at t = 2000,

Table 1.4

2000 0.0000 0.0002 0.0003 0.0000 0.1307 0.0071
0.0223

ncall = 427

Table 1.5

2000 0.0000 0.0002 0.0003 0.0000 0.1307 0.0071
0.0223

ncall = 40000

Thus, we conclude that the Euler method reproduces the out-
put from ode and lsodes for eqs. (1.1), which can be considered
a check on the numerical solutions. However, an essential differ-
ence in the programming was the need to provide an integration
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TABLE 1.5 Numerical output from Listings 1.6a and 1.6b,
h = 0.05.

t y1 y2 y3 y4 y5 y6 y7
0 0.1072 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
40 0.0752 0.0020 0.0153 0.0009 0.0195 0.0011 0.0006
80 0.0527 0.0053 0.0221 0.0008 0.0361 0.0020 0.0018

120 0.0370 0.0081 0.0246 0.0006 0.0497 0.0027 0.0034
160 0.0259 0.0101 0.0248 0.0005 0.0609 0.0033 0.0050
200 0.0182 0.0112 0.0239 0.0004 0.0702 0.0038 0.0066
240 0.0128 0.0116 0.0224 0.0004 0.0780 0.0042 0.0081

. .

. .

. .
Output for t = 280 to 1720 removed
. .
. .
. .

1760 0.0000 0.0004 0.0005 0.0000 0.1303 0.0071 0.0222
1800 0.0000 0.0004 0.0004 0.0000 0.1303 0.0071 0.0222
1840 0.0000 0.0003 0.0004 0.0000 0.1304 0.0071 0.0222
1880 0.0000 0.0003 0.0004 0.0000 0.1305 0.0071 0.0223
1920 0.0000 0.0003 0.0003 0.0000 0.1306 0.0071 0.0223
1960 0.0000 0.0003 0.0003 0.0000 0.1306 0.0071 0.0223
2000 0.0000 0.0002 0.0003 0.0000 0.1307 0.0071 0.0223

ncall = 40000

step (h in eq. (1.4)) for the Euler method, whereas ode and lsodes

automatically adjusted the step in accordance with the default error
tolerances for ode (lsoda) and lsodes. We next consider some addi-
tional consequences of using eq. (1.4).

1.9 Accuracy and Stability Constraints

We return to the important detail in Listing 1.6a pertaining to the
value of the integration step h and the stability of the numerical
solution.
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#
# Parameters for t integration
# nt=400;h=0.10 # unstable
nt=800;h=0.05 # stable

This limit on the value of h reflects the stability limit of the explicit
Euler method in eq. (1.4) where explicit refers to the direct (explicit)
calculation of yi+1 from yi . This calculation is straightforward but also
has a limit on h for the calculation to remain stable (as demonstrated
by the transition from h = 0.05 to h = 0.10).

To further investigate this limit with some basic ideas from linear
algebra [7, Appendix 2], we consider a n × n linear, constant coef-
ficient ODE system for which there will be an associated set of n
eigenvalues. The ODE system will be stable (have a stable solution)
if and only if (iff) all of the eigenvalues are in the left half of the
complex plane, that is, iff the real parts of the eigenvalues are non-
positive. However, even with a stable ODE system, the numerical
solution from an explicit algorithm such as the Euler method of eq.
(1.4) can be unstable unless the integration step h is restricted. For
the explicit Euler method, this stability limit is [4, p 230]

|λh| ≤ c (1.5)

with c = 2 for each eigenvalue λ; if the eigenvalue is complex, then
| | denotes a modulus (absolute value).

Eq. (1.5) indicates that the maximum step h for a stable solution
is set by the eigenvalue with the largest modulus, λmax. However,
the timescale for the ODE system, for example, 0 ≤ t ≤ 2000 of eqs.
(1.1), is determined by the eigenvalue with the smallest modulus,
λmin. Thus, the ratio

SR = λmax

λmin
(1.6)

termed the stiffness ratio (SR), is an indicator of the number of
steps required to compute a complete solution to an ODE system
with an explicit integrator such as eq. (1.4). As a qualitative guide-
line, the following Table 1.6 provides approximate ranges of values
of SR.
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TABLE 1.6 Qualitative degree of stiffness.

SR Stiffness

<100 nonstiff
100 ≤ SR ≤ 1000 moderately stiff

>1000 stiff

The effect of an increase in SR in Table 1.6 can be interpreted
as increased stiffness with the spread (spectrum, spectral radius) of
the ODE eigenvalues, that is, for a stiff ODE system, |λmax| >>

|λmin|. The requirement of using h = 0.05 (and not h = 0.1) with
(2000)(20) = 40, 000 Euler steps for a complete solution (in Listing
1.6a) suggests eqs. (1.1) are effectively stiff.

However, there is one additional complication. The preceding dis-
cussion of the SR based on eigenvalues presupposes a linear constant
coefficient ODE system. But eqs. (1.1) are nonlinear, so the use of the
concept of eigenvalues is not straightforward. We will just conclude
that if an ODE systems requires a large number of integration steps
for a complete numerical solution, the ODE system is effectively stiff
and therefore requires a stiff integrator to produce a solution with a
modest number of steps.

Then we have to consider what is a stiff integrator. The general
answer is that it is implicit rather than explicit. For example, rather
than use the explicit Euler method of eq. (1.4), we can use the implicit
form

yi+1 ≈ yi + dyi+1

dt
h (1.7)

The only difference between eqs. (1.4) and (1.7) is the point along
the solution at which the derivative dy/dt is evaluated (i for eq. (1.4)
and i + 1 for eq. (1.7)). While this may seem like a minor point, it
is important for at least two reasons.

• The constant c in eq. (1.5) is ∞. In other words, the implicit
Euler method is unconditionally stable and, therefore, there is
no stability restriction placed on h (the only restriction is from
accuracy).
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• Since yi+1 appears on both the sides of eq. (1.7), it is implicit in
the solution at the next point along the solution. For systems of
ODEs, this means that the solution of a system of simultaneous
algebraic equations is required to move from point i to point
i + 1 along the solution. If the ODEs are nonlinear, a system of
nonlinear algebraic equations must be solved numerically which
can be a formidable requirement (depending on the number of
ODEs and the form of their nonlinearities). Generally a variant
of Newton’s method is used to solve the nonlinear algebraic
system.

This discussion indicates that the stability limit of explicit methods
can be circumvented by using an implicit method, but this increased
stability comes at the cost of substantially increased computational
complexity.

Two other points should be mentioned.

• Because implicit (stiff) integrators require rather substantial com-
putation, they should be used only if the ODE system is actually
stiff. In other words, a nonstiff (explicit) integrator should be
tried first, and if it requires a small step (as in Listing 1.6a) to
maintain stability, a stiff (implicit) integrator should be consi-
dered.

• Nonlinearity in an ODE system does not necessarily mean that
the ODEs are stiff (a common misconception is to equate non-
linearity and stiffness).

These two points indicate that the choice of a stiff versus a
nonstiff ODE integrator may not be straightforward and clear cut.
To assist with this requirement, lsoda, the default integrator of
ode switches automatically between stiff and nonstiff options as
the solution proceeds; the “a” denotes the automatic switching,
which is based on the eigenvalue analysis. The details of lsoda are
rather complicated, but the final result is a well-established quality
integrator that can be used, for example, in ode without becoming
involved in the details.
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To conclude this discussion of the Euler method, if the integration
is done with h = 0.10 rather than h = 0.05, the output from Listing
1.6a (abbreviated) is given in Table 1.7.

TABLE 1.7 Numerical output from Listings 1.6a and 1.6b,
h = 0.10.

t y1 y2 y3 y4 y5 y6 y7
0 0.1072 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
40 0.0752 0.0020 0.0153 0.0009 0.0195 0.0011 0.0006
80 0.0527 0.0053 0.0221 0.0008 0.0361 0.0020 0.0018

120 0.0370 0.0081 0.0246 0.0006 0.0497 0.0027 0.0034
160 0.0259 0.0101 0.0248 0.0005 0.0609 0.0033 0.0050
200 0.018294287.4828-211142.0815175269.8277 11.5836 0.6293

-0.0091
240 0.0127 NaN NaN NaN NaN NaN NaN
280 0.0089 NaN NaN NaN NaN NaN NaN
320 0.0063 NaN NaN NaN NaN NaN NaN
360 0.0044 NaN NaN NaN NaN NaN NaN
400 0.0031 NaN NaN NaN NaN NaN NaN

. .

. .

. .
Output from t = 440 to 1760 deleted

. .

. .

. .
1800 0.0000 NaN NaN NaN NaN NaN NaN
1840 0.0000 NaN NaN NaN NaN NaN NaN
1880 0.0000 NaN NaN NaN NaN NaN NaN
1920 0.0000 NaN NaN NaN NaN NaN NaN
1960 0.0000 NaN NaN NaN NaN NaN NaN
2000 0.0000 NaN NaN NaN NaN NaN NaN

ncall = 20000

We can note the following details about this output.

• The solutions starts at the same ICs (t = 0) as in Table 1.5.
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• At t = 200, the numbers (not the correct numerical solution)
suddenly change, reflecting an instability in the calculations.

• For the remaining values of t , NaN (not a number) indicates the
calculations have failed.

• The number of calls to bioreactor_5 is 20,000, as expected
(because the integration h is doubled from 0.05 to 0.01). But
clearly, the doubling has violated the stability criterion (1.5).

In summary, lsoda performed 427 derivative evaluations while
the explicit Euler integrator performed (2000)(20) = 40, 000, a dif-
ference of nearly two orders of magnitude (a factor of 102). This
example clearly indicates the effectiveness of a stiff integrator (in
lsoda). However, we again indicate that a nonstiff integrator should
be tried first in case the ODE system is not stiff (and therefore the
increased computations for each step of a stiff integrator are not
required).

The integration step for explicit integrators may be constrained by
accuracy and/or stability. In the case of eqs. (1.1), h is constrained by
stability as reflected in Listing 1.6a and apparently not by accuracy
(recall the agreement of the solutions in Tables 1.4 and 1.5). However,
the explicit Euler method of eq. (1.4) can be constrained by accuracy
because it is only first-order correct (O(h)). Therefore, the explicit
integrators we discuss next are worth considering for a new nonstiff
ODE problem application because they are of higher order than the
first-order explicit Euler method of eq. (1.4). However, higher order
explicit methods do not have improved stability. For example, c in
eq. (1.5) generally does not exceed 3 even for higher order explicit
methods.

As a point of notation, O(h) used above denotes “of first order
in h” or “first-order correct” and is intended to indicate the error
resulting from the truncated Taylor series. For example, the Taylor
series is truncated after the h term to give the Euler method. This
can be stated alternatively, the truncation error is

error = O(h) = ct h
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where ct is taken as a constant (generally it will vary along the
solution). To demonstrate that the Euler method is first order, the
reader might compute the numerical solution of an ODE with an exact
solution (eqs. (1.1) does not have a known exact solution), then use
the exact error (as the absolute value of the difference between the
Euler solution and the exact solution at a particular t) for a series of h
values in a plot of the exact error versus h . This plot, for sufficiently
small h , will be a straight line with slope 1. For an nth order method
with O(hn), a plot in log-log format will be a line with slope n since

error = O(hn) = ct h
n

or

log(error) = nlog(h) + log(ct )

This type of graphical error analysis is usually done with the model
problem (a special case of eq. (1.3))

dy

dt
= λy; y(0) = y0

and the exact solution

y(t) = y0eλt

Note that for the eigenvalue λ ≤ 0, the exact solution is stable. There-
fore, this test problem can also be used to test the Euler stability
criterion of eq. (1.5) (with c = 2) by using a value of h greater than
2/|λ|. The calculations for this accuracy and stability analysis can
be carried out with a straightforward modification of Listings 1.6a
and 1.6b (routines for this purpose are provided with the software
download for this book).

If the ODE system is stiff and therefore the integration step of an
explicit method is constrained by stability, this constraint can usually
be circumvented by using an implicit method such as the implicit
Euler method of eq. (1.7); but the implicit Euler method of eq. (1.7) is
only first order so that a higher order implicit method is generally used
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to give both good accuracy and stability, for example, the stiff integra-
tor in lsoda. Implicit methods have the cost of additional calculations
for the solution of systems of nonlinear algebraic equations, but the
additional calculations are worthwhile for stiff systems (recall again
the improvement of two orders of magnitude between the explicit
Euler method of eq. (1.4) and the higher order implicit method of
lsoda).

1.10 Modified Euler Method as a Runge–Kutta
Method

The preceding discussion of the explicit Euler method of eq. (1.4)
indicated the limited first-order accuracy (the error is O(h)) resulting
from the truncation of the Taylor series after the h term. We now
consider how this order can be increased, basically by using additional
terms in the Taylor series.

yi+1 = yi + dyi

dt
h + d2yi

dt2

h2

2!
+ · · · (1.8)

For example, we might consider including the h2 term. To do this, we
have to use the second derivative d2yi/dt2 which is generally unavail-
able because the ODE, eq. (1.3a), provides only the first derivative.
One possibility would be to repeatedly differentiate the derivative
function (RHS of eq. (1.3a)) to obtain the higher order derivatives
that are required as more terms are included in the Taylor series.
But this quickly becomes impractical if we are considering an ODE
system. In other words, we need to have a procedure for including
the higher order terms in the Taylor series without having to differ-
entiate the ODEs. We now consider how this can be done with the
Runge–Kutta method.

If the second derivative is approximated as the finite difference of
the first derivative,

d2yi

dt2
≈ dyi+1/dt − dyi/dt

h
(1.9)
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then substitution of eq. (1.9) in eq. (1.8) with truncation after the h2

term gives

yi+1 = yi + dyi

dt
h +

dyi+1
dt − dyi

dt

h

h2

2!

= yi +
dyi+1

dt + dyi
dt

2
h (1.10)

Eq. (1.10) indicates that the derivatives at the base point i and the
advanced point i + 1 are averaged in stepping along the solution
(from yi to yi+1). The derivative yi+1/dt can be computed by sub-
stituting yi+1 from eq. (1.4) in the ODE, eq. (1.3a). This leads to an
algorithm with the following steps:

• Starting at the base point yi , ti , the ODE, eq. (1.3a), is used to
calculate dyi/dt

dyi

dt
= f (yi , ti ) (1.11a)

• Eq. (1.4) is used to calculate yi+1 (with ti+1 = ti + h) from the
result of eq. (1.11a).

yi+1 = yi + dyi

dt
h (1.11b)

• The ODE, eq. (1.3a), is used to calculate dyi+1/dt from the result
of eq. (1.11b).

dyi+1

dt
= f (yi+1, ti + h) (1.11c)

• Eq. (1.10) is used to calculate an improved yi+1 from the results
of eqs. (11.1a) and (1.11c).

yi+1 = yi +
dyi+1

dt + dyi
dt

2
h (1.11d)

Eqs. (1.11) are the modified Euler method (also termed the
extended Euler method or Heun’s method). Also, if we consider
yi+1 from eq. (1.11b) to be a predicted value, and yi+1 from eq.
(1.11d) to be a corrected value, eqs. (1.11) can be considered as
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a predictor–corrector scheme. An important point to note is that
eqs. (1.11) do not require differentiating the ODE, eq. (1.3a) (only
the ODE is used), but the final result of eq. (1.11d) is second-order
correct (the error is O(h2)). The cost of this improved accuracy
(O(h) of the Euler method, eq. (1.4), improved to O(h2) of the
modified Euler method, eqs. (1.11)), is an increase of one derivative
evaluation in eq. (1.4) to two derivatives evaluation in eqs. (1.11).
Usually, the increased accuracy is well worth the additional
calculational effort (additional derivative evaluations from the ODE).

In other words, we have achieved higher order accuracy without
differentiating the ODE by evaluating the derivative from the ODE at
selected points along the solution. In the case of the modified Euler
method, the selected points for derivative evaluation are (yi , ti ) and
(yi+1, ti+1) as reflected in eq. (1.11d). This idea of multiple evalu-
ation of the ODE derivative function along selected points of the
numerical solution to produce higher order methods is the basis of
the Runge–Kutta method.3 Therefore, we restate eqs. (1.11) in the
Runge–Kutta format so that we can then logically extend them to
higher order methods stated in the Runge–Kutta format.

k1 = f (yi , ti )h (1.12a)

yi+1 = yi + k1 (1.12b)

k2 = f (yi+1, ti+1)h = f (yi + k1, ti + h)h (1.12c)

yi+1 = yi + k1 + k2

2
h (1.12d)

Note that the derivatives (multiplied by h) are given the names k1, k2

by convention.
We now consider the programming of eqs. (1.11) and (1.12) (two

cases). A main program with these equations is in Listing 1.7.

#
# ODE routine
setwd("c:/R/bme_ode/chap1")

3The Runge–Kutta methods are discussed in [2] and [3].
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source("bioreactor_6.R")
#
# Select modified Euler format
#
# ncase = 1: Taylor series format
#
# ncase = 2: Runge Kutta format

ncase=1;
#
# Parameter values for BP10001

k1=8.87e-03;
k2=13.18;
k3=0.129;
k4=0.497;
k5=0.027;
k6=0.545e-3;
km2=87.7;
km3=99.9;

#
# Initial condition

n=7;nout=51;t=0;ncall=0;
y=c(0.10724,0,0,0,0,0,0)
cat(sprintf(
"\n t y1 y2 y3 y4 y5

y6 y7"))
cat(sprintf("\n %8.0f%8.4f%8.4f%8.4f%8.4f%8.4f%8.4f

%8.4f",
t,y[1],y[2],y[3],y[4],y[5],y[6],y[7]))

#
# Arrays for output

out=matrix(0,nrow=nout,ncol=(n+1))
out[1,-1]=y
out[1,1]=t

#
# Parameters for t integration
# nt=400;h=0.10 # unstable

nt=800;h=0.05 # stable
#
# Modified Euler integration

for(i1 in 2:nout){
#
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# nt modified Euler steps
for(i2 in 1:nt){
if(ncase==1){
yb=y
ytb=bioreactor_6(t,y)
y=yb+ytb*h; t=t+h
yt=bioreactor_6(t,y)
y=yb+(ytb+yt)/2*h

}
if(ncase==2){
yb=y
rk1=bioreactor_6(t,y)*h
y=yb+rk1; t=t+h
rk2=bioreactor_6(t,y)*h
y=yb+(rk1+rk2)/2

}
}

#
# Solution after nt modified Euler steps

cat(sprintf("\n %8.0f%8.4f%8.4f%8.4f%8.4f%8.4f%8.4f
%8.4f",

t,y[1],y[2],y[3],y[4],y[5],y[6],y[7]))
out[i1,-1]=y
out[i1,1]=t

}
#
# Calls to bioreactor_6
cat(sprintf("\n ncall = %5d\n\n",ncall))

#
# Single plot
par(mfrow=c(1,1))

#
# y1
plot(out[,1],out[,2],type="l",xlab="t",ylab="y1(t),...,

y7(t)",
xlim=c(0,2000),ylim=c(0,0.14),lty=1, main="y1(t),...,

y7(t) vs t",
lwd=2)

#
# y2
lines(out[,1],out[,3],type="l",lty=2,lwd=2)
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#
# y3

lines(out[,1],out[,4],type="l",lty=3,lwd=2)
#
# y4

lines(out[,1],out[,5],type="l",lty=4,lwd=2)
#
# y5

lines(out[,1],out[,6],type="l",lty=5,lwd=2)
#
# y6

lines(out[,1],out[,7],type="l",lty=6,lwd=2)
#
# y7

lines(out[,1],out[,8],type="l",lty=7,lwd=2)

Listing 1.7: Main program with the in-line modified Euler method.

Listing 1.7 is similar to Listing 1.6a for the Euler method but it
is included here because of some of the following significant differ-
ences.

• The ODE routine is bioreactor_6, which is the same as
bioreactor_5 of Listing 1.6b

#
# ODE routine
setwd("c:/R/bme_ode/chap1")
source("bioreactor_6.R")

#
# Select modified Euler format
#
# ncase = 1: Taylor series format
#
# ncase = 2: Runge Kutta format
ncase=1;

ncase has the values 1 for eqs. (1.11) or 2 for eqs. (1.12).

• The parameters for BP1001 of Listing 1.6a are used again.
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• The ICs of Listing 1.6a are used again. Note in particular that
the counter ncall is initialized.

#
# Initial condition

n=7;nout=51;t=0;ncall=0;
y=c(0.10724,0,0,0,0,0,0)
cat(sprintf(
"\n t y1 y2 y3 y4 y5

y6 y7"))
cat(sprintf("\n %8.0f%8.4f%8.4f%8.4f%8.4f%8.4f%8.4f

%8.4f",
t,y[1],y[2],y[3],y[4],y[5],y[6],y[7]))

• The array out for the solution again has the same format as
produced by the integrators in deSolve.

#
# Arrays for output

out=matrix(0,nrow=nout,ncol=(n+1))
out[1,-1]=y
out[1,1]=t

#
# Parameters for t integration
# nt=400;h=0.10 # unstable

nt=800;h=0.05 # stable

The integration step is h = 0.05, which is stable (the value of c
in eq. (1.5) is again 2 for the modified Euler method [4, p 230,
Fig. 6.2]).

• The programming of eqs. (1.11) (ncase = 1) is similar to the
programming of the Euler method of Listing 1.6a.

#
# Modified Euler integration

for(i1 in 2:nout){
#
# nt modified Euler steps

for(i2 in 1:nt){
if(ncase==1){
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yb=y
ytb=bioreactor_6(t,y)
y=yb+ytb*h; t=t+h
yt=bioreactor_6(t,y)
y=yb+(ytb+yt)/2*h

}

The correspondence of the coding with eqs. (1.11) (for ncase=1)
is clear. Note that two calls to the ODE routine, bioreactor_6,
are used to achieve the second-order accuracy of the modified
Euler method as explained previously.

• The programming of eqs. (1.12) (ncase=2) is straightforward. k1

and k2 in eqs. (1.12) are programmed as rk1 and rk2 to avoid a
conflict with the kinetic rate constants k1,k2 defined previously.

if(ncase==2){
yb=y
rk1=bioreactor_6(t,y)*h
y=yb+rk1; t=t+h
rk2=bioreactor_6(t,y)*h
y=yb+(rk1+rk2)/2

}
}

• The numerical and graphical displays of the solutions are the
same as in Listing 1.6a. Note also the display of the counter
ncall.

#
# Calls to bioreactor_6
cat(sprintf("\n ncall = %5d\n\n",ncall))

ODE routine bioreactor_6 is not listed here because it is the same
as in Listing 1.6b.

The output from these routines is the same as in Tables 1.4 and
1.5, except the number of calls to bioreactor_6 is 80000 as expected
(twice the calls for the Euler method because of two derivative eval-
uations in each integration step according to eqs. (1.12)).
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The comparison of the output from the Euler method and the mod-
ified Euler method suggests a way to evaluate the accuracy of the
numerical solution, that is, compare the numerical solutions com-
puted by two different methods. This idea is used in the following
reprogramming of the numerical integration in Listing 1.7.

#
# ODE routine
setwd("c:/R/bme_ode/chap1")
source("bioreactor_7.R")

#
# Select modified Euler format
#
# ncase = 1: RK format
#
# ncase = 2: RK format with explicit error estimate
ncase=2;

#
# Parameter values for BP10001
k1=8.87e-03;
k2=13.18;
k3=0.129;
k4=0.497;
k5=0.027;
k6=0.545e-3;
km2=87.7;
km3=99.9;

#
# Initial condition
n=7;nout=51;t=0;ncall=0;
y=c(0.10724,0,0,0,0,0,0)
cat(sprintf(
"\n t y1 y2 y3 y4 y5

y6 y7"))
if(ncase==2){
ee=c(0,0,0,0,0,0,0)

cat(sprintf(
"\n e1 e2 e3 e4 e5

e6 e7"))}
cat(sprintf("\n %8.0f%8.4f%8.4f%8.4f%8.4f%8.4f%8.4f

%8.4f",
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t,y[1],y[2],y[3],y[4],y[5],y[6],y[7]))
if(ncase==2){
cat(sprintf("\n %8.4f%8.4f%8.4f%8.4f%8.4f%8.4f

%8.4f\n",
ee[1],ee[2],ee[3],ee[4],ee[5],ee[6],ee[7]))}

#
# Arrays for output

out=matrix(0,nrow=nout,ncol=(n+1))
out[1,-1]=y
out[1,1]=t

#
# Parameters for t integration
# nt=400;h=0.10 # unstable

nt=800;h=0.05 # stable
#
# Modified Euler integration

for(i1 in 2:nout){
#
# nt modified Euler steps

for(i2 in 1:nt){
if(ncase==1){

yb=y
rk1=bioreactor_7(t,y)*h
y=yb+rk1; t=t+h
rk2=bioreactor_7(t,y)*h
y=yb+(rk1+rk2)/2

}
if(ncase==2){

yb=y
rk1=bioreactor_7(t,y)*h
y1=yb+rk1; t=t+h
rk2=bioreactor_7(t,y1)*h
y=yb+(rk1+rk2)/2
ee=y-y1

}
}

#
# Solution after nt modified Euler steps

cat(sprintf("\n %8.0f%8.4f%8.4f%8.4f%8.4f%8.4f%8.4f
%8.4f",

t,y[1],y[2],y[3],y[4],y[5],y[6],y[7]))
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if(ncase==2){
cat(sprintf("\n %8.4f%8.4f%8.4f%8.4f%8.4f

%8.4f%8.4f\n",
ee[1],ee[2],ee[3],ee[4],ee[5],ee[6],ee[7]))}

out[i1,-1]=y
out[i1,1]=t

}
#
# Calls to bioreactor_7
cat(sprintf("\n ncall = %5d\n\n",ncall))

#
# Single plot
par(mfrow=c(1,1))

#
# y1
plot(out[,1],out[,2],type="l",xlab="t",ylab="y1(t),...,

y7(t)",
xlim=c(0,2000),ylim=c(0,0.14),lty=1, main="y1(t),...,

y7(t) vs t",
lwd=2)

#
# y2
lines(out[,1],out[,3],type="l",lty=2,lwd=2)

#
# y3
lines(out[,1],out[,4],type="l",lty=3,lwd=2)

#
# y4
lines(out[,1],out[,5],type="l",lty=4,lwd=2)

#
# y5
lines(out[,1],out[,6],type="l",lty=5,lwd=2)

#
# y6
lines(out[,1],out[,7],type="l",lty=6,lwd=2)

#
# y7
lines(out[,1],out[,8],type="l",lty=7,lwd=2)

Listing 1.8: Comparison of the solutions of eqs. (1.1) from the Euler
and the modified Euler methods.



54 Introduction to Ordinary Differential Equation Analysis

We can note the following details about Listing 1.8.

• The ODE routine is bioreactor_7 and is the same as Listing
1.6b. Also, two cases are programmed. ncase=1 is the same as
the integration in Listing 1.7. ncase=2 gives an estimate of the
solution error by comparing the solutions from the Euler method
(eq. (1.4)) and the modified Euler method (eqs. (1.11)).

#
# ODE routine
setwd("c:/R/bme_ode/chap1")
source("bioreactor_7.R")

#
# Select modified Euler format
#
# ncase = 1: RK format
#
# ncase = 2: RK format with explicit error estimate
ncase=2;

• The programming of the parameters for eqs. (1.1) is the same as
in Listing 1.7.

• The ICs of Listing 1.7 are now extended to include the estimated
integration error ee. The initial values (at t = 0) of the error are
zero (ee=c(0,0,0,0,0,0,0)) because the numerical solutions for
the Euler and modified Euler methods are the same (they have
the same IC, y=c(0.10724,0,0,0,0,0,0)).

#
# Initial condition
n=7;nout=51;t=0;ncall=0;
y=c(0.10724,0,0,0,0,0,0)
cat(sprintf(
"\n t y1 y2 y3 y4 y5

y6 y7"))
if(ncase==2){
ee=c(0,0,0,0,0,0,0)

cat(sprintf(
"\n e1 e2 e3 e4 e5
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e6 e7"))}
cat(sprintf("\n %8.0f%8.4f%8.4f%8.4f%8.4f%8.4f%8.4f

%8.4f",
t,y[1],y[2],y[3],y[4],y[5],y[6],y[7]))
if(ncase==2){
cat(sprintf("\n %8.4f%8.4f%8.4f%8.4f%8.4f

%8.4f%8.4f\n",
ee[1],ee[2],ee[3],ee[4],ee[5],ee[6],ee[7]))}

Output with a heading and the ICs is included. Also, the initial
values of the estimated error, ee, are displayed.

• The output array, out, and the parameters for the t integration
are the same as in Listing 1.7.

• The two cases for the ODE integration are programmed as

#
# Modified Euler integration

for(i1 in 2:nout){
#
# nt modified Euler steps

for(i2 in 1:nt){
if(ncase==1){

yb=y
rk1=bioreactor_7(t,y)*h
y=yb+rk1; t=t+h
rk2=bioreactor_7(t,y)*h
y=yb+(rk1+rk2)/2

}
if(ncase==2){

yb=y
rk1=bioreactor_7(t,y)*h
y1=yb+rk1; t=t+h
rk2=bioreactor_7(t,y1)*h
y=yb+(rk1+rk2)/2
ee=y-y1

}
}

The ODE routine is bioreactor_7 and is the same as Listing
1.6b. For ncase=1, the programming is the same as in Listing 1.7.
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For ncase=2, the error ee is estimated as the difference between
the Euler solution, y1, and the modified Euler solution, y, that is,
ee=y-y1. Note that the R vector facility is used because y1, y,

ee are vectors with seven elements. The final left } concludes
the for loop in i2.

• The solution and estimated errors are displayed after nt modified
Euler steps (performed in the for loop with index i2).
#
# Solution after nt modified Euler steps

cat(sprintf("\n %8.0f%8.4f%8.4f%8.4f%8.4f%8.4f
%8.4f%8.4f",

t,y[1],y[2],y[3],y[4],y[5],y[6],y[7]))
if(ncase==2){
cat(sprintf("\n %8.4f%8.4f%8.4f%8.4f

%8.4f%8.4f%8.4f\n",
ee[1],ee[2],ee[3],ee[4],ee[5],ee[6],ee[7]))}

out[i1,-1]=y
out[i1,1]=t

}

The final left } concludes the for in i1.

• The number of calls to the ODE routine bioreactor_7, ncall,
and the plotting are the same as in Listing 1.7.

Abbreviated output from Listing 1.8 is given in Table 1.8.

We can note the following details about this output.

• The ICs (t = 0) are confirmed for the solution and the estimated
error.

• The estimated errors throughout the solution are zero to four
figures as expected, because the Euler solution from Listing 1.6a
and the modified Euler solution from Listings 1.9 and 1.10 agree
to at least four figures.

• The number of calls to bioreactor_7 remains at (2)

(40000)=80000 from Listing 1.7 as expected.

As a concluding point, we were able to estimate the error in the
numerical solution (ncase=2) without any additional computation
(beyond ncase=1).
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TABLE 1.8 Abbreviated numerical output from Listing 1.8.

t y1 y2 y3 y4 y5 y6 y7
e1 e2 e3 e4 e5 e6 e7

0 0.1072 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

40 0.0752 0.0020 0.0153 0.0009 0.0195 0.0011 0.0006
0.0000 0.0000 -0.0000 0.0000 -0.0000 -0.0000 0.0000

. .

. .

. .
Output from t = 80 to 1920 removed
. .
. .
. .

1960 0.0000 0.0003 0.0003 0.0000 0.1306 0.0071 0.0223
0.0000 0.0000 -0.0000 0.0000 -0.0000 -0.0000 0.0000

2000 0.0000 0.0002 0.0002 0.0000 0.1307 0.0071 0.0223
0.0000 0.0000 -0.0000 0.0000 -0.0000 -0.0000 0.0000

ncall = 80000

To conclude this section, we can note that eqs. (1.12) are a par-
ticular second-order Runge–Kutta method from a group generally
defined by the selection of some arbitrary constants. However, the
Euler method of eq. (1.4) is the only (unique) first-order Runge–Kutta
method.

1.11 Modified Euler Method as an Embedded Method

Since the Euler and the modified Euler solutions in the preceding
section are the same, this suggests that the numerical solution
has been confirmed (at least to four figures) by agreement of the
solutions from algorithms of two different orders. Also, as the first
Runge–Kutta derivative, k1, is the same for both the methods, this
suggests that the first-order (Euler) method is embedded in the
second-order (modified Euler) method. The idea that two embedded
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algorithms can be used as the basis for estimating the errors in a
numerical solution (e.g., as programmed in Listing 1.8 for ncase=2)
is now considered. Eqs. (1.12) can be written in an alternate form
that provides an explicit estimate of the error, ε.

k1 = f (yi , ti )h (1.13a)

yp
i+1 = yi + k1 (1.13b)

k2 = f (yp
i+1, ti+1)h = f (yi + k1, ti + h)h (1.13c)

εi+1 = k2 − k1

2
(1.13d)

yc
i+1 = yp

i+1 + εi+1 (1.13e)

where the superscripts p and c indicate a predicted value and a cor-
rected value, respectively. Note that

yc
i+1 = yi + k1 + k2 − k1

2
= yi + k1 + k2

2
(1.13f)

which is just the modified Euler method.
We can note the following properties of eqs. (1.13).

• Eq. (1.13a) gives the first Runge–Kutta derivative, k1.

• Eq. (1.13b) is the Euler method (eq. (1.4)), a first-order method
based on k1, that gives the predicted value yp

i+1.

• Eq. (1.13c) gives the second Runge–Kutta derivative, k2, from
the predicted value yp

i+1

• Eq. (1.13d) is an explicit estimate of the solution error, ε, com-
puted from k1 and k2.

• Eq. (1.13e) gives a corrected value of the solution, yc
i+1, by

adding the estimated error to the predicted value as a correction.

• Eq. (1.13f) confirms that the corrected value is the same as
that for the second-order modified Euler method. Thus, we
can consider the result of eq. (1.13e) as a first-order method
embedded in a second-order method. The key to this idea of an
embedded pair is the same Runge–Kutta derivative k1 for both
methods.
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The implementation (programming) of eqs. (1.13) is a straightfor-
ward modification of the ncase=2 programming in Listing 1.8.
#
# Modified Euler integration
for(i1 in 2:nout){

#
# nt modified Euler steps

for(i2 in 1:nt){
if(ncase==1){
yb=y
rk1=bioreactor_8(t,y)*h
y1=yb+rk1; t=t+h
rk2=bioreactor_8(t,y1)*h
y=yb+(rk1+rk2)/2
ee=y-y1

}
if(ncase==2){
yb=y
rk1=bioreactor_8(t,y)*h
y1=yb+rk1; t=t+h
rk2=bioreactor_8(t,y1)*h
ee=(rk2-rk1)/2
y=y1+ee

}
}

Listing 1.9: Programming of the Euler and modified Euler methods
as an embedded pair.

The ODE routine is bioreactor_8 and is the same as Listing 1.6b.
Eqs. (1.13) is programmed as ncase=2. The correspondence of the
programming and eqs. (1.13) is clear. Note that the estimated error
ee computed according to eq. (1.13d), ee=(rk2-rk1)/2, is added
as a correction, y=y1+ee, according to eq. (1.13e). The final left }

concludes the for loop in i2.
The explicit error estimate εi+1 can be used to adjust the integra-

tion step h according to a specified error tolerance. If εi+1 is above
the specified tolerance, h can be reduced and the step from i to i + 1
is repeated. This reduction in h can be repeated until the estimated
error is less than the specified error tolerance, at which point h can
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be considered small enough to achieve the required accuracy in the
numerical solution (from the Euler method of eq. (1.13b)). The esti-
mated error can then be added as a correction to the (predicted)
solution at i + 1 (eq. (1.13e)) to produce an improved (corrected)
value that is the starting value for the next step along the solution,
from i + 1 to i + 2.

Note that this procedure of using the estimated error to adjust the
integration step requires only the ODE (eq. (1.3a)) and not an exact
solution of the ODE. However, we should keep in mind that eq.
(1.13d) provides an estimate of the error and not the exact error (that
would generally require the exact solution). The details of adjusting
the integration step h is not considered here. However, step size
adjustment to meet a specified error tolerance is used in most quality
library integrators such as lsoda (in the R utility ode) and lsodes.

We can now apply these basic ideas to higher order Runge–Kutta
methods, including the use of an estimated error computed from
an embedded Runge–Kutta pair. In conclusion, this development
and implementation (programming) of higher order Runge–Kutta
methods is based on the fundamental idea that these methods fit
the underlying Taylor series of the ODE solution to any number of
terms without having to differentiate the ODE (they require only the

first derivative in
dy

dt
= f (y , t) of eq. (1.3a) at selected points along

the solution).

1.12 Classic Fourth-Order Runge–Kutta Method as an
Embedded Method

The classic fourth-order Runge–Kutta method, which was reported
more than 100 years ago, is

k1 = f (yi , ti )h (1.14a)

k2 = f (yi + k1/2, ti + h/2)h (1.14b)

k3 = f (yi + k2/2, ti + h/2)h (1.14c)

k4 = f (yi + k3, ti + h)h (1.14d)
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y4,i+1 = yi + (1/6)(k1 + 2k2 + 2k3 + k4); ti+1 = ti + h
(1.14e)

Eqs. (1.14) fit the Taylor series up to and including the fourth-order

derivative term,
d4y

dt4

h4

4!
, that is, the resulting numerical solution is

O(h4). This higher order is achieved by evaluating the Runge–Kutta
derivatives k1, k2, k3, and k4 at the points ti , ti + h/2, ti + h/2, and
ti + h , respectively.

The second-order Runge–Kutta method can be used in combina-
tion with eqs. (1.14).

k1 = f (yi , ti )h (1.15a)

k2 = f (yi + k1/2, ti + h/2)h (1.15b)

y2,i+1 = yi + k2; ti+1 = ti + h (1.15c)

which is the midpoint method. As the name suggests, k2 is computed
at the midpoint between i and i + 1, that is, at ti + h/2.

The second-order midpoint Runge–Kutta method of eqs. (1.15)
has the same k1 and k2 as the classic fourth-order Runge–Kutta
method (compare eqs. (1.14a) and (1.15a), eqs. (1.14b) and (1.15b)),
and therefore, this second-order method is embedded in the fourth-
order method. An error estimate for this second-order method can be
obtained by subtracting the second-order solution y2,i+1 (eq. (1.15c))
from the fourth-order solution y4,i+1 (eq. (1.14e)).

εi+1 = y4,i+1 − y2,i+1 = yi + (1/6)(k1 + 2k2 + 2k3 + k4) − (yi + k2)

= (1/6)(k1 − 4k2 + 2k3 + k4) (1.16)

Note how the k1 and k2 terms combine in arriving at eq. (1.16)
because they are the same for both algorithms. As this error esti-
mate was achieved by subtracting the second-order solution from the
fourth order solution, it actually represents two terms in the Taylor

series,
d3y

dt3

h3

3!
and

d4y

dt4

h4

4!
, that is, εi from eq. (1.16) is a two-term

error estimate, and therefore, we might expect that it will be more
accurate than the one-term error estimate of eq. (1.13d). Experience
has indicated this is the case.
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The following are the principal conclusions from this discussion
of embedded methods:

• The Runge–Kutta derivatives generally can be computed once
for both the lower order and the higher order methods of an
embedded pair. In other words, the common Runge–Kutta
derivatives are the basis for embedded pairs.

• Correction of the lower order solution using the estimated error
(the difference between the higher and lower order solutions)
gives a substantially improved lower order solution. In other
words, the higher order solution is used as the base point for the
next step along the solution.

• The estimated error could be used to adjust the integration step
h according to a prescribed error tolerance.

Listing 1.9 is an extension of Listing 1.8 for eqs. (1.14) and (1.15).

#
# ODE routine

setwd("c:/R/bme_ode/chap1")
source("bioreactor_9.R")

#
# Select classical fourth order Runge Kutta method
#
# ncase = 1: RKC4
#
# ncase = 2: RKC4 with embedded second order midpoint
# method and error estimate

ncase=2;
#
# Parameter values for BP10001

k1=8.87e-03;
k2=13.18;
k3=0.129;
k4=0.497;
k5=0.027;
k6=0.545e-3;
km2=87.7;
km3=99.9;

#
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# Initial condition
n=7;nout=51;t=0;ncall=0;
y=c(0.10724,0,0,0,0,0,0)
cat(sprintf(
"\n t y1 y2 y3 y4 y5

y6 y7"))
if(ncase==2){
ee=c(0,0,0,0,0,0,0)

cat(sprintf(
"\n e1 e2 e3 e4 e5

e6 e7"))}
cat(sprintf("\n %8.0f%8.4f%8.4f%8.4f%8.4f%8.4f%8.4f

%8.4f",
t,y[1],y[2],y[3],y[4],y[5],y[6],y[7]))
if(ncase==2){

cat(sprintf("\n %8.4f%8.4f%8.4f%8.4f%8.4f%8.4f
%8.4f\n",

ee[1],ee[2],ee[3],ee[4],ee[5],ee[6],ee[7]))}
#
# Arrays for output
out=matrix(0,nrow=nout,ncol=(n+1))
out[1,-1]=y
out[1,1]=t

#
# Parameters for t integration
# nt=400;h=0.10 # unstable
nt=800;h=0.05 # stable

#
# rkc4 integration
for(i1 in 2:nout){

#
# nt rkc4 steps

for(i2 in 1:nt){
if(ncase==1){
yb=y; tb=t
rk1=bioreactor_9(tb,yb)*h
y=yb+0.5*rk1; t=tb+0.5*h
rk2=bioreactor_9(t,y)*h
y=yb+0.5*rk2; t=tb+0.5*h
rk3=bioreactor_9(t,y)*h
y=yb+rk3; t=tb+h
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rk4=bioreactor_9(t,y)*h
y=yb+(1/6)*(rk1+2*rk2+2*rk3+rk4)

}
if(ncase==2){

yb=y; tb=t
rk1=bioreactor_9(tb,yb)*h
y=yb+0.5*rk1; t=tb+0.5*h
rk2=bioreactor_9(t,y)*h
y2=yb+rk2
y=yb+0.5*rk2; t=tb+0.5*h
rk3=bioreactor_9(t,y)*h
y=yb+rk3; t=tb+h
rk4=bioreactor_9(t,y)*h
y=yb+(1/6)*(rk1+2*rk2+2*rk3+rk4)
ee=y-y2

}
}

#
# Solution after nt rkc4 steps

cat(sprintf("\n %8.0f%8.4f%8.4f%8.4f%8.4f%8.4f%8.4f
%8.4f",

t,y[1],y[2],y[3],y[4],y[5],y[6],y[7]))
if(ncase==2){

cat(sprintf("\n %8.4f%8.4f%8.4f%8.4f%8.4f
%8.4f%8.4f\n",

ee[1],ee[2],ee[3],ee[4],ee[5],ee[6],ee[7]))}
out[i1,-1]=y
out[i1,1]=t

}
#
# Calls to bioreactor_9

cat(sprintf("\n ncall = %5d\n\n",ncall))
#
# Single plot

par(mfrow=c(1,1))
#
# y1

plot(out[,1],out[,2],type="l",xlab="t",ylab="y1(t),...,
y7(t)",

xlim=c(0,2000),ylim=c(0,0.14),lty=1, main="y1(t),...,
y7(t) vs t",
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lwd=2)
#
# y2
lines(out[,1],out[,3],type="l",lty=2,lwd=2)

#
# y3
lines(out[,1],out[,4],type="l",lty=3,lwd=2)

#
# y4
lines(out[,1],out[,5],type="l",lty=4,lwd=2)

#
# y5
lines(out[,1],out[,6],type="l",lty=5,lwd=2)

#
# y6
lines(out[,1],out[,7],type="l",lty=6,lwd=2)

#
# y7
lines(out[,1],out[,8],type="l",lty=7,lwd=2)

Listing 1.10: The classic fourth-order Runge–Kutta with the embed-
ded midpoint method.

We can note the following details about Listing 1.10.

• The ODE routine is bioreactor_9 and is the same as Listing
1.6b. Also, two cases are programmed. ncase=1 is for eqs. (1.14).
ncase=2 is for a combination of eqs. (1.14) and (1.15), including
the estimated error.

#
# ODE routine

setwd("c:/R/bme_ode/chap1")
source("bioreactor_9.R")

#
# Select classical fourth order Runge Kutta method
#
# ncase = 1: RKC4
#
# ncase = 2: RKC4 with embedded second order midpoint
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# method and error estimate
ncase=2;

• The programming of the parameters for eqs. (1.1) is the same as
in Listing 1.8.

• The ICs and the output array out of Listing 1.8 are repeated.

• The two cases for the ODE integration are programmed as

#
# Parameters for t integration
# nt=400;h=0.10 # unstable
nt=800;h=0.05 # stable

#
# rkc4 integration
for(i1 in 2:nout){

#
# nt rkc4 steps

for(i2 in 1:nt){
if(ncase==1){
yb=y; tb=t
rk1=bioreactor_9(tb,yb)*h
y=yb+0.5*rk1; t=tb+0.5*h
rk2=bioreactor_9(t,y)*h
y=yb+0.5*rk2; t=tb+0.5*h
rk3=bioreactor_9(t,y)*h
y=yb+rk3; t=tb+h
rk4=bioreactor_9(t,y)*h
y=yb+(1/6)*(rk1+2*rk2+2*rk3+rk4)

}
if(ncase==2){
yb=y; tb=t
rk1=bioreactor_9(tb,yb)*h
y=yb+0.5*rk1; t=tb+0.5*h
rk2=bioreactor_9(t,y)*h
y2=yb+rk2
y=yb+0.5*rk2; t=tb+0.5*h
rk3=bioreactor_9(t,y)*h
y=yb+rk3; t=tb+h
rk4=bioreactor_9(t,y)*h
y=yb+(1/6)*(rk1+2*rk2+2*rk3+rk4)
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ee=y-y2
}
}

The ODE routine is bioreactor_9 and is the same as List-
ing 1.6b. For ncase=1, the programming is for eqs. (1.14). For
ncase=2, the error ee is estimated as the difference between
the fourth-order Runge–Kutta and the second-order midpoint
method of eqs. (1.15) (ee=y-y2).

• The solution and estimated errors are displayed after nt steps
(performed in the for loop with index i2). The final left } con-
cludes the for loop in i2.

• The number of calls to the ODE routine bioreactor_9 is
ncall=160000 as expected (four derivative evaluations for
each Euler step, with 40,000 Euler steps). The numerical and
graphical outputs are the same as for Listings 1.10 and 1.11
(including Table 1.6).

Eqs. (1.16) can easily be programmed as a variant of the ncase=2

code.

ee=(1/6)*(rk1-4*rk2+2*rk3+k4)
y=y2+ee

Note also that the integration step is again h = 0.05. We might
expect that the higher order method of eqs. (1.14) would permit a
larger step. This is true with respect to accuracy, but it is not true
with respect to stability. In fact, the constant c in eq. (1.5) for the
fourth-order method of eqs. (1.14) is only 2.785. In other words, the
calculation of four derivatives in eqs. (1.14) extended the stability
limit of the Euler and modified Euler methods only slightly from
c = 2 to c = 2.785; of course, the advantage of doing the additional
derivative calculations is the increase in accuracy from O(h2) (modi-
fied Euler method) to O(h4) (the fourth-order method of eqs. (1.14)).
But the numerical integration of eqs. (1.1) (which are stiff) is limited
by stability to a step of h = 0.05 (and not limited by accuracy because
all of the preceding numerical solutions were similar to four figures);
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in other words, we might say the integration step of h = 0.05 was
excessively small with regard to accuracy.

1.13 RKF45 Method

To conclude the discussion of ODE numerical integration with
explicit Runge–Kutta methods, we consider a widely used embedded
pair usually designated as RKF45 [5, p 84].

k1 = f (yi , ti )h (1.17a)

k2 = f (yi + k1/4, ti + h/4)h (1.17b)

k3 = f (yi + (3/32)k1 + (9/32)k2, ti + (3/8)h)h (1.17c)

k4 = f (yi + (1932/2197)k1 − (7200/2197)k2 + (7296/2197)k3, ti

+(12/13)h)h (1.17d)

k5 = f (yi + (439/216)k1 − 8k2 + (3680/513)k3

− (845/4104)k4, ti + h)h (1.17e)

k6 = f (yi − (8/27)k1 + 2k2 − (3544/2565)k3 + (1859/4104)k4

− (11/40)k5, ti + (1/2)h)h (1.17f)

An O(h4) method is then

y4,i+1 = yi + (25/216)k1 + (1408/2565)k3

+ (2197/4104)k4 − (1/5)k5 (1.17g)

and an O(h5) method is (with the same ks)

y5,i+1 = yi + (16/315)k1 + (6656/12825)k3 + (28561/56430)k4

− (9/50)k5 + (2/55)k6 (1.17h)

An error estimate can then be obtained by subtracting eq. (1.17g)
from eq. (1.17h).

εi+1 = yi+1,5 − yi+1,4 (1.17i)
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Note that six derivative evaluations are required (k1 through k6), even
though the final result from eq. (1.17h) is only O(h5) (the number
of derivative evaluations will, in general, be equal to or greater than
the order of the method).

The formulas of eqs. (1.17g) and (1.17h) match the Taylor series

up to and including the terms
d4yi

dt4

h4

4!
and

d5yi

dt5

h5

5!
, respectively.

Eqs. (1.17) is implemented in Listing 1.11.
#
# ODE routine
setwd("c:/R/bme_ode/chap1")
source("bioreactor_10.R")

#
# Select rkf45 format
#
# ncase = 1: No error estimation
#
# ncase = 2: With error estimation
ncase=2;

#
# Parameter values for BP10001
k1=8.87e-03;
k2=13.18;
k3=0.129;
k4=0.497;
k5=0.027;
k6=0.545e-3;
km2=87.7;
km3=99.9;

#
# Initial condition
n=7;nout=51;t=0;ncall=0;
y=c(0.10724,0,0,0,0,0,0)
cat(sprintf(
"\n t y1 y2 y3 y4 y5

y6 y7"))
if(ncase==2){
ee=c(0,0,0,0,0,0,0)

cat(sprintf(
"\n e1 e2 e3 e4 e5

e6 e7"))}
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cat(sprintf("\n %8.0f%8.4f%8.4f%8.4f%8.4f%8.4f%8.4f
%8.4f",

t,y[1],y[2],y[3],y[4],y[5],y[6],y[7]))
if(ncase==2){
cat(sprintf("\n %8.4f%8.4f%8.4f%8.4f%8.4f%8.4f

%8.4f\n",
ee[1],ee[2],ee[3],ee[4],ee[5],ee[6],ee[7]))}

#
# Arrays for output

out=matrix(0,nrow=nout,ncol=(n+1))
out[1,-1]=y
out[1,1]=t

#
# Parameters for t integration
# nt=400;h=0.10 # unstable

nt=800;h=0.05 # stable
#
# rkf45 integration

for(i1 in 2:nout){
#
# nt rkf45 steps

for(i2 in 1:nt){
if(ncase==1){

yb=y; tb=t;
rk1=bioreactor_10(tb,yb)*h
y=yb+0.25*rk1;
t=tb+0.25*h;
rk2=bioreactor_10(t,y)*h
y=yb+(3/32)*rk1+(9/32)*rk2;
t=tb+(3/8)*h;
rk3=bioreactor_10(t,y)*h
y=yb+(1932/2197)*rk1-(7200/2197)*rk2+(7296/2197)

*rk3;
t=tb+(12/13)*h;
rk4=bioreactor_10(t,y)*h
y=yb+(439/216)*rk1-8*rk2 +(3680/513)*rk3 -(845/4104)

*rk4;
t=tb+h;
rk5=bioreactor_10(t,y)*h
y=yb-(8/27)*rk1+2*rk2-(3544/2565)*rk3+(1859/4104)

*rk4-(11/40)*rk5;
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t=tb+0.5*h;
rk6=bioreactor_10(t,y)*h
y=yb+(16/135)*rk1+(6656/12825)*rk3+(28561/56430)

*rk4-(9/50)*rk5+
(2/55)*rk6;

t=tb+h;
}
if(ncase==2){
yb=y; tb=t;
rk1=bioreactor_10(tb,yb)*h
y=yb+0.25*rk1;
t=tb+0.25*h;
rk2=bioreactor_10(t,y)*h
y=yb+(3/32)*rk1+(9/32)*rk2;
t=tb+(3/8)*h;
rk3=bioreactor_10(t,y)*h
y=yb+(1932/2197)*rk1-(7200/2197)*rk2+(7296/2197)

*rk3;
t=tb+(12/13)*h;
rk4=bioreactor_10(t,y)*h
y=yb+(439/216)*rk1-8*rk2 +(3680/513)*rk3 -(845/4104)

*rk4;
t=tb+h;
rk5=bioreactor_10(t,y)*h
y=yb-(8/27)*rk1+2*rk2-(3544/2565)*rk3+(1859/4104)

*rk4-(11/40)*rk5;
t=tb+0.5*h;
rk6=bioreactor_10(t,y)*h

#
# Fourth order step

y4=yb+(25/216)*rk1+(1408/2565)*rk3 +(2197/4104)
*rk4-( 1/5)*rk5;

#
# Fifth order step

y=yb+(16/135)*rk1+(6656/12825)*rk3+(28561/56430)
*rk4-(9/50)*rk5+
(2/55)*rk6;

t=tb+h;
#
# Truncation error estimate

ee=y-y4
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}
}

#
# Solution after nt rkf45 steps

cat(sprintf("\n %8.0f%8.4f%8.4f%8.4f%8.4f%8.4f%8.4f
%8.4f",

t,y[1],y[2],y[3],y[4],y[5],y[6],y[7]))
if(ncase==2){

cat(sprintf("\n %8.4f%8.4f%8.4f%8.4f%8.4f
%8.4f%8.4f\n",

ee[1],ee[2],ee[3],ee[4],ee[5],ee[6],ee[7]))}
out[i1,-1]=y
out[i1,1]=t

}
#
# Calls to bioreactor_10

cat(sprintf("\n ncall = %5d\n\n",ncall))
#
# Single plot

par(mfrow=c(1,1))
#
# y1

plot(out[,1],out[,2],type="l",xlab="t",ylab="y1(t),...,
y7(t)",

xlim=c(0,2000),ylim=c(0,0.14),lty=1, main="y1(t),...,
y7(t) vs t",

lwd=2)
#
# y2

lines(out[,1],out[,3],type="l",lty=2,lwd=2)
#
# y3

lines(out[,1],out[,4],type="l",lty=3,lwd=2)
#
# y4

lines(out[,1],out[,5],type="l",lty=4,lwd=2)
#
# y5

lines(out[,1],out[,6],type="l",lty=5,lwd=2)
#
# y6



RKF45 Method 73

lines(out[,1],out[,7],type="l",lty=6,lwd=2)
#
# y7
lines(out[,1],out[,8],type="l",lty=7,lwd=2)

Listing 1.11: Implementation of the RKF45 method.

We can note the following details of Listing 1.11.

• The ODE routine is bioreactor_10, the same as Listing 1.6b.
Also, two cases are programmed. ncase=1 is for just the fifth-
order method of eqs. (1.17). ncase=2 is for a combination of the
fourth- and fifth-order methods with an estimated error.

#
# ODE routine

setwd("c:/R/bme_ode/chap1")
source("bioreactor_10.R")

#
# Select rkf45 format
#
# ncase = 1: No error estimation
#
# ncase = 2: With error estimation

ncase=2

• The programming of the parameters for eqs. (1.1) is the same as
in Listing 1.10.

• The ICs, the output array out, and the integration parameters of
Listing 1.10 are repeated.

• The two cases for the ODE integration are programmed as

#
# rkf45 integration

for(i1 in 2:nout){
#
# nt rkf45 steps

for(i2 in 1:nt){
if(ncase==1){

yb=y; tb=t;
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rk1=bioreactor_10(tb,yb)*h
y=yb+0.25*rk1;
t=tb+0.25*h;
rk2=bioreactor_10(t,y)*h
y=yb+(3/32)*rk1+(9/32)*rk2;
t=tb+(3/8)*h;
rk3=bioreactor_10(t,y)*h
y=yb+(1932/2197)*rk1-(7200/2197)*rk2+(7296/2197)

*rk3;
t=tb+(12/13)*h;
rk4=bioreactor_10(t,y)*h
y=yb+(439/216)*rk1-8*rk2 +(3680/513)*rk3

-(845/4104)*rk4;
t=tb+h;
rk5=bioreactor_10(t,y)*h
y=yb-(8/27)*rk1+2*rk2-(3544/2565)*rk3

+(1859/4104)*rk4-(11/40)*rk5;
t=tb+0.5*h;
rk6=bioreactor_10(t,y)*h
y=yb+(16/135)*rk1+(6656/12825)*rk3+(28561/56430)

*rk4-(9/50)*rk5+
(2/55)*rk6;

t=tb+h;
}
if(ncase==2){
yb=y; tb=t;
rk1=bioreactor_10(tb,yb)*h
y=yb+0.25*rk1;
t=tb+0.25*h;
rk2=bioreactor_10(t,y)*h
y=yb+(3/32)*rk1+(9/32)*rk2;
t=tb+(3/8)*h;
rk3=bioreactor_10(t,y)*h
y=yb+(1932/2197)*rk1-(7200/2197)*rk2+(7296/2197)

*rk3;
t=tb+(12/13)*h;
rk4=bioreactor_10(t,y)*h
y=yb+(439/216)*rk1-8*rk2 +(3680/513)*rk3-(845/

4104)*rk4;
t=tb+h;
rk5=bioreactor_10(t,y)*h
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y=yb-(8/27)*rk1+2*rk2-(3544/2565)*rk3+(1859/
4104)*rk4-(11/40)*rk5;

t=tb+0.5*h;
rk6=bioreactor_10(t,y)*h

#
# Fourth order step

y4=yb+(25/216)*rk1+(1408/2565)*rk3 +(2197/4104)
*rk4-(1/5)*rk5;

#
# Fifth order step

y=yb+(16/135)*rk1+(6656/12825)*rk3+(28561/56430)
*rk4-(9/50)*rk5+
(2/55)*rk6;

t=tb+h;
#
# Truncation error estimate

ee=y-y4
}
}

For ncase=1, the programming is for the fifth-order method of
eqs. (1.16) (eq. (1.17g) is not used). For ncase=2, the error ee

is estimated as the difference between the fourth-order method
(y4 from eq. (1.17g)) and the fifth- order method (y from eq.
(1.17h)), that is, ee=y-y4.

• The solution and estimated errors are displayed after nt steps
(performed in the for loop with index i2). The final left } con-
cludes the for loop in i2.

• The number of calls to the ODE routine bioreactor_10 is
ncall=240000. The numerical and graphical outputs are the
same as for Listing 1.10. The value of ncall is from six
derivative evaluations, (6)(40000)=240000.

The name RKF45 reflects the Runge–Kutta–Fehlberg method
based on a fourth-order method embedded in a fifth-order method.

This concludes the discussion of the numerical integration of eqs.
(1.1). The intent was to provide an introduction to the ODE integra-
tion in terms of some selected explicit Runge–Kutta methods, that is,
the Euler, the modified Euler, the classic fourth order, and the RKF45
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methods. An important point to note is the large number of derivative
evaluations required to maintain stability, for example, ncall=240000
for RKF45. In comparison, lsoda of ode required only 427 derivative
evaluations (see Listing 1.7b and the related discussion). Thus, the
automatic switching between stiff and nonstiff methods in lsoda was
very effective.

Generally, an implicit integrator should be used for stiff ODEs. To
this end, we consider some low order, fixed step implicit integrators in
Appendix A1. However, for nonstiff ODEs, the explicit Runge–Kutta
methods discussed previously can be very effective in computing
an accurate ODE solution and should therefore be considered. For
example, in Chapter 2, a nonstiff ODE model is considered for which
explicit algorithms give an accurate solution with fewer derivative
evaluations than lsoda in ode. In addition, explicit methods require
fewer calculations at each point along the solution.

These integrators can be programmed as separate, stand-alone rou-
tines which would simplify the programming (make it more modu-
lar); examples of the use of a separate integrator routine are given
in Chapter 2. Also, explicit Runge–Kutta library integrators such
as RKF45 are included in deSolve. These library integrators have
automatic step adjustment in accordance with a user-specified error
tolerance (but the source code is not available as in the preceding
listings).
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