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CHAPTER 1
Models for Discontinuous

Markets

The broadening and deepening of markets for risk transfer has marked
the development of financial services perhaps more than any other trend.

The past 30 years have witnessed the development of secondary markets
for a wide variety of financial assets and the explosion of derivative instru-
ments made possible by financial engineering. The expansion of risk transfer
markets has liquefied and transformed the business of traditional financial
firms such as banks, asset managers, and insurance companies. At the same
time, markets for risk transfer have enabled nontraditional players to enter
financial services businesses, invigorating competition, driving down prices,
and confounding the efforts of regulators. Such specialist risk transfer firms
occupy a number of niches in which they can outperform their more diversi-
fied counterparts in the regulated financial system by virtue of their special-
ized knowledge, transactional advantages, and superior risk management.

For all firms operating in risk transfer markets, traditional and nontra-
ditional alike, the ability to create, calibrate, deploy, and refine risk models
is a core competency. No firm, however specialized, can afford to do without
models that extract information from market prices, measure the sensitivity
of asset values to any number of risk factors, or forecast the range of adverse
outcomes that might impact the firm’s financial position.

The risk that a firm’s models may fail to capture shifts in market pricing,
risk sensitivities, or the mix of the firm’s risk exposures is thus a central
operational risk for any financial services business. Yet many, if not most,
financial services firms lack insight into the probabilistic structure of risk
models and the corresponding risk of model failures. My thesis is that most
firms lack insight into model risk because of the way they practice statistical
modeling. Because generally accepted statistical practice provides thin means
for assessing model risk, alternative methods are needed to take model risk
seriously. Bayesian methods allow firms to take model risk seriously—hence
a book on Bayesian risk management.
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2 MODELS FOR DISCONTINUOUS MARKETS

RISK MODELS AND MODEL RISK

Throughout this book, when I discuss risk models, I will be talking about
parametric risk models. Parametric risk models are attempts to reduce the
complexity inherent in large datasets to specific functional forms defined
completely by a relatively low-dimensional set of numbers known as
parameters. Nonparametric risk models, by contrast, rely exclusively on the
resampling of empirical data, so no reduction of the data is attempted or
accomplished. Such models ask: Given the risk exposures I have today, what
is the distribution of outcomes I can expect if the future looks like a random
draw from some history of market data? Nonparametric risk models lack
model specification in the way we would normally understand it, so that
there is no risk of misspecification or estimation error by construction. Are
such models therefore superior? Not at all. A nonparametric risk model
cannot represent any outcome different from what has happened, including
any outcomes more extreme than what has already happened. Nor can it
furnish any insight into the ultimate drivers of adverse risk outcomes. As a
result, nonparametric risk models have limited use in forecasting, though
they can be useful as a robustness check for a parametric risk model.

Parametric risk models begin life as a probability distribution, which is
a statement of the likelihood of seeing different values conditional only on
the parameters of the distribution. Given the parameters and the form of
the distribution, all possibilities are encompassed. More parameters create
more flexibility: A Weibull distribution is more flexible than an exponential
distribution. Many risk models rely heavily on normal and lognormal distri-
butions, parameterized by the mean and variance, or the covariance matrix
andmean vector in themultivariate case. A great deal has been written on the
usefulness of heavier-tailed distributions for modeling financial data, going
back to Mandelbrot (1963) and Fama (1965).

Undoubtedly, the unconditional distributions of most financial returns
have heavier tails than the normal distribution. But to solve the problem
of heavy tails solely through the choice of a different family of probability
distributions is to seek a solution at a very low level of complexity.

More complex risk models project a chosen risk distribution onto a
linear system of covariates that helps to articulate the target risk. Regres-
sion models such as these seek to describe the distribution of the target
variable conditional on other available information. The functional form
of the distribution is subsumed as an error term. Familiar examples include
the following:

■ Linear regression with normally distributed errors, widely used in asset
pricing theory and many other applications.
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■ Probit and logit models, which parameterize the success probability in
binomial distributions.

■ Proportional hazard models from insurance and credit risk modeling,
which project a series of gamma or Weibull distributions onto a linear
system of explanatory factors.

Parameters are added corresponding to each of the factors included in
the projection. The gain in power afforded by projection raises new ques-
tions about the adequacy of the system: Are the chosen factors sufficient?
Unique? Structural? What is the joint distribution of the system parameters,
and can that tell us anything about the choice of factors?

It seems the pinnacle in financial risk modeling is achieved when param-
eters governing several variables—a yield curve, a forward curve, a volatility
surface—may be estimated from several time series simultaneously, where
functional forms are worked out from primitives about stochastic processes
and arbitrage restrictions. Such models pass over from the physical proba-
bility measure P to the risk-neutral probability measure Q. In terms of the
discussion above, such models may be seen as (possibly nonlinear) transfor-
mations of a small number of factors (or state variables) whose distributions
are defined by the nature of the underlying stochastic process posited for the
factors. When the number of time series is large relative to the parameters
of the model the parameters are overidentified, permitting highly efficient
inference from the data. Such models are the ultimate in powerful descrip-
tion, offering the means to capture the dynamics of dozens of interest rates
or forward contracts with a limited number of factors and parameters.

Our hierarchy of riskmodels thus includes as elements probability distri-
butions, parameters, and functional forms, whichmay be linear or nonlinear,
theoretically motivated or ad hoc. Each element of the description may not
conform to reality, which is to say that each element is subject to error.
An incorrect choice of distribution or functional form constitutes specifi-
cation error on the part of the analyst. Errors in parameters arise from
estimation error, but also collaterally from specification errors. The collec-
tion of all such opportunities for error in risk modeling is what I will call
model risk.

TIME-INVARIANT MODELS AND CRISIS

The characteristics enumerated above do not exhaust all dimensions of
model risk, however. Even if a model is correctly specified and parameter-
ized inasmuch as it produces reliable forecasts for currently observed data,
the possibility remains that the model may fail to produce reliable forecasts
in the future.
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Two assumptions are regularly made about time series as a point of
departure for their statistical modeling:

1. Assuming the joint distribution of observations in a time series depends
not on their absolute position in the series but only on their relative posi-
tion in this series is to assume that the time series is stationary.

2. If sample moments (time averages) taken from a time series converge in
probability to the moments of the data-generating process, then the time
series is ergodic.

Time series exhibiting both properties are said to be ergodic stationary.
However, I find the term time-invariant more convenient. For financial time
series, time-invariance implies that the means and covariances of a set of
asset returns will be the same for any T observations of those returns, up
to sampling error. In other words, no matter when we look at the data, we
should come to the same conclusion about the joint distribution of the data,
and converge to the same result as T becomes large.

Standard statistical modeling practice and classical time series analysis
proceed from the underlying assumption that time series are time-invariant,
or can be made time-invariant using simple transformations like detrending,
differencing, or discovering a cointegrating vector (Hamilton 1994,
pp. 435–450, 571). Time series models strive for time-invariance because
reliable forecasts can be made for time-invariant processes. Whenever we
estimate risk measures from data, we expect those measures will be useful
as forecasts: Risk only exists in the future.

However, positing time-invariance for the sake of forecasting is not the
same as observing time-invariance. Forecasts from time-invariant models
break down because time series prove themselves not to be time-invariant.
When the time-invariance properties desired in a statistical model are not
found in empirical reality, unconditional time series models are no longer
a possibility: Model estimates must be conditioned on recent history in
order to supply reasonable forecasts, greatly foreshortening the horizon
over which data can be brought to bear in a relevant way to develop such
estimates.

In this book, I will pursue the hypothesis that the greatest obstacle to
the progress of quantitative risk management is the assumption of time-
invariance that underlies the naïve application of statistical and financial
models to financial market data. A corollary of this hypothesis is that
extreme observations seen in risk models are not extraordinarily unlucky
realizations drawn from the extreme tail of an unconditional distribution
describing the universe of possible outcomes. Instead, extreme observations
are manifestations of inflexible risk models that have failed to adapt to
shifts in the market data. The quest for models that are true for all time and
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for all eventualities actually frustrates the goal of anticipating the range of
likely adverse outcomes within practical forecasting horizons.

Ergodic Stationarity in Classical Time Series Analysis

To assume a financial time series is ergodic stationary is to assume that a
fixed stochastic process is generating the data. This data-generating process
is a functional form combining some kind of stochastic disturbance summa-
rized in a parametric probability distribution, with other parameters known
in advance of the financial time series data being realized. The assumption of
stationarity therefore implies that if we know the right functional form and
the values of the parameters, we will have exhausted the possible range of
outcomes for the target time series. Different realizations of the target time
series are then just draws from the joint distribution of the conditioning data
and the stochastic disturbance. This is why a sample drawn from any seg-
ment of the time series converges to the same result in an ergodic stationary
time series.While we cannot predict where a stationary time series will go
tomorrow, we can narrow down the range of possible outcomes and make
statements about the relative probability of different outcomes. In particular,
we can make statements about the probabilities of extreme outcomes.

Put differently, when a statistical model is specified, stationarity is
introduced as an auxiliary hypothesis about the data that allows the pro-
tocols of statistical sampling to be applied when estimating the model.
Stationarity implies that parameters are constant and that further observa-
tions of the data improve their estimates. Sampling-based estimation is so
widely accepted and commonplace that the extra hypothesis of stationarity
has dropped out of view, almost beyond criticism. Consciously or uncon-
sciously, the hypothesis of stationarity forms a basic part of a risk manager’s
worldview—if one model fails, there must be another encompassing model
that would capture the anomaly; some additional complication must make
it possible to see what we did not see in the past.

Yet stationarity remains an assumption, and it is important to under-
stand its function as the glue that holds together classical time series analysis.
The goal in classical time series econometrics is to estimate parameters and
test hypotheses about them. Assuming stationarity ensures that the esti-
mated parameter values converge to their “correct” values as more data are
observed, and tests of hypotheses about parameters are valid.

Both outcomes depend on the law of large numbers, and thus they both
depend on the belief that when we observe new data, those data are sampled
from the same process that generated previous data. In other words, only
if we assume we are looking at a unitary underlying phenomenon can we
apply the law of large numbers to ensure the validity of our estimates and



Trim Size: 6in x 9in Sekerke c01.tex V2 - 07/17/2015 10:47am Page 6

6 MODELS FOR DISCONTINUOUS MARKETS

hypothesis tests. Consider, for the example, the discussion of ‘Fundamental
Concepts in Time-Series Analysis’ in the textbook by Fumio Hayashi (2000,
pp. 97–98) concerning the ‘Need for Ergodic Stationarity’:

The fundamental problem in time-series analysis is that we can
observe the realization of the process only once. For example,
the sample on the U.S. annual inflation rate for the period from
1946 to 1995 is a string of 50 particular numbers, which is just
one possible outcome of the underlying stochastic process for the
inflation rate; if history took a different course, we would have
obtained a different sample… .

Of course, it is not feasible to observe many different alterna-
tive histories. But if the distribution of the inflation rate remains
unchanged [my emphasis] (this property will be referred to as sta-
tionarity), the particular string of 50 numbers we do observe can be
viewed as 50 different values from the same distribution.

The discussion is concluded with a statement of the ergodic theorem,
which extends the law of large numbers to the domain of time series
(pp. 101–102).

The assumption of stationarity is dangerous for financial risk manage-
ment. It lulls us into believing that, once we have collected enough data,
we have completely circumscribed the range of possible market outcomes,
because tomorrow will just be another realization of the process that gener-
ated today. It fools us into believing we know the values of parameters like
volatility and equity market beta sufficiently well that we can ignore any
residual uncertainty from their estimation. It makes us complacent about
the choice of models and functional forms because it credits hypothesis tests
with undue discriminatory power. And it leads us again and again into crisis
situations because it attributes too little probability to extreme events.

We cannot dismiss the use of ergodic stationarity as a mere simplifying
assumption, of the sort regularly and sensibly made in order to arrive at
an elegant and acceptable approximation to a more complex phenomenon.
A model of a stationary time series approximates an object that can never
be observed: a time series of infinite length. This says nothing about the
model’s ability to approximate a time series of any finite length, such as the
lifetime of a trading strategy, a career, or a firm. When events deemed to
occur 0.01 percent of the time by a risk model happen twice in a year, there
may be no opportunity for another hundred years to prove out the assumed
stationarity of the risk model.
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Recalibration Does Not Overcome the Limits
of a Time-Invariant Model

Modern financial crises are intimately connected with risk modeling built
on the assumption of stationarity. For large actors like international banks,
brokerage houses, and institutional investors, risk models matter a lot
for the formation of expectations. When those models depend on the
assumption of stationarity, they lose the ability to adapt to data that are
inconsistent with the assumed data-generation process, because any other
data-generation process is ruled out by fiat.

Consider what happens when an institution simply recalibrates the same
models, without reexamining the specification of the model, over a period
when economic expansion is slowing and beginning to turn toward reces-
sion. As the rate of economic growth slows the assumption of ergodicity
dissolves new data signaling recession into a long-run average indicating
growth. Firms and individuals making decisions based on models are there-
fore unable to observe the signal being sent by the data that a transition in
the reality of the market is under way, even as they recalibrate their models.
As a result, actors continue to behave as if growth conditions prevail, even
as the market is entering a process of retrenchment.

Thinking about a series of forecasts made during this period of transi-
tion, one would likely see forecast errors consistently missing in the same
direction, though no information about the forecast error would be fed
back into the model. When models encompass a large set of variables, small
changes in the environment can lead to sharp changes in model parame-
ters, creating significant hedging errors when those parameters inform hedge
ratios. Activity is more at odds with reality as the reversal of conditions
continues, until the preponderance of new data can no longer be ignored;
through successive recalibrations the weight of the new data balances and
overtakes the old data. Suddenly actors are confronted by a vastly different
reality as their models catch up to the new data. The result is a perception of
discontinuity. The available analytics no longer support the viability of the
financial institution’s chosen risk profile. Management reacts to the apparent
discontinuity, past decisions are abruptly reversed, and consequently mar-
ket prices show extreme movements that were not previously believed to be
within the realm of possibility.

Models staked on stationarity thus sow the seeds of their own destruc-
tion by encouraging poor decision making, the outcomes of which later
register as a realization of the nearly-impossible. Crises are therefore less
about tail events “occurring” than about model-based expectations failing
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to adapt. As a result, perennial efforts to capture extreme risks in stationary
models as if they were simply given are, in large part, misguided. They are
as much effect as they are cause. Financial firms would do much better to
confront the operational task of revising risk measurements continuously,
and using the outputs of that continuous learning process to control their
business decisions. Relaxing the assumption of stationarity within one’s
risk models has the goal of enabling revisions of expectations to take place
smoothly, to the extent that our expectations of financial markets are formed
with the aid of models, in a way that successive recalibrations cannot.

BAYESIAN PROBABILITY AS A MEANS OF HANDLING
DISCONTINUITY

The purpose of this book is to set out a particular view of probability and a
set of statistical methods that untether risk management calculations from
the foundational assumption of time-invariance. Such methods necessarily
move away from the classical analysis of time series, and lay bare the uncer-
tainties in statistical and financial models that are typically papered over
by the assumption of ergodic stationarity. Thus, our methods will allow us
to entertain the possibilities that we know the parameters of a model only
within a nontrivial range of values, multiple models may be adequate to the
data, and different models may become the best representation of the data
as market conditions change. It is the author’s conjecture (and hope) that
introducing flexibility in modeling procedures along these multiple dimen-
sions will reduce or even eliminate the extreme discontinuities associated
with risk models in crisis periods.

Efforts to deal with nonstationarity within the realm of classical time
series have centered around—and foundered on—the problems of unit
roots, cointegration, and structural change (Maddala and Kim 1998). Unit
roots and cointegration both deal with nonstationary time series by trans-
forming them into stationary time series. Unit root econometrics achieves
stationarity by differencing, whereas the analysis of cointegrated time series
depends on the discovery of a linear combination of nonstationary series
which becomes stationary. Still other methods rely on fractional differencing
or other methods of removing deterministic or seasonal trends. Yet all of
these classically-motivated methods for dealing with nonstationarity run
into the problem of structural change. The possibility of structural change
means unit root processes and cointegrating relations, among other data
relationships, may not persist over the entirety of an observed period
of data. When estimated models fail to detect and cope with structural
changes, forecasts based on those models can become completely unreliable.
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Bayesian probability methods may be used to overcome the assumptions
that render classical statistical analysis blind to discontinuities in market
conditions. As a result, we anticipate that firms operating in risk transfer
markets can remain more sensitive to shifts in the market landscape and
better understand the risks which form their core business focus by adopting
a Bayesian modeling regime.

The choice of a Bayesian toolkit will tempt many readers to dismiss out
of hand the alternatives presented here. I will plead pragmatism and try to
mollify such readers by showing the conditions under which Bayesian results
converge with classical probability. These skeptical readers can then decide
whether they prefer to remain within the bounds of classical time series anal-
ysis or, better yet, choose to adapt their deployments of classical time series
models to remain more sensitive to weaknesses in those models. For read-
ers who are not burdened by such preconceptions, I will be unashamed of
showing where Bayesian methods allow for possibilities ruled out a priori
by classical probability and statistics.

In the previous section, we identified a taxonomy of model risks, which
included parameter uncertainty, model specification uncertainty, and break-
downs in forecasting performance. In other words, models can lead us to
incorrect conclusions because unknown parameters are known imprecisely,
because the form of the model is incorrect, or because the form of the model
no longer describes the state of affairs in the marketplace. Bayesian proba-
bility is predicated on the existence and irreducibility of all of these forms
of model risk, and as a result, it furnishes resources for quantifying and
monitoring each of these aspects of model risk.

Accounting for Parameter and Model Uncertainty
Let’s consider a basic model. Denote the data by {xt} (we can assume they
are continuously compounded large-cap equity returns) and the unknown
parameters within the model as 𝜃. If the model were the normal distribution,
for example, we would have

p(xt | 𝜃) = 1√
2𝜋𝜎2

exp

[
−1
2

(
xt − 𝜇

)2
𝜎2

]
,

with 𝜃 = {𝜇, 𝜎2}, the unknown mean and variance of the return series. Clas-
sical statistics would treat 𝜃 as unknown constants to be found by computing
sample moments from {xt}. Any uncertainty about 𝜃 is held to arise from
sampling error, which implies that uncertainty can be reduced to a negligible
amount by observing ever more data.

The basic insight of Bayesian probability comes from Bayes’ rule, a
simple theorem about conditional probability. If we consider the joint
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probability of x and 𝜃, both of the following statements are true:

p(x, 𝜃) = p(x | 𝜃)p(𝜃)
= p(𝜃 |x)p(x).

Hence, if we equate the two statements on the right-hand side with each
other and rearrange, we obtain another true statement, which is Bayes’ rule:

p(𝜃 |x)p(x) = p(x | 𝜃)p(𝜃)
p(𝜃 |x) = p(x | 𝜃)p(𝜃)

p(x)
.

Setting aside the unconditional probability of the data p(x) for the time
being, we have the following expression of Bayes’ rule as a statement about
proportionality:

p(𝜃 |x) ∝ p(x | 𝜃)p(𝜃).
A particular interpretation is attached to this last expression. The term

on the right p(𝜃) is a probability distribution expressing beliefs about the
value of 𝜃 before observing the data. Rather than treating 𝜃 as a set of
unknown constants, uncertainty about 𝜃 is explicitly recognized by assign-
ing a probability distribution to possible values of 𝜃. Here, we might break
p(𝜃) = p(𝜇, 𝜎2) into p(𝜇 |𝜎2) p(𝜎2). Since 𝜇 can be anywhere on the real line,
an appropriate prior distribution p(𝜇 |𝜎2) could be another normal distri-
bution with parameters 𝜇0 and 𝜎20. An inverse-gamma distribution is useful
as a model for p(𝜎2) because it is defined on the interval [0,∞) and variance
cannot be negative in a normal distribution.

At the same time p(𝜃) recognizes uncertainty about the values of 𝜃, it
also provides a vehicle for introducing knowledge we already have about 𝜃.
Such knowledge is ‘subjective’ in that it is not based on the data. But that
does not mean that it is arbitrary. For a lognormal model of large-cap equity
returns at daily frequency, we may believe 𝜇 is centered on zero, with some
greater or lesser degree of confidence, expressed through the specification of
𝜎20. The mode for the distribution of 𝜎

2 might be (50%)2/252.
Specifying p(𝜃) also places useful restrictions on the parameter space,

such as requiring 𝜎2 to be positive, while also indicating which values for 𝜃
would be surprising. A large nonzero value for the mean of a large-cap equity
return series would be surprising, as would a volatility of 5 percent or 5,000
percent. Results such as these would lead a classical statistician to question
his computations, data, and methods. The information in p(𝜃) may be inter-
preted as an indication of which results would be so contrary to sense as to
be nearly impossible. However p(𝜃) has a failsafe, since p(𝜃) > 0 everywhere
along its support; no valid value of 𝜃 can be completely excluded a priori.
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Because p(𝜃) is determined before seeing x on the basis of nondata knowl-
edge, it is known as the prior distribution for the parameters 𝜃. The prior
distribution captures knowledge obtained from sources other than the data
at hand, while recognizing the provisional and imperfect nature of such
knowledge.

The distribution p(x | 𝜃) will be familiar to students of statistics as
the likelihood of seeing the data x conditional on the parameters 𝜃.
Maximum-likelihood techniques search for the 𝜃 that maximizes p(x | 𝜃),
bypassing prior information p(𝜃). Working the other way around, for fixed
𝜃 the likelihood is a statement about how surprising x is. The likelihood
captures the information contained in the data. Moreover, most statisticians
subscribe to the likelihood principle, which states that all information in
the data is captured by the likelihood.

Given these elements, Bayes’ theorem tells us that the posterior distri-
bution of parameter values p(𝜃 |x) is proportional to the prior distribution
of parameter values p(𝜃) times the likelihood p(x | 𝜃). The posterior distri-
bution refines the knowledge introduced by the prior distribution on the
basis of information contained in the likelihood. Thus, for unknown param-
eters within a given statistical model, we begin and end with a probabilistic
expression for the model parameters that acknowledges the uncertainty of
our knowledge about the parameters. We know before and after seeing the
data what degree of uncertainty applies to our parameter estimates. If the
data are consistent with our prior estimates, the location of the parame-
ters will be little changed and the variance of the posterior distribution will
shrink. If the data are surprising given our prior estimates, the variance will
increase and the location will migrate. In Chapter 2, we explore the con-
sequences of introducing prior information in this way, and compare the
Bayesian approach to classical methods for handing prior information via
hypothesis tests.

Now consider alternative model specifications. Instead of x and 𝜃, we
could just as easily consider (formally) the joint probability of x and Mi,
where Mi is a candidate model specification:

p(Mi |x) ∝ p(x |Mi)p(Mi)

The notation suppresses 𝜃, but that is not to say that p(𝜃) and p(𝜃 |x)
do not matter to the determination of model probabilities. We defer dealing
with these subtleties for now.

The explicit recognition of multiple models with competing claims to
being true on the basis of the data is in sharp contrast to classical statis-
tical practice, which merely permits the acceptance or rejection of individ-
ual model specifications against unspecified alternatives, or as hypothesis
tests within the context of an encompassing model. If the idea of attaching
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numeric probabilities to models seems unnatural, think of the probabilities
as expressions of the odds model i is a better representation of the data than
model j, p(Mi)∕p(Mj), subject to the constraint

∑
ip(Mi) = 1.

Just as in the specification of p(𝜃), p(Mi) for each model i expresses
existing beliefs about the adequacy of different models, which recognizes
uncertainty about the best representation of the data-generation process. The
axioms of probability ensure that p(Mi) > 0 for any model within the set of
models being considered. On the other hand, closure of the set of models is
not as straightforward as closure of the set of possible parameter values: We
implicitly set p(Mi) ≡ 0 for any model not entertained. However, efforts to
close the set of models are neither possible nor practical.

Posterior model probabilities are updated on the basis of the data from
their prior values, also as in the case of prior and posterior parameter dis-
tributions. As a result, the adequacy of the model is explicitly evaluated
on the basis of the available data, relative to the adequacy of other mod-
els. Further, with the aid of posterior model probabilities, an expectation
may be computed over an ensemble of models, so that forecasts need not
depend exclusively on a particular specification. Instead of assuming sta-
tionarity, a Bayesian approach with multiple models admits the possibility
that a variety of data-generating processes—all of which are known only
approximately—may be responsible for current observations. Themanner in
which Bayesian probability accounts for uncertainty about data-generating
processes is discussed at greater length in Chapter 3.

Responding to Changes in the Market Environment

The passage from prior to posterior probability via the likelihood suggests
a sequential approach to modeling in which inferences are progressively
updated as more data are observed. Sequential model implementation in
turn suggests a means of coping with the third aspect of model risk, the
risk of discontinuity. Part Two of the book is concerned with extending
the Bayesian framework for handling parameter and model uncertainty to
a dynamic form, which allows for ongoing monitoring and updating. The
goal of Part Two is to construct adaptive models that remain sensitive to
anomalous data and learn from their forecasting mistakes, and to identify
metrics that will show the evolution of parameter and model uncertainty as
new data are encountered.

With the construction of adaptive models, our approach to modeling
financial time series switches from the batch analysis perspective of classical
time series to an online perspective that updates inferences each time new
data are observed. The shift in perspective is essential to abandoning the
assumption of a time-invariant data-generation process. When we model
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a financial time series with classical methods, time series data are batched
without knowing if the same process generated all of the data. If transitions
between processes go undetected, the time series model will average param-
eter values on either side of the transition, glossing over the change in the
process. The resulting model would not have produced valid forecasts on
either side of the transition, and its ability to forecast out-of-sample would
be anyone’s guess.

The primary obstacle to making Bayesian analysis sequential is its
own tendency in the face of accumulating data to reproduce the ignorant
certainty inherent in classical statistics. If all observed data are regarded as
being sampled from the same data-generation process, the relative weight on
the likelihood converges to unity, while the weight on the prior goes to zero.
Asymptotically, Bayesian estimates are equivalent to maximum-likelihood
estimates unless we explicitly recognize the possibility that current obser-
vations are not sampled from the same process as past observations. The
technique of discounting, introduced in Chapter 4, ensures that current
observations have a greater role in reevaluating parameter distributions
and model probabilities than the accumulated weight of observations in the
distant past.

Discounting past data is already common practice and is implemented
in standard risk management software. When new data enter the obser-
vation window, models are recalibrated on the reweighted data set. How-
ever, reweighting the data introduces new problems and does not nullify the
problems associated with recalibration. First, the weight that current data
deserve relative to past data cannot be specified a priori. Efforts to estimate
“optimal” discount rates via maximum likelihood are once again misguided,
because the result will be sensitive to the data set and may paper over impor-
tant differences. Second and more important, model recalibration fails to
carry any useful information about parameters or models from one date
to the next. The results from previous calibrations are simply thrown away
and replaced with new ones. Often, the result is that model parameters jump
discontinuously from one value to another.

In Chapters 5 and 6, dynamic state-space models are introduced as a
means of carrying inferences through time without the profligate waste of
information imposed by recalibration. Dynamic models thus allow discount-
ing to take place without erasing what has been learned from earlier data.
Indexing models by alternative discount rates then allows for uncertainty
about discount rates to be handled through the computation of posterior
model probabilities. When the world looks more like a long-run average,
models that give less relative weight to current data should be preferred,
whereas models that forget the past more rapidly will be preferred in times
of rapid change.
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TIME-INVARIANCE AND OBJECTIVITY

Bayesian methods view probability as a degree of justified belief, whereas
classical methods define probability as frequency, or the expected number of
outcomes given a large number of repetitions. Classical statisticians trumpet
the “objectivity” of their approach against the “subjectivity” of Bayesians,
who speak unabashedly about belief, rather than “letting the data speak.”
So-called objective Bayesians aim to split the difference by using uninfor-
mative priors, which have minimal influence on inferences, though disagree-
ments exist about which priors are truly uninformative. To the extent that
classical statisticians will arrive at the same result if they apply the same
protocol, their process is “objective.”

However, it is rarely the case that everyone with access to the same
data draws the same conclusion from it—they test different hypotheses, use
different models, and weigh the results against other knowledge (justified
belief?) before coming to a (provisional) conclusion. Bayesian probability
makes these subjective prior commitments explicit and produces an outcome
which weighs the prior commitment and the data in a completely transpar-
ent way. Two Bayesians applying the same prior and model to the same
data will arrive at the same result. So is the Bayesian process “subjective”
because it makes a summary of non-data-based knowledge explicit, whereas
“objective” statistics leave such things unstated?

Given an unlimited amount of data, any prior belief expressed by a
Bayesian will be swamped by the evidence—the relative weight accorded
to the prior belief goes to zero. Hence, from the point of view of Bayesian
probability, objectivity is a kind of limit result that is only possible under
the strong assumption of unlimited data drawn from a time-invariant data-
generating process. In the realm of classical time series analysis, objectivity
requires stationarity, as well as a possibly unlimited amount of time to permit
ergodicity (the law of large numbers) to take hold. We should be wary of a
protocol that requires everyone to ignore the possibility that the world does
not accord with our modeling assumptions, and to suspend our disbelief
about short-term results in the faith that in the limit, our measurements of
relative frequency will be correct. If accounting for these possibilities intro-
duces subjectivity, then so be it.

Dispersion in prior probabilities is the essence of trading and entre-
preneurship. New trading ideas and new ventures do not get under way
without a strong prior belief that something is the case within a market.
These ideas and ventures are new and entrepreneurial precisely because they
are out of sync with what is generally accepted. Different prior probabilities
will most certainly generate different posterior probabilities, particularly
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when data are scarce, and when decisions are being made on the basis
of posterior probabilities, dispersion in beliefs will generate dispersion in
actions. Competition and speculation both depend on the heterogeneity of
opinions and actions.

A protocol that encourages market participants to agree on “objective”
estimates and take identical actions in response to those estimates enforces
homogeneity, crowding, and ossification (Chincarini 2012). Multiple
firms acting on the same “objective” conclusion from the same data herd
into markets pursuing the same value proposition. Consider the universe
of statistical arbitrage hedge funds that mine the CRSP and Compustat
databases—among other standard data sources—to discover asset-pricing
anomalies and build “riskless” portfolios to exploit them. Starting from the
same data and the same set of models, they should buy and sell the same
universes of securities in pursuit of value. When results break down, as they
did in August 2007, it is impossible for all traders to obtain liquidity at a
reasonable price, and an entire segment of the asset management industry
can get crushed at once (Khandani and Lo 2007, Section 10). Objectivity
does not lead to robustness at a systemic level, and objective statistics
cannot generate competition or support new ideas, so their enduring value
within the financial firm is circumscribed, at best.

It is also striking, on deeper examination, how “objective” statistical
practice buries subjective elements deep within methodology as ad hoc
choices and rationalizing simplifications. So-called objective classical
statistics not only rely on the dogma of uniform data-generation processes
already discussed; they also enforce certain beliefs about nondata knowl-
edge and loss functions about which most people would express different
views, if they were free to do so.

We already know that risk is subjective. Different people have different
risk tolerances, and their willingness to bear risk depends crucially on their
relative knowledge endowments. Thus, if the goal of a risk specialist firm
is to identify and exploit a particular opportunity within the universe of
financial risks, a modeling framework that provides a vehicle for that firm’s
particular knowledge is to be greatly preferred to amodeling framework that
enforces the same conclusions on all users. On the other hand, if a firm, its
management, and its regulators are eager to follow the herd, even if it means
going over the precipice, they are welcome to take refuge in the “objective”
of their conclusions.
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