
CHAPTER 1

Introduction

1.1 INTRODUCTION

In experimentalwork, treatment or treatments are given tounits andoneor
several observations are recorded from each unit. The experimental unit
differs from problem to problem. In agricultural experiments, the unit is a
plot of land; in preclinical trials, the unit is an animal; in clinical trials, the
unit is a subject; in industrial experiments, the unit is a piece of equipment.
Treatments are those introduced by the investigator into the experiment to
study their effects. In certain experiments, only one observation will be
taken on each unit, while in other experiments, several readings will
be taken from each unit. In cases where several measurements are made,
either they will all be taken at the same time as in a standard SAT consist-
ing of essay/writing, critical reading, and math comprehension or they
will be taken over a period of time as in several tests given in a course.
In this monograph, we confine ourselves to the designs and analysis of
experiments where several observations are taken from each unit.

While it is absolutely necessary to take several readings on a unit
in some experiments, it is desirable to do so in other investigational
settings. Consider an animal feeding experiment where four feeds,
A, B, C, and D, are tested. One may plan an experiment using 16 cows
in the total experiment in which each cow receives one of the four feeds,
with four cows for each feed. Or the experiment may be planned with
only four cows in the experiment with each cow receiving each of the

Repeated Measurements and Cross-Over Designs, First Edition. Damaraju Raghavarao
and Lakshmi Padgett.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.

1

CO
PYRIG

HTED
 M

ATERIA
L



four feeds at different time intervals. In the latter scenario, using only
4 cows rather than 16 cows is not only economical but also eliminates
the cow-to-cow variability in testing the feeds. However, the experiment
with four cows will take a longer time to complete.

The class of designs where several observations are taken on each
unit can be broadly referred to as repeated measurement designs
(RMD). These can be subclassified as

(i) One-sample RMD

(ii) k-Sample RMD (or profile analysis)

(iii) Cross-over designs (or change-over designs) without residual
effects (CODWOR) of the treatments like Latin square designs,
Youden square designs, and Lattice square designs

(iv) Cross-over designs with residual effects (CODWR) of the
treatments like two-period cross-over designs of Grizzle
(1965) and balanced residual effects designs (BRED) of
Williams (1949)

The standard split-plot design in certain situations can also be considered
as an RMD. We will elaborate on these designs in the remaining
chapters.

1.2 ONE-SAMPLE RMD

In this setting, a random sample of N experimental units will be taken
from a population and p responses will be taken at the same time or
at different times on each experimental unit. Another scenario for this
design is that N homogeneous units will be treated alike at the beginning
of the experiment and p responses will be recorded on each unit at the
same time or at different times.

Let Y0
α = (Yα1, Yα2,…, Yαp) be the vector of the p responses on the

αth experimental unit for α = 1, 2,…,N. Let us assume that Yα are inde-
pendently and identically distributed as multivariate normal with mean
vector μ0 = (μ1, μ2,…, μp) and positive definite dispersion matrix Σ.
Both μ and Σ are unknown.

The null hypothesis of interest in this case is

H0 : μ1 = μ2 =…= μp: ð1:2:1Þ
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The matrix Σ is said to satisfy the circularity condition or sphericity
condition if

P1ΣP 0
1 = dIp – 1, ð1:2:2Þ

where d is a scalar, Ip–1 is an identity matrix of order p − 1, and P1 is a
(p − 1) × p matrix such that

P =

1ffiffiffi
p

p J1,p

P1

2
4

3
5 ð1:2:3Þ

is an orthogonal matrix, Jm,n being anm × nmatrix with 1’s everywhere.
If α0 = (α1, α2,…, αp), Σ of the form

Σ = Jp,1α0 +αJ1,p + λIp ð1:2:4Þ
clearly satisfies the sphericity condition. In particular, a complete sym-
metric matrix Σ of the form aIp + bJp,p satisfies the sphericity condition.
The matrix Σ of Equation (1.2.4) is said to satisfy the Huynh–Feldt con-
dition, which will be discussed in Section 2.5.

In Chapter 2, we will show that the null hypothesis (1.2.1) can be
tested by the standard univariate procedures if Σ satisfies the sphericity
condition. If Σ does not satisfy the sphericity condition, multivariate
methods using Hotelling’s T 2 will be used to test the null hypothesis
(1.2.1), and these methods will also be described in Chapter 2.

We will now provide three practical problems:

EXAMPLE 1.2.1

Three test scores were obtained for 10 randomly selected students in a
large elementary statistics course. The methods to test the equality of
performance in the three tests for a similar group of students are
discussed in Chapter 2. �

EXAMPLE 1.2.2

Rao (1973) discussed an example in which observations were taken on
28 trees for thickness of cork borings in four directions: North (N), East
(E), South (S), and West (W). To test the null hypothesis that the mean
thickness of cork borings is the same in the four directions, the methods
discussed in Chapter 2 are used. �
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EXAMPLE 1.2.3

In a noisy industrial surrounding, one can test the possible loss of hearing
due to the outside noise level. For this purpose, audiogram results can
be taken of a homogeneous group of employees over specified time
intervals and the data can be analyzed by one-sample RMD methods
discussed in Chapter 2. �

1.3 k-SAMPLE RMD

In this setting, we have k distinct populations and we draw k-independent
random samples from these populations. Let Ni be the sample size of the

sample taken from the ith population (i = 1, 2,…, k) and letN =
Xk

i= 1
Ni.

Let Y0
ij = (Yij1, Yij2,…, Yijp) be the vector of p responses taken on the jth

selected unit from the ith population (j = 1, 2,…,Ni; i = 1, 2,…, k).
Alternatively, this design arises by taking N homogeneous experi-

mental units and applying the ith treatment to Ni randomly selected units
at the beginning of the experiment (i = 1, 2,…, k). The p-dimensional
response vector Y0

ij = (Yij1, Yij2,…, Yijp) can then be recorded on the
jth unit receiving the ith treatment (j = 1, 2,…,Ni; i = 1, 2,…, k).

In each of these cases, we assume that Yij are independently
and identically distributed multivariate normal with mean vector
μ0
i = (μi1, μi2,…, μip) and positive definite dispersion matrix Σ, for

j = 1, 2, …, Ni, i = 1, 2,…, k. Both μi and Σ are unknown.
In this problem, there are three different null hypotheses of interest

to the experimenter and they are

H0c :

μ11−μ12
μ12−μ13

..

.

μ1,p−1−μ1p

2
6664

3
7775=

μ21−μ22
μ22−μ23

..

.

μ2,p−1−μ2p

2
6664

3
7775=… =

μk1−μk2
μk2−μk3

..

.

μk,p−1−μkp

2
6664

3
7775, ð1:3:1Þ

H0a :
Xp
j= 1

μ1j =
Xp
j = 1

μ2j =…=
Xp
j= 1

μkj, ð1:3:2Þ

H0b :
Xk
i = 1

μi1 =
Xk
i= 1

μi2 =…=
Xk
i= 1

μip: ð1:3:3Þ
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Here, μi can be interpreted as the profile of the ith population
(i = 1, 2,…, k). The null hypothesis H0c then implies that we are testing
the parallelism of the k profiles. IfH0c is retained, the parallelism hypoth-
esis is not rejected and the profiles will appear as in Figure 1.3.1.

When H0c is rejected, the profiles may be either intersecting one
another (Figure 1.3.2) or the slopes may be different between the
responses (Figure 1.3.3).

In experimental work, H0c is the null hypothesis of testing the
interaction effects between the treatments and the responses.

If H0c is not rejected, then one will be interested to test H0a and/or
H0b. In H0a, we are testing the average of p responses to be constant
from population to population (or treatment to treatment). In H0b, we
are testing the average of the k populations (or treatments) to be the same
for the responses. Testing H0a and H0b are, in essence, testing the main
effects in a factorial experiment (see Padgett, 2011, for further details).

The analyses of these designs are discussed in Chapter 3. In this
case, it is shown that the univariate analysis of variance (ANOVA)
can be applied to make all inferences if Σ satisfies the sphericity

1 2 3 p

Population k

Population 2

Population 1

FIGURE 1.3.1 Parallel profiles.

1 2 3 p

Population 1
Population k
Population 2

FIGURE 1.3.2 Intersecting nonparallel profiles.
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condition and multivariate methods are needed if Σ violates the
sphericity condition. Univariate methods can also be used by adjusting
the degrees of freedom, when sphericity assumption is not valid and the
necessary adjustment will also be given in Chapter 3. We will close this
section with some examples of k-sample RMD given in the literature:

EXAMPLE 1.3.1

Paape and Tucker (1969) considered a study of the influence of
pregnancy on concurrent lactational performance of rats measured by
litter weight gains. The two groups considered were pregnant and
nonpregnant rats. The data were taken at four time intervals/periods:
8–12, 12–16, 16–20, and 20–24 days of lactation. �

In this setting, one will be interested to test the parallelism of weight
gain profiles for both groups of rats and then test for the differences
of groups averaging over periods and for the differences of lactation
periods averaging over the two groups following the methods discussed
in Chapter 3. Gill and Hafs (1971) discussed different types of statistical
analyses for this problem.

EXAMPLE 1.3.2

Lee (1977) in a courseproject atTempleUniversity analyzed theAdaptive
Behavior Scale (ABS) values of mentally challenged institutionalized
people. There are four groups of individuals based on their mental ages,
and the ABS values for three periods were recorded every 6 months. �

1 2 p3

Population k
Population 2
Population 1

FIGURE 1.3.3 Nonparallel profiles with different slopes.
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Lee was interested to test the hypothesis that all four groups are
progressing equally and the hypothesis of no differences in ABS values
from group to group and period to period. The numerical details of this
type of analysis will be considered in Chapter 3.

EXAMPLE 1.3.3

Danford,Hughes, andMcNee (1960) studied the effect of radiation therapy
on 45 subjects suffering from cancerous lesions. The subjects were trained
to operate a psychomotor testing device, and the average daily scores based
on four trials on the daypreceding radiation and on eachof the 10 days after
the therapy were taken as the responses. Six subjects were not given radi-
ation and served as controls,while the remaining subjectswere treatedwith
dosages of 25–50, 75–100, or 125–250. The parallelism of group profiles,
the differences of radiation levels, and the differences in daily progress can
be tested by themethodsgiven inChapter 3. The dispersionmatrices for the
kgroupsof unitsmaynotbe equal, andwewill also discuss this aspect in the
analysis in Chapter 3. �

1.4 SPLIT-PLOT DESIGNS

Split-plot designs are widely used in agricultural experiments (see
Gomez and Gomez, 1984; Raghavarao, 1983). The experimental mate-
rial is first divided into main plots to accommodate main treatments.
Each main plot is then subdivided into s subplots, and the s subplot treat-
ments are randomly assigned to each main plot. The main plot treatments
assigned to main plots can either form a randomized block design (RBD)
or a completely randomized design (CRD). In the context of RMD, it is
more appropriate to consider the main plot treatments to form a CRD.
With three main plot treatments a0, a1, and a2 replicated on 3, 4, and
4 main plots and with four subplots treatments b0, b1, b2, and b3, the
layout may appear as in Figure 1.4.1.

In the RMD setting, one can consider three groups of experimental
units a0, a1, and a2, respectively, of sizes 3, 4, and 4. Ignoring the subplot
treatments, one considers the sequence of four subplot observations as
the four-period observations. The model assumes equal correlation
structure of period observations on each experimental unit. Further,
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the systematic arrangement of the subplot data somewhat violates the
assumptions of split-plot analysis. However, this design is also widely
used as RMD. We will not formally discuss this design in this mono-
graph as this design is discussed in detail in several books on experimen-
tal designs; however, for completeness, we will provide the SAS
program in Example 1.4.1.

EXAMPLE 1.4.1

We will now consider artificial data given in Table 1.4.1 for the problem
mentioned in Example 1.3.1. �

The following SAS program provides the necessary output:
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FIGURE 1.4.1 Split-plot layout.

TABLE 1.4.1
Artificial data for profile analysis

Lactation
period
(days)

Pregnant rats Nonpregnant rats

1 2 3 4 5 6 7 1 2 3 4 5 6 7

8–12 3.4 1.6 5.7 7.3 6.3 8.1 7.2 12.1 8.9 9.8 7.9 8.6 10.8 11.7

12–16 8.1 9.6 12.9 11.9 9.8 10.4 9.4 12.3 9.4 10.7 7.9 8.5 10.6 12.3

16–20 4.7 7.8 10.8 9.2 6.4 7.7 8.3 12.4 9.4 13.2 7.9 8.3 9.9 9.8

20–24 1.1 2.9 3.6 5.6 0.6 2.9 3.4 10.1 7.3 9.7 4.6 5.7 7.5 8.4
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data a; input days $ treatment ratnumber value
@@;cards;
8-12113.48-12121.68-12135.78-12147.38-12156.3
8-12 1 6 8.1 8-12 1 7 7.2 8-12 2 1 12.1 8-12 2 2 8.9 8-12 2
3 9.8
8-12 2 4 7.9 8-12 2 5 8.6 8-12 2 6 10.8 8-12 2 7 11.7
12-16 1 1 8.1 12-16 1 2 9.6 12-16 1 3 12.9 12-16 1 4 11.9
12-16 1 5 9.8
12-16 1 6 10.4 12-16 1 7 9.4 12-16 2 1 12.3 12-16 2 2 9.4
12-16 2 3 10.7
12-16 2 4 7.9 12-16 2 5 8.5 12-16 2 6 10.6 12-16 2 7 12.3
16-20 1 1 4.7 16-20 1 2 7.8 16-20 1 3 10.8 16-20 1 4 9.2
16-20 1 5 6.4 16-20 1 6 7.7 16-20 1 7 8.3 16-20 2 1 12.4
16-20 2 2 9.4 16-20 2 3 13.2 16-20 2 4 7.9 16-20 2 5 8.3
16-20 2 6 9.9 16-20 2 7 9.8
20-24 1 1 1.1 20-24 1 2 2.9 20-24 1 3 3.6 20-24 1 4 5.6 20-24
1 5 0.6
20-24 1 6 2.9 20-24 1 7 3.4 20-24 2 1 10.1 20-24 2 2 7.3
20-24 2 3 9.7 20-24 2 4 4.6 20-24 2 5 5.7 20-24 2 6 7.5 20-24
2 7 8.4
;

data final;set a;
if days='8-12' then period=1;
else if days='12-16' then period=2;
else if days='16-20' then period=3;
else if days='20-24' then period=4;
proc sort;by days ratnumber;

proc glm; class ratnumber treatment period;
model value=treatment treatment(ratnumber) period
treatment∗period ;
∗If the main treatments are arranged in a RBD, we will use
‘blocks’ and ‘blocks ∗ interaction’ in the model
statement and remove treatment (rat number) term. We
will also use ‘blocks’ instead of ‘rat numbers’ in the
class statement.;

test h=treatment e=treatment(ratnumber);
∗In the RBD case, we will use e=blocks∗interaction;
run;

means period/snk;
means treatment/snk e=treatment(ratnumber); run;

∗∗∗
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The GLM Procedure

Dependent Variable: value

Sum of
Source DF Squares Mean Square F Value Pr > F

Model 19 480.3192857 25.2799624 20.91 <.0001

Error 36 (a6) 43.5150000 1.2087500 (a4)

Corrected Total 55 523.8342857

R-Square Coeff Var Root MSE value Mean

0.916930 13.60923 1.099432 8.078571

Source DF Type I SS Mean Square F Value Pr > F

treatment 1 111.4464286 111.4464286 92.20 <.0001

treatment(ratnumber) 12(a7) 125.7478571 10.4789881 (a5) 8.67 <.0001

period 3 192.3971429 64.1323810 53.06 <.0001 (a2)

treatment�period 3 50.7278571 16.9092857 13.99 <.0001 (a1)

Source DF Type III SS Mean Square F Value Pr > F

treatment 1 111.4464286 111.4464286 92.20 <.0001

treatment(ratnumber) 12 125.7478571 10.4789881 8.67 <.0001

period 3 192.3971429 64.1323810 53.06 <.0001

treatment�period 3 50.7278571 16.9092857 13.99 <.0001

Tests of Hypotheses Using the Type III MS for treatment(ratnumber) as an

Error Term

Source DF Type III SS Mean Square F Value Pr > F

treatment 1 111.4464286 111.4464286 10.64 0.0068 (a3)

The GLM Procedure

Student-Newman-Keuls Test for value

∗∗∗

Means with the same letter are not significantly different.

SNK Grouping Mean N period

A 10.2714 14 2

B 8.9857 14 3

C 7.8143 14 1

D 5.2429 14 4

10 CHAPTER 1 Introduction



The GLM Procedure

Student-Newman-Keuls Test for value

∗∗∗

Means with the same letter are not significantly different.

SNK Grouping Mean N treatment

A 9.4893 28 2

B 6.6679 28 1

From the ANOVA output, we can see that the p-value for testing the
treatments and periods interaction given at (a1) of the output is
<0.0001 and the interaction is significant. Since the interaction is
significant, we will not be discussing the treatment and period differ-
ences. However, if this interaction is not significant, the p-value at (a3)
will be used to test the treatment differences, and the p-value
at (a2) will be used to test the period effects. When the interaction
is not significant, the Student–Neuman–Keuls procedure given in
the output can be used for multiple comparisons of the treatments
and the periods.

When the interaction between treatments and periods is significant
as in our case, we will test the difference in periods for each treatment
and test the difference in treatments for each period. Let us define υ2 as
the error degrees of freedom given at (a6), υ1 as the treatment (rat
number) degrees of freedom given at (a7), E2 as the error mean square
given at (a4), and E1 as the treatment (rat number) MS given at (a5). The
standard error for the difference between the two periods at a given
treatment level is

ffiffiffiffiffiffiffiffi
2E2

r

r
,

where r is the number of replications, and the standard error for the
difference between two treatments at the same period level is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 E1 + s−1ð ÞE2f g

rs

r
,

where s is the number of periods. The standard t-statistic will be formed
and compared against the critical values
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t1 = tα υ1ð Þ,

t2 =
s−1ð ÞE2tα υ2ð Þ +E1t1f g

s−1ð ÞE2 +E1
,

respectively, where tα(.) is the upper 100α percentile point of the t
distribution with the degrees of freedom given in the parentheses.

This same analysis can also be carried out in SAS using the PROC
MIXED procedure. The following are the programming lines:

data a; input days $ treatment ratnumber value
@@;cards;
∗Use data from previous analysis;

data final;set a;
if days='8-12' then period=1;
else if days='12-16' then period=2;
else if days='16-20' then period=3;
else if days='20-24' then period=4;
proc sort;by days ratnumber;

proc mixed;
class ratnumber treatment period ;
model value=treatment period treatment∗period ;
random treatment(ratnumber) ;∗if the main treatments
are in randomized block, the blocks and the interaction
between blocks and main treatments should be shown as
random effects;

lsmeans treatment period/adjust=tukey;run;

∗∗∗

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

treatment 1 12 10.64 0.0068

period 3 36 53.06 <.0001

treatment�period 3 36 13.99 <.0001

∗∗∗
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The Mixed Procedure

Differences of Least Squares Means (a8)

Effect treatment period _treatment _period Adjustment Adj P

treatment 1 2 Tukey 0.0068

period 1 2 Tukey-Kramer <.0001

period 1 3 Tukey-Kramer 0.0373

period 1 4 Tukey-Kramer <.0001

period 2 3 Tukey-Kramer 0.0190

period 2 4 Tukey-Kramer <.0001

period 3 4 Tukey-Kramer <.0001

The conclusions and the test statistics are the same using the PROC
MIXED procedure as was initially discussed using the PROC GLM
procedure. The contrasts of main or subtreatment effects can be tested
from the last part of the output indicated by (a8).

1.5 GROWTH CURVES

Often, we come across situations where responses are taken over
a period of time on each experimental unit. These responses can be
modeled using linear or nonlinear models. The linear model may be a
polynomial on time. The model on the unit is called the growth curve,
as it represents the growth or decay of the response over a period of
time. The difference with this setting is that the experimenter may be
interested in testing the model parameters for the demographic variables
of the units and/or the treatments applied to the units. Some of the earlier
work on this topic is given by Potthoff and Roy (1964). We will now
provide some examples:

EXAMPLE 1.5.1

Consider the ABS problem discussed in Example 1.3.2. Let us assume
that the responses for the three periods follow a linear model on each
subject. These responses are correlated and we need to estimate the
dispersion matrix for the three-period responses. We may assume that
this dispersion matrix is common to all of the four groups, and we
can estimate the pooled dispersion matrix from the data. Using this
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dispersion matrix, from weighted least squares, we estimate the linear
regression equation for ABS score on periods. It is of interest now to
see whether the slope parameters are different across the four mentally
challenged groups and for subjects within the same group. �

EXAMPLE 1.5.2

When books are published, the sales over time reasonably follow
a quadratic model as sales will gradually increase initially, reach
a peak, and slowly decrease later. One may be interested to test that
the time to reach peak sales is significantly different for two
books. �

The mathematical model for these problems differs from the stand-
ard model formulations, and we will discuss some of these problems
in Chapter 4. It is possible to do a hierarchial model in this setting,
and this will also be discussed in Chapter 4.

1.6 CROSS-OVER DESIGNS

The commonly used cross-over designs are the Latin square designs. If v
treatments are used in an experiment, one may construct a v × v square
array such that every treatment occurs once in each row and once in each
column to get a Latin square design. Given such a design, one may iden-
tify the columns to the experimental units and rows to different periods
of administering the treatments. A k-sample RMD and cross-over
designs both use several treatments. However, in the k-sample RMD,
each unit is given only one of the treatments at the beginning of the
experiment and the data are collected over several periods, while in
cross-over designs, each unit receives a subset or all of the treatments
used in the experiment.

Let us consider a feeding experiment on four cows using four feeds
A, B, C, and D in a Latin square design of Table 1.6.1.

The experimenter first decides the length of time each feed will be
given to each animal, say, 2 weeks. Cow 1 receives feed A for 2 weeks,
followed by feed B for 2 weeks, followed by feed D for 2 weeks, and
finally followed by feed C for 2 weeks. A similar interpretation can
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be made to the feeding assignment of the other cows. In this situation, a
treatment produces a direct effect in the period of application. The treat-
ment effect may still persist to the subsequent periods after the treatment
has been discontinued, and such effects are called residual or carryover
effects. Residual effect of the ith order is the residual effect of the treat-
ment effect in the ith period after its discontinuance. Usually, the residual
effects of the ith order will be smaller than the residual effects of the
(i − 1)th order for i = 2, 3,…, v. While conducting the experiment, either
we have to account for the residual effects by introducing them in the
linear model or provide a washout period between switching the treat-
ments so that the residual effect of the previously administered treatment
will disappear before the new treatment is applied. Cross-over designs
providing washout periods and using no residual effects in the model
will be called CODWOR, and the design of Table 1.6.1 may then appear
as in Table 1.6.2, interpreting □ as a washout period.

The designs, properties, and the analysis of CODWOR will be
discussed in Chapter 5. It may be noted that for these designs it is not
necessary to have every cell of the design filled with a treatment. One
may leave an experimental unit untreated in a period. Further, if washout
period is impractical, then the response for the treatments may be taken
in the middle of the period of application of the treatment, and this
practice assumes that there will be no carryover effects when responses
are taken.

When it is not possible to leave a washout period in an experiment
due to the time constraint or due to the nature of the experimentation, the
analysis will be conducted accounting for residual effects in the linear

TABLE 1.6.1
A Latin square design for four treatments

Period

Cow number

1 2 3 4

1 A B C D

2 B C D A

3 D A B C

4 C D A B

1.6 Cross-Over Designs 15



model, and such designs are called CODWR. The literature for CODWR
is well developed for designs accounting first-order residual effects.
Using one or two Latin squares, depending on even or odd number of
treatments, Williams (1949) gave CODWR where elementary contrasts
of direct effects are estimated with the same variance and also the ele-
mentary contrasts of first-order residual effects are estimated with the
same variance. Following the block design terminology, such designs
are called BRED. BREDs not arising from Latin square designs are also
known in the literature (cf. Patterson, 1952). While CODWR usually
consists of distinct treatments in successive periods, it is also possible
to use the treatment repeatedly in successive periods assuming that each
treatment produces a carryover effect on itself. We will discuss these
designs along with their analysis in Chapters 6 and 8. Some examples
for cross-over designs given in the literature are the following:

EXAMPLE 1.6.1

Cochran, Autrey, and Cannon (1941) considered an experiment on the
feeding of dairy cows using six cows and three treatments. �

In this experiment, it is not possible to leave washout periods
between treatment administrations. Thus, this design will be analyzed

TABLE 1.6.2
CODWOR for four treatments

Period

Cow number

1 2 3 4

1 A B C D

□ □ □ □

2 B C D A

□ □ □ □

3 D A B C

□ □ □ □

4 C D A B
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as a CODWR. This design is Williams’ type of BRED and can be ana-
lyzed by the methods given in Chapter 6 or Cochran and Cox (1966).

EXAMPLE 1.6.2

Henderson (1952) conducted a market research experiment to find the
effect of packagingof apples in 4 lb bags (treatmentA), 6 lbbags (treatment
B), and8 lbbags (treatmentC). Six retail storeswereused in the experiment
and each treatment was left in a store for 1 week. The volume of sales in a
week may have residual effects of the treatment for the next week’s sale.
The analysis of this type of design will be illustrated in Chapter 6. �

EXAMPLE 1.6.3

In Example 1.6.1, if the milk yield data was collected in the last 2 weeks
of each period, one may ignore the presence of residual effects as
they can be washed out in the early part of each period and the data
can be analyzed as CODWOR, and we will discuss this example in
Chapter 5. �

For a detailed discussion on cross-over designs, the reader is referred to
Bose and Dey (2009), Jones and Kenward (2003), and Stufken (1996).

Another class of cross-over designs is the frequency square
or F-square design. In this design, v treatments will be tested in n
periods on n subjects where n > v. The ith treatment will occur in ri
periods on each of the ri subjects. Here, Σ ri = n. An example of an
F-square design with v = 3, n = 6, r1 = 3, r2 = 2, and r3 = 1 is given in
Table 1.6.3.

This F-square design can be analyzed as CODWOR by leaving
washout periods between administration of treatments. This F-square
design is more useful when some treatments have to be applied more
often than other treatments.

Another class of CODWOR are Youden square designs in which v
treatments are tested on v subjects in k periods where no treatment is
repeated on a subject, k subjects receive each of the v treatments, and
λ subjects receive every distinct pair of treatments. Here, λ(v − 1) =
k(k − 1). An example of a Youden square design with v = 7, k = 3, and
λ = 1 is given in Table 1.6.4.
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1.7 TWO-PERIOD CROSS-OVER DESIGNS

Two-period, two-treatment cross-over designs introduced by Grizzle
(1965) enjoyed wide popularity in clinical trials. If A and B are two
treatments, on N1 experimental units, the treatment pair {A, B} will
be administered in the two periods, and on N2 experimental units, the
treatment pair {B, A} will be given in the two periods. Usually, one
of the treatments is placebo (or the standard commonly used drug)
and the other is the experimental drug. In clinical trials, it appears uneth-
ical to switch a treatment showing good response to another treatment,
which may or may not be effective. Furthermore, this design in particular
and cross-over designs in general are severely criticized for not account-
ing the interaction between the periods and sequences of treatments used
in the experiment. For a detailed discussion on the controversy of this
design, the interested reader is referred to Brown (1978, 1980). Ignoring
the controversy, the design has interesting statistical problems, and we
will discuss them in Chapter 7. Balaam (1968) gave two-period designs

TABLE 1.6.4
Youden square design with v = 7, k = 3, and λ = 1

A B C D E F G

B C D E F G A

D E F G A B C

TABLE 1.6.3
F-square design with v = 3 and n = 6

1 1 1 2 2 3

3 1 1 1 2 2

1 1 2 2 3 1

2 3 1 1 1 2

1 2 2 3 1 1

2 2 3 1 1 1
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for t treatments in t2 experimental units. These will also be considered in
Chapter 7. We will now discuss some applications of two-period cross-
over designs.

EXAMPLE 1.7.1

Continuing a study of Zinner, Duany, and Chilton (1970), Varma and
Chilton (1974) discussed the analysis of a two-period cross-over design
dental study comparing a test compound with a placebo and the data are
the oral hygiene index.Wewill discuss the analysis of this type of data in
Chapter 7. �

EXAMPLE 1.7.2

Balaam (1968) gave the analysis for a nutritional trial. Four treatments
A, B, C, and D were tested on 16 animals in a two-period cross-over
design, the data analyzed being the logarithms of live weight gains. This
type of analysis will also be discussed in Chapter 7. �

EXAMPLE 1.7.3

Koch (1972) gave a two-period, two-treatment cross-over design using
10 children randomly divided into two groups of sizes n1 = n2 = 5.
The treatments used were G, 100 ml of grapefruit juice followed by
an elixir of pentobarbital, and H, 100 ml of water followed by an
elixir of pentobarbital. The data resulting from the experiment are the
measurements of the amount of drug in a 10 ml sample of blood taken
15 min after the elixir was administered in μg/ml. �

Methods of Chapter 7 can be used to analyze the data by assuming
normality. Koch (1972) gave the analysis using nonparametric methods,
and those methods will also be discussed in Chapter 7.

1.8 MODIFICATIONS IN CROSS-OVER DESIGNS

Cunningham and Owen (1971) discussed four methods of analyzing
performance data from a dairy cattle feeding experiment. The design
involved a preexperimental, an experimental, and a postexperimental
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period. Periods I and III were essentially controls during which all cows
were fed the same. Each of the active treatments was used in Period II.
In their experiment, 36 cows were used consisting of 6 cows for each of
the following sequences:

A A A A A A
B C D E F G
H H H H H H

In this design, A and H are controls, and B, C, D, E, F, and G are active
treatments. The four methods of analysis used were

(i) Analysis of average performance for Period II

(ii) Analysis of average performance for Period II with average
performance for Period I as a concomitant variable

(iii) Analysis of average performance for Period II with both aver-
age performances for Period I and body weight at the end of
Period I as concomitant variables

(iv) Analysis of twice the average performance for Period II (Y)
minus the sum of the average performance for Periods I (X)
and III (Z) (i.e., 2Y − X − Z)

They found that method (iv) gave the smallest coefficient of variation.
While using invasive procedures as treatments, it is desirable to

leave some experimental units untreated in certain periods. This also
becomes necessary when data collection in each period is costly or
time consuming. Mercado (1976) discussed designs allowing for
untreated periods. One can use seven treatments A, B, C, D, E, F,
and G in seven periods on seven units using the design given in
Table 1.8.1, where “–” denotes that no treatment was applied on
the unit in that period.

Mercado called such designs as generalized residual effects designs
(GRED) and classified them into two types:

Type I (GRED-I) – designs in which observations are taken only on
treated cells

Type II (GRED-II) – designs in which observations are taken on all
cells, treated or untreated.

GRED-I and GRED-II will be discussed in Chapter 6.
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In most settings, the residual effects of higher orders are less than the
residual effects of smaller orders; however, in some cases, the residual
effects of all orders are the same in the experimental period. Lakatos and
Raghavarao (1987) discussed designs where the residual effects are the
same for all orders of a treatment. Such designs can be used to order
sensitive questions in a questionnaire. These results will be considered
in Chapter 8.

In some experiments, interest centers on the simultaneous compar-
ison of several test treatments to a control treatment rather than on all
pairwise comparisons. Dunnett (1964) developed a multiple comparison
procedure for comparing several treatments with a control in a CRD.
Bechhofer and Tamhane (1981) gave incomplete block designs for
comparing treatments with a control. Treatment balanced residual
effects designs (TBRED) are the cross-over designs for comparing
active treatments with a control, and they were discussed by Pigeon and
Raghavarao (1987). These results will also be presented in Chapter 8.
The optimality of these designs was discussed by Majumdar (1988).

Sometimes, the treatments may be a factorial combination of two
factors F1 and F2. We need longer period of application for levels of fac-
tor F1, whereas we can easily change the levels of factor F2. In this case,
the levels of factor F1 will be applied to experimental units following a

TABLE 1.8.1
GRED for seven treatments

Period

Unit number

1 2 3 4 5 6 7

1 A — — E — C B

2 C B — — F — D

3 E D C — — G —

4 — F E D — — A

5 B — G F E — —

6 — C — A G F —

7 — — D — B A G
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cross-over design. The periods of application of levels of factor F1 are
called whole-plot periods. The whole-plot periods will be subdivided
into subplot periods, and the levels of factor F2 will be applied in a
cross-over design to the whole-plot periods of the levels of factor F1.
Such designs may be called split-plot type carryover designs and are
discussed by Raghavarao and Xie (2003).

Sometimes, each treatment may be giving a carryover effect
when applied to the next period by the same treatment. Designs studying
these type of carryover effects contain replications of the treatments in
adjacent periods on the same subject. Designs of this type are discussed
by Laska, Meisner, and Kushner (1983) and will be discussed in
Chapter 8.

1.9 NONPARAMETRIC METHODS

Using univariate and bivariate Wilcoxon tests, Koch (1972) gave the
analysis of a two-period, two-treatment cross-over design and illustrated
the analysis on the example discussed in Section 1.7.

Poisson data often arises in experiments as described in the
following examples:

EXAMPLE 1.9.1

Layard and Arvesen (1978) discussed a cross-over trial to test a standard
antinausea treatment (drug A) against a proposed treatment (drug B).
Twenty subjects were tested, 10 for each order of administration,
and the data are the number of episodes of nausea suffered by a patient
during the first 2 h after cancer chemotherapy. �

For a given patient, the nausea count is approximately Poisson
distributed. We will use nonparametric methods to analyze this data
as described in Chapter 7.

EXAMPLE 1.9.2

Layard and Arvesen (1978) discussed another cross-over trial to evaluate
two treatments for the control of angina. The data collectedwere the angina
attacksoneach individual andhasanapproximatePoissondistribution. �
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In conclusion, we direct the interested reader to the paper by Koch
et al. (1980) for some views on repeated measurement analysis.
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