
1
BASICS

It is rather amazing that a finite rectangular array of colored dots (called pixels as an
abbreviation of picture elements) is sufficient to display the nearly limitless collec-
tion of images we recognize as realistically or symbolically representing portions of
our world. The power of combinatorics helps us to explain the situation (millions of
possible colors for each pixel in the large display array), but we can hardly conceive
of all the images we have already seen let alone those that are yet to be seen. From
this reductionist viewpoint, the whole idea of computer graphics is to set the right
pixels to the right color. Easier said than done. Yes, a plain red square is easy, but
one that looks like it is made of bricks is tougher, and one that includes a human face
taxes the best of known algorithms.

Of course, the computer graphics enterprise includes any and all manipulations of
images. We can start from scratch and produce a photo-realistic image of a new air-
liner or perhaps construct a landscape design complete with a variety of plants. Maybe
the challenge is to translate CAT (computerized axial tomography) scan data into an
image of the brain or correct the color balance in a photo being readied for publica-
tion. To bring some order to the very long list of possibilities, it is helpful to consider
two main categories: either we are generating images, or we are processing existing
images. Both require mathematical tools, but the first category encompasses the broad
mathematical approaches necessary to understand three-dimensional descriptions of
objects and their interactions with light. The second category starts with an image
and draws on the mathematics of transformations and filters necessary to convert it
into a more useful visual representation. In this survey of mathematical tools that are

Mathematical Structures for Computer Graphics, First Edition. Steven J. Janke.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

1

CO
PYRIG

HTED
 M

ATERIA
L

2 BASICS

useful in computer graphics, we will focus on the first category where we can start
with the basics of mathematical descriptions and work through the generation and
manipulation of objects in space.

1.1 GRAPHICS PIPELINE

As we examine the steps necessary to produce a new image on the computer screen,
we are tracing what is often called the graphics pipeline. The pipeline analogy is
intended to highlight the stages we go through both in designing images and in
processing them on the computer to produce the final properly colored array of
pixels on the display screen. As one frame is being completed, the next is making its
way down the pipeline. Most modern hardware includes the main microprocessor
(central processing unit, CPU), the graphics microprocessor (graphics processing
unit, GPU), and various associated memory banks. The CPU and GPU work in
parallel, as the CPU supplies descriptions of objects to the GPU which in turn
processes the descriptions to determine which pixels on the screen need to be turned
on. The exact order of all the required steps depends on the hardware and on the
graphics software we use. However, we can make a more general description of
the pipeline to enumerate the stages of image generation and set the context for
understanding the associated mathematics. Our pipeline then looks like this:

1. Modeling. We need a mathematical description of objects, background, and light
sources as well as a description of their placement in a scene. For more primitive
objects such as buildings which are more or less constructed out of simple plane
surfaces, the description includes a list of vertices and a list showing which
vertices determine individual faces. For curved surfaces, we may attempt an
accurate description (e.g., a sphere) or rely on an approximation with small flat
triangles. These descriptions are, of course, just the beginning, as we need also
to know the details of how the objects are placed in a scene and how light will
interact with them. Mathematically, a geometric description including vertices
and faces (surfaces) forms the kernel of our model, but certainly if the object is
a tree or if there is fog affecting the lighting, the description may well require
a deeper extension of the standard high school geometry. This modeling stage
can be done with design software, allowing artists to manipulate the scene to
reach the desired effect.

2. Transformation. Building a scene requires positioning objects relative to each
other and includes rotation, scaling, and translation. Transformations reposition
an object and convert its coordinate descriptions appropriately. Then, to view
the scene, imagine a camera placed somewhere in space looking in a particular
direction. (Alternatively, imagine your eye positioned in space looking at the
scene.) Another transformation adjusts the mathematical descriptions so that
they are relative to the camera position.

3. Visibility. Depending on where the camera is, we may not see the entire scene.
Rather, some parts are outside the field of view and consequently can be ignored

GRAPHICS PIPELINE 3

when generating the image. Even those objects within the field of view usually
have some surfaces that are facing away from the camera and need not be con-
sidered. Some objects in the scene may be only partially visible since they fall
both inside and outside the field of view. These objects are clipped (often after
projection) so that only the relevant pieces continue down the graphics pipeline.
Dealing with only the visible portions of a scene improves the efficiency of
image generation because the calculations necessary to determine pixel color
are computationally expensive.

4. Projection. Once we position the camera (or our eye), the actual image of the
scene is produced on a two-dimensional surface in the camera (or on our retina).
The three-dimensional scene is projected onto a two-dimensional screen. It is
somewhat easier to imagine that there is a window placed just in front of our eye
or camera and the scene itself is painted on this window. Positions of points in
the scene, including how far away from the window they are, determine where
on the window they are projected. Done correctly, the projection preserves the
perspective in the scene and adds realism. If the dimensions of the window do
not match the display screen, yet another transformation is necessary to convert
window coordinates to display coordinates.

5. Rasterize. Mathematical descriptions of objects are usually continuous, allow-
ing line segments, for example, to have an infinite number of points. At some
stage of the graphics pipeline, the continuous line must be approximated by a
finite set of screen pixels. This process requires some care to avoid distorting
the line and introducing unintended artifacts, but then we have a finite set of
pixels rather than an infinite set of points. The task of determining the colors
of the pixels is now manageable and, if done appropriately, can maintain the
illusion of a continuous image.

6. Shading. Light determines the exact shade of color that an object reflects, and
that light depends on the position of light sources, their intensity, and their
color. Some objects may be casting shadows and others may actually be reflect-
ing light onto the rest of the scene. The geometry of light rays is essential for
making these shading calculations. Positioning light sources and determining
the material properties of objects occurs early in the pipeline, but it is late
in the process when color calculations are actually completed for individual
pixels.

7. Texturing. Describing the surface of an object as mathematically planar indi-
cates that it is flat and smooth. Yet surfaces can be rough or covered with pat-
terns of color. For example, in a computer game, the walls of a room may
well be made of stone, so it becomes important to determine how light reflects
off stone. In the texturing stage, this type of surface detail is added somewhat
artificially by either copying the detail from existing images (e.g., taking a
picture of real stone) or generating it mathematically with functional descrip-
tions (e.g., some function describing how bumpy stone really is). To determine
final colors for pixels, textures need to be generated and mapped to individual
pixels.

4 BASICS

Modeling Transform

Visibility

Projection Clipping

Rasterize Shading Texture

Figure 1.1 Graphics pipeline

This is the general notion of a graphics pipeline. The first stage, modeling, is often
done interactively and builds the contents of the image, while all the rest of the stages
taken together render the image on the screen. Depending on the hardware and soft-
ware, the order of the rendering stages may be slightly permuted, but the scope of the
process indicates the range of mathematical tools we need to explore (Figure 1.1).

1.2 MATHEMATICAL DESCRIPTIONS

To generate an image, we need to mathematically describe a scene. For a simple object
such as a cube, we can list the position of its vertices and then list which vertices
anchor each face. This is easy enough, but the positions of the vertices depend on
the coordinate system we are using and it is not obvious which one we should use.
Putting the origin of our coordinate system at the center of the cube makes describing
the vertex positions easier, but there may be other objects in the scene which are good
candidates for the origin. The answer may well be to use many coordinate systems
and develop means of combining them into an all-inclusive scene.

If next to the cube there is a more organic object such as a flower, then we have an
added difficulty because a flower is probably not well described by giving vertices and
faces. There could be such a description, but there is also a special system of symbols
(L-system) that was designed to capture the way plants grow, making a description
both easier and more succinct.

The cube may be made of wood, making the faces more bumpy than smooth and
making light reflect in a way that shows the grain. The scene description is now mov-
ing further and further from a simple list of vertices, and we will need additional
means of describing the detail.

The larger goals are to make the mathematical description as simple as possible,
as easy as possible to alter during the design process, and as independent of any fixed
coordinate system as possible. Then the resulting computer code will be general and
flexible.

To draw an object on the computer screen, we need to identify which pixels to
light up (and what color to make them). Since most computer monitors are rectangu-
lar, locating a pixel usually means specifying its horizontal and vertical position in
the rectangular array of pixels which make up the entire screen. This seems simple

POSITION 5

enough, but our common descriptions of objects are not usually in terms of the hor-
izontal and vertical distances to each point. A cartoon character’s head might be
described as “oval, with a button nose, and beady eyes.” And a tree may be “coni-
cal with short drooping branches covered with folded, heart-shaped leaves.” To draw
these objects on the screen, there is no escape from determining the horizontal and
vertical positions of appropriate pixels, but the challenge for the graphics programmer
is to find ways of describing the objects that are between the intuitive common way
and the hard-core quantitative way that lists the horizontal and vertical positions of
all the points. Unfortunately, qualitative descriptions of objects are not easily incor-
porated into computer programs, so it makes sense, at least at first, to concentrate on
more quantitative descriptions.

1.3 POSITION

In the geometry of Euclid, there are no coordinates. Instead, geometric objects are
compared to each other in order to understand their features; lines are compared to
other lines, and triangles to triangles. This approach is not sufficient for computer
graphics because we eventually need the absolute position of an object in order to
determine which pixels on the screen to turn on. In the seventeenth century, Descartes,
the philosopher and mathematician, made attempts to connect algebra and geometry,
and although he did not develop coordinate systems as we know them now, we still
refer to the rectangular coordinate system as the Cartesian coordinate system. This is
the default coordinate system for computer graphics and the one we are all familiar
with from high school (Figure 1.2).

In two dimensions, we have two perpendicular axes, the horizontal one labeled x
and the vertical one labeled y. They cross at a unique origin labeled 0. Each is a num-
ber line increasing either to the right or up. Any point in the plane has a coordinate
representation which is a pair of numbers (x, y) indicating how far to go horizontally
(negative distance indicates left of the origin) and then how far to go vertically (neg-
ative here means down from the origin). Note that this is a unique representation; any
pair of numbers determines exactly one point in the plane and any point determines
exactly one pair of numbers.

4

5

0

P = (4,5)

x

y

Figure 1.2 2D Cartesian coordinate system

6 BASICS

In computer graphics, the fundamental task is to locate points in a scene, and to
make that process easier and perhaps more intuitive, we define a new mathematical
object called a vector.

Definition 1.1 A two-dimensional vector is an object representing a displacement in
the plane. It has a length and a direction.

A vector is intended to describe how to get from one point to another. If our vector
has a length of five units and is pointing to the right, then it represents moving from
an arbitrary point to a point five units to the right. It is important to note that the vector
is not positioned at any particular place in the plane. It represents displacement, not
position. Once we apply the displacement to a point, we reach another point that is
positioned in the plane. Visually, vectors are represented as arrows; they have length
and direction. As we will soon see, a convenient way of describing a two-dimensional
vector mathematically is to give two numbers indicating its displacement in the hor-
izontal and vertical directions. Often the representative arrow is drawn with its tail at
the origin, say, and its head (the end with the arrow) positioned to show the displace-
ment. This can be a little confusing because the vector is really not positioned at any
particular point in the plane; setting the tail at the origin is just a default approach to
representing the vector visually (Figure 1.3).

We now can give a slightly different perspective on the standard Cartesian coor-
dinate system. To describe a two-dimensional (2D) coordinate system, we specify a
unique origin and two vectors. For the standard system, these vectors both have the
same unit length and are perpendicular to each other. The vector with direction along
the positive x-axis is usually referred to as i⃗, and the one in the direction of the positive
y-axis is denoted as j⃗. Describing any point in the plane is now a matter of indicating
how many unit steps in the direction of i⃗ and how many in the direction of j⃗ we need
to take to reach the point. For example, the point (4, 1.5) is the point we reach when
starting at the origin, then taking 4 unit steps in the x-direction, and finally 1.5 unit
steps in the y-direction. As you may have guessed, since i⃗ and j⃗ have unit length, the
algebra of vectors allows us to represent the point as 4⃗i + 1.5⃗j. This will prove to be
useful in making geometric calculations (Figure 1.4).

v

v

0
x

y

Figure 1.3 Vectors indicating displacement

POSITION 7

0
x

y

j

i

4 i + 1.5 j

Figure 1.4 Vectors i⃗ and j⃗

Without much effort, we can move to three-dimensional space by adding a third
axis labeled z perpendicular to the x- and y-axes. With our vector perspective, we
have added a new vector, often called k⃗. Now each point in space is represented by a
unique triple of numbers, or in terms of vectors as a combination of the three vectors
i⃗, j⃗, and k⃗.

The nature of the Cartesian coordinate system depends on the direction of the unit
vectors. The standard two-dimensional system has vector i⃗ pointing to the right along
the positive x-axis and the perpendicular vector j⃗ pointing up. However, we might
also let j⃗ point down. This is actually the default coordinate system for the computer
screen when using some standard programming languages. An easy transformation
can get us back to the standard system with j⃗ pointing up, and usually this is desirable.
As we will see later, we could pick the two vectors for a system so that they are not
perpendicular. These systems may prove useful in describing some objects, so we
will have to develop transformations that allow us to easily move between all these
various possibilities.

In three dimensions, there is one, often troubling, complication. There are two
geometrically different ways to add a third vector and this time the mathematical
consequences are not trivial. Basically, the third vector k⃗ could point in the direction
designated in Figure 1.5 or in the opposite direction. To standardize, we designate a
right-handed system to be one where if we position our right hand with the fingers
pointing in the direction of i⃗ and adjust so that when we curl our fingers they point

i

j

k

Figure 1.5 Right-handed coordinate system

8 BASICS

in the direction of j⃗, then our thumb points in the direction of k⃗. Figure 1.5 shows
a right-handed coordinate system. It is important to distinguish right-handed from
left-handed systems in order to keep track of whether vectors point out of or into an
object.

1.4 DISTANCE

Now that we have set up a coordinate system, we turn to the fundamental prob-
lem of determining the distance between two points. This is a job for the venerable
Pythagorean theorem, named after an itinerant teacher of ancient Greece who led
his devoted followers through a wide range of ideas drawn from topics as diverse as
number theory and vegetarian diets. He is credited for the famous theorem about right
triangles, but the result was undoubtedly known much earlier by at least Babylonian
scholars if not others [1].

Theorem 1.1 (Pythagorean Theorem). In a right triangle, the sum of squares of the
two legs equals the square of the hypotenuse.

Proof Sketch. First remember that a right triangle is one with a 90∘ angle. Figure 1.6
shows four identical right triangles with legs a and b. They are arranged in a large
square on the left and then rearranged in the same large square on the right. On the
left, the area not taken up by triangles is equal to c2, the area of the labeled square
in the middle. On the right, the area outside the triangles is in two pieces equaling
a2 + b2. Hence the Pythagorean theorem: a2 + b2 = c2. ◽

This result allows us to calculate the distance between any two points on the screen
or in an arbitrary plane. Simply, the distance is the length of the hypotenuse of a right
triangle. The two points are the opposite corners of a rectangle with sides parallel to
the vectors i⃗ and j⃗ which determine the coordinate system. The distance between the
corners of the rectangle is the length of the hypotenuse of a right triangle. The legs of
the right triangle are easy to find by taking differences of the Cartesian coordinates
for the two points. If one point has coordinates (x1, y1) and the other (x2, y2), then the

a

b
c

a

b

(a) (b)

Figure 1.6 (a,b) Visual proof of the Pythagorean theorem

DISTANCE 9

Pythagorean theorem gives

Distance =
√

(x1 − x2)2 + (y1 − y2)2

In three dimensions, the distance between points is not much harder to find once
we visualize two right triangles. Suppose the two points are labeled P1 and P2. This
time, they can be thought of as the opposite corners of a rectangular box where the
faces of the box are parallel to the three coordinate planes (Figure 1.7). The distance
between the points is the length of the hypotenuse of the right triangle ΔP1QP2. The
leg QP2 is just one edge of the box, called a in the figure. The leg P1Q is a diagonal of
one face of the box and hence the hypotenuse of triangle ΔP1RQ. By the Pythagorean
theorem,

(P1Q)2 = b2 + c2.

Since (P1P2)2 = (P1Q)2 + (QP2)2, we finally have

(P1P2)2 = a2 + b2 + c2

where a, b, and c are all edges of the rectangular box.
The Pythagorean theorem is essential to computer graphics. Dropping perpendic-

ulars and forming right triangles is one of the most useful tools in the mathematics
toolbox. Triangles are everywhere in graphics, and, in fact, they are central to all of
geometry. Projections and visibility questions invariably involve drawing a triangle
usually including the eye position as a vertex. Complicated objects are usually built
from triangles because triangular faces are guaranteed to be planar; they can be drawn
in a plane. (This is unlike quadrilateral faces which might be twisted so that the four
vertices do not all lie in a plane.) So calculations with triangles are central to computer
graphics and we rely both on the Pythagorean theorem and on a generalization that
covers triangles of arbitrary angles. To reach this generalization, we use the cosine
function (reviewed in Appendix A).

P1

P2

Q

R

a

b
c

Figure 1.7 Distance in three dimensions

10 BASICS

A

B
CD a

b

c
d1

d2
γ

Figure 1.8 Law of cosines

Theorem 1.2 (Law of Cosines). In a triangle with sides a, b, and c, let the angle 𝛾

be opposite the side c. Then we have c2 = a2 + b2 − 2ab cos 𝛾 .

Proof Sketch. Note that 𝛾 is an angle inside the triangle, so we know it is less than
180∘. When 𝛾 = 90∘, then cos 𝛾 = 0 and we have a right triangle so the Pythagorean
theorem applies and the law of cosines reduces to it. In general, we try making right
triangles out of the original triangle to see why the law holds. There are actually two
cases: 𝛾 > 90∘ and 𝛾 < 90∘. Figure 1.8 shows the first case.

In the figure, the side AD is perpendicular to the baseline CB. Then we have three
triangles: the given triangleΔABC and two right trianglesΔADC andΔADB. With the
lower case letters indicating lengths, apply the Pythagorean theorem to the triangle
ΔADC to get

b2 = d2
1 + d2

2 .

Applying the Pythagorean theorem to the second right triangle, ΔADB gives

c2 = d2
1 + (d2 + a)2 = d2

1 + d2
2 + 2d2a + a2 = a2 + b2 + 2d2a

Notice that ∠ACD is the supplement of 𝛾 (i.e., they add to 180∘). This means
cos(∠ACD) = − cos 𝛾 , and since cos(∠ACD) = d2∕b, we now have the result c2 =
a2 + b2 − 2ab cos 𝛾 .

For the second case where 𝛾 < 90∘, we proceed just as above by drawing a new
side and building new right triangles. The algebra is just a little different (Section 1.5).

◽

Example 1.1 (Triangles in 3D). Suppose we have three vertices in three dimensions
complete with coordinates A = (3, 5, 4),B = (6, 2,−3),C = (−4, 6, 3). Although we
are in three dimensions, the triangle does lie in a single plane, so using the tools we
developed we can completely describe it. Applying the Pythagorean theorem, first
we get the lengths of all the sides:

|AB| = √
(3 − 6)2 + (5 − 2)2 + (4 − (−3))2 =

√
67 ≈ 8.185

COMPLEMENTS AND DETAILS 11

|AC| = √
(3 − (−4))2 + (5 − 6)2 + (4 − 3)2 =

√
51 ≈ 7.141

|BC| = √
(6 − (−4))2 + (2 − 6)2 + (−3 − 3)2 =

√
197 ≈ 14.036

Comparing the squares of the lengths, we can determine whether each angle is
larger or smaller than a right angle. For example, since 67 + 51 < 197, we know that
∠ABC must be larger than a right angle. That makes the other two smaller than a right
angle because the sum of all angles must be 180∘ (or 𝜋 radians).

Now, an application of the law of cosines gives us the actual angle:

197 = 67 + 51 − 2
√

67
√

51 cos(∠BAC) ⇒ cos(∠BAC) ≈ −0.676.

This indicates that ∠BAC ≈ 132.53∘. The same procedure gives the other two
angles: ∠ACB ≈ 25.46∘ and ∠ABC ≈ 22.03∘. ◽

Once we can completely describe the triangle, we should be able to determine
whether a light ray hits it. This is a common problem that we will solve later by first
finding where the light ray hits the plane of the triangle and then deciding whether
the intersection point is inside or outside the triangle. In order to solve this problem,
it helps to translate the tools we are using to the language of vectors, and this we do
in the next chapter.

1.5 COMPLEMENTS AND DETAILS

1.5.1 Pythagorean Theorem Continued

No one knows how Pythagoras proved his theorem because even the basic facts of
his life (about 500 BCE) are a bit sketchy. Since then, there have been many proofs
devised including a somewhat complicated one given by Euclid in Proposition 47 of
Book I of his Elements (about 300 BCE). Just a little later, the illustrated square on
the left in Figure 1.6 appeared in a Chinese manuscript, and in 1876 a New England
education journal published a proof apparently constructed by James A. Garfield who
later became President of the United States. Most of the proofs involve constructing
geometric figures in one way or another. (A more complete history of the theorem is
given in [1].)

For a slightly more algebraic approach to the proof in Figure 1.6, notice that the
area of the large square in the left half of the figure is (a + b)2. Yet, this must be equal
to the area of four triangles plus the area of the square in the middle (c2).

(a + b)2 = 4
(1

2
ab
)
+ c2,

a2 + 2ab + b2 = 2ab + c2

a2 + b2 = c2

12 BASICS

One important number-theoretic consequence of the theorem emerges when we
draw the right triangle with both legs equal to 1. Then the hypotenuse is

√
2 and this

number was important to the Greeks because it was incommensurable. To us now,
this means the number is irrational; it cannot be represented as the quotient of two
integers. The discovery of irrational numbers was both progress and an annoyance to
the Greeks.

Other right triangles are equally surprising. If the legs are 3 and 4, then the
hypotenuse is 5. This set of three integers is called a Pythagorean triple and is used
frequently by carpenters to quickly construct a right angle. There are infinitely many
of these Pythagorean triples and a detailed theory surrounding them (see Exercises
for further examples).

1.5.2 Law of Cosines Continued

To derive the law of cosines, we noted that, if we do not have a right triangle, there
are two cases: one where 𝛾 > 90∘, and one where 𝛾 < 90∘. The first case was covered
in Figure 1.8, so now we consider the second case.

When 𝛾 < 90∘, our triangle looks like the one in Figure 1.9. We have constructed
two right triangles by adding the perpendicular AD. The Pythagorean theorem says

c2 = h2 + a2
2

b2 = h2 + a2
1

Note that a = a1 + a2 and a1 = b cos 𝛾 . By adding a2 to both sides of b2 = h2 + a2
1,

we have

b2 + a2 = h2 + a2
1 + a2 = h2 + a2

1 + a2
1 + 2a1a2 + a2

2

= c2 + 2a1(a1 + a2)

= c2 + 2(b cos 𝛾)a

Rearranging just a little gives the law of cosines.

A

BC Da1 a2

b c

d

h

𝛾

Figure 1.9 Law of cosines: 𝛾 < 90∘

COMPLEMENTS AND DETAILS 13

A

B

CD

𝛼

𝛽

𝛾

Figure 1.10 Law of sines

1.5.3 Law of Sines

Yes, there is a law of sines as well as a law of cosines.

Theorem 1.3 (Law of Sines). In a triangle ΔABC, where the angles at the ver-
tices are, respectively, 𝛼, 𝛽, and 𝛾 , and the sides opposite the vertices are a, b, and c,
respectively, we have

sin 𝛼
a

= sin 𝛽
b

= sin 𝛾
c

= 1
d
,

where d is the diameter of the circumcircle for the triangle.

Proof Sketch. Any triangle can be inscribed in a circle so that the three vertices are on
the circle (Appendix A). Figure 1.10 shows one such arbitrary triangle, ΔABC. Draw
diameter CD and dotted line DB. Since ΔCDB is inscribed in a semicircle, it is a right
triangle. The sine of ∠CDB is a

CD
. But angle 𝛼 equals angle ∠CDB because they cut

the same arc from the circle. Hence sin A = a
CD

or sin A
a

= 1
CD

. The same argument
for each angle shows the ratio of the sine to the side opposite is always the reciprocal
of the diameter.

The diameter in Figure 1.10 cuts through the triangle. There is a second case
where the diameter is outside the triangle. The argument changes only slightly (see
Exercises). ◽

The common ratio of the sine to the side opposite is equal to the reciprocal of the
diameter of the circumcircle for the triangle.

1.5.4 Numerical Calculations

One slight hitch for the graphics programmer is the fact that calculating the square
root and trigonometric functions (e.g., sine, cosine, and tangent) takes time. Modern

14 BASICS

processors incorporate floating point operations much more efficiently that they once
did, but still, floating point arithmetic is slower than integer arithmetic. Making graph-
ics programs run quickly requires attention to the length of calculations.

Consider the square root first. If the task is to simply compare distances, using the
square of the distances works equally well. However, if the square root is actually
needed, then often an approximation can work. To illustrate, suppose we need to
calculate

√
x. Start with a guess, say g0. Then x∕g0 should be g0 if it is the square

root. It probably is not, so take a next guess g1 = (g0 +
x

g0
)∕2; this is the mean of the

first guess and the quotient. Similarly, we can define successive guesses. For example,
to find

√
120, let 10 be the first guess. Then g1 = 11 and g2 = 10.95. This last guess is

accurate to two decimal places. (This algorithm for square root is actually Newton’s
method applied to the square root function.) Of course, this approximation is useful
only if the time required to execute it is reasonably short.

Calculating the sine and cosine causes similar timing issues. One solution is to
precalculate a table of common values and simply look up the answer when needed.
For example, we could calculate the sine and cosine for all angles of radian measure
2𝜋∕n where 1 ≤ n ≤ 64. If we need more accuracy, we can recall the Taylor series
expansion (from calculus) of sine and cosine for small angles. The first few terms of
these expansions (for radian measure) give

sin(𝜃) ≈ 𝜃 − 𝜃3

6
+ 𝜃5

120

cos(𝜃) ≈ 1 − 𝜃2

2
+ 𝜃4

24

The Taylor series approximations are more accurate for small angles, so one scheme
is to precalculate a table as before, let 𝜃 be the difference between the desired
angle and the closest angle in the table (say 𝛼), approximate the sine or cosine
of 𝜃, and then use the addition formulas for sine and cosine to get sin(𝛼 + 𝜃) or
cos(𝛼 + 𝜃).

1.6 EXERCISES

1. The standard Cartesian coordinate system has the vectors i⃗, j⃗, and k⃗ positioned
to form a right-handed system. We can replace any or all of these vectors with
one pointing in the opposite direction. This gives us a total of eight different
coordinate systems. Determine which of these are right-handed systems.

2. Consider an isosceles right triangle. (This is one where both legs are equal.)
Construct a square on each of the three sides. The Pythagorean theorem says
that the sum of the areas of the two smaller squares equals the area of the larger
square. By dividing each square into triangles equal to the initial triangle, estab-
lish the theorem in this special case.

3. For another proof of the Pythagorean theorem, consider Figure 1.11. Triangle
ΔABC is a right triangle with the right angle at C. Each of the smaller triangles

EXERCISES 15

A B

C

x

Figure 1.11 Alternate proof of Pythagorean theorem

is a right triangle and each is similar to ΔABC. This means that the ratio of sides
in one triangle equals the ratio of sides in another. Find two of these equations
which when added together give the Pythagorean theorem.

4. The vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1) form a triangle. Find the perpendic-
ular distance from the origin (0, 0, 0) to this triangle using right triangles.

5. Find the three angles of the triangle with vertices A = (−1, 1, 2), B = (5, 3, 1),
C = (2, 6,−4).

6. The four vertices (2 +
√

2, 2 +
√

2, 2), (1 − 3
√

2, 1 + 3
√

2, 1), (−6,−6,−2),
and (2, 1,−6) form four triangles in space. Determine which of the four, if any,
are right triangles.

7. Given two points in the plane, where are all the points that are at the same
distance from both these selected points? Given three points in the plane that
are not on a line, where are all the points equidistant from all three?

8. Describe all points that are at a fixed distance from a solid square in the plane.
(The distance from a point to the square is the minimum distance between the
point and any point on the square.)

9. For some right triangles, the two legs and the hypotenuse are all integers.
For example, sides 3, 4, 5 form a right triangle. We call the triple (3, 4, 5) a
Pythagorean triple. Of course, any multiple of these three numbers [such as
(6, 8, 10)] also forms a Pythagorean triple. Find two Pythagorean triples that
are not multiples of (3, 4, 5) or of each other.

10. Pick two positive integers s and t such that one is odd, one is even, and s > t.
Show that x = 2st, y = s2 − t2, and z = s2 + t2 form a Pythagorean triple as
defined in the previous exercise. If, in addition, s and t do not have a common
divisor greater than 1, the triple is said to be primitive and all primitive triples
can be found in this way.

11. The vectors i⃗ and j⃗ define the two-dimensional coordinate system. Suppose we
replace j⃗ = (0, 1) with the vector 𝑤 = (1√

2
,

1√
2
). In this new coordinate system,

what are the coordinates of the point with old coordinates (2, 3)?

16 BASICS

12. If we use the vectors 2⃗i and 3⃗j to define a Cartesian coordinate system and we
move the origin to the point (−1, 6) in the original coordinate system, what are
coordinates of the point with old coordinates (4, 7)? Give equations showing
how to convert from old coordinates to new coordinates.

13. Referring to Figure 1.10, the diameter for the circle passes through the triangle.
It could have passed outside the triangle. Complete the proof of the law of sines
in this second case.

14. By drawing a perpendicular from the vertex A to the opposite side in a triangle,
form two right triangles and show that a = b cos 𝛾 + c cos 𝛽. Then use the law
of sines to show sin(𝛽 + 𝛾) = sin 𝛽 cos 𝛾 + sin 𝛾 sin 𝛽.

1.6.1 Programming Exercises

1. Write a program displaying a right triangle along with squares drawn on each
of the three sides in order to illustrate the Pythagorean theorem. Allow the user
to dynamically change the shape of the right triangle.

2. The left diagram in Figure 1.6 has a square in the middle turned at an angle.
We can replicate the same diagram inside this smaller square by drawing four
more right triangles. To construct the new triangles, divide the side of the
smaller square in the same ratio (a ∶ b) as the division on the side of the larger
square. The process can be repeated many times to give an image of spiralling
squares. Write a program to produce this image with as many spiralling squares
as the user wishes. Also allow input for the ratio (a ∶ b). The key is to find the
vertices of each smaller square.

