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Computerized image understanding is the process of extracting meaningful features
(e.g., color, intensity, and geometry of group of pixels) from the images, inferring
and aggregating the symbolic information into unique concepts, matching them with
physical worldmodels and producing descriptions of the images and their relationship
in the world that the images represent [1]. Biomedical images are those acquired from
biology, medicine, pathology, dentistry, and other specialized healthcare domains.
With the advancement of modern imaging devices, enormous amounts of digital still
and dynamic image data are generated from nano to macro, from protein to cells, and
to organs and from animals to human. Computerized image analysis plays an impor-
tant role in understanding and interpreting these images accurately and efficiently to
assist biologists and clinicians in decision making. Being a highly multidisciplinary
research field, biomedical image understanding requires knowledge, theories, meth-
ods, and techniques from computer science, engineering, mathematics as well as from
general and specialized healthcare domains. Developments in related disciplines have
rapidly advanced over the past decade. Various imaging modalities and acquiring
procedures result in large differences in biomedical images.
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4 OVERVIEW OF BIOMEDICAL IMAGE UNDERSTANDING METHODS

The computerized understanding of these biomedical images requires a few or all
of the following essential computational processes:

• Segmentation and object detection

• Registration and matching

• Object tracking

• Classification

• Knowledge-based systems (KBSs).

The schematic diagram in Fig. 1.1 shows the coherent relationships and functions of
these basic processes. As a fundamental process in biomedical image understand-
ing, segmentation delineates the image into meaningful regions and unique concepts.
These detected regions/objects can be compared with the world models by registra-
tion and matching. When analyzing images changing with time, that is, videos, the
object motion is tracked and characterized. One way is to first segment the objects and
then track them by associating the segmented objects. Some particular features such
as shape and context could be extracted for associating. Another way is to perform
simultaneous segmentation and tracking.
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Figure 1.1 Basic computational processes for image understanding.
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Classification is to categorize items into subcategories, such as different attributes,
and so on. The output of classification is their labels of different properties. After
segmentation, the features, regions, objects, and/or their motions (determined by
tracking) may also be further categorized into subclasses. The object motions tracked
can also be further classified into different types to enhance the understanding of
the deformation and velocity fields in the image. In classifier- or cluster-based
segmentation methods, image pixels are grouped into foreground or background
and thereby form segments of regions in the image. In such cases, classification and
segmentation are processed simultaneously.

Besides segmentation, another fundamental process for the understanding is
registration (or matching), which means to align two components for comparisons.
Comparing with the world models generates descriptions of similarities and dissim-
ilarities. Registration may not need an explicit clearcut region delineation as input.
It may also be used during segmentation, such as atlas construction and multimodal
segmentation. Registration may be processed in constituent component levels in
images and the detected components come from segmentation or classification.

Segmentation, tracking, and classification involve geometric, structural, and func-
tional features, regions, or objects extracted from the image/video. These features
may be from different spaces, represented differently, explicitly, or implicitly.

Whenever necessary and available, knowledge can always be helpful to assist
these computation processes. It may be used to initialize a computation, to constrain
solution boundaries, to provide feedback on solution feasibility, or as a standard to
compare with, and so on. Knowledge could be either prior knowledge or learned dur-
ing the computation. With prior knowledge, the matching of the above-mentioned
symbolic information with world models can be faster, more accurate, more targeted,
and/or more robust. Similarity/dissimilarity and labels of objects and their context
against the world models in terms of geometry positions, structures, relations, and
functions provide primary understanding of the image and its components. Semantic
understanding of biomedical images requires the comparisons and matchings with
specific domain concepts, models, and knowledge.

In the following sections, we review the above-mentioned essential computational
methods and their latest and important applications for the understanding of biomed-
ical images/videos.

1.1 SEGMENTATION AND OBJECT DETECTION

Image segmentation is the process of partitioning an image into nonoverlapping, con-
stituent regions that have homogeneous characteristics such as intensity or texture [2].
Let Ω be the image domain, the segmentation problem is to determine a set of con-
nected subsets Si ∈ Ω that satisfy

⋃n
i=1 Si = Ω with Si ∩ Sj = 𝜙 when i ≠ j.

The purposes of segmentation in biomedical images are mainly [3]

• identifying region of interest (ROI);

• measuring organ/tumor volume;
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TABLE 1.1 Taxonomy of Segmentation

Methods based
on image
processing
techniques

Thresholding [5–7]
Edge-based methods [8]
Region-based methods [9–12]

Methods using
pattern
recognition
and machine
learning
algorithms

Supervised
classifier
methods

k-nearest neighbor (KNN) classifier [13, 14]
Parzen window classifier [15, 16]
Bayes classifier [17]

Unsupervised
classifier
methods

k-means algorithm [18]
Fuzzy c-mean algorithm [19, 20]
Expectation-maximization (EM) algorithm [21]

Model and Parametric active contour models [22]
atlas-based Geometric active contour models [23–26]
segmentation Active shape and appearance models [27, 28]

Atlas-based methods [29, 30]

Multispectral Gaussians models with Markov–Gibbs random [31]
segmentation Variational approach for registration [32]

Feature fusion [33]

User Identifying region of interest [34]
interactions Providing seeds with predefined labels [35, 36]
in interactive Controlling topology [37, 38]
segmentation Correcting segmentation [39, 40]
methods

Source: From Reference [4]

• studying anatomical structure;

• treatment/surgical planning;

• cell counting for drug effect study.

We classify the medical image segmentation methods (Table 1.1) according to
Reference [4].

1.1.1 Methods Based on Image Processing Techniques

Methods based on image processing techniques have three general categories: thresh-
olding, edge-based methods, and region-based methods. When the ROI or object has
homogeneous intensity against a background of different gray levels, one or multiple
thresholds can be applied on an image histogram to segment the object from back-
ground. Edge-based segmentation relies on the assumption that boundaries between
objects are represented by edges, that is, discontinuities in gray level [3]. The dis-
continuities are usually detected by operators that approximate gradient or Laplacian
computation and then used as features in subsequent processes. The performance of
various edge-based segmentation approaches was compared in Reference [8].
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Region-based segmentation is based on the principal of homogeneity – pixels
within each object have similar visual properties [3]. Region growing is a segmen-
tation method that uses a bottom-up strategy. In region growing method [9], a set of
seed points are required to initialize the process. Regions are grown iteratively by
merging unallocated neighboring pixels depending on a merging criterion. Region
growing is usually used in the segmentation of small or simple structures in medical
images such as posterior fossa in fetal brain [10], aorta [11], and myocardial wall
[12]. Split-and-merge is an algorithm related to region growing, but does not need
seed points.

Watershed algorithm [41] is also a region-based segmentationmethod. It considers
the gradient of a grayscale image as a topological relief, where the gray levels repre-
sent altitude of the relief. When this relief is flooded from regional minima, the set
of barriers built, where adjacent catchment basins meet, is called watershed. To han-
dle the problem of potential oversegmentation, region merging andmarker-controlled
watershed are often used in this type of approaches. Watershed algorithm is the most
frequently used method in cell segmentation, especially for clustered nuclei [5–7].

1.1.2 Methods Using Pattern Recognition and Machine Learning Algorithms

Due to the artifacts present in medical images, methods solely based on image
processing techniques are often used as an initial step in a sequence of image
processing operations. More often, these methods are combined with pattern recog-
nition and machine learning algorithms to improve the accuracy of segmentation.
Artificial-intelligence (AI) based techniques can be classified into supervised and
unsupervised methods. In these methods, the segmentation problem is transformed
into a pixel labeling task.

Classifier methods perform supervised segmentation by assigning each pixel to
one of the predefined set of classes, which partitions a feature space derived from
the image using (training) data with known labels [2]. The k-nearest neighbor (KNN)
classifier is nonparametric as it does not assume the statistical structure of the data. In
KNN method [13, 14], a pixel is classified by a majority vote of its k-closest training
data. The Parzen window classifier [15, 16] is also nonparametric, in which the clas-
sification is made by a weighted decision process within a predefined window of the
feature space centered at the pixel of interest. A commonly used parametric classifier
is Bayes classifier [17]. It assumes that the pixel intensities are samples from a mix-
ture of Gaussian or other probability distributions. As one of the possible extensions
in this paradigm, a fuzzy locally adaptive Bayesian segmentation approach was pro-
posed in Reference [42] for volume determination in positron emission tomography
(PET). The Bayesian segmentation model has been applied to segment atheroscle-
rotic plaques [43], skin lesions [44], uterofetal [45], and brain magnetic resonance
imaging (MRI) [46].

Clustering methods are unsupervised segmentation methods in which only
unlabeled data are used. Commonly used clustering algorithms are k-means algo-
rithm [18], fuzzy c-means algorithm [19, 20], and the expectation-maximization
(EM) algorithm [21]. Traditional clustering algorithms are graph partitioning
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methods that use a top-down strategy. The partition minimizes the cost function of
a constrained optimization problem. Basically, these methods iteratively alternate
between segmenting the image (updating labels) and characterizing the properties
of each class (updating parameters). The EM algorithm assumes that the data follow
a Gaussian mixture model (GMM). The EM algorithm has been used to segment
overlapped nuclei in microscopic cell images [47]. Again, many extensions have
been attempted, for example, a fuzzy local GMM was proposed in Reference [48]
for brain MRI segmentation.

Markov random field (MRF) is a probabilistic model that captures the contextual
constraints between neighboring pixels. MRF is often used in a Bayesian framework,
and the segmentation is obtained by maximizing a posteriori probability, given the
image data and prior information. The optimization can be achieved by iterated con-
ditional models or simulated annealing [2]. MRF has been used in segmentation of
prostate [49], brain [50–52], spines [53], breast lesion and left ventricle [54], and
optic nerve head [55].

1.1.3 Model and Atlas-Based Segmentation

AI-basedmethods can be combinedwith expert knowledge in the form of rules.When
segmenting the organs or structures in medical images, the variation of shape and
geometry can be modeled probabilistically. The use of models in medical image seg-
mentation can involve [3]:

1. Registration to training data
2. Probabilistic representation of variations of training data
3. Statistical influence between the model and the target image.

Model-based segmentation methods include deformable models, active shape and
appearance model, and level-set-based models [3]. Model-based methods are able to
generate closed contours or surfaces directly from images and incorporate a smooth-
ness and/or shape prior constraint on the result contour or surface [2]. However, all
the above-mentioned methods need good initialization; otherwise, they are liable to
be trapped in local minima. A model-based segmentation algorithm which separates
clustered nuclei by constructing a graph on a priori information about nucleus prop-
erties is proposed in Reference [56].

1.1.3.1 Parametric Active Contour Models The parametric active contour model
or snake model was proposed by Kass et al. [22] in 1988. A snake model is parameter-
ized by a sequence of snaxels:C(s) = (x(s), y(s)), s ∈ [0, 1]. This model is sensitive to
noise and spurious edges due to the edge terms relying on image gradient information,
which may converge to undesirable local minima. The details of snake model and its
extensions are given in Section 2.3. One improvement of this model is to include
region information, such as the active volume model (AVM) [57]. For some medical
images, however, for example, those with complex objects in cluttered backgrounds,
the AVMmodel may fail due to similar appearance between the foreground and some
background objects. In these cases, user interactions can help. However, although
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these interactive methods are convenient, the interaction could be very tedious, for
example, users may need to add many attraction points to make the segmentation
curve deform to the right edges.

1.1.3.2 Geometric Active Contour Models Geometric active contours are repre-
sented implicitly as level sets of a scalar function of high-dimensional variables. The
level set approach was first introduced by Osher and Sethian [23] in fluid dynamics.
Applying it to image segmentation was simultaneously suggested by Casseles et al.
[24] and Malladi and Sethian [25]. Instead of evolving the curve in the plane-like
snakes, this geometric functional evolves in time with respect to the xy plane. Just
as for snakes, we can integrate region information into the level set formulation. A
well-known example is the Mumford–Shah functional [26]. The level set method is
introduced in Section 2.4.

1.1.3.3 Active Shape and Appearance Models Statistical shape models (SSMs)
analyze the variations in shape over the training set to build a model to mimic this
variation. The most generic method to represent shapes in SSMs is the use of land-
marks: x = (x1, y1,… xk, yk)T . The usage of prior information makes this approach
more robust against noise and artifacts in medical images. The best known SSMs are
the active shape model (ASM) [27] and active appearance model (AAM) [28], both
by Cootes et al. ASM models the shape using a linear generative model. The optimal
model parameters are determined by iteratively searching each point on the shape for
a better position and updating the model parameter to best describe the newly found
positions. Similarly, AAM jointly models the appearance and shape using a linear
generative model. The model parameters are found using a mean square-error crite-
rion and an analysis-by-synthesis approach. A comprehensive review of SSM for 3D
medical image segmentation is presented in Reference [58].

1.1.3.4 Atlas-BasedMethods Usage of Atlas-based methods is another frequently
used approach in medical image segmentation. An atlas is generated by compiling
information on the anatomy, shape, size, and features of different organs or structures.
The atlas is then used as a reference frame for segmenting new images [2]. There-
fore, segmentation can be treated as a registration problem in atlas-based methods.
This type of approach is mainly used for magnetic resonance (MR) image segmen-
tation [29, 30]. Multi-atlas construction contains multiple representative atlases from
training data and usually works better than single-atlas-based approaches. Multi-atlas
segmentation and label fusion have been applied for hippocampal [59] and heart [60]
segmentation inMR images and liver segmentation in 3D computed tomography (CT)
images [61] recently.

1.1.4 Multispectral Segmentation

So far, the image segmentation methods we have discussed were proposed for image
data acquired from single modality, for example, MR or CT. Each imaging modality
provides distinctive yet complementary information of the structures. In addition,
images of the same object can be collected over time in some circumstances.
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Segmentation methods based on integration of information from multiple images
are called multispectral or multimodal. The use of precise linear combination of
Gaussians models to approximate signal distributions and analytical estimates of
the Markov–Gibbs random field parameters demonstrated promising results in
segmenting multimodal images [31]. A variational approach for multimodal image
registration has been introduced in Reference [32], which jointly segments edges
via a Mumford–Shah approach and registers image morphologies. Ahmed et al.
[33] investigated the efficacy of texture, shape, and intensity feature fusion for
posterior-fossa tumor segmentation in multimodal MRI. Surveys on multimodal
medical image segmentation methods can be found in References [62] and [63].

1.1.5 User Interactions in Interactive Segmentation Methods

Fully automatic, unsupervised segmentation of arbitrary images remains an unsolved
problem, especially for medical images. Semisupervised, or interactive segmentation
methods with additional human expert knowledge, make the segmentation problem
more controlled. However, trade-off must be made between user interaction and per-
formance in any segmentation application. The interactive segmentation methods
attempt to minimize the user interactions required and ensure the correctness. Major
types of user interaction are listed in the subsequent text according to [64]

• setting parameter values, which is the most common type of interaction;
• selecting seed points for a region growing algorithm;
• drawing initial contour in active contour models;
• selecting constraint points in active contour models [65, 66].

A special type of interaction is user scribbles. The main applications of scribbles are
for [64]

• identifying ROI [34] – users can put dots or lines on the objects they want to
extract. Good interactive segmentationsmay potentially arrive at accurate object
boundaries;

• providing seeds with predefined labels [35, 36] – users assign labels to some
seed pixels. The classification process can take these labeled and unlabeled data
points to train a classifier;

• controlling topology [37, 38] – user scribbles are used as a way to control
the topologies of segmentations by merging several inhomogeneous regions or
splitting homogeneous ones. For instance, users can put a long scribble through
the image corresponding to the whole body of a person to indicate that the per-
son’s head, neck, torsos, and legs should be connected in the segmentation;

• correcting the result of segmentations [39, 40] – scribbles give users a tool in
the correction process of segmentations if needed. Users can make corrections
both on labels or on the wrong segmented regions.

It is easy and intuitive to include user scribbles in graph-based segmentations and
make the whole process iterative. The graph cut method originally presented by
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Boykov et al. [67] uses respective labels to mark the object of interest and its
background. The most prominent advantage of the graph-cut-based methods is that
they produce a global minimum when there are only two labels involved. Moreover,
graph cuts are suitable for interactive interfaces because they minimize the under-
lying segmentation energy functional directly without the gradual approximating
process as in active contour models and thus can return the segmentation results
corresponding to the user inputs in a single step. The details of graph cut method can
be found in Section 2.5.

1.1.6 Frontiers of Biomedical Image Segmentation

Chapter 2 presents three types of segmentation techniques: parametric active con-
tours, geometric active contours, and graph cuts. In the end, a detailed case study
of cardiac image segmentation is provided. This case study describes a framework
that uses different energy functionals for their respective characteristics, by incorpo-
rating a dual-background intensity model, a novel shape prior term, and a weighted
method. The experimental results on both CT and MR images show the advantage of
the proposed method.

In Chapter 3, segmentation of line-like structure is discussed in the light of retinal
vessel segmentation and in the context of retinal image processing (RIA). Three topics
are described: vessel width estimation, artery–vein (A/V) classification, and valida-
tion. To estimate vessel width from raw binary maps generated by vessel segmenta-
tion algorithms, morphological thinning and natural cubic spline fitting are adopted
to extract the centerline of vessel segments. Vessel boundaries are then determined
by fitting two parallel coupled cubic splines. Previous work on A/V classification is
reviewed in Section 3.3.1. Four color features are extracted and classified using a
GMM-EM classifier, as described in Section 3.3.2. Finally, important issues in vali-
dation of RIA software are presented.

Chapter 4 focuses on segmentation of small objects, namely, cell nuclei. For com-
pleteness, the chapter covers the following aspects using a case study: (1) a gen-
eral region-based geometric feature developed for detection of mutants in skin cell
images, whichworks for image patches with random size and shape, (2) spot and clus-
tering detection based on image processing techniques, (3) a Mumford–Shah model
with ellipse shape constraint for cell nucleus segmentation, overcoming the limita-
tions of edge-based method and without the need of initial conditions, (4) a mitotic
cell classification method with the novel exclusive independent component analysis
(XICA), and (5) endometrial image segmentation using texture features and subspace
Mumford–Shah segmentation model.

1.2 REGISTRATION

Image registration, along with segmentation, has been one of the main challenges
in image analysis and understanding. Registration involves two images defined in
the image domain Ω – the moving (or source) image M and the fixed (or target)
image F – related by a transformation 𝐓 parametrized by 𝜃 and operated on M. The
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goal of registration is to estimate the optimal transformation that optimizes an energy
function

(F,𝐓𝛉 ∘M) + 𝛼(𝐓𝜃), (1.1)

where (., .) is a similarity measure quantifying the quality of the alignment, regu-
larizes the transformation to favor any specific property in the solution or to tackle the
difficulty associated with the ill-posedness of the problem [68], and 𝛼 is a coefficient
balancing the two terms.

The transformation 𝐓 is a mapping function of the domainΩ to itself, which maps
point locations to other locations. The transformation 𝐓 at every position 𝐱 can be
written as a vector field form with displacement or deformation 𝐮:

𝐓𝛉(𝐱) = 𝐱 + 𝐮(𝐱). (1.2)

Registration facilitates the interpretation of associated biomedical images by
establishing correspondence among multiple sets of data from their structure,
anatomy, and functionality and their surrounding regions. Registration can be
applied to (1) fusion of multimodality imaging data to provide image-guided
diagnosis, treatment planning, or surgery; (2) study of structural or anatomical
changes over time; and (3) modeling of population and construction of statistical
atlases to identify variation [68].

A well-cited survey of general registration techniques in the early 1990s was
presented by Brown in Reference [69] and those applicable to medical images were
reviewed in Reference [70] by Calvin in 1993. Two widespread and systematic
reviews on medical image registration are done in References [71] and [72]. Zitova
and Flusser [73] added comprehensive review for newly developed techniques in
2003. A review of cardiac image registration methods was presented by Makela et
al. [74] in 2002. Most recently, elastic medical image registration has been reviewed
in Reference [75] (2013), shape-based techniques are introduced in Reference [76]
(2013), and medical image registration techniques are revisited in Reference [77]
(2013).

1.2.1 Taxonomy of Registration Methods

There exists a variety of customized techniques developed in the past 30 years and
they can be classified in terms of the imaging modality, dimensionality of M and F,
type of features for registration, models of transformation 𝐓, user interaction, opti-
mization procedure, subject of the registration, and objects (the part of the anatomy).
Furthermore, the techniques also differ in the design of similarity measures  for the
matching of M and F.

1.2.1.1 Dimensionality The dimensionality ofM and Fmay be of two or three and
hence registration can be transformed from 2D to 2D, from 3D to 3D, from 2D to 3D,
or from 3D to 2D spaces. 2D/2D registration is usually faster than 3D/3D registration
as fewer points are involved. 2D/2D registration is to align planar image objects. It
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may be applied to locate, align, and compare different scans or X-ray images, and
so on [78]. 3D/3D registration establishes correspondences of points in two volumes.
For example, fusion of 3D MR/PET and CT volumes involves 3D/3D registration.
Morphological tools were explored to register 3Dmultimodality medical images [79]
to extract similar structures from the images and enable rigid registration by simple
morphological operations.

3D/2D registration is an ill-posed problem as it is to find correspondence of points
in a plane (a projection of a 3D volume or a slice section of a volume) to their coun-
terparts in another volume. It is widely applied in computer-assisted image-guided
intervention [80, 81], where M is the preintervention anatomy model and F is the
personalized or intraintervention images of the respective anatomy [82].

1.2.1.2 Features for Registration The features used for registration can be extrin-
sic (from outside the data sets) or intrinsic (within the data sets). Extrinsic registration
uses fiducial or markers [83] or stereo tactic frames [84]. They are normally fast
using rigid transforms. However, the features may be decoupled with the data sets,
thereby introducing decoupling correspondence errors. Intrinsic registration tech-
niques use features derived within the data sets, such as landmarks, segmented geo-
metrical objects (boundaries, edges, etc.) [85], voxel intensities [71], and so on. In the
latter class of registration techniques, features may be difficult to extract. However,
as they are derived from the images, the decoupling error is removed.

1.2.1.3 Transformation Models The model of the transformation 𝐓 can be rigid,
affine, projective, nonrigid (deformable, elastic), and so on. Registration techniques
based on these models are summarized in Table 1.2.

Rigid and Affine Transformation. In the case of rigid objects, only translation and
rotation are considered. This type of transformations can provide a global alignment
of the data sets quickly as fewer parameters are involved. It is normally used for
coarse registration [86]. A well-known and efficient method is the interactive closest
point algorithm [87]. Affine transformation, which allows for scaling and shearing,
involves more parameters to be decided in the registration. In many situations, affine
transformation would be sufficient for the alignment of objects [88]. Note that, for
rigid registrations, the transformation 𝐓 is not a function of the position 𝐱.

TABLE 1.2 Taxonomy of Transformation Models for Registration

Rigid and affine Coarse registration [86]
transformation Interactive closet point algorithm [87]

Affine transformation [88]

Spline-based registration [89–92]
Nonrigid Elastic model [93–96]
transformation Fluid registration [97–100]

Diffeomorphic registration [97, 98, 101–104]

Source: From Reference [77]
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Nonrigid Transformation. A large portion of biomedical image registration
techniques utilize nonrigid transformations. Nonrigid registration or deformable
registration is used interchangeably in the literature. In nonrigid registrations, the
transformation 𝐓 is a function of the position 𝐱. Holden [105] presented a com-
prehensive review of the geometric transformations for nonrigid body registration.
General nonrigid registration theory and applications were surveyed in Reference
[106] (in 2004) and later expanded by Sotiras in Reference [68] for deformable
registrations in 2012.

Spline-Based Registration. Note that M and F are given as digital images that are
discrete. Using their image pixels as control points, continuous curves, surfaces, and
volumes can be constructed using approximation, interpolations, or extrapolations
with various kernels such as splines. The continuous forms of data allow direct deriva-
tive computation during registration optimization. Moreover, spline-based registra-
tion utilizes information apart from the original data points; hence, it is expected
to achieve more accurate correspondence. The famous thin plate spline (TPS) tech-
nique [89] was widely used in many applications such as biological sample shape
comparisons [90–92]. TPS can generate sufficient smooth surfaces as all available
data are employed as control points. However, the influence of the data points that
are far away from the current computation point is included in the approximation.
Hence, the TPS is not spatially well “localized.”

B-spline is defined using a few vicinity control points. Errors in determining the
position of one control point only affect the transformation in the neighborhood of
that point. Hence, B-spline-based techniques have better locality. B-splines have been
widely applied in the registration of images of the brain [107], the chest [108], the
heart [109], and so on. However, as there are only a few control points in B-spline
approximation, there is a danger of causing folding of the deformation field. There-
fore, somemeasures need to be taken, for example, to enforce intensity consistency in
the underlying local image structure or to include a bending energy in the constraints
[110]. Sorzano et al. [111] proposed a vector spline regularization, which provides
some control over two independent quantities that are intrinsic to the deformation:
its divergence and its curl. This is useful when parts of the images contain very little
information or when its repartition is uneven.

Elastic Models. Elastic registration, introduced by Broit [93] in 1981, expects the
deformation field 𝐮, with a “force” of constrain 𝐟 , to follow certain elastic equation:

𝜇∇2𝐮 + (𝛽 + 𝜇)∇(∇ ⋅ 𝐮) + 𝐟 = 0, (1.3)

where 𝜇 and 𝛽 are coefficients describing rigidity and elasticity in solid mechanics.
The problem is to design 𝐟 to lead to correct registration. Hence, 𝐟 is often derived
from the images, for example, from the contours [94]. Elastic modeling [95] cannot
handle large deformations, that is, it can only handle small displacement 𝐮. One way
to handle this challenge is to initialize the two images close enough or use multi-
ple resolutions to align the images in a few passes [94]. HAMMER [96] forms the
elastic registration as another optimization problem. It utilizes a hierarchical attribute
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matching mechanism to reflect the underlying anatomy at different scales. Applied to
register magnetic resonance images of the brain, it demonstrates very high accuracy.

Fluid Registration and Demons Algorithm. Elastic modeling is based on linear elas-
ticity assumption that the deformation energy caused by stress increases proportion-
ally with the strength of the deformation. Therefore, it has limits in modeling local
nonlinear deformations. Fluid registration [97] relaxes the constraints of elastic mod-
eling by introducing a time dimension t. This enables themodeling of highly localized
deformations including corners. Such a property is very useful for intersubject reg-
istration (including atlas matching), where there are large deformations and/or large
degrees of variability and localized deformations. Let 𝐯 be the velocity of 𝐮 over time
t, and 𝐛 be a distributed body force. The fluid registration expects the deformation
that follows the fluid equation:

𝜇∇2𝐯 + (𝛽 + 𝜇)∇(∇ ⋅ 𝐯) + 𝐛(𝐮) = 0. (1.4)

The registration problem is to specify an appropriate 𝐛 for the registration. Computa-
tion of the fluid registration is expensive. Morten and Claus proposed a much faster
approach utilizing the linearity of the deformation of the velocity field of the fluid in a
scale-space framework [98]. Thirion [99] proposed the famous “Demons” algorithm
that considers the registration and matching as a diffusion processing. It is an approx-
imation to the fluid registration. For a survey of nonlinear registration methods, the
reader is refereed to [100].

Diffeomorphic Registration. In mathematics, a diffeomorphism is an isomorphism
in the category of smooth manifolds. It is an invertible function that maps one
differentiable manifold to another such that both the function and its inverse are
smooth. Diffeomorphisms preserve the topology of the objects and prevent folding.
Early diffeomorphic registration approaches were based on the viscous fluid field
[97] using finite difference methods to solve Eq. (1.4). Diffeomorphic registration
can account for large displacements preserving the warped image without tearing
or folding. Viscous fluid methods have to solve large sets of partial differential
equations. The earliest implementations were computationally expensive as the
inefficient successive overrelaxation approach is used [97]. Later, Fourier transforms
are utilized to improve the computation [98]. More recent algorithms attempt to find
quickly solvable subproblems by updating parameters iteratively [101–103]. Now
the diffeomorphic-demons algorithm proposed by Vercauteren is widely used [104]
and the improvements are still ongoing.

1.2.2 Frontiers of Registration for Biomedical Image Understanding

Normalized mutual information (NMI) as similarity to measure the goodness of reg-
istration is frequently used as it does not need explicit correspondence. Currently,
only a discrete joint histogram is considered for the computation of NMI. As a result,
explicit derivative of the cost function is not available. Therefore, only nonparametric
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techniques, such as hill climbing, instead of gradient-based approaches, can be used
to optimize the registration.

Chapter 5 presents a nonrigid registration method using continuously represented
NMI. The authors propose a method to estimate the Parzen windows, which are used
to analytically represent parametrized marginal and joint histograms and hence the
NMI and its derivative. They also provide theoretical analysis and experimental com-
parisons of the performance of the designed kernel and the B-spline. The proposed
registration method is applied to magnetic resonance image-guided efficient interven-
tional therapy of liver tumors using microwave thermocoagulation. As closed-formed
derivatives can be derived, the histograms and hence the NMI can be readily com-
puted, gradient-based optimization methods can be used and this results in 50% less
computation costs and hence much faster registration.

Abdominal aortic aneurysm (AAA) is a localized ballooning of the abdominal
aorta. During endovascular aneurysm repair (EVAR)of AAA, real-time intraoperative
2D X-ray imaging is needed by fusing the images with high-resolution preoperative
CT 3D data to provide realistic artery anatomy during the navigation and deployment
of stent grafts [112]. The real-time and accurate requirements impose challenges in
the 2D/3D registration methods.

To tackle these challenges, Chapter 6 first employs a rigid transformation with
complementary information provided by one contrast-filled abdominal aorta image
and one noncontrast spine image to achieve accurate 2D/3D registration in 3D space
globally with decoupled parameter space based on the prior knowledge of the image
acquisition protocol during EVAR and a hierarchical registration scheme. Next, a
deformable transformation is used to cope with local deformable movements dur-
ing EVAR. A 3D graph is generated to represent the vascular structure in 3D, and a
2D distance map is computed to smoothly encode the centerline of the vessel. The
deformable registration based on 3D graph needs only a few seconds and is very accu-
rate in submillimeter errors using only one single contrast-filled X-ray image. Finally,
to copewith patientmovements during EVAR, pelvis upper boundary is automatically
detected and overlaid onto the fluoroscopic image during the stenting procedure to
observe patient movement real-time and to trigger automatic 2D/3D re-registration
of the abdominal aorta.

1.3 OBJECT TRACKING

Object tracking is an important technique involved in many computer vision appli-
cations. The object tracking algorithms have been widely used in computers, video
cameras, and automated video analysis. Object tracking is defined as the process of
segmenting an object of interest from a video scene and keeping track of its motion,
orientation, and occlusion, and so on, so as to extract useful information. The first
relevant step of information extraction is the detection of the moving objects in video
scene. The next steps are the tracking of such detected objects from frame to frame
and the analysis of the object tracks to analyze their behavior. Significant progress
has been made in motion tracking during the past few years. Many object tracking
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TABLE 1.3 Taxonomy of Tracking

Object
representation

Points [118, 119]
Primitive geometric shapes [120]
Object silhouette and contour [121]
Articulated shape models [122]
Skeletal models [123, 124]

Feature
selection for
tracking

Manual
feature
selection

Color [125]
Edges [126]
Optical flow [127–131]
Texture [132–135]

Automatic
feature
selection

Filter methods [136, 137]
Wrapper methods [138–140]
Embedded methods [15, 141, 142]

Object tracking
technique

Point tracking [118, 143–146]
Kernel tracking [120, 147–150]
Silhouette tracking [151–156]

Source: From References [113, 114]

methods have been developed (see, e.g., [113–117]). They differ from each other
based on the way they approach in the following aspects:

• Which object representation is appropriate?

• Which image features should be used?

• How should the motion, appearance, and shape of the object be modeled?

Numerous tracking methods have been proposed for a variety of scenarios. We will
provide comprehensive review (Table 1.3) from the three aspects mentioned earlier
according to [113, 114].

1.3.1 Object Representation

The first issue is defining a suitable representation of the object. Objects can be repre-
sented by their shape and appearances. The representation commonly employed for
tracking is given as follows:

(1) Points. The object is represented by points [118, 119]. This representation is
suitable for tracking objects that have small regions in an image.

(2) Primitive Geometric Shapes. Object shape is represented by a rectangle or
ellipse [120]. Such representation is used to model object motion by transla-
tion, affine, or projective transformation.

(3) Object Silhouette and Contour. Contour representation defines the boundary
of an object. The silhouette of an object means the region inside the contour.
Silhouette and contour representations are suitable for tracking complex non-
rigid shapes [121].
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(4) Articulated Shape Models. Articulated objects are constructed of joint body
parts [122].

(5) Skeletal Models. The skeletal models are commonly used as a shape repre-
sentation for recognizing objects [123, 124], and such a representation can be
used to model both articulated and rigid objects.

There are different ways to represent the appearance features of objects. The shape
representations and appearance representations can be combined together for track-
ing. Some general appearance representations for object tracking are probability den-
sities of object appearance [120, 157–159], templates [160], AAMs [161], and mul-
tiview appearance models [149, 162].

1.3.2 Feature Selection for Tracking

The most attractive property of a feature is its uniqueness so that the objects can
be easily distinguished in the feature space. The objectives of feature selection are
multifold. The details of common visual features are as follows according to [113]:

1. Color. The apparent color of an object is affected primarily by two factors,
namely, the spectral power distribution of the illuminant and the surface
reflectance properties of the object [125]. Among all the features, color is one
of the most widely used. However, these color spaces are sensitive to noise.

2. Edges. Object boundaries usually change along with image intensities. Edge
detection is used to identify these changes. Notice that edges features are less
sensitive to illumination changes compared to color features. An evaluation of
the edge detection algorithms is provided by Reference [126].

3. Optical Flow. Optical flow is commonly used as a feature in motion-based seg-
mentation and tracking applications. Popular techniques for computing optical
flow include those given in References [127–131].

4. Texture. Texture is to measure the change of intensity of a surface with smooth-
ness and regularity. Compared to color, texture requires a processing step to
generate the descriptors, such as gray-level cooccurrence matrices (GLCMs)
[132], Law’s texture measures [133], wavelets [134] , and steerable pyramids
[135]. The texture features are less sensitive to illumination changes compared
to color as edge features.

Features are mainly chosen manually contingent on the application domain. Now,
users pay large attention to the problem of automatic feature selection, which can be
divided into [113, 114]:

• Filter Methods [136, 137]. The filter methods select the features based on a gen-
eral criteria, and find a good feature subset independently of the model selection
step. The advantages are that they are easily scaled to very high-dimensional
datasets, computationally simple and fast, and are independent of the classifi-
cation algorithm. But they ignore the interaction within the classifier.
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• Wrapper Methods [138–140]. The wrapper methods put the model hypothesis
search within the feature subset search. The advantages include the interaction
between feature subset search and model selection, and the ability to take into
account feature dependencies. A common drawback is that they are more likely
over fitting than filter techniques and are very computationally intensive.

• Embedded Methods [15, 141, 142]. The embedded methods can be considered
as a search in the combined space of feature subsets and model hypothesis. The
advantage is the interaction with the classification model, meanwhile being far
less computationally intensive than wrapper methods.

1.3.3 Object Tracking Technique

The goal of object tracking is to generate the trajectory of an object over time by
locating its position in every frame of the scene. The tasks of detecting the object and
setting up correspondence across frames can either be performed separately or jointly.
When performed separately, the object regions in every frame are obtained through
object detection algorithm, and then the tracker corresponds to objects across frames.
When performed jointly, the object region and correspondence are jointly estimated
by iteratively updating object location and region information obtained from previous
frames. We now briefly introduce the main tracking categories [113]:

1. Point Tracking. Tracking can be elaborated as the correspondence of detected
objects represented by points across frames. Indeed, point trackingmethods can
be divided into deterministic [118, 143] and statistical methods [144–146]. The
deterministic methods use qualitative motion [118] to constrain the problem,
while probabilistic methods consider the object measurement and uncertainties
to establish correspondence.

2. Kernel Tracking. Kernel tracking is performed by computing the motion of the
object, represented by a primitive object region across the frame. The object
motion is usually in the form of parametric motion or the dense flow field com-
puted in subsequent frames. We divide the kernel tracking methods into two
categories: templates and density-based appearance models [120, 147, 148],
and multiview appearance models [149, 150].

3. Silhouette Tracking. Objects may have complex shapes that cannot be well
described by simple geometric shapes. Silhouette-based methods can provide a
more precise shape description for such objects. We divide silhouette tracking
methods into two categories: shape matching [151–153] and contour tracking
[154–156].

1.3.4 Frontiers of Object Tracking

Chapter 7 presents a detailed description of three tracking techniques: point track-
ing, silhouette tracking, and kernel tracking, each with a well-known representa-
tive method, namely, Bayesian tracking methods (Section 7.3), deformable tracking
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models (Section 7.4), and harmonic phase algorithm (Section 7.5). A detailed case
study of cardiac motion tracking in myocardial perfusion MRI is also included in
this chapter. It presents a nonrigid registration method using spatiotemporal smooth-
ness constraint and seeking the global optimal deformation for the entire sequence
by introducing the pseudo ground truth (PGT).

1.4 CLASSIFICATION

A pattern can be treated as a vaguely defined entity that could be given a name
contrary to a chaos [163]. The primary goal and approach in pattern classification
is to process the sensed raw data and choose the best-fitted model for any sensed
pattern [15]. With the development of research on KBSs, pattern classification has
progressed to a great extent and been successfully applied in various scientific and
engineering problems such as biometric recognition, medical diagnosis, computer
vision, and remote sensing. Machine learning approaches and methods imported
from statistical learning theory have been most intensively studied and used in this
subject.

The aim of pattern classification is to assign a given pattern to one of the c cate-
gories𝜔1, 𝜔2, ..., 𝜔c based on a vector of d feature values x = (x1, x2, ..., xd). A pattern
classification system involves a number of essential processes: data acquisition and
preprocessing, segmentation, feature extraction, classification/decision making, to
name a few (Fig. 1.2).Models are descriptions of patterns in mathematical form [15].
At the beginning of designing a pattern classification system, hypothesis of the class
of models has to be formulated. Preprocessing is used to reduce data complexity
and/or variation and it is typically applied before feature extraction to permit/simplify
feature computations. Sometimes segmentation is needed to separate the objects of
interest in the images from the background. The purpose of feature extraction is to
reduce the data complexity and uncertainty further by measuring only certain features
or properties of the (image of) objects to be classified [15]. A classifier takes the fea-
tures as input and makes the final decision on which class of the models the input
should belong to. We can use training samples to build the classifier and testing sam-
ples (unseen data) to test its performance. We need to define the cost or consequences
of the action (i.e., classification and decision).

The central task in pattern classification is to construct or learn a decision rule so
as to minimize the cost [15]. More specifically, we aim to find an optimal decision
boundary to separate different classes in the feature space. However, a good classi-
fier is not designed to separate all training samples perfectly, but to suggest correct
decisions when presented with novel patterns. An overly complex model is likely to
cause overfitting, as opposed to generalization. A trade-off has to be made between
the performance on training samples and the simplicity of the classifier. It is gen-
erally accepted that using at least 10 times as many training samples per class n as
the number of features d (n/d>10) is a good practice to follow in classifier design
[165]. The more complex the classifier, the larger should the ratio of sample size to
dimensionality be to avoid the curse of dimensionality.
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Figure 1.2 Model of pattern classification system [164].

In the subsequent subsections, we go through some important issues in pattern
classification in more detail.

1.4.1 Feature Extraction and Feature Selection

Feature extraction methods are used to determine an appropriate subspace of dimen-
sionality m in the original feature space of dimensionality d (m < d) [164]. The
function that maps the original input data into the new feature space can be linear
or nonlinear. The best known linear feature extractor is principal component anal-
ysis (PCA) or Karhunen–Loéve transform. PCA identifies the eigenvectors with the
largest eigenvalues to represent (Gaussian) data according to aminimum-square-error
criterion [164]. Nonlinear PCA can be achieved using a five-layer neural network
with an autoassociator or autoencoder technique – each pattern is presented as an
input and as an target output. Independent component analysis (ICA) [166, 167] is a
method to find a linear representation of non-Gaussian data so that the components
are statistically independent. It is an unsupervised method that can be applied to the
problem of blind source separation. Discriminant analysis is a supervised method in
which interclass separation is emphasized [168].

Kernel PCA [169] performs nonlinear feature extraction by mapping data into a
new feature space via some integral operator kernel functions. Another example of
nonlinear feature extraction method is multidimensional scaling (MDS) [170]. The
MDSmethod represents multidimensional data points as points in lower dimensional
space whose interpoint distances correspond to similarities or dissimilarities.
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Given a set of features Y , feature selection is sometimes required to select
a subset X ⊆ Y that leads to the smallest classification error from the extracted
features. Sequential forward selection (SFS) [171, 172] starts with the best sin-
gle feature and adds one feature at a time so that selected features maximize a
criterion function. Reversely, sequential backward selection (SBS) [171, 172]
starts with all the features and deletes one feature at a time. “Plus l-take away
r” and sequential floating search methods repeat forward and backward selection
alternatively to give better performance. The correlation feature selection (CFS)
measure [173] gives high scores to subsets that include features highly correlated to
the classification but have low correlation to each other. Peng et al. [174] proposed
a minimum-redundancy-maximum-relevance (mRMR) feature selection method
that can use mutual information, correlation, or distance/similarity scores to select
features. Auffarth et al. [175] compared different redundancy and relevance measures
for feature selection in tissue classification in CT images. In their paper, a “value
different metric” (VDM) was proposed, which is very good as both redundancy
and relevance measurement. The mRMR and SFS algorithms are also reviewed in
Section 10.2.3.

One fundamental issue in feature selection (as well as in classification and cluster-
ing) is how to measure the similarity or dissimilarity between samples. Metric learn-
ing concerns with learning effective distance metrics in feature space. An overview
of metric learning algorithms including PCA is also presented in Section 10.2.3.

1.4.2 Classifiers

Three types of approaches to classifier design have been identified [164] (Table 1.4).
The first approach is simple and intuitive: patterns are assigned to the most similar
template. In template matchingmethod [176], patterns are classified based on ametric
that is established to define similarity and a few prototypes in each class. In nearest
mean classifier [168], each class is represented by the mean vector of all training
patterns in that class. One-nearest neighbor (1-NN) classifier [177, 178] gives robust
performance in most applications and no training is needed.

The second approach is based on the optimal Bayes decision rule, which assigns
a pattern to the class with the maximum posterior probability [179]. The Bayes deci-
sion rule combines the likelihoods and the prior probabilities to achieve the minimum
probability of error [164]. The Bayes decision rule coincides with maximum likeli-
hood decision rule when the prior probabilities are equal and a 0/1 loss function is
used. This rule yields linear or quadratic decision boundary for Gaussian distribu-
tions. In Section 8.2.2, the Bayesian decision theory is briefly reviewed. In real-life
problems, the true prior probabilities and the class conditional probability density
function (pdf) are unknown. In generative models, the estimates of priors and pdfs
are used in place of the true densities. Some density estimates are parametric, such
as linear discriminant classifier (LDC) and quadratic discriminant classifier (QDC)
[180]. The others are nonparmateric, for example, k-nearest neighbor (KNN) rule
and the Parzen classifier [15]. A description of KNN algorithm can be found in
Section 10.2.2.
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TABLE 1.4 Taxonomy of Classifiers

Intuitive
approach
(based on
concept of
similarity)

Template matching [176]
Nearest mean classifier [168]
1-nearest neighbor rule [177, 178]
k-nearest neighbor classifier [15]
…

Probabilistic
approach
(based on
Bayes decision
rule) [179]

Parametric
methods

Linear discriminant classifier [180]
Quadratic discriminant classifier [180]
…

Nonparametric
methods

Parzen windows classifier [15]
…

Geometric
approach
(to construct
decision
boundaries)

Linear
methods

Linear support vector machine (SVM) [185]
Single-layer perceptron neural network [181]
…

Nonlinear
methods

Kernel-SVM [186]
Multilayer perceptron neural network [172]
Radial basis network [172]
Decision tree [182, 184]
…

Source: From Reference [164]

The third approach is to construct decision boundaries by minimizing certain error
criterion. For example, Fisher’s linear discriminant minimizes the mean squared error
(MSE) [180] and the single-layer perceptron [181] updates the separating hyper-
plane based on the distances between the misclassified patterns and the hyperplane.
Structural approximations of the discriminant functions include tree classifiers [182],
multilayer perceptrons (MLPs) [172], radial basis functions (RBFs) [172], and com-
bination of classifiers such as Adaboost [183]. MLP iteratively optimizes MSE of
two or more layers of perceptrons using sigmoid transfer function. The hidden layers
in MLP allow nonlinear decision boundaries. RBF iteratively optimizes MSE of a
feedforward neural networks using Gaussian-like transfer functions. Decision trees
[182, 184] are trained by iteratively selecting individual features at each node of the
tree. In the more recently developed support vector machine (SVM) [185], the mar-
gin between the classes is maximized by selecting a minimum number of support
vectors – the training patterns nearest to the decision boundary. The formulations in
SVM can be found in Section 8.2.4. In contrast with generative models, the classifier
design methods that approximate the decision boundaries or discriminant functions
empirically are referred as discriminative models.

1.4.3 Unsupervised Classification

So far, we have discussed supervised classification in which an input pattern is
identified as a member of a predefined class. Next, we move on to a very different
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problem: unsupervised classification or clustering, in which the pattern is assigned
to an unknown class. The key questions in clustering are [187]:

• Is there a structure in the data?

• How many clusters are there in the data?

• How do we select an appropriate measure of similarity to define cluster?

• How do we evaluate the clustering results?

Two popular clustering techniques are iterative square-error partitional clustering and
agglomerative hierarchical clustering [164]. Hierarchical techniques merge similar
clusters at each iteration, for example, single linkage clustering and complete link-
age clustering [187]. Partitional clustering techniques assign all points to a cluster in
each iteration, such that the within-cluster scatter is minimized or the between-cluster
scatter ismaximized. A typical example is k-means algorithm [188] towhich the num-
ber of clusters k and the initial cluster centers have to be given. Fuzzy c-means [20]
clustering is very similar to k-means algorithm except that each pattern has a degree
of membership to all clusters rather than assigned to only one cluster. In the mean
shift algorithm [189], a window of kernel function is moved by a mean shift vector
iteratively. The mean shift vector always points toward the direction of the maximum
increase in the density.

Another popular partitional clustering technique is mixture decomposition. In this
algorithm, each pattern is assumed to be drawn from of k underlying clusters [164].
Cluster parameters and the number of components are estimated from unlabeled data,
using EM algorithm or Markov chain Monte–Carlo (MCMC) method. Square-error
partitional clustering can be viewed as a particular case of mixture decomposition
method. The description of k-means algorithm and the EM algorithm is given in
Section 8.2.3.

1.4.4 Classifier Combination

Wolpert’s “No Free Lunch” theorem states that there is no overall optimal classi-
fication rule [190]: every classifier could be a best choice for certain classification
problems. Nevertheless, classifiers can be combined to get a more accurate classifi-
cation decision at the expense of increased complexity. The motivations of combining
classifiers are [191]

• to minimize the effect of the worst classifier by averaging several classifiers;

• to improve the performance of the best individual classifier;

• to avoid local minima and thereby stabilize and improve the best single classifier
result.

There are three basic types of combining schemes [164]: (1) In parallel architecture,
individual classifiers are invoked independently and their outputs are combined. (2) In
cascading architecture [192], individual classifiers are invoked in a sequential manner.
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The next classifier is trained in order to correct the errors of the previous classifier.
(3) In hierarchical architecture, individual classifiers are organized as tree structure
or DAG (directed acyclic graph) structure [193].

We will describe two methods of classifier combination here: AdaBoost and
random forest. AdaBoost or adaptive boosting, proposed by Freund and Schapire in
Reference [183], trains classifiers in a cascading architecture: after the training of
the current classifier, the misclassified patterns are given more weightage in order
to be considered more important in the training of the classifier that follows next
in the sequence. In Reference [194], Schapire showed in his original work that,
a combination of weak classifiers can be boosted to an arbitrarily strong model.
Boosting has been widely used in conjunction with other learning algorithms to
improve the accuracy. The details of AdaBoost and EAdaBoost algorithms are given
in Section 10.2.4.

Random forest [195] is constructed by a multitude of decision trees at training
time. Each tree is trained on a bootstrapped sample from the original data. Each node
is split using the best among a subset of predictors randomly chosen at that node,
rather than using the best split among all variables. Random forest runs fast and is
able to deal with unbalanced and missing data. For a detailed review on combined
classifiers, the readers may prefer to Kuncheva’s paper [187].

1.4.5 Frontiers of Pattern Classification for Biomedical Image Understanding

Neural networks [196] and k-means [197] clustering have been used for automatic
classification of tuberculosis bacteria in sputum smear microscopic images. In
Reference [198], a boosted Bayesian multiresolution classifier was proposed for
prostate cancer detection from digitized needle biopsies.

Medical X-ray image classification methods include applying Bayesian rule on
shape features [199], local binary patterns (LBPs), and random forest [200], merg-
ing scheme-based SVM [201]. The methods for the classification of mammographic
masses include using gradient and texture features [202], binary decision tree [203],
and neural networks [204]. A feature extraction technique that is able to detect signs
of cancer development inmammograms taken 10–18months prior to cancer detection
was presented in Reference [205]. Wei et al. [206] tested several machine learning
methods for automated classification of clustered microcalcifications in mammo-
grams: SVM, kernel Fisher discriminant, relevance vector machine, and committee
machines (ensemble averaging and AdaBoost).

Recent works on MRI brain segmentation include adaptive mean shift clustering
[207], autocontext in discriminative models [208], Bayesian brain tissue classifica-
tion, and random forest based lesion classification [209]. Blind source separation has
been used for the estimation of tissue intensity distribution inMR images [210]. SVM
is still a popular method for classification ofMR breast lesions [211, 212]. Fuzzy clus-
tering has been used for classification of myocardial infarct in delayed enhancement
MRI [213].

For breast cancer detection in 3D ultrasound images, Tan et al. [214] used neu-
ral network classifiers to obtain a likelihood map of potential abnormality in the
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initial detection stage. Region classification was performed using an ensemble of
neural networks, a SVM, a KNN, a linear discriminant, and a gentle boost classi-
fier. A recent survey on breast cancer detection and classification using ultrasound
images can be found in Reference [215]. For prostate cancer detection in transrectal
ultrasound images, Moradi et al. [216] used an extension to the SVM classification
approach and a hybrid feature vector combining radio frequency (RF) time series, RF
spectral features, and texture feature. For the same application, a multifeature ker-
nel classification model based on generalized discriminant analysis was proposed in
Reference [217].

In Chapter 8, basic pattern classification techniques used in biomedical image
understanding are summarized, including Bayesian decision theory, SVM, k-means
clustering, and EM algorithm. As an illustration, a framework comprising blood
smear analysis, malarial infection detection, and grading from blood cell images is
presented in detail. For detection of good working areas (GWAs), object segmen-
tation and clump splitting are carried out using image processing methods. SVM
is used to classify the images using the area of a clump and the number of cells it
contains. In dual-model-guided image segmentation and recognition, shape and color
models are combined to improve the segmentation accuracy. A region-color-based
Bayesian classifier is adopted for shape-valid region classification. Finally, malarial
infection and staging are integrated into a four-class SVM to classify the regions
segmented earlier.

In Chapter 9, liver tumor segmentation under a hybrid SVM framework and
liver tumor characterization by content-based image retrieval are discussed. The
three-stage hybrid SVM scheme involves a trained one-class support vector classifier
(OSVC) for presegmentation, a boosting tool employed to automatically generate
negative samples, and binary support vector classifier (BSVC) training and classi-
fication for final segmentation. The good recognition capability of OSVC and the
good discrimination capability of BSVC are utilized in this hybrid scheme and their
disadvantages are suppressed.

In Chapter 10, several classification models based on KNN are applied in comput-
erized Gemstone spectral imaging computed tomography (GSI-CT) data analysis,
contributing to the N grading of lymph node metastasis in gastric cancer. The related
feature selection, metric learning, and classification methods are introduced. Fea-
ture selection methods include mRMR and SFS algorithms. Metric learning methods
include PCA and Fisher discriminant analysis. Classification methods include KNN,
AdaBoost and EAdaBoost algorithms.

1.5 KNOWLEDGE-BASED SYSTEMS

1.5.1 Semantic Interpretation and Knowledge-Based Systems

Over the past few decades, researchers in image processing, computer vision, and AI
have worked hard to develop intelligent vision systems that are capable of perform-
ing tasks that human vision can handle. Although a lot of progresses have been made



KNOWLEDGE-BASED SYSTEMS 27

in detection, recognition, reconstruction, and so on [218], current state-of-the-art
intelligent vision systems are not yet comparable to human vision in terms of under-
standing high-level semantic meanings of visual information. Intelligent semantic
interpretation of visual information is still an opening research problem. In another
aspect, as early as in the 1970s, researchers in AI realized that knowledge is essential
for intelligence [219, 220]. Knowledge-based systems (KBSs) emerged since 1970s,
which reason and use knowledge to solve complex problems [219, 221]. The core
components of KBS include knowledge base, knowledge acquisition mechanisms,
and inference mechanisms [221]. Expert systems [222] and case-based reasoning
systems [223] are typical types of KBS. Accordingly, how to acquire knowledge
and represent large amounts of knowledge as knowledge base to be easily used in
computer programs started to become the research focus of AI field in the 1970s
[224, 225]. Over the past 40 years, with the development of knowledge engineering,
data mining, and machine learning techniques, knowledge acquisition has evolved
from humanmanual input to large-scale data-driven knowledge discovery [226–228].
Knowledge representation has evolved from explicit rule-based, frame-based repre-
sentations, ontology representation, to complex statistical models [224, 225, 229].

1.5.2 Knowledge-Based Vision Systems

Together with the development of knowledge-based AI systems, large numbers of
generic or domain-specific knowledge-based vision systems have been developed
[230–232]. These systems are characterized in terms of their domains or visual tasks,
the type of knowledge being used, the way knowledge is acquired, the way knowl-
edge is represented, and the way knowledge is used in inference in visual information
interpretation process. Detailed reviews can be found in References [233–235].

Early knowledge-based vision systems developed in the 1980s combine expert
system tools together with low-level image processing for visual interpretation
[230–232]. In these early systems, knowledge is acquired from human experts’ input
and is represented as explicit rules or schemas. Rule-based or schema reasoning
system controls the process of image processing and interpretation.

Since the 1990s, as research focus shifted to more difficult tasks, it became more
and more clear that knowledge acquired from human expert input is inadequate as
such knowledge tends to be qualitative and imprecise. On the other hand, with the
development of digital storage technology, larger and larger amount of data was gath-
ered in daily practice. This led to the development of early data mining or machine
learning techniques aimed to automatically extract knowledge from data collection
using statistical modeling [228, 236, 237]. Together with this evolution in knowledge
acquisition, implicit knowledge representation and inference based on statistical tech-
niques such as principle component analysis (PCA) [238, 239], linear discriminant
analysis (LDA) [240], and Bayesian models [241] started to become popular since
late 1990s. This kind of techniques effectively models intraclass variations as a priori
knowledge and facilitates high-level semantic interpretation.

In the recent decade, many advanced machine learning techniques such as
graphical models (e.g., Bayesian network (BN) [242, 243], conditional random fields
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TABLE 1.5 Research Trend in Knowledge-Based Vision Systems

Early years–1980s Expert systems [220], rule-based/schema-based, and so on
for knowledge representation; manual input for
knowledge acquisition [230–232]

1990s Systems using statistical modeling (PCA, LDA, and ASM)
techniques for knowledge acquisition, representation, and
inference [238–241]

2000–current Systems using advanced machine learning techniques (e.g.,
Bayesian networks, and CRFs) for knowledge
acquisition, representation, and inference [242–245]

Current and the future Systems performing large-scale data-driven knowledge
discovery [248]

(CRFs) [244, 245]), latent semantic models [246], and deep belief networks [247]
have been used in complex implicit knowledge modeling. As the field is moving
toward big data era, we can expect more and more large-scale data-driven knowledge
acquisition or discovery algorithms to emerge [248] (see Table 1.5).

1.5.3 Knowledge-Based Vision Systems in Biomedical Image Analysis

In the domain of biomedical image analysis, knowledge is extremely crucial for the
success of intelligent vision systems since even a human domain expert needs inten-
sive training to obtain knowledge for interpreting biomedical images. Compared to
generic knowledge-based vision systems, knowledge acquisition and representation
in biomedical image analysis are more complex and difficult, which require close
collaborations between computer scientists and biomedical experts.

Knowledge introduced into biomedical image analysis can be mainly classified
into the following two types: conceptual knowledge and domain knowledge. The
first type – conceptual knowledge is related to primitive visual features in image
interpretation process. It includes information about the appearance and geometrical
configuration of objects in biomedical images. Such knowledge was often repre-
sented as rules, schemas, or ontologies. Since 1990s, statistical models such as AAM
[28], SSM [58], and atlas [249] have become popular for conceptual knowledge
representation. Conceptual knowledge has been extensively applied to biomedical
image analysis tasks such as object segmentation [250, 251], pathology detection
[252], and image retrieval [253]. The second type – domain knowledge is about
semantic biomedical knowledge related to diagnosis. This includes knowledge on
anatomy, pathology, histology, biology, biochemistry, and so on. Unified medical
language system (UMLS) [254] is a widely adopted system for standard domain
terminology representation. Domain knowledge, often combined together with
conceptual knowledge, has been used to guide a variety of medical image analysis
tasks [255–257].
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1.5.4 Frontiers of Knowledge-Based Systems

With the current rapid advancement of data mining, machine learning, and computer
vision techniques, we can foresee that future intelligent vision systems will be built
upon knowledge discovered from large-scale data and progressing toward semantic
interpretation, which approaches the capability of human vision. Knowledge-based
approach seems to be a promising approach for achieving visual intelligence. In
biomedical image analysis, with the fast development of bioimaging techniques, a
lot of future research efforts are needed to transfer the vast amounts of expert human
knowledge to computer knowledge base in intelligent computer-assisted diagnosis
(CAD) systems.

Chapter 11 provides an extensive introduction and review of how knowledge is
represented and introduced in biomedical image analysis. The relationships among
data, information, and knowledge are elaborated. Techniques of explicit and implicit
forms of knowledge representation are summarized. The chapter also reviews
four major frameworks of knowledge-based vision systems in biomedical image
analysis: multiscale framework, deformable oriented framework, Bayesian network
framework, and ontology-based framework. This chapter provides an insight on
how knowledge is represented and integrated in biomedical image understanding
systems.

Chapter 12 demonstrates a particular use of knowledge for ocular image analy-
sis. It provides a review of ASM and introduces its application in contour detection
of anatomical structures. The chapter gives a background in 2D deformable models
and introduces point distribution model (PDM), ASM, and its variants. The chapter
also includes two specific applications: boundary detection of optic disc and detec-
tion of lens structure. In contrast to Chapter 11, this chapter illustrates how object
shape, a specific form of prior knowledge is represented as deformable model and
incorporated in intelligent vision system to detect object contour.
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