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Data Analysis Based on a Single
Time Series by States

1.1 Introduction

Panel data can be viewed as a finite set of time-series data. As an illustration Table 1.1 presents part of the

data in POOLG7.wf1, namely unstacked data, consisting of a single time series GDP from seven countries.

Note that this table shows seven time series variables, namely GDP_CANt to GDP_USt.

Based on each time series of GDP by states, various growth models can be considered as presented in

Agung (2009a, Chapter 2), starting with classical growth models, namely geometric and exponential growth

models, and their extensions. Therefore, based on the seven states, the multivariate growth models should be

applied as presented in the following sections.

1.2 Multivariate Growth Models

1.2.1 Continuous Growth Models

In general, let Yit be the observed value of the variable Y for the i-th individual (a country, state, region,

agency, community, household or person) at time t, for i¼ 1, . . . ,N, and t¼ 1, . . . ,T. In panel data analysis,

the symbol Y_i(t), Y_it, or Y_“Name”t will be used to indicate the time series variable Yit, such as the varia-

ble GDP_Cant to GDP_USt in POOL7.wf1. In this chapter, the panel data set will be considered as a finite

set of time-series variables. For this reason, the simplest model considered is a multivariate classical growth

model with the following general equation.

logðY_itÞ ¼ Cði1Þ þ Cði2Þ�tþ mit (1.1)

where C(i2) indicates the exponential growth rate of Y_i, that is the growth rate of the variable Y for the i-th

individual (country, state, region, community, household, firm or agency), C(i1) is the intercept parameter,

and mit their residuals which, in general, should be autocorrelated (see to Agung 2009a, Chapter 2).
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Therefore, the basic growth model considered should be a multivariate autoregressive growth model,

namely MAR(q1, . . . ,qi, . . . )_GM¼MAR(q)_GM, with the following general equation, where the error

terms eit would be assumed or accepted to have an i:i:d:Nð0; s2
i Þ; in a theoretical sense. Refer to the special

notes presented in Section 2.14.3 (Agung, 2009a).

logðY_itÞ ¼ Cði1Þ þ Cði2Þ�tþ mit

mit ¼ ri1mi;t�1 þ ri;t�2mi;t�2 þ . . .þ ri;t�qi
mi;t�qi

þ eit
(1.2)

However, for a multivariate GLM, the vector of the error terms ðe1; e2; . . . ; eNÞ, in general, would have a

residual correlation matrix, namely CM(e), or a residual covariance matrix, namely S(e), which is not a diago-

nal matrix, and should indicate that the endogenous variables log(Y_i) or Y_i, for the states i¼ 1,2, . . . , N, are

correlated in a statistical sense, even though they may not be correlated in a theoretical sense. In other words,

the quantitative correlations between all log(Y_i) are taken into account in the estimation process.

Example 1.1 Illustrative growth curves

As an illustration, Figure 1.1 presents the growth curves GDPt of two pairs of neighboring countries,

namely (a) GDP_CAN and GDP_US, and (b) GDP_FRA and GDP_GER, which clearly show differential

characteristics. Corresponding to growth curves, we find that each pair of the five variables GDP_CAN,

Table 1.1 A subset of the unstacked data in POOLG7.wf1

Year GDP_CAN GDP_FRA GDP_GER GDP_ITA GDP_JPN GDP_UK GDP_US

1950 6209 4110 3415 2822 1475 5320 8680

1951 6385 4280 3673 3023 1649 5484 9132

1952 6752 4459 4013 3131 1787 5517 9213

1953 6837 4545 4278 3351 1884 5791 9450

1954 6495 4664 4577 3463 1972 5971 9177

1955 6907 4861 5135 3686 2108 6158 9756

1956 7349 5195 5388 3815 2249 6238 9756

1957 7213 5389 5610 3960 2394 6322 9724

1958 7061 5463 5787 4119 2505 6340 9476

1959 7180 5610 6181 4351 2714 6569 9913

Figure 1.1 Growth curves of GDP_CAN, GDP_US, GDP_FRA and GDP_GE
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GDP_US, GDP_FRA, GDP_GER and the time t variable are significantly positively correlated with a

p-value¼ 0.0000. However, unexpected statistical results are obtained based on the model in (1.2), as

presented in Example 1.3.

Growth curves are important descriptive statistics in any time series, as well as panel data analyses. Many

findings and conclusions can be derived based on descriptive statistical summaries. See various continuous

and discontinuous growth curves and time series models presented in Agung (2009a), and the descriptive

statistical summaries presented in Agung (2004, 2009b, 2011). For additional illustrations, see the graphical

presentations in Leary (2009), and Chambers and Dimson (2009).

Example 1.2 A multivariate classical growth model (MCGM)

Figure 1.2 presents the statistical results based on a MCGM of GDP_Can, GDP_US, GDP_Fra, and

GDP_Ger. Its residuals graphs are obtained by selecting View/Residuals/Graphs, as presented in Figure 1.3.

Based on these results, the following notes are presented.

1. Note that the four regressions in the model in fact represent a growth model by states, which has been

presented as a multiple regression model or a single time series model using dummy variables of the

states in Agung (2009a).

2. Using the standard t-test statistic in the output, it can be concluded that GDP_Can, GDP_US, GDP_Fra

and GDP_Ger, have significant positive exponential growth rates of

Ĉð11Þ ¼ 0:0273339; Ĉð21Þ ¼ 0:018282; Ĉð31Þ ¼ 0:030681; and Ĉð41Þ ¼ 0:032058:

3. The null hypothesis H0: C(11)¼C(21)¼C(31)¼C(41) is rejected based on the Chi-square statistic of

x2
0 ¼ 242:8469 with df¼ 3 and a p-value¼ 0.0000. Therefore, it can be concluded that the growth rates

of GDP of the four countries have significant differences. The other hypotheses on the growth rates

differences can easily be tested using the Wald test.

4. However, note that the MCGM is an inappropriate time series model indicated by the very small Dur-

bin–Watson statistics values of the four regressions, as well as their residuals graphs in Figure 1.3. For

this reason, a modified GM will be presented in the following example. Refer also to Chapter 2 in

Agung (2009a).

Figure 1.2 Statistical results based on a multivariate classical growth model
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5. On the other hand, by observing the residual graphs in Figure 1.3, then it can be said that a polynomial

growth model should be explored for each state, such as quadratic regressions of log(GDP_FRA) and

log(GDP_GER) on the time t, and at least third degree polynomials of GDP_CAN and GDP_US on the

time t. Do this as an exercise.

6. As an additional illustration, Table 1.2 presents the correlations between the time t with the dependent

variables of each model. Note that each parameter C(i2) has exactly the same value of the t-statistic, as

well as Prob(t-stat). Compared to the results in Figure 1.2, the following notes and conclusions are made.

6.1 The testing hypothesis on each C(i2), either a two- or one-sided hypothesis, can be done using the

corresponding bivariate correlation. To generalize the results, the set of simple linear regressions

can be presented using a correlation matrix of the set of variables considered.

Figure 1.3 The residuals graphs of the MCGM in Figure 1.2

Table 1.2 Bivariate correlations of time t with each of the dependent variables of the multivariate model

in Figure 1.2

LOG(GDP_CAN) LOG(GDP_US) LOG(GDP_FRA) LOG(GDP_GER)

Time t 0.986 663 0.98 635 0.97 745 0.96 994

t -stat 38.81 228 38.34 938 29.63 753 25.52 230

Prob. 0.00 000 0.00 000 0.00 000 0.00 000
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6.2 On the other hand, by doing a series of state-by-state analyses, we obtain exactly the same set of

four regressions as presented in Figure 1.2. For this reason the model presented in Figure 1.2 will

be referred to as the system of independent states.

Example 1.3 A MAR(1)_GM unexpected result

Figure 1.4 presents the statistical results based on a MAR(1)_GM¼MAR(1,1,1,1)_GM of the four time

series GDP_CAN, GDP_US, GDP_FRA, and GDP_GER. Based on these results, the following findings

and notes are presented.

1. The estimate of C(31)¼� 0.212 090 with a p-value¼ 0.9358, which should indicate the (adjusted)

growth rate of GDP_FRA, is an unexpected result, since r(log(GDP_FRA),t)¼ 0.97 448 with a

p-value¼ 0.0000 and obtains a simple linear regression function of LOG(GDP_FRA)¼ 8.3841þ
0.0307�t as presented in Figure 1.2, with an exponential growth rate of GDP_FRA as

r¼ 0.0307.

2. This finding indicates the impact of using an AR(1) on the parameter estimates is in fact unpredictable.

Nothing is wrong with the model, but the structure of the data set cannot provide acceptable estimates.

Compared to the growth curve of GDP_FRA in Figure 1.1, the AR(1)_GM of GDP_FRA should be

considered as an unacceptable or inappropriate time series model for representing the GDP of France.

The results of the author’s experimentation based on the variable GDP_FRA, are presented in the fol-

lowing examples.

3. On the other hand, we find the residual matrix correlation, says M(e), is not a diagonal matrix. For

comparison, application to the WLS or SUR estimation methods is recommended. Do this as an

exercise.

4. For a comparison study, Table 1.3 presents a summary of the statistical results using the series of state-

by-state analyses based on the LS AR(1)_GMs. Note that this table shows the coefficients of the time t

and the AR(1) terms are exactly the same as those in Figure 1.4, but they have different intercepts.

Compare this to the other statistics.

Figure 1.4 Statistical results based on a MAR(1)_GM of the GDP of four countries
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1.2.2 Discontinuous Growth Models

Corresponding to the inappropriate estimate of C(31)¼� 0.212 090 in Figure 1.4, experimentation should

be done based on the data of the GDP_FRA. See the following examples.

Example 1.4 An experimentation based on GDP_FRA
By using trial-and-error methods, we finally obtain the statistical results in Figure 1.5, based on two sub-

samples of sizes 29 and 30, respectively, for T< 31 and T< 32. Based on these results the following

findings and notes are presented.

1. Based on the results in Figure 1.5(a), the null hypothesis H0: C(2)� 0 is rejected, based on the

t-statistic of t0¼ 1.819 125 with a p-value¼ 0.0804/2¼ 0.0402< 0.05. Therefore, it can be

Table 1.3 Summary of the statistical results based on the four LS AR(1)_GMs in Figure 1.4

Dependent Variables

log(Gdp_Can) log(Gdp_US) log(Gdp_Fra) log(Gdp_Ger)

Variable

Coef. t-Stat. Coef. t-Stat. Coef. t-Stat. Coef. t-Stat.

C 8.701345 76.60 812 9.098363 204.4720 85.99 109 0.052 856 8.788 810 47.76 036

T 0.025588 6.613016 0.017432 10.84 940 �0.212 090 �0.080 718 0.020 326 4.281 062

AR(1) 0.881066 9.343263 0.788836 7.567 884 0.996 671 27.72 798 0.891 366 25.28 374

R-squared 0.991522 0.988209 0.997 723 0.996 821

Adjusted R-squared 0.991087 0.987604 0.997 607 0.996 658

S.E. of regression 0.032314 0.025287 0.018 665 0.022 710

F-statistic 2280.633 1634.300 8545.536 6115.340

Prob(F-statistic) 0.000000 0.000000 0.000 000 0.000 000

Durbin–Watson stat 1.510506 1.762500 1.414 278 1.596 264

Figure 1.5 Statistical results based on an AR(1)_GM of GDP_FRA using two sub-samples
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concluded that GDP_FRA has a significant positive growth rate of 3.11% within the time period

t¼ 1 to t¼ 30.

2. On the other hand, Figure 1.5(b) shows a note “Estimated AR process is nonstationary”, which indi-

cates that the AR(1)_GM is an inappropriate time series model within the period t¼ 1 to t¼ 31. Finally,

based on the whole data set, the Inverted AR Root¼ 1.00 is obtained, however, without the statement

“Estimated AR process is nonstationary”.

Example 1.5 A piece-wise growth model of GDP_FRA
As the complement of the AR(1)_GM of GDP_FRA for t< 31, Figure 1.6(a) presents another piece of

AR(1)_GM of GDP_FRA for t>¼ 31, which should be considered an acceptable time series model,

in a statistical sense. Note that this model shows that GDP_FRA has a significant positive growth rate

of 2.18% based on the t-statistic of t0¼ 7.425 573 with a p-value¼ 0.0000, for t>¼ 31, compared to

the growth rate of 3.11% for t< 31. Therefore, based on these findings the growth model of

GDP_FRA could be presented by a two-piece GM using dummy variables Dt1 and Dt2, which should

be generated for the two time periods.

Figure 1.6(b) presents the statistical results based on an acceptable two-piece AR(2)_GM of

log(GDP_FRA), in a statistical sense. Based on these results, the following pair of regression functions

can be derived.

logðGDP_FRAÞ ¼ 8:3274þ 0:0359�tþ ½ARð1Þ ¼ 1:2142;ARð2Þ ¼ �0:3301�; for t < 31

logðGDP_FRAÞ ¼ 9:0101þ 0:0127�tþ ½ARð1Þ ¼ 1:2142;ARð2Þ ¼ �0:3301�; for t � 31

Based on these findings, the MAR(1)_GM presented in Figure 1.4 should be modified to a MAR

(1,1,2,1)_GM, with the statistical results presented in Figure 1.7.

Figure 1.6 Statistical results based on (a) an AR(1)_GM of GDP_FRA for t>¼ 31, and (b) a two-piece (dis-

continuous) AR(1)_GM of GDP_FRA
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1.3 Alternative Multivariate Growth Models

As an extension of all the continuous and discontinuous growth models presented in Agung (Agung, 2009a,

Chapters 2 and 3), various multivariate growth models can easily be derived. However, only some selected

models will be presented in the following sub-sections.

1.3.1 A Generalization of MAR(p)_GM

As an extension of the MAR(p)_GM in (1.2), the following growth model is presented.

logðY_iÞ ¼ Fiðt;Cði�ÞÞ þ mit

mit ¼ ri1mi;t�1 þ ri;t�2mi;t�2 þ . . .þ ri;t�pi
mi;t�pi

(1.3)

where Fi(t,C(i
�)) can be any functions of t, such as the polynomial and the natural logarithmic of t, either

continuous or discontinuous functions, as well as nonlinear with a finite number of parameters, namely

C(i�), for each i¼ 1, . . . ,N. Note that any continuous and discontinuous growth models in Agung (2009a)

could be inserted for the function Fi(t,C(i
�)). For example, as follows:

1.3.1.1 A Polynomial Growth Model

The independent-states system of polynomial growth models has the following equation for i¼ 1, . . . ,N.

logðY_itÞ ¼ cði0Þ þ cði1Þ�tþ . . .þ cðikiÞ�tki þ mit (1.4a)

1.3.1.2 A Translog Linear Model

The independent-states system of the translog linear growth models has the following equation for i¼ 1, . . . ,N.

logðY_itÞ ¼ cði0Þ þ cði1Þ�logðtÞ þ mit (1.4b)

Figure 1.7 Statistical results based on a MAR(1,1,2,1)_GM of GDP_Can, GDP_US, GDP_Fra and GDP_Ger
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1.3.1.3 The Simplest Nonlinear Growth Model

The independent-states system of the simplest nonlinear growth model has the following equation for

i¼ 1, . . . ,N.

logðY_itÞ ¼ cði0Þ þ cði1Þ�tcði2Þ þ mit (1.4c)

1.3.1.4 A Two-Piece Growth Model

The independent-states system of two-piece growth models has the following equation for i¼ 1, . . . ,N.

logðY_itÞ ¼ ðcði10Þ þ cði11Þ�tÞ�Dt1þ ðcði20Þ þ cði21Þ�tÞ�Dt2þ mit (1.4d)

where Dt1 and Dt2 are dummy variables of two time periods considered, such as t< t0 and t� t0, which are

defined to be valid for all states or individuals, or all i¼ 1, . . . ,N. To generalize, the dummy variables would

be dependent on i, namely Dt(i1) and Dt(i2), the model can easily be extended to three or more time peri-

ods, and the linear function of t within each time period could be replaced by other functions of t. For

further illustration, refer to various discontinuous growth models presented in Chapter 3, (Agung, 2009a),

specifically the multivariate models by states and time periods in the general models (3.79) to (3.87).

1.3.2 Multivariate Lagged Variables Growth Models

Corresponding to the MAR(p)_GM in (1.2), a multivariate lagged variables growth model, namely

MLV(q)_GM, may be considered an alternative growth model with the following general equation,

where the error terms should also be assumed or accepted in a theoretical sense to have an i:i:d:Nð0; s2Þ.

logðY_itÞ ¼ Cði0Þ þ
Xqi
j¼1

CðijÞ�logðY_it�jÞ þ Cði; qi þ 1Þ�tþ eit (1.5)

Note that the lag variable log(Y_it-j) is not a cause factor of log(Y_it), but is an up-stream or a predictor

variable. Also, the exogenous variables, namely X_it and X_it-j, used in most models are not really the true

cause factors of the dependent variable of these models. See the models presented in Section 1.4.

All lagged variables and autoregressive models, in fact, are dynamic models (Gujarati, 2003, Gourierroux

and Manfort, 1997, Hamilton, 1994, and Kmenta, 1986). Therefore, various models in (1.5) should be con-

sidered as multivariate dynamic growth models (MDGM), or multivariate dynamic models with trend, for

i¼ 1, . . . ,N. Wooldridge (2002; 493) presents another type of dynamic model, called dynamic unobserved

effects models.

Example 1.6 A MLV(1)_GM of GDP? in Figure 1.7

As an alternative multivariate growth model of GDP in Figure 1.7, Figure 1.8 presents the statistical results

based on an MLV(1)_GM, where the regression of GDP_Fra is a two-piece LV(1)_GM. Based on the

results in Figures 1.7 and 1.8, the following findings and notes are presented.

1. The estimates of the parameter C(12) in both models have exactly the same values of 0.881 066, which

indicates the first-order autocorrelation of log(GDP_Can). Similarly for the parameters C(22) and

C(42), respectively, there is first-order autocorrelation of log(GDP_US) and log(GDP_Ger).
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2. Corresponding to the regression model of log(GDP_Fra), Figures 1.7 and 1.8 present different types of

two-piece growth models. Figure 1.7 presents a two-piece AR(2)_GM, where the autocorrelation of the

error terms AR(1) and AR(2) should be valid for the whole time period. On the other hand, Figure 1.8

presents a two-piece LV(1)_GM, where Ĉð312Þ ¼ 1:019645 is the AR(1) of log(GDP_Fra) for t< 31,

and Ĉð312Þ ¼ 0:382358 is its AR(1) for t� 31.

3. However, Figure 1.8 presents a negative adjusted growth rate of log(GDP_Fra), for t< 31, namely

Ĉð311Þ ¼ �0:001504 which is an inappropriate estimate. For this reason, the statistical results based

on a MLV(1,1,2,1) are presented in Figure 1.9, where the two-piece regressions of log(GDP_Fra) is

Figure 1.9 Statistical results based on a MLV(1,1,2,1)_GM of GDP_Can, GDP_US, GDP_Fra and GDP_Ger

Figure 1.8 Statistical results based on a MLV(1)_GM of GDP_Can, GDP_US, GDP_Fra and GDP_Ger
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LV(2)_GM, and the two regressions represent positive growth rates of GDP_Fra, namely Ĉð311Þ ¼
0:000601 and Ĉð321Þ ¼ 0:009331, respectively, for t< 31 and t� 31, adjusted for log(GDP_Fra(�1))

and log(GDP_Fra(�2)).

1.3.3 Multivariate Lagged-Variable Autoregressive Growth Models

As an extension of LVAR(1,1)_GM presented in Agung (2009a), data analysis based on a multivariate lag-

ged variables autoregressive model, MLVAR(p;q)_GM, where p¼ (pi) and q¼ (qi), of the time series Y_it,

for i¼ 1, . . . ,N, will have the following general equation.

logðY_itÞ ¼ Cði0Þ þ
Xpi
j¼1

CðijÞ�logðY_it�jÞ þ Cði; pi þ 1Þ�tþ mit

mit ¼
Xqi
k¼1

rikmi;t�k þ eit

(1.6)

Note that for q¼ 0, the MLV(p)_GM will be obtained, and the MAR(q)_GM obtained for p¼ 0. Various

special cases would be obtained, where pi¼ p and qi¼ q for all i¼ 1, . . . ,N.

1.3.4 Bounded MLVAR(p;q)_GM

As an extension of the general MLVAR(p;q)_GM in (1.6) as well as the bounded growth model presented in

Agung (2009a), the bounded MLVAR(p;q)_GM, of the time series Y_it, i¼ 1,2, . . . ,N, has the following

general equation.

log
Y_i � Li

Ui � Y_i

� �
¼ Cði0Þ þ

Xpi
j¼1

CðijÞ�logðY_it�jÞ þ Cði; pi þ 1Þ�tþ mit

mit ¼
Xqi
k¼1

rikmi;t�k þ eit

(1.7)

where Li and Ui are the lower and upper bounds of Y_i, which are theoretically selected fixed numbers.

1.3.5 Special Notes

Based on the findings presented previously, the following special notes are presented.

1. Unexpected parameter estimates can be obtained by using autoregressive or lagged variables growth

models. In general, by inserting an additional independent variable to a model, we can never predict its

impact on the parameter estimates. Refer to the special notes in Agung (2009a, Section 2.14.2). For this

reason, one should use the trial-and-error method to develop several acceptable growth models, in both

theoretical and statistical senses. Note that this statement also should be applicable for any statistical

model.

2. Graphic representations between each of the independent variables and the corresponding dependent

variable should be analyzed to evaluate their possible patterns of relationship. Specifically, whether a

linear or non-linear model would acceptable. Refer to Chapter 1 in Agung (2009a).
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3. Furthermore, residuals analysis should be done to identify the limitation of each model. Refer to

Agung (2009a).

4. Corresponding to the relationship between Y_it and its lag Y_it-s, specific for s¼ 1, s¼ 4, and s¼ 12,

respectively, if and only if the time series data are annually, quarterly, and monthly data sets, the follow-

ing notes are presented.

4.1 The observed values of Y_it-s and Y_it can be considered as the observations before and after a

natural-experiment for the i-th individual, with a set of environmental variables could be the treat-

ment or experimental factors, namely Zt¼ (Z1,Z2, . . . ,Zk)t. Refer to Section 1.8.

4.2 The lag variable Y_it-s should be considered as a covariate in any time series models having Y_it
as the dependent variable. So the “classical growth model of Y_it with a covariate Y_it-s” for the

i-th individual may have the following alternative equations.

logðY_itÞ ¼ Cði0Þ þ Cði1Þ�tþ Cði2Þ�Y_it�s þ mit (1.8a)

logðY_itÞ ¼ Cði0Þ þ Cði1Þ�tþ Cði2Þ�logðY_it�sÞ þ mit (1.8b)

1.4 Various Models Based on Correlated States

It is known that stock prices of selected countries have a causal relationship. In this section, as an extension

of the previously mentioned models, I consider the models based on correlated states. The definition is that

two states are correlated if, and only if, their endogenous variables have a causal relationship. Note that if all

variables are assumed or defined to be correlated, then all the time series models presented in

Agung (2009a) can easily be applied.

With regards to the time series data by states or unstacked data considered, it is acceptable that growth of

a problem indicator or variable of a state (country, region, firm or agency) should be theoretically influenced

by the factors of the other state(s). For illustrative examples, at the first stage the GDP of two states, namely

GDP_US, and GDP_Can in POOLG7.wf1, are defined to have a causal relationship. Here, two alternative

causal relationships are considered, as presented in Figure 1.10, out of a lot of possible models.

Note that Figure 1.10(a) presents the path diagram where GDP_US is defined as the cause factor of

GDP_Can. Based on this path diagram, the simplest causal model with trend would have the following

system specification.

GDP_US ¼ Cð10Þ þ Cð11Þ�GDP_USð�1Þ þ Cð12Þ�t
GDP_Can ¼ Cð20Þ þ Cð21Þ�GDP_Canð�1Þ þ Cð22Þ�GDP_US

þ Cð23Þ�GDP_USð�1Þ þ Cð24Þ�t
(1.9)

Gdp_US(–1)            Gdp_US  

                                                          t 

Gdp_Can(–1)              Gdp_Can   

(a) 

Gdp_US(–1)           Gdp_US  

                                                          t 

Gdp_Can(–1)           Gdp_Can     

(b) 

Figure 1.10 Two alternative causal relationships between GDP_US and GDP_Can
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Note that each multiple regression in the model is an additive regression model of its independent varia-

bles. For instance, the first regression is an additive model of GDP_US on GDP_US(�1), and the time t. In

other words, this model represents the linear adjusted effects of GDP_US(�1), and the time t on GDP_US.

In fact, there are a lot more models that could be subjectively defined by the researchers. Refer to various

time series models presented in Agung (2009a).

On the other hand, Figure 1.10(b) presents the path diagram where GDP_US and GDP_Can are defined

to have a simultaneous causal linear effects or two-way causal effects. Based on this path diagram, the

simplest causal model with trend would have the following system specification.

GDP_US ¼ Cð10Þ þ Cð11Þ�GDP_USð�1Þ þ Cð12Þ�GDP_Can
þ Cð13Þ�GDP_Canð�1Þ þ Cð14Þ�t

GDP_Can ¼ Cð20Þ þ Cð21Þ�GDP_Canð�1Þ þ Cð22Þ�GDP_US

þ Cð23Þ�GDP_USð�1Þ þ Cð24Þ�t

(1.10)

Note that the models (1.9) and (1.10) are not the VAR (Vector Autoregressive) models, since they do not

have the same set of independent variables. For this reason, Agung (2009a) has introduced the MAR (Multi-

variate Autoregressive Model) and the SCM (Seemingly Causal Model) instead of the System Equation

Model (SEM), because the term SEM is already used for the structural equation model. The following sub-

sections present empirical examples of SCM and VAR Models.

To generalize, a problem indicator by states may be presented as Y_s, for the states s¼ 1, . . . ,S. Then, the

relationship between the indicators Y_s, s¼ 1, . . . , S, would be a matter of subjective or expert judgment by

the researchers. It could be very difficult to define the path diagram of an SCM based on the GDP of the

seven states as presented in POOLG7.wf1, even more so for the number of states greater than seven. For

this reason, I recommend to all students planning to write theses or dissertations, select only two or three

states for the data analysis, since they can apply various MLVAR(p,q) models and study the limitations of

each model using residual analysis. Note that with a single variable Y, one would have to consider the varia-

ble Y, the time t-variable and the categorical state variable, as well as the lagged of Y, say Y(�1), . . . ,Y(�p)

for a selected integer p, as well as the indicators AR(1), . . . ,AR(q).

1.4.1 Seemingly Causal Models with Trend

For illustrative purposes, Figure 1.10 presents two alternative theoretically defined SCMs between GDP_US

and GDP_Can. Note that the arrows with dotted lines from the time t indicate that this is not a real causal

factor. However, the following example presents data analysis based on the model (1.10) only.

Example 1.7 SCMs with trend

Figure 1.11(a) presents statistical results based on a bivariate first-order lagged-variable SCM, namely

LV(1)_SCM, of GDP_US and GDP_Can, which show that the error terms of each regression have the

first autocorrelation problem, indicated by the small value of its Durbin–Watson statistic. For this reason,

Figure 1.11(b) presents statistical results based on its AR(1) model, namely LVAR(1,1)_SCM, which is

acceptable, in both theoretical and statistical senses. Note that these models are not growth models. Based

on this output, the following conclusions are derived.

1. The p-value¼ 0.0000 of the parameter C(12) in the first regression indicates that GDP_Can has a signifi-

cant positive adjusted linear effect on GDP_US, and the p-value¼ 0.0000 of the parameter C(22) in the

second regression indicates that GDP_US also has a significant positive adjusted linear effect on GDP_Can.
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2. Therefore, based on the SCM in Figure 1.11(b), it can be concluded that the data supports the

hypothesis that GDP_US and GDP_Can have simultaneous causal linear effects, adjusted for

the other independent variables in the model.

3. In order to conduct the unadjusted simultaneous causal effects, the bivariate correlation analysis can

easily be applied (Agung, 2006, 2009a, 2011). In this case, H0:rðGDP_US;GDP_CanÞ ¼ 0 is rejected

based on the t-statistic of t0¼ 36.43 270 with a p-value¼ 0.0000.

4. Various univariate and multivariate hypotheses could easily be tested using the Wald test.

Example 1.8 Translog linear SCMs with trend

The alternative models of those in Figure 1.11, Figure 1.12(a) and (b) present statistical results based on a

translog linear LV(1)_SCM, and LVAR(1,1)_SCM. Based on these results the following notes are presented.

1. The translog linear LVAR(1,1)_SCM is an unacceptable model, in a statistical sense, based on the data

set used, since the AR(1) of both regressions are insignificant with such a large p-values of 0.82 and

0.42, respectively.

2. In this case, the translog linear LV(1)_SCM would be a better model, supported by the fact that each

independent variable has a significant adjusted effect on its corresponding dependent variable with suf-

ficiently large DW statistics and their residual graphs, as shown in Figure 1.13. It would not be the best

out of all possible models, which have not been explored.

3. Note that this translog-linear LV(1)_SCM can be viewed as a bivariate growth model, where C(14)

indicates the adjusted exponential growth rate of GDP_US, and C(24) indicates the adjusted exponen-

tial growth rate of GDP_Can.

Figure 1.11 Statistical results based on the models with trends in (1.10), namely (a) a LV(1)_SCM, and (b) a

LVAR(1,1)_SCM
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4. To generalize, the variable GDP could easily be replaced by a variable Y. Then, as a modified model,

the SCM will be written as pair of nonlinear models as follows:

Y_US¼ Y_USð�1ÞCð11ÞY_CanCð12ÞY_Canð�1ÞCð13ÞExpðCð10Þ þ Cð14Þ�tÞ
Y_Can¼Y_Canð�1ÞCð21ÞY_USCð22ÞY_USð�1ÞCð23ÞExpðCð20Þ þ Cð24Þ�tÞ

(1.11)

Figure 1.13 Residual graphs of the LV(1)_SCM in Figure 1.11(a)

Figure 1.12 Statistical results based on (a) translog linear LV(1)_SCM, and (b) translog linear LVAR(1,1)_SCM;

with trend
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5. Finally, for the seven states in POOLG7.wf1, a much more complex path diagram should be developed

or defined to represent the theoretical causal model between the seven time series variables. Therefore,

based on the path diagram, the system specification of a SCM would easily be written, either as translog

linear or nonlinear models. However, by using many independent variables, the error messages of “near

singular matrix” or “overflow”, as well as the unexpected estimates of parameters, may be obtained.

Refer to special notes in Agung (2009a, Section 2.14).

1.4.2 The Application of the Object “VAR”

EViews provides the object “VAR” for conducting the data analysis based on a vector autoregressive (VAR)

and vector error correction (VEC) models, which are special cases of the multivariate autoregressive

(MAR) models and SCMs, (Agung, 2009a). See the following example.

Example 1.9 A VAR model

Figure 1.14 presents the statistical result based on a VAR model of log(GDP_US) and log(GDP_Can), using

the lag interval of endogenous “1 1”, and exogenous variables “C T” with the default options. Based on this

result the following notes are presented.

1. Note that this VAR model in fact is a special case of the MAR(1)_GM, where all regressions have

exactly the same independent variables. Compared to the path diagram in Figure 1.10, the path diagram

of this VAR model presented in Figure 1.15 shows the causal relationship between log(GDP_US) and

log(GDP_Can) is not taken into account.

2. However, the quantitative coefficient of correlations of the independent variables log(GDP_US(�1)),

log(GDP_Can) and the time t should be taken into account in the regression analysis, and it is well-

known that they have an unpredictable impact on the estimate of the model parameters. Refer to Sec-

tion 2.14.2 in Agung (2009a).

Figure 1.14 Statistical results based on a VAR Model of log(GDP_US) and log(GDP_Can)
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3. Furthermore, note that the symbol C(i,j) is used to present the model parameters, and test the hypothe-

ses using the Wald test, that is the Block Exogeinity Wald Test.

4. For a model with many endogenous or exogenous variables, applying the object “System” is recom-

mended instead of the object “VAR”, because in general, the good fit multiple regressions in the model

would have different sets of independent variables.

5. Refer to Chapter 6 in Agung, (2009a; p. 316), for more detailed notes on various VAR models, as well

as their residual analysis, and a special causality test; the VAR Granger Causality/Block Exogeneity

Wald Tests.

6. Furthermore, in order to match conditions in previous and recent years, Agung (2009a) proposes special

VAR models using the lag interval of endogenous “4 4” for a quarterly data set, and “12 12” for a

monthly data set.

Example 1.10 A vector error correction (VEC) model

Figure 1.16 presents the statistical result based on a VEC model by inserting the endogenous variables

“log(GDP_US) log(GDP_Can)”, the lag interval of endogenous “1 1”, and exogenous variables “T” with

the default options. Based on this result the following notes are presented.

1. By inserting the endogenous variables log(GDP_US) and log(GDP_Can), the output directly presents two

regressions with the first differences Dlog(GDP_US) and Dlog(GDP_Can) as their dependent variables.

2. Note that, in general, the first difference of log(Y_s), in fact indicates the exponential growth rate of Y_s,

which can be presented as follows:

DlogðY_sÞ ¼ logðY_stÞ � logðY_st�1Þ ¼ RtðY_sÞ (1.12)

Then, the two independent variables Dlog(Y_US(�1)) and Dlog(Y_Can(�1)), can be presented as

follows:

DlogðY_sð�1ÞÞ ¼ logðY_st�1Þ � logðY_st�2Þ ¼ Rt�1ðY_sÞ (1.13)

For these reasons, the VEC model in fact presents a bivariate LV(1) model of Rt(GDP_US) and

Rt(GDP_Can) with exogenous variables.

3. Beside the independent or exogenous variables C and T, both regressions in the VEC model have a

special independent variable, called the Cointegrating Equation, namely:

CointEg1 ¼ logðGDP_USð�1ÞÞ þ 0:286109 logðGDP_CanÞ � 12:1466

4. For more detailed notes on various VEC models, as well as the characteristics of alternative cointegrat-

ing equations, refer to Section 6.3 in Agung (2009a).

log(Gdp_us(–1))     log(Gdp_us)

t

log(Gdp_Can(–1)) log(Gdp_Can)

Figure 1.15 The path diagram of the VAR model in Figure 1.14
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1.4.3 The Application of the Instrumental Variables Models

It is not an easy task to define a “good fit” instrumental variables model, since there is no general guide on

how to select an acceptable set of instrumental variables corresponding to any defined statistical model. For

this reason, Agung (2009a, p. 382) suggests everyone has two-stages of problems (TSOP), in demonstrating

or developing an instrumental model. First, he/she should develop a model with at least one exogenous

variable which is significantly correlated with the residual of the model. Second, he/she has to search to

find the best possible set of instrumental variables. For various examples with special notes on instrumental

variables models, refer to Chapter 7 in Agung (2009a).

Example 1.11 (A two-stage LSE method)

Figure 1.17 presents the statistical results based on an instrumental variable model with a trend of

log(GDP_US) and log(GDP_Can). Based on this result the following notes are presented.

1. Figure 1.17(a) presents the statistical results based on a bivariate AR(1,1)_SCM, where both regressions in

the model are the simplest AR(1) linear regressions, with the same set of instrumental variables. These

Figure 1.16 Statistical results based on a VEC Model of log(GDP_US) and log(GDP_Can)
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results show that log(GDP_Can) and log(GDP_US) have significant simultaneous causal effects, since

log(GDP_Can) has a significant positive effect on log(GDP_US) based on the t-statistic of t0¼ 9.706704

with a p-value¼ 0.0000/2¼ 0.0000, and log(GDP_US) also has a significant positive effect on

log(GDP_Can) based on the t-statistic of t0¼ 10.29 701 with a p-value¼ 0.0000/2¼ 0.0000. Note that in

this case the p-values in the output should be divided by 2 for testing the one-sided hypotheses.

2. Figure 1.17(b) presents the statistical results based on a LVAR(1,1;2,1)_SCM, where the first regression

is a LVAR(1,2) model with an exogenous variable log(GDP_Can) and the second regression is a LVAR

(1,1) model with an exogenous variable log(GDP_US). Compared to the model in Figure 1.14(a), the

regressions in this model have different sets of instrumental variables

1.5 Seemingly Causal Models with Time-Related Effects

As the extension of the SCMs with trends in (1.9) and (1.10), the following system equations present SCMs

with time-related effects.

1.5.1 SCM Based on the Path Diagram in Figure 1.10(a)

As an extension of the additive model in (1.9), a SCM with time-related effects based on the path diagram in

Figure 1.10(a), will have the following system specification. Note that the two-way interaction t�GDP_US

Figure 1.17 Statistical results based on bivariate models (a) AR(1,1)_SCM, and (b) LVAR(1,1;2,1)_SCM, with sets

of instrumental variables
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is inserted as an additional independent variable of the second regression to indicate the time-related effect

of DGP_US on GDP_Can. In other words, the effect of DGP_US on GDP_Can depends on the time t.

GDP_US ¼ Cð10Þ þ Cð11Þ�GDP_USð�1Þ þ Cð12Þ�t
GDP_Can ¼ Cð20Þ þ Cð21Þ�GDP_Canð�1Þ þ Cð22Þ�GDP_US

þ Cð23Þ�GDP_USð�1Þ þ Cð24Þ�tþ Cð25Þ�t�GDP_US

(1.14)

Note that this model is indicating that the effect of GDP_US on GDP_Can depends on the time t, indi-

cated by the following partial derivative:

@GDP_Can

@GDP_US
¼ cð24Þ þ cð25Þ�t

1.5.2 SCM Based on the Path Diagram in Figure 1.10(b)

As an extension of the interaction model in (1.14), a SCM with the time-related effects based on the path

diagram in Figure 1.10(b), will have the following system specification. Note that the second regressions of

the SCMs in (1.14) and (1.15) are identical models.

GDP_US ¼ Cð10Þ þ Cð11Þ�GDP_USð�1Þ þ Cð12Þ�GDP_Can
þ Cð13Þ�GDP_Canð�1Þ þ Cð14Þ�tþ Cð15Þ�t�GDP_Can

GDP_Can ¼ Cð20Þ þ Cð21Þ�GDP_Canð�1Þ þ Cð22Þ�GDP_US

þ Cð23Þ�GDPGDP_USð�1Þ þ Cð24Þ�tþ Cð25Þ�t�GDP_US

(1.15)

Example 1.12 A translog linear SCM with time-related effects

We find that the statistical results based on the model in (1.15) present several insignificant independent varia-

bles, including the two-way interactions t�GDP_Can and t�GDP_US. So, by using the trial-and-error method

we can finally obtain a good fit translog linear SCM with time-related effects as presented in Figure 1.18,

Figure 1.18 Statistical results based on a reduced model of a modified model in (1.15)
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which is in fact a nonhierarchical reduced model of the modified model in (1.15). Based on these results the

following notes are presented.

1. The p-value of the two-way interaction T�log(GDP_Can) in the first regression indicates that the

adjusted effect log(GDP_Can) on log(GDP_US) is significantly dependent on the time t, and the

p-value of the two-way interaction T�log(GDP_US) in the second regression also indicates that

the adjusted effect log(GDP_US) on log(GDP_Can) is significantly dependent on the time t.

2. Therefore, based on this SCM, it can be concluded that the data support the hypothesis log(GDP_US)

and log(GDP_Can) have simultaneous causal effects dependent on the time t.

1.6 The Application of the Object POOL

Many students, as well as less experienced analysts, have used the object POOL to present statistical

results or outputs based on either fixed or random effects models, without considering or discussing

the characteristics of the models, not to mention their limitations. For this reason, the following

examples present illustrative statistical results with special notes.

The steps of the analysis using the object “POOL” are as follows:

1. By selecting Object/New Objects/Pool . . . OK, the window in Figure 1.19(a) appears.

2. By inserting Cross-Section Identifiers, namely the series _CAN _US _FRA _GER, and then clicking

“Estimate”, then options in Figure 1.19(b) appear.

1.6.1 What is a Fixed-Effect Model?

The following example presents the statistical results based on simple multivariate growth models with

special notes on the acceptability of the models.

Figure 1.19 The windows and options for using the object “POOL”
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Example 1.13 A fixed-effect MAR(1)_GM

For comparison with the statistical results in Figure 1.2, Figure 1.20(a) presents the statistical results by

selecting cross-section: Fixed, inserting log(GDP?) as the dependent variable, and the series “c t ar(1)” as

the Regressors and AR() term Common Coefficients.

Then by selecting View/Representation, the estimation equation in Figure 1.20(b) is obtained. Based on

these results, the following conclusions and comments are presented.

1. Note that this fixed-effect AR(1) model has special characteristics, where the four regressions in the

model have special intercept parameters, namely C(4)þC(1), C(5)þC(1), C(6)þC(1), and C(7)þ
C(1), respectively, where the parameters C(4) to C(7) are named as the cross-section fixed-effect

parameters.

2. However, we find the equality of the parameters C(4), C(5), C(6) and C(7) cannot tested using the Wald

test.

3. The growth rates of GDP are presented by a single parameter of C(2) in the four countries, as well as a

single autocorrelation of C(3) for the four regressions, which should be inappropriate or unrealistic

estimates, in a theoretical sense. For this reason, compared to the model in Figure 1.2 along with the

model in Figure 1.20, this MAR(1)_GM should be considered unacceptable for representing growth

rates of the GDP in the four countries.

Example 1.14 A fixed effect MLV(1)_GM
For a comparison with the statistical results in Figure 1.9, Figure 1.21(a) presents the statistical results by

selecting Cross-section: Fixed, inserting log(GDP?) as the dependent variable, and the series “c t log(GDP?

Figure 1.20 Statistical results based on a fixed effect MAR(1)_GM of GDP_Can, GDP_US, GDP_Fra and

GDP_Ger
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(�1)” as the Regressors and AR() term Common Coefficients. Then by selecting View/Representation, the

estimation equation in Figure 1.21(b) can be obtained. This model also has the same problem as the fixed-

effect MAR(1)_GM, so it should be considered inappropriate for representing the growth rates of the GDP

in the four countries.

1.6.2 What is a Random Effect Model?

The AR() terms cannot be used for a random effect model. For this reason, the following examples only

present results based on the classical growth model and a random effect MLV(1)_GM.

Example 1.15 A random effect multivariate classical growth model: REMCGM

Figure 1.22 presents the statistical results based on a REMCGM of GDPs for the four countries, as well as

the four regression functions having the same growth rates of C(2). This model is also an inappropriate

model in a theoretical sense, aside from the very small value of the weighted DW statistic of 0.078 665. For

this reason, a random effect MLV(1)_GM is presented in the following example.

Example 1.16 A random effect MLV(1)_GM

For comparison with the statistical results based on the fixed effect MLV(1)_GM in Figure 1.21, Figure 1.23

presents the results based on a random effect MLV(1)_GM, which shows that the four regression functions

have exactly the same coefficients of C(1), C(2) and C(3); and C(4)¼C(5)¼C(6)¼C(7)¼ 0. In a theoreti-

cal sense, this is the worst model.

Figure 1.21 Statistical results based on a fixed effect MLV(1)_GM of GDP_Can, GDP_US, GDP_Fra and

GDP_Ger

Data Analysis Based on a Single Time Series by States 25



Figure 1.22 Statistical results based on a RECGM of GDP_Can, GDP_US, GDP_Fra and GDP_Ger

Figure 1.23 Statistical results based on a random effect MLV(1)_GM of GDP_Can, GDP_US, GDP_Fra and

GDP_Ger
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1.6.3 Special Notes

Based on the statistical results of the multivariate fixed and random effects growth models using the object

“POOL” presented previously, please note the following special points.

1. In general, a multivariate fixed and random effects growth model is the worst multivariate growth model

by states, in a theoretical sense. This is even more so if it is known that a state should have a dis-

continuous or piece-wise growth curve, as this may be because of some external factors. Therefore, in

general one should use models with heterogeneous slopes or heterogeneous regressions (Agung, 2006,

2011). For an additional illustration, Chandrasekaran and Tellis (in Malhotra, 2007, p. 45) present the

findings of Golder and Tellis (2004) on piece-wise mean growth rates of a product’s life cycle over six

time periods; namely during the introduction, takeoff, growth, slowdown, early maturity and late maturity.

2. Referring to the ANCOVA models, in a statistical sense, models that have homogeneous slopes or

homogeneous regressions (Agung, 2006, 2011) with various intercepts are acceptable. The main objec-

tives of ANCOVA are to test the hypotheses on the adjusted means differences of the corresponding

dependent variables, which in fact are the hypotheses on the intercept differences of the homogeneous

regressions considered. However, analysis should be conducted using the object “System”, instead of

the object “POOL” – refer to point (2) in Example 1.13. See the following example.

Example 1.17 A MAR(1) ANCOVA growth model

For illustration, Figure 1.24 presents the statistical results based on a MAR(1) ANCOVA growth model,

using the object “System”. Based on these results the following conclusions and notes are presented.

1. Note that the growth rates of GDP of the four states are assumed to be equal to Ĉð11Þ ¼ 0:011266 which

are unacceptable in a theoretical sense. Similarly so for the first autoregressive indicator Ĉð12Þ ¼ 0:960457.

Figure 1.24 Statistical results based on an MAR(1) ANCOVA growth model

Data Analysis Based on a Single Time Series by States 27



2. However, in a statistical sense, this model is an acceptable MANCOVA model of the variables

log(GDP_US), log(GDP_Ger), log(GDP_UK), and log(GDP_JPN), where the time t is considered

covariate, with the intercept parameters: C(10), C(20), C(30), and C(40).

3. Therefore, various hypotheses on the adjusted means differences of the log(GDP?) between any subsets

of the four states can easily be tested using the Wald test. For example, H0: C(10)¼C(20)¼C(30)¼
C(40) is rejected based on the Chi-square statistic of x2

0 ¼ 8:464132, with df¼ 3 and a p-value¼ 0.0373,

which indicates that the four states have significant adjusted means differences of the log(GDP?).

4. As a comparison, Figure 1.25 presents the statistical results based on an alternative MAR(1)_GM,

under the assumption the time t has the same slopes of C(11), but various intercepts as well as AR(1).

For this model, H0: C(10)¼C(20)¼C(30)¼C(40) is rejected based on the Chi-square statistic of

x2
0 ¼ 130:9457, with df¼ 3 and a p-value¼ 0.0000.

5. On the other hand, the null hypothesis H0: C(12)¼C(22)¼C(32)¼C(42) should be considered

in comparing this model with the model in Figure 1.24. The null hypothesis is rejected based on the

Chi-square statistic of x2
0 ¼ 10:43420, with df¼ 3 and a p-value¼ 0.0152. Then, in a statistical sense,

this model is a better fit compared to the model in Figure 1.24.

6. Note that the Durbin–Watson statistics of the regressions in Figures 1.21 and 1.24 indicate that other

models should be explored, such as the higher order AR models. However, try it as an exercise.

Example 1.18 A MAR(1) heterogeneous growth model

Building on the model in Figure 1.25, as well as for further comparison, Figure 1.26 presents the statistical

results based on a MAR(1) heterogeneous growth model. Based on these results, note the following:

1. The main objectives of this model are to test the hypotheses of the exponential growth rate differences

between the GDPs of the four states, indicated by the parameters C(11), C(21), C(31) and C(41).

Figure 1.25 Statistical results based on an alternative MAR(1) ANCOVA growth model
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2. The null hypothesis H0: C(11)¼C(21)¼C(31)¼C(41) is accepted based on the Chi-square statistic of

x2
0 ¼ 2:923708, with df¼ 3 and a p-value¼ 0.4035, which indicates that the four growth rates

are insignificantly different in the corresponding populations. Based on this finding then, the model

in Figure 1.25 can be considered to be a better fit, in a statistical sense, compared to the model in

Figure 1.26. However, in a theoretical sense, would you be very confident in saying that the four growth

rates of the GDPs are equal?

3. Compare the growth curve of log(GDP_JPN) in Figure 1.27 to the negative estimate of its growth rate,

namely Ĉð41Þ ¼ �0:014003 in Figure 1.26: this indicates that the model is inappropriate for represent-

ing the GDP_JPN. So a modified model should be explored. Do this as an exercise: refer to the case of

the GDP_FRA presented in Examples 1.3 to 1.5.

1.7 Growth Models of Sample Statistics

In many studies, we should consider the time series of sample statistics, such as the mean, median and SD

(standard deviation), of groups of individuals based on sample surveys as well as experiments. In general,

the symbol Y_gi(t) will be used to indicate the time series of a single endogenous variable Y of the i-th

individual within the g-th group, for g¼ 1, . . . ,G, and i¼ 1, . . . ,Ig. The panel data file, a set of time series

Y_gi with the format shown in Table 1.4, where the first group (g¼ 1) contains five individuals and the

second group (g¼ 2) contains eight individuals.

Based on this data set the time series of the mean, median and SD of the Y-variable can easily be gener-

ated, namelyMY_g, MedY_g, and SDY_g, for g¼ 1, . . . ,G, either using EViews or Excel.

Figure 1.26 Statistical results based on an alternative MAR(1) heterogeneous growth model
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A latent variable, or a set of either independent or dependent factors or latent variables, can easily be

generated for each group of individuals in order to reduce the dimension of the multivariate considered. For

a detailed stepped analysis, refer to Chapter 10 in Agung (2011).

Therefore, all growth models previously presented, as well as their extensions, should be applicable for

the time series of the sample statisticsMY_g, MedY_g and SDY_g, as well as latent variables.

Figure 1.27 The growth curves of the endogenous variables in Figure 1.26

Table 1.4 Illustrated format of a set of time series by two groups of individuals

Time g¼ 1 G¼ 2

Y_11 . . . Y_15 Y_21 . . . Y_28

1 Y_11(1) . . . Y_15(1) Y_21(1) . . . Y_28(1)

� . . . . . . . . . . . . . . . . . .

t Y_11(t) . . . Y_51(t) Y_1G(t) . . . Y_8G(t)

� . . . . . . . . . . . . . . . . . .

T Y_11(T) . . . Y_51(T) Y_1G(T) Y_8G(T)
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Example 1.19 Generating sample statistics using the object “POOL”

For an illustration, the group of GDP_FRA, GDP_GER and GDP_ITA will be considered for data analysis.

The steps of the analysis are as follows:

1. By selecting Object/New Object/Pool . . . OK, Figure 1.28(a) appears on the screen.

2. By entering “_fra _ger _ita” and selecting View/Descriptive Statistics . . . , Figure 1.28(b) is shown

on the screen. Then by entering “gdp?” and selecting “Time period specific”, the sample statistics in

Figure 1.29 are obtained.

3. Each of the sample statistics can easily be copied to the file. For example, by using the copy-paste method

of Mean GDP?, the POOLG7.wf1 will have an additional variable Series01. Then this variable can be

renamed, for example as M_GDP or Mean GDP? Similarly, this can be done for each of the others.

4. The other copy-paste method can be done using Excel, by copying all sample statistics in Figure 1.29 as

an Excel file, then opening the Excel file as an EViews work file.

5. As a result, data analysis based on various models of sample statistics of each group can be easily

performed.

Figure 1.29 Sample statistics of GDP_FRA, GDP_GER and GDP_ITA

Figure 1.28 The cross section identifiers and options of the pool descriptive statistics
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1.8 Special Notes on Time-State Observations

Corresponding to time-series models for independent states, as well as the models for dependent or corre-

lated states illustrated previously, the following notes are made.

1. The time-state or time-cross-section observations should have much larger time-point observations

compared to the cross-sectional observations.

2. As a rule of thumb the time points should be at least five times the total number of the variables in the

system specification considered. Most researchers make the number of the units of analysis at least

10 times the number of variables in the model.

3. On the other hand, if panel data has a much larger cross-section observation compared to time-point

observations, the following alternative data analysis is suggested.

3.1 Conduct the analysis based on time series models of sample statistics by groups of states or indi-

viduals, such as the mean and standard deviation of the groups, or latent variables as presented in

Section 1.7, in addition to the descriptive statistical summaries by groups.

3.2 If the panel data has only a few time-point observations, then the panel data should be presented

or considered as a set of cross-section data by times or a cross-section over times (which will be

discussed in Part II). As a special case for a two-year observation, the panel data can be consid-

ered a natural-experimental data set.

1.9 Growth Models with an Environmental Variable

Suppose Y_it is an endogenous time series, say the productivity and return rates of the i-th industry or firm

in a state/country, then in general there is an environmental or external time series with the same scores/

values for all industries, namely Zt, such as income per capita, inflation rate, exchange rate of US$, GDP

and others at the state/country level.

Referring to the GDPs of three states in Europe in POOL7 G.wf1, namely Y_1t¼GDP_Frat, Y_2t¼
DGP_Gert and Y_3¼GDP__Itat, to generalize, they can be presented as Y_1t, Y_2t, and Y_3t; or Y_at,

Y_bt, and Y_ct; respectively. There should be at least one environmental factor, say Zt, such as the US$

exchange rate or an external factor out of Europe, which could be defined or judged as a causal factor of the

GDPs of the three states. Would you consider GDP_US or GDP_Jpn, or both for use as external factors?

Therefore, corresponding to the MLVAR(p;q)_GM in (1.6), the following general MLVAR(p;q)_GM
with an environmental variable Zt is made.

logðY_itÞ ¼ Cði0Þ þ
Xpi
j¼1

CðijÞ�logðY_it�jÞ þ Cði; pi þ 1Þ�tþ Cði; pi þ 2Þ�Zt þ mit

mit ¼
Xqi
k¼1

rikmi;t�k þ eit

(1.16)

However, in general, we know the effect of Zt on Y_it is dependent on t. For this reason, applying the

model with a time-related-effect (TRE) is recommended, as follows:

logðY_itÞ ¼ Cði0Þ þ
Xpi
j¼1

CðijÞ�logðY_it�jÞ þ Cði; pi þ 1Þ�t

þ Cði; pi þ 2Þ�Zt þ Cði; pi þ 3Þ�t�Zt þ mit

mit ¼
Xqi
k¼1

rikmi;t�k þ eit

(1.17)
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Note that various two- and three-way interaction models have been demonstrated in Agung (2009a) if a

vector of environmental variable, namely Zt¼ (Z1t,Z2t, . . . ), should be considered. Furthermore, under the

assumption that Y_it for some i¼ 1,2, . . . ,N, are correlated, then a lot of advanced models, (such as various

VAR, VEC and Instrumental Variables Models (IVMs), as well as various TGARCH(a,b,c) models), could

easily be subjectively defined by a researcher. However, not everyone can always be very sure as to which is

the true population model, since unexpected estimates of the model parameters could be obtained as the

impact of the multicollinearity of all variables in the model, and these are highly dependent on the data set

that happens to be selected or available to the researcher. Refer to special notes presented in Section 2.14

(Agung, 2009a). See the following selected models.

1.9.1 The Simplest Possible Model

The simplest model is a MLVAR(1,1) model with an environmental variable and TRE as follows:

logðY_itÞ ¼ Cði0Þ þ Cði1Þ�logðY_it�1Þ þ Cði2Þ�tþ Cði3Þ�Zt þ Cði4Þ�t�Zt þ mit

mit ¼ ri1mi:t�1 þ eit (1.18)

For an illustration, a hypothetical data set is generated based on the data in POOL7 G.wf1, where X_1¼
GDP_US, Y_1¼GDP_Can, X_2¼GDP_Fra, Y_2¼GDP_UK, X_3¼GDP_Ger, and Y_3¼GDP_Ita,

and the environmental variable Z1¼GDP_Jpn is taken. See the following examples.

For a vector of the environmental variable, namely Z¼ (Z1, . . . ,Zk), the model in (1.18) can be extended

to a more general M LVAR(1,1), as follows:

logðY_itÞ ¼ Cði0Þ þ Cði1Þ�logðY_it�1Þ þ Fiðt; Z1; . . . ; ZkÞ þ mit

mit ¼ ri1mi:t�1 þ eit
(1.19)

where Fi(t,Z1, . . . ,Zk) is a function of the time, t and an external or environmental vector Z¼ (Z1, . . . ,

Zk) with a finite number of parameter for each i¼ 1,2, . . . ,N. Therefore, there would be a lot of possi-

ble functions of two-way interaction factors, namely t�Zk and Zi�Zj, and a few selected three-way

interactions.

On the other hand, specific to the quarterly and monthly data sets, Agung (2009a) proposes two alterna-

tive models using the lags Y_it-4 and Y_it-12 respectively, in order to match the conditions in the previous and

recent years.

Example 1.20 An application of the system equation

Figure 1.30 presents the statistical results based on a MLVAR(1,1) model in (1.17). The main objective of

this model is to test the hypothesis that the effect of the environmental variable Z1 on the trivariate (Y_1,

Y_2,Y_3) depends on the time, t. Based on these results, see the following notes and comments.

1. Note that the interaction t�Z1 has a significant effect on each of the variables Y_1, Y_2 and Y_3, with a

p-value of 0.0003, 0.0370 and 0.0102, respectively. It can then be directly concluded that the effect of

Z1 on the trivariate (Y_1,Y_2,Y_3) is significantly dependent on the time t.

2. On the other hand, if the effects of t�Z1 on Y_i are insignificant for the i-th individual, testing the null

hypothesis is suggested H0: C(13)¼C(14)¼C(23)¼C(24)¼C(33)¼C(34)¼ 0, using the Wald test.

Refer to the following example.
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3. On the other hand, a reduced model should be made by deleting either one of t and Z1, or both, since t,

Z1 and t�Z1 in many cases are highly correlated, and their impacts on the parameter estimates are

unpredictable. Refer to special notes in Section 2.14.3 (Agung, 2009a). In many cases, then it would be

found t�Z1 would have a significant effect in the reduced model.

4. Considering the previous results, note that the AR(1) term is insignificant with a p-value¼ 0.4227, in

the first regression, and Y_2(�1) is insignificant in the second regression with a p-value¼ 0.3660. Since

their p-values > 0.20; a reduced model should be explored. Do it as an exercise. For the intercept of the

third regression, namely C(30), it is not a problem.

1.9.2 The Application of VAR and VEC Models

As an extension of the model in (1.17), the application of the VAR and VEC Models are presented in the

following examples. Refer to various VAR and VEC models and their limitations presented in Chapter 6

(Agung, 2009a).

Example 1.21 A VAR model using the object “System”

Corresponding to the model in Example 1.19, since a single environmental variable Z1 is defined to be a

cause of factors Y_1, Y_2 and Y_3, then Y_1, Y_2 and Y_3 should be correlated in a theoretical sense. For

this reason a VAR model could be applied. Referring to various VAR models presented in Chapter 6

(Agung, 2009a), then based on the variables Y_1, Y_2, Y_3, Z1 and t, a lot of VAR models could easily be

derived or defined. However, Agung (2009a; 380) states that the system function (estimation method) is the

preferred method used to develop alternative multivariate time series models, since it is more flexible to

use for developing a multivariate model where multiple regressions could have different sets of

exogenous variables.

Figure 1.30 Statistical results based on a MLVAR(1,1) Model in (1.18)
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As an illustration and an extension of the model in Figure 1.30, Figure 1.31 presents the results of a VAR

model using the system function, or the object “System”. Based on these results, the following notes and

conclusions are made.

1. The model represents a VAR model by entering “1 1” as the lag interval of endogenous. Refer to alter-

native lag intervals of alternative VAR models presented in Chapter 6 (Agung, 2009a), as well as the

limitation of a VAR model compared to the system equation.

2. Since it is defined that the effect of Z1 on (Y_1,Y_2,Y_3) depends on time, t, then the null

hypothesis H0: C(15)¼C(16)¼C(25)¼C(26)¼C(35)¼C(36)¼ 0 should be tested at the first

stage of testing the hypothesis. The null hypothesis can then be rejected based on the Chi-square

test of x2
0 ¼ 40:50483 with df¼ 6 and a p-value¼ 0.000. Then we can conclude that the effect of

Z1 on (Y_1,Y_2,Y_3) is significantly dependent on the time t, adjusted or conditional for all other

variables in the model.

3. Since some of the independent variables have large p-values, a reduced model should be explored. So,

in general, three multiple regressions having different sets of independent variables are obtained. There-

fore, the reduced model is not a VAR model anymore. Try this as an exercise.

4. In order to keep having a reduced VAR model, then one or two of the variables t, Z1 or t�Z1 should be

deleted from the three regressions. However, note that each of the variables has significant positive or

negative adjusted effects on Y_3, at a significance level of a¼ 0.10. So, in a statistical sense, it is not

wise to delete one of the variables from the third regression.

5. Based on each of the regressions, the following findings are derived.

5.1 Based on the first regression, at a significance level of a¼ 0.10, t�Z1 has insignificant effect on

Y_1, however, the null hypothesis H0: C(15)¼C(16)¼ 0 is rejected based on the Chi-square test

Figure 1.31 Statistical results based on a VAR model using the object system
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of x2
0 ¼ 537:53410 with df¼ 2 and a p-value¼ 0.000. It can then be concluded that the effect of

Z1 on Y_1 is significantly dependent on the time t, specifically the effect depends on a linear

function of t, namely [C(15)þC(16)�t] adjusted for all variables in the model, not just the inde-

pendent variable of the first regression.

5.2 On the other hand, even though each of t and t�Z1 has an insignificant adjusted effect, it is

found that the variables t, Z1 and t�Z1 have significant joint adjusted effects on Y_1, since

the null hypothesis H0: C(14)¼C(15)¼C(16)¼ 0 is rejected based on the Chi-square test

of x2
0 ¼ 42:67729¼ 42.67 729 df¼ 3 and a p-value¼ 0.000. Based on this conclusion, if a

reduced model should be obtained then, at most, two of the variables t, Z1 and t�Z1 can be

deleted.

5.3 Similar analysis can easily be done based on the other two regressions. Do it as an exercise.

6. For a graphical illustration, Figure 1.32(a) and (b), respectively, presents the path diagrams of the mod-

els in Figures 1.30 and 1.31. Based on these diagrams, the following notes are made.

6.1 Note that Figure 1.32(a) shows that Y_it-1 has a direct effect on each Y_it only, but Figure 1.32(b)

shows that the trivariate (Y_1,Y_2,Y_3)t-1 has direct effect on Y_it.

6.2 The effect of Zt on each endogenous variable Y_it, which is defined to be dependent on the time t,

is represented as an arrow from t to Zt, and then from Zt to Y_it, and in the regression indicated by

the term (i3)þ c(i4)�t)�Z in Figure 1.30, and in Figure 1.31 by (C(i5)þ c(i6)�t)�Z.
6.3 The possible causal effects between Y_1,Y_2 and Y_3 are not identified, however, their

quantitative correlations are taken into account in the estimation process. If they should

have a type of causal effect, then a new model should be defined; either additive, two- or

three-way interaction models. Refer to the models demonstrated in Agung (2009a), as well

as the following chapter.

7. As an extension of the model in Figure 1.31, we might consider Zt as a function of t, then the following

general model would also need to be considered.

y_1¼ cð10Þþcð11Þ�y_1ð�1Þþcð12Þ�Y_2ð�1Þþcð13Þ�Y_3ð�1Þþcð14Þ�tþcð15Þ�z1þcð16Þ�t�z1
y_2¼cð20Þþcð21Þ�Y_1ð�1Þþcð22Þ�Y_2ð�1Þþcð23Þ�Y_3ð�1Þþcð24Þ�tþcð25Þ�z1þcð26Þ�t�z1
y_3¼ cð30Þþcð31Þ�y_1ð�1Þþcð32Þ�Y_2ð�1Þþcð33Þ�Y_3ð�1Þþcð34Þ�tþcð35Þ�z1þcð36Þ�t�z1

Z¼cð40ÞþFðtÞ
(1.20)

where F(t) is a function of the time, t with a finite number of parameters, without a constant parameter, such

as F(t)¼C(41)�log(t), and F(t)¼C(41)�tþC(42)�t2þ . . . þC(4k)�tk.

Y_1 t

Y_1 t-1 T 
Y_2 t-1 Y_2 t

Y_3 t-1 ZtY_3 t

(b)

Y_1 t-1 Y_1t

T 
Y_2 t-1 Y_2t

ZtY_3 t-1 Y_3t

(a)

Figure 1.32 Path diagrams of the models in (a) Figure 1.30, and (b) Figure 1.31
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Example 1.22 A VEC model

Figure 1.33 presents the statistical results based on a VEC model of the first differences between endoge-

nous variables DY_1, DY_2 and DY_3, exogenous variables t, Z1 and t�Z1, and “1 1” as the lag interval of

endogenous variables. Refer to the characteristics of various VEC models and their limitations presented in

Chapter 6 (Agung, 2009a).

1.9.3 Application of ARCHModel

Various TGARCH(a,b,c) time series models along with their limitations have been presented in

Agung (2009a). For this reason, this section only presents the example of an ARCH(1)¼TGARCH(1,0,0)

model.

Example 1.23 A reduced ARCH(1) model

Figure 1.34 presents the statistical results based on a reduced ARCH(1) model, where its full mean model is

presented in Figure 1.30. Based on these results, note the following:

1. Note that the regression of Y_2 has only two independent variables, namely Y_2(�1) and t�Z1, com-

pared to the other two hierarchical regression models.

2. Based on the output, it can easily be derived that the effect of Z1 on (Y_1,Y_2,Y_3) is significantly

dependent on the time t. Otherwise, it can be tested using the Wald test.

3. The data supports that error terms have a multivariate Student’s t-distribution based on z-Statistic of

Z0¼ 0.108 608 with a p-value¼ 0.9135.

Figure 1.33 Statistical results based on a VEC model
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1.9.4 The Application of Instrumental Variables Models

Based on the variables Y_1, Y_2, Y_3,Y_1(�1), Y_2(�1), Y_3(�1), Z1 and the time t used in previous

models, a lot of instrumental variables models can easily be subjectively defined. Corresponding to an

instrumental variables model (IVM), Agung (2009a) states that there would be two stages of problems

Figure 1.34 Statistical results based on an ARCH(1) model
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(TSOP) in defining instrumental variables models, since the true population model can never be known and

there is no general rule as to how to select the best possible set of instrumental variables.

Example 1.24 An application of the 2SLS estimation method
As an extension of the model in Figure 1.32, under the assumption that Y_1, Y_2 and Y_3 are correlated, and

we define that the effect of Z1 on the trivariate (Y_1,Y_2,Y_3) depends on the time t, then by using trial-

and-error methods, the statistical results presented in Figure 1.34 are obtained using the 2SLS. Based on

these results, the following notes and conclusions are made.

1. Even though each of Y_2 and Y_3 has an insignificant adjusted effect on Y_1, the joint effects of Y_2

and Y_3 on Y_1 are significant, since the null hypothesis H0: C(11)¼C(12)¼ 0 is rejected based on a

Chi-square test of x2
0 ¼ 324:1802 with df¼ 2 and a p-value¼ 0.000. The same conclusions are obtained

based on the other two regressions. Therefore, we can conclude that the data supports the assumption

that variables Y_1, Y_2 and Y_3 are correlated.

2. In a statistical sense, a reduced model should be explored, since one of the independent variables in

each regression has a p-value > 0.20 (or 0.25). Do it as an exercise.

Example 1.25 An application of the 3SLS estimation method

As a modification of the MAR(1)_IVM in Figure 1.35, the following system specification is considered.

y_1 ¼ cð10Þ þ cð11Þ�y_2þ cð12Þ�Y_3þ ½arð1Þ ¼ cð13Þ�@ c z1@ t t�z1
y_2 ¼ cð20Þ þ cð21Þ�Y_1þ cð22Þ�Y_3þ ½arð1Þ ¼ cð23Þ�@ c z1@ t t�z1
y_3 ¼ cð30Þ þ cð31Þ�Y_1þ cð32Þ�Y_2þ ½arð1Þ ¼ cð33Þ�@ c z1@ t t�z1

(1.21)

However, an error message of “Near Singular Matrix” is obtained so trial-and-error methods should be

applied to delete one or two of the variables from the model in (1.21). Finally, an unexpected good fit model

is obtained, in a statistical sense, since each of the independent variables has significant adjusted effect with

a p-value¼ 0.000, as presented in Figure 1.36.

Figure 1.35 Statistical results based on a MAR(1) instrumental variables model, using the 2SLS estimation

method
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Note that the regression of Y_3 only has a single independent variable Y_2. The reader could try deleting

other variable(s) from the model in (1.20), including modifying the instrumental variables, but leaving the

AR(1) terms as they are.

1.10 Models with an Environmental Multivariate

If an endogenous variable by states, namely Y_it, i¼ 1, . . . ,N, is known or defined to be effected by the

same environmental multivariate, say Zt¼ (Z1t, . . . ,Zkt, . . . ), then the set of Y_it, i¼ 1, . . . ,N, should

be correlated, including the possibility of having causal relationships for some states. As an illustration, the

following section presents selected models using two endogenous variables Y_1 and Y_2, which could

easily be extended to three or more states.

1.10.1 Bivariate Correlation and Simple Linear Regressions

Data analysis based on the bivariate correlation of Y_it and Y_ jt, the simple linear regression of Y_it on Y_ jt,

and the simple linear regression of Y_ jt on Y_it, would give exactly the same values of the t-statistic for testing

the hypothesis that Y_ jt is a causal factor of Y_it, as well as Y_it and Y_ jt having simultaneous causal effects.

Based on these findings, it can be concluded that correlation analysis can be used to test the hypothesis

stated earlier. On the other hand, it could be said that independent of a model, the independent variable may

not be a causal factor of the corresponding dependent variable. Note that the causal relationship between

any pair of variables should be derived based on a strong theoretical foundation: it is not based on the

conclusion of testing a hypothesis. See the following example.

Example 1.26 Special findings
Figure 1.37(a), (b) and (c), respectively, present the statistical results based on the bivariate correlation of

Y_1t and Y_2t, the simple linear regression (SLR) of Y_1t on Y_2t, and the SLR of Y_2t on Y_1t, which show

exactly the same values of the t-statistic of t0¼ 46.39 045.

Figure 1.36 Statistical results based on a MAR(1) instrumental variables model, using the 3SLS estimation

method
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Based on these results, the following notes and comments are presented.

1. Even though the regressions have very small DW-statistics, because their R-squares are very large,

namely R2¼ 0.981 217, then the SLR should be considered to be a good fit.

2. As an alternative analysis, Figure 1.38(a) presents the statistical results based on system equations of

two SLRs using the LS estimation method, where both SLRs also show the same values of the t-statistic

of t0¼ 46.39 045. Thus the results of these system equations can be represented by the result of the

covariance analysis in Figure 1.37(a). In other words, the simultaneous causal effects of Y_1 and Y_2

tested using the system equations in Figure 1.38(a) can be substituted by covariance analysis.

Figure 1.38 Statistical results based on (a) a system equation of SLRs of Y_1t and Y_2t, and (b) a MAR(1) of Y_1t
on Y_2

Figure 1.37 Statistical results based on (a) covariance analysis of Y_1t and Y_2t, (b) the SLR of Y_1t on Y_2t, and

(c) the SLR of Y_1t on Y_2t
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3. For a comparison, Figure 1.38(b) presents the statistical results using the SUR estimation method,

which show different values of the t-statistic of t0¼ 67.50 334 for both SLRs.

4. Compared to the regressions in Figure 1.37(b), the four regressions in Figure 1.38 also have very small

DW-statistics, but very large R-squares.

5. Further analysis can easily be done based on MLV(p), MAR(q) or MLVAR(p,q) models using the varia-

bles Y_1 and Y_2, which will have much larger DW-statistics. Do it as an exercise.

1.10.2 Simple Models with an Environmental Multivariate

Since Y_1t and Y_2t are correlated, specifically linearly correlated, then simple models of Y_1t and Y_2t
with an environmental multivariate Zt and the time t as independent variables will have the following gen-

eral equation.

Y_1t ¼ Cð10Þ þ Cð11Þ�Y_2t�j þ Fðt; Zt;Cð1�ÞÞ þ m1t

Y_2t ¼ Cð20Þ þ Cð21Þ�Y_1t�j þ Fðt; Zt;Cð2�ÞÞ þ m1t

(1.22)

for a subscript j� 0, where F(t, Zt,
�) can be any functions Z1t, . . . ,Zkt, . . . , and the time t, including some

selected two- and three-ways of their interactions, with a finite number of parameters but no constant

parameter. For instance, if the effect of Z1 on Y_i depends on Z2, then Z1�Z2 should be used as an indepen-

dent variable or a term of the function F(t, Zt,
�). Note that there would be a lot of possible time-series

models.

However, the following four groups of models will be considered, corresponding to selected forms of the

function F(t, Zt,
�), such as follows:

1. Additive models or two functions, namely F(t, Zt,
�)¼F1(t,

�)þF2(Zt,
�).

Refer to the models (1.4a) to (1.4d) for the alternative functions of F1(t,
�), and F2(Zt,

�) can be additive

or interaction functions of the components of Zt.

2. Models with trend: F(t, Zt,C(i
�)¼ C(i2)�tþF2(Zt,C(ik)), i¼ 1,2, and k> 2.

3. Models with Trend-Related Effects (TRE):

Fðt;Zt;Cði�Þ ¼ Cði2Þ�tþ F2ðZt;CðikÞÞ þ t�F2ðZt;Cði�ÞÞ; for i ¼ 1; 2; and k > 2:

4. Models without the time t: F(t, Zt,
�)¼F2(Zt,

�). Refer to all seemingly causal models (SCMs) presented

in Chapter 4 (Agung, 2009a).

Comparing these to the models in Figure 1.38, the models in (1.22), for j¼ 0 in fact show that Y_1t and

Y_2t have simultaneous causal relationships.

To generalize, the following general model can be applied

G1ðY_1tÞ ¼ Cð10Þ þ Cð11Þ�Y_2t�j þ Fðt; Zt;Cð1�ÞÞ þ m1t

G2ðY_2tÞ ¼ Cð20Þ þ Cð21Þ�Y_1t�j þ Fðt; Zt;Cð2�ÞÞ þ m1t

(1.23)

where Gi(Y_it) is a function of Y_it having no parameter, such as Gi(Y_it)¼ Y_it, log(Y_it) or log[(Y_it-Li)/

(Ui-Y_it)], where Li and Ui are the lower and upper bounds of Y_it, which should be subjectively selected by

the researchers.
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If there are correlated endogenous variables for three states, namely Y_1, Y_2 and Y_3, then the simple

models of Gi(Y_it), i¼ 1,2 and 3 will have the general equation as follows:

G1ðY_1tÞ ¼ Cð10Þ þ Cð11Þ�Y_2t�j þ Cð12Þ�Y_3t�j þ Fðt; Zt;Cð1�ÞÞ þ m1t

G2ðY_2tÞ ¼ Cð20Þ þ Cð21Þ�Y_1t�j þ Cð22Þ�Y_3t�j þ Fðt; Zt;Cð2�ÞÞ þ m1t

G3ðY_3tÞ ¼ Cð30Þ þ Cð31Þ�Y_1t�j þ Cð32Þ�Y_2t�j þ Fðt; Zt;Cð3�ÞÞ þ m1t

(1.24)

1.10.3 The VARModels

1.10.3.1 Basic General VAR Models

For illustration, a VAR model of Y_1 and Y_2 with “1 p” as the lag intervals for the endogenous variables,

and the time t and Zt as exogenous variables will be considered. The model considered has the following

general equation.

Y_1t ¼ Cð110Þ þ
Xp
j¼1

Cð11jÞ�Y_1t�j þ
Xp
j¼1

Cð12jÞ�Y_2t�j þ Fðt; Zt;Cð13�ÞÞ þ e1t

Y_2t ¼ Cð210Þ þ
Xp
j¼1

Cð21jÞ�Y_1t�j þ
Xp
j¼1

Cð22jÞ�Y_2t�j þ Fðt; Zt;Cð23�ÞÞ þ e1t

(1.25)

1.10.3.2 Special VAR Interaction Models

With multivariate environmental variables, it is generally known that an effect of at least one of its compo-

nents on the endogenous variables depends on the other component(s). Under these criteria, this section

presents three alternative VAR interaction models of Y_1, Y_2 and Y_3 with the lag intervals for the endog-

enous: “1 1”, and the environmental variables Z1 and Z2, such as follows:

1. AVAR interaction model with trend:

Y_i ¼ Cði0Þ þ Cði1Þ�Y_1ð�1Þ þ Cði2Þ�Y_2ð�1Þ þ Cði3Þ�Y_3ð�1Þ
þ Cði4Þ�tþ Cði5Þ�Z1þ Cði6Þ�Z2þ Cði7Þ�Z1�Z2

f or i ¼ 1; 2; 3

(1.26)

2. AVAR interaction model with time-related effects:

Y_i ¼ Cði0Þ þ Cði1Þ�Y_1ð�1Þ þ Cði2Þ�Y_2ð�1Þ þ Cði3Þ�Y_3ð�1Þ
þ Cði4Þ�tþ Cði5Þ�Z1þ Cði6Þ�Z2þ Cði7Þ�Z1�Z2
þ Cði8Þ�t�Z1þ Cði9Þ�t�Z2þ Cði10Þ�t�Z1�Z2

f or i ¼ 1; 2; 3

(1.27)

3. AVAR interaction model without the time t:

Y_i ¼ Cði0Þ þ Cði1Þ�Y_1ð�1Þ þ Cði2Þ�Y_2ð�1Þ þ Cði3Þ�Y_3ð�1Þ
þ Cði4Þ�Z1þ Cði5Þ�Z2þ Cði6Þ�Z1�Z2

f or i ¼ 1; 2; 3

(1.28)
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Corresponding to these VAR interaction models, note the following:

1. In practice, a reduced model obtained would be a good fit in a statistical sense, because the three varia-

bles Z1, Z2 and Z1�Z2 are highly or significantly correlated in general. More so for the independent

variables of the model in (2.27).

2. Since it is defined that the effects of Z1 (Z2) on Y_i, i¼ 1,2 and 3 depend on Z2 (Z1) in a theoretical

sense, then the interaction Z1�Z2 should be used in the model, as well as in the reduced model(s). So a

reduced model should be obtained by deleting either Z1 or Z2, or both Z1 and Z2. Note that a model can

be considered an acceptable or good fit, even though some of its independent variables have

insignificant adjusted effects.

3. Note that three models here are hierarchical two- and three-way interaction models. However, corre-

sponding to the earlier notes, an empirical acceptable model obtained would be non-hierarchical in

general. See the following example.

Example 1.27 A reduced VAR interaction model

Figure 1.39 presents the statistical results based on two reduced models of the VAR interaction model

in (1.26). Based on these results, the following conclusions and notes are made.

1. By using the full model in (1.26), each of the independent variables Z1, Z2 and Z1�Z2 has insignificant

adjusted effects. By deleting either Z1 or Z2, the results in Figure 1.39(a) and (b) are obtained.

Figure 1.39 Statistical results based on two reduced models of the model in (1.26)
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2. The model in Figure 1.39(a) is a better model, in a statistical sense, since the effect of the interaction

Z1�Z2 on each Y_i, i¼ 1,2 and 3 is significant, based on t-statistics greater than 2.6. Based on this

model, the following conclusions are derived.

2.1 The data supports the hypothesis stated that the effect of Z1 (Z2) on each Y_i depends on Z2 (Z1).

2.2 An disadvantage of this model is Z1 has a negative adjusted effect on each Y_i, in fact Z1 and Y_i

are significantly positive correlated, which shows the unexpected impact of the multicollinearity

between the independent variables, specifically between Z1 and Z1�Z2.
2.3 Furthermore, since Z1 has insignificant adjusted effect on each Y_i, based on such a small t-statis-

tics, then Z1 could be deleted. Try it as an exercise.

3. On the other hand, based on the results in Figure 1.39(b) we draw the following conclusions.

3.1 Since the interaction Z1�Z2 has a significant adjusted effect on Y_1, it cannot be deleted from the

VAR model.

3.2 Since Z2 has an insignificant adjusted effect on each Y_i, based on such a small t-statistics, then

Z2 could be deleted. The reduced model obtained would be the same as the reduced model by

deleting Z1 from the model in Figure 1.39(a). We find the final reduced model can be considered

the best fit, conditional for the data used.

Example 1.28 Additional analyses for a VAR model

As an illustration, the VAR model in Figure 1.39(a) will be referred to. EViews provides so many alternative

options for doing additional analyses for a VAR model. By selecting View/Residuals Tests, the options in

Figure 1.40(a) shown on the screen, and Figure 1.40(b) obtained by selecting View/Lag Structure. However,

only several analyses will be demonstrated, such as follows:

1. Residual Analysis

1.1 Residual Autocorrelation Tests

Figure 1.41 presents the two statistics for testing the residual autocorrelation, which shows the null

hypothesis, no residual autocorrelation up to lag 4, is accepted. As a result, the VAR model does not have

the autocorrelation problem.

1.2 Basic Assumptions of Residuals

Figure 1.42 shows that the null hypothesis, residuals are multivariate normal, is accepted. So it can be

concluded that the data supports a basic assumption of the residuals. The other assumption is the

Figure 1.40 Options for residual and lag structure, using EViews 6 or 7 Beta
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heterokedasticity of the residuals, which can easily be done by selecting the Residual Tests/White hetero-

kedasticity(�). Corresponding to the testing of the basic assumptions of the residuals, refer to the special

notes and comments presented in Section 2.14.3 (Agung, 2009a).

2. The Lag Structure

2.1 The AR Roots

By selecting Lag Structure/AR Roots, it is found that the three AR Roots are strictly less than one. Then

we can conclude that the VAR satisfies the stability condition.

2.2 Granger Causality Tests

By selecting Lag Structure/Granger Causality/Block Exogeneity Wald Tests, the results in Figure 1.43

are obtained for making conclusions of the corresponding tests. For example, Y_1 and Y_2 have significant

Granger causalities with the p-values of 0.0009 and 0.0108, respectively, but Y_1 and Y_3 have insignificant

Granger causalities with p-values of 0.4384 and 0.2108, respectively.

However, the three variables Y_1, Y_2 and Y_3 have significant Granger causalities with p-values of

0.0029, 0.0015 and 0.0019, respectively.

2.3 The VAR Lag Exclusion Wald Tests

Based on the results in Figure 1.44 we can conclude that the first lags Y_1(�1), Y_2(�1) and Y_3(�1)

have significant joint effects on each of Y_1,Y_2 and Y_3, as well as on the trivariate (Y_1,Y_2,Y_3).

Figure 1.42 The residual normality tests for the VAR model in Figure 1.39(a)

Figure 1.41 The residual autocorrelation tests for the VAR model in Figure 1.39(a)
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However, in general, the joint effects of the exogenous variables of a VAR cannot be tested using the

VAR model. For this reason, Agung (2009a) recommends applying the object System, instead of the VAR

model, since by using the object System, each regression in the model can have a different set of indepen-

dent variables, and various hypotheses can easily be tested using Wald tests.

2.4 The Lag Order Selection Criteria

By selecting Lag Structure/Lag Length Criteria . . . , and then insert the lags to include¼ 2 . . . OK, the

results in Figure 1.45 are obtained. These results show that 1 (one) is the lag order selected by the five

criteria. Therefore, we can conclude that the VAR model is best based on these five criteria.

Figure 1.45 The VAR lag order selection criteria using two lags

Figure 1.43 Statistical results for the VAR Granger causality tests

Figure 1.44 The VAR lag exclusion Wald tests
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However, we find that by inserting lags to include greater than 2, contradictory conclusions could be

obtained. As an illustration, Figure 1.46 presents another result using five lags, which shows that 1 (one) is

the lags’ order selected by the SC criterion only. On the other hand, an error message is obtained, “Near

singular matrix”, using 10 lags. These contradictory findings lead to a great problem, since there are 9

(nine) alternatives results using 1–9 lags to consider. Based on the author’s point of view, the simplest possi-

ble model should be the best selection. As an exercise, do the analysis based on a VAR model using the lags

interval for the endogenous “4 4” and “1 4”.

1.10.3.3 Special Notes and Comments

Corresponding to the environmental multivariate Zt¼ (Z1t, . . . ,ZKt), which has been defined or known to be

the causal factor of the set of the endogenous variables Y_it, i¼ 1, . . . ,N of the N-states (individuals), the

following special notes and comments are made.

1. In theoretical sense, the variables Y_it, i¼ 1, . . . ,N should be correlated variables. Therefore the whole

set of (NþK) variables, namely Y_it, i¼ 1, . . . ,N, and Zk, k¼ 1, . . . , K, can be viewed as single time-

series data containing (NþK) variables.

2. For a small number of (NþK), say 2–5, then all models presented in Agung (2009a) and Section 1.8,

should be applicable. Following the step-by-step methods presented in Agung (2009a), everyone should

have no difficulty in doing the data analysis.

3. On the other hand for a large N, reducing the dimension is recommended using the following alternative

methods.

3.1 To defined groups of states (individuals), using either the judgmental method or cluster analysis,

then the groups’ statistics, such as the means and SDs, can be considered as the derived time

series for further time-series data analysis.

3.2 To reduce the dimension using factor analysis. Then the time series latent variables models would

be applied. Refer to Chapter 10 in Agung (2011).

4. Similarly, for a large K of the environmental multivariate. However, note that some of its components

might not be correlated, in a theoretical sense.

5. Furthermore, the environmental variables can be dummy variables of the time periods, thereby piece-

wise time-series models should be applied.

Figure 1.46 The VAR lag order selection criteria using five lags
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1.11 Special Piece-Wise Models

As an illustration, the panel data used are the data of daily stock prices of 15 individuals (agencies or indus-

tries) consisting of eight banks and seven mining companies, used by one of the author’s advisories, namely

Mulia (2010), for her thesis. The symbols B_ and M_ respectively, are used to identify the stock prices (SP)

of the banks and mining companies. Furthermore, we see there are two break time points, which represent

the time points of the auto-rejection regulations or price limitations of the stock prices. The objectives of

the analysis are to study the differences of the statistics, such as growth rates, variances (volatilities) and

means of SP, between 15 days before and after each break point so that four time periods to be considered

in the analyses. For a better graphical presentation of the statistical results, the break points are set at Day

¼ 0 and Day¼ 40, so that the growth curves of each individual stock price (SP) are not very far apart. See

the following examples.

1.11.1 The Application of Growth Models

For a preliminary information of the data set, and further data analysis, Figure 1.47(a) and (b) present the

scatter graphs of (Mean_Bank, Day) and (Mean_Mining,Day) with their Nearest Neighbor Fit Curves. The

individual time series, namely B_ and M_, can easily be presented. Try it as an exercise.

Example 1.29 A four-piece classical growth model

Figure 1.48 presents the statistical results based on a four-piece classical growth model of the mean stock

prices of eight banks, namelyMean_Bank, using four dummy variables, namely D1, D2, D3, and D4. Based

on these statistical results, the following notes and conclusions are made.

1. The regression in Figure 1.48 represents four classical growth functions, as follows:

logðMean_BankÞ ¼ 7:089238� 0:030904�Day; f or Period ¼ 1

logðMean_BankÞ ¼ 7:463123� 0:020809�Day; f or Period ¼ 2

logðMean_BankÞ ¼ 7:401909þ 0:002723�Day; f or Period ¼ 3

logðMean_BankÞ ¼ 7:724826� 0:006886�Day; f or Period ¼ 4

2. By using the Wald test, we discover that the growth rate 15 days before the Day¼ 0 is smaller than after

Day¼ 0, based on the t-statistic of t0¼� 2.355 063 with df ¼ 54 and a p-value¼ 0.0222/2¼ 0.0111,

Figure 1.47 Scatter graphs of (Mean_Bank, Day) and (Mean_Mining, Day) with their nearest neighbor fit curves
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Figure 1.48 Statistical results based on a four-piece growth model ofMean_Bank

Figure 1.49 Scatter graphs of the four-piece regression in Figure 1.48 and its fitted values, by time period
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and the growth rate 15 days before the Day¼ 40 is smaller than after Day¼ 40, based on the t-statistic

of t0¼ 2.241 761 with df¼ 54 and a p-value¼ 0.0291/2¼ 0.01 455. For a comparison, see the following

example.

3. The residuals graph indicates that a nonlinear regression of log(Mean_Bank) on Day should be

explored. On the other hand, Figure 1.49 clearly shows that a polynomial regression may be applied

within each of the four time periods considered. See Example 1.30.

4. However, based on the R2¼ 0.843 170> 80%, it could be concluded that the independent variables are

good predictors for log(Mean_Bank).

5. Note that exactly the same analysis can easily be conducted based on the SP of each individual, as well

as theMean_Mining.

Example 1.30 AR(2) four-piece growth model

By taking into account the autocorrelation of the classical growth model in Figure 1.49, Figure 1.50 presents

the statistical results based on an AR(2) four-piece growth model, as a comparison.

Example 1.31 The nearest neighbor fit of log(Mean_Bank)
Figure 1.51 presents the scatter graph of (log(Mean_Bank),Day) with its Nearest Neighbor Fit by the time

periods. The four graphs clearly show that nonlinear models should be applied within each time period. See

the following example.

Example 1.32 A four-piece polynomial growth model

By using trial-and-error methods, statistical results are obtained based on a four-piece polynomial growth

model presented in Figure 1.52. Based on these results, note the following:

1. Compared to the classical growth model in Figure 1.48 and the AR(2) growth model in Figure 1.49, this

polynomial growth model has the largest value of R2¼ 0.957 224. So, in a statistical sense, this model

Figure 1.50 Statistical results based on an AR(2) four-piece growth model ofMean_Bank
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Figure 1.52 Statistical results based on a four-piece polynomial growth model ofMean_Bank

Figure 1.51 Scatter graphs of (log(Mean_Bank),Day) with its nearest neighbor fit by time period
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should be considered the best of the three growth models, even though it is a standard multiple regres-

sion. In other words, independent variables are the best predictors for log(Mean_Bank).

2. The multiple regression in Figure 1.52 in fact represents the following four polynomial regressions

within the four time periods, namely Period¼ 1, 2, 3 and 4, respectively.

logðMean_BankÞ ¼ 7:273þ 0:193�tþ 0:055�t2 þ 0:004689�t3 þ 0:000130�t4

logðMean_BankÞ ¼ 7:363þ 0:015�t� 0:002218�t2

logðMean_BankÞ ¼ 46:360� 4:793�tþ 0:219�t2 � 0:004387�t3 þ 3:3e� 05�t4

logðMean_BankÞ ¼ 8:448� 0:001�t2 þ 1:6e� 05�t3

1.11.2 Equality Tests by Classifications

The option “Equality Tests by Classifications” provides the statistics for testing a hypothesis on the differ-

ence of the mean, median or variance of single variables between groups of individuals/objects generated by

one or more classification or treatment factors.

Example 1.33 Test for equality of variances

As an illustration, Figure 1.53(a) and (b) presents the statistical results for testing the equality of variances

of the variable B_1 (SP for Bank-1), 15 days before and after the first and second break point, respectively,

indicated by the Period¼ 1, 2, and Period¼ 3, 4. Based on these results, the following notes and conclu-

sions are presented.

1. Based on the F-test, it can be concluded that the variances of B_1 have significant differences between

15 days before and after each break point, namely at Day¼ 0 and Day¼ 40. Therefore, the volatilities

of the B_1s stock prices before and after each break point have significant differences.

2. However, the Siegel–Tukey test should be questionable, since it has such a very small value compared

to the others, specifically in Figure 1.53(b).

Figure 1.53 Test for equality of the variances of B_1, 15 days before and after two break points
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Example 1.34 Test for equality of means

In addition to the testing of variances presented in Figure 1.53(a) and (b), Figure 1.54(a) and (b) presents the

statistical results for testing the equality of means of B_1, 15 days before and after the two break points,

respectively. Corresponding to heterogeneity of the variances in a statistical sense, then the Welch F-test

should be used to making the conclusion of the testing hypothesis on the means differences. In this case,

however, the other tests also give exactly the same conclusion, at the significance level of either 5 or 10%.

On the other hand, the cell-mean model is not an appropriate time-series model generally – refer to

Section 4.3.1 in Agung (2009a). So I cannot recommend conducting a test on the mean differences of a

time series between long time periods: this is similarly so for testing equality of medians. We recommend

the reader study and test their growth differences.

Figure 1.54 Test for equality of the means of B_1, 15 days before and after two break points
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