1

Data Analysis Based on a Single Time Series by States

1.1 Introduction

Panel data can be viewed as a finite set of time-series data. As an illustration Table 1.1 presents part of the data in POOLG7.wf1, namely *unstacked data*, consisting of a single time series *GDP* from seven countries. Note that this table shows seven time series variables, namely GDP_CAN_t to GDP_US_t .

Based on each time series of GDP by states, various growth models can be considered as presented in Agung (2009a, Chapter 2), starting with classical growth models, namely geometric and exponential growth models, and their extensions. Therefore, based on the seven states, the multivariate growth models should be applied as presented in the following sections.

1.2 Multivariate Growth Models

1.2.1 Continuous Growth Models

In general, let Y_{it} be the observed value of the variable Y for the *i*-th individual (a country, state, region, agency, community, household or person) at time t, for i = 1, ..., N, and t = 1, ..., T. In panel data analysis, the symbol $Y_{-i}(t)$, $Y_{-i}t$, or $Y_{-}"Name"_t$ will be used to indicate the time series variable Y_{it} , such as the variable $GDP_{-}Can_t$ to $GDP_{-}US_t$ in POOL7.wf1. In this chapter, the panel data set will be considered as a finite set of time-series variables. For this reason, the simplest model considered is a multivariate classical growth model with the following general equation.

$$\log(Y_{i_t}) = C(i_1) + C(i_2)^* t + \mu_{i_t}$$
(1.1)

where C(i2) indicates the exponential growth rate of Y_i , that is the growth rate of the variable Y for the *i*-th individual (country, state, region, community, household, firm or agency), C(i1) is the intercept parameter, and μ_{it} their residuals which, in general, should be autocorrelated (see to Agung 2009a, Chapter 2).

Panel Data Analysis Using EViews, First Edition. I Gusti Ngurah Agung.

^{© 2014} John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.

Companion website: www.wiley.com/go/panel_data

Year	GDP_CAN	GDP_FRA	GDP_GER	GDP_ITA	GDP_JPN	GDP_UK	GDP_US
1950	6209	4110	3415	2822	1475	5320	8680
1951	6385	4280	3673	3023	1649	5484	9132
1952	6752	4459	4013	3131	1787	5517	9213
1953	6837	4545	4278	3351	1884	5791	9450
1954	6495	4664	4577	3463	1972	5971	9177
1955	6907	4861	5135	3686	2108	6158	9756
1956	7349	5195	5388	3815	2249	6238	9756
1957	7213	5389	5610	3960	2394	6322	9724
1958	7061	5463	5787	4119	2505	6340	9476
1959	7180	5610	6181	4351	2714	6569	9913

 Table 1.1
 A subset of the unstacked data in POOLG7.wf1

Therefore, the basic growth model considered should be a multivariate autoregressive growth model, namely MAR(q_1, \ldots, q_i, \ldots)_GM = MAR(q)_GM, with the following general equation, where the error terms ε_{it} would be assumed or accepted to have an *i.i.d.N*($0, \sigma_i^2$), in a theoretical sense. Refer to the special notes presented in Section 2.14.3 (Agung, 2009a).

$$\log(Y_{i_{t}}) = C(i_{1}) + C(i_{2})^{*}t + \mu_{i_{t}}$$

$$\mu_{i_{t}} = \rho_{i_{1}}\mu_{i_{t}-1} + \rho_{i_{t}-2}\mu_{i_{t}-2} + \dots + \rho_{i_{t}-q_{i}}\mu_{i_{t}-q_{i}} + \varepsilon_{i_{t}}$$
(1.2)

However, for a multivariate GLM, the vector of the error terms $(\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_N)$, in general, would have a residual correlation matrix, namely CM(ε), or a residual covariance matrix, namely $\Sigma(\varepsilon)$, which is not a diagonal matrix, and should indicate that the endogenous variables $log(Y_i)$ or Y_i , for the states $i = 1, 2, \ldots, N$, are correlated in a statistical sense, even though they may not be correlated in a theoretical sense. In other words, the quantitative correlations between all $log(Y_i)$ are taken into account in the estimation process.

Example 1.1 Illustrative growth curves

As an illustration, Figure 1.1 presents the growth curves GDP_t of two pairs of neighboring countries, namely (a) GDP_CAN and GDP_US , and (b) GDP_FRA and GDP_GER , which clearly show differential characteristics. Corresponding to growth curves, we find that each pair of the five variables GDP_CAN ,

Figure 1.1 Growth curves of GDP_CAN, GDP_US, GDP_FRA and GDP_GE

 GDP_US , GDP_FRA , GDP_GER and the time *t* variable are significantly positively correlated with a *p*-value = 0.0000. However, unexpected statistical results are obtained based on the model in (1.2), as presented in Example 1.3.

Growth curves are important descriptive statistics in any time series, as well as panel data analyses. Many findings and conclusions can be derived based on descriptive statistical summaries. See various continuous and discontinuous growth curves and time series models presented in Agung (2009a), and the descriptive statistical summaries presented in Agung (2004, 2009b, 2011). For additional illustrations, see the graphical presentations in Leary (2009), and Chambers and Dimson (2009).

Example 1.2 A multivariate classical growth model (MCGM)

Figure 1.2 presents the statistical results based on a MCGM of *GDP_Can*, *GDP_US*, *GDP_Fra*, and *GDP_Ger*. Its residuals graphs are obtained by selecting View/Residuals/Graphs, as presented in Figure 1.3. Based on these results, the following notes are presented.

- 1. Note that the four regressions in the model in fact represent a growth model by states, which has been presented as a multiple regression model or a single time series model using dummy variables of the states in Agung (2009a).
- 2. Using the standard *t*-test statistic in the output, it can be concluded that *GDP_Can*, *GDP_US*, *GDP_Fra* and *GDP_Ger*, have significant positive exponential growth rates of

$$\hat{C}(11) = 0.0273339, \hat{C}(21) = 0.018282, \hat{C}(31) = 0.030681, \text{ and } \hat{C}(41) = 0.032058.$$

- 3. The null hypothesis H_0 : C(11) = C(21) = C(31) = C(41) is rejected based on the Chi-square statistic of $\chi_0^2 = 242.8469$ with df = 3 and a *p*-value = 0.0000. Therefore, it can be concluded that the growth rates of *GDP* of the four countries have significant differences. The other hypotheses on the growth rates differences can easily be tested using the Wald test.
- 4. However, note that the MCGM is an inappropriate time series model indicated by the very small Durbin–Watson statistics values of the four regressions, as well as their residuals graphs in Figure 1.3. For this reason, a modified GM will be presented in the following example. Refer also to Chapter 2 in Agung (2009a).

Coefficient Std. Error I-Statistic Prob. C(10) 8.683015 0.017182 505.3611 0.0007 C(11) 0.027339 0.000704 38.81228 0.0000 C(20) 9.080149 0.011628 780.8541 0.0000 C(21) 0.018282 0.00007 38.3438 0.0000 C(30) 8.414288 0.025522 333.2182 0.0000 C(31) 0.030639 274.2582 0.0000 Adjusted R-squared 0.955405 Mean dependent var S.E. of regression 0.086241 Sum squared resid Durbin-Watson stat 0.955405 Mean dependent var C(41) 0.032058 0.001256 25.52230 0.0000 C410 0.084241 Sum squared resid Determinant residual covariance 1.82E-11 Equation: LOG(GDP_CAN)=C(10)+C(11)*T Equation: LOG(GDP_CAN)=C(10)+C(11)*T Observations: 43 R-squared 0.940785 Mean dependent var R-squared 0.973504 Mean dependent var SE of regression 0.940785 Mean dependent var	9.46407 0.23273
C(10) 8.683015 0.017182 505.3611 0.0000 C(11) 0.027339 0.000704 38.81228 0.0000 C(20) 9.080149 0.011628 780.8541 0.0000 C(21) 0.018282 0.00077 38.34938 0.0000 C(30) 8.414288 0.025522 33.2128 0.0000 C(31) 0.030681 0.001035 29.63753 0.0000 C(41) 0.030598 27.42682 0.0000 C(41) 0.030598 2.552230 0.0000 Determinant residual covariance 1.82E-11 Equation: LOG(GDP_GER)=C(40)+C(41)*T Observations: 43 R-squared 0.940785 Mean dependent var R-squared 0.973504 Mean dependent var 9.257129	0.06170
C(10) 0.000704 38.1228 0.00000 C(20) 9.080149 0.011628 780.8541 0.0000 C(21) 0.018282 0.000774 38.34938 0.0000 C(30) 8.414288 0.025252 333.2182 0.0000 C(30) 8.414288 0.025252 333.2182 0.0000 C(31) 0.030639 27.42682 0.0000 C(41) 0.030639 27.52230 0.0000 C(41) 0.030639 25.52230 0.0000 Determinant residual covariance 1.82E-11 Equation: LOG(GDP_GER)=C(40)+C(41)*T Observations: 43 R-squared 0.940785 Mean dependent var Adjusted R-squared 0.940785 Mean dependent var Adjusted R-squared 0.939340 S.D. dependent var R-squared 0.973504 Mean dependent var 9.257129 Adjusted R-squared 0.939340 S.D. dependent var	
C(21) 0.016222 0.0000/017 38.3435 0.0000 C(30) 8.41428 0.025252 33.2162 0.0000 C(31) 0.030581 0.001255 29.63753 0.0000 C(41) 0.030639 27.42682 0.0000 C(41) 0.030639 25.52230 0.0000 Determinant residual covariance 1.82E-11 Equation: LOG(GDP_GAN)=C(10)+C(11)*T Equation: LOG(GDP_GAN)=C(10)+C(11)*T T Observations: 43 R-squared 0.9373504 Mean dependent var 9.257129 9.257129 Conversioned	
C(31) 0.030681 0.001035 29.63753 0.0000 C(40) 8.405282 0.030689 274.2682 0.0000 C(41) 0.032058 0.001256 25.52230 0.0000 Determinant residual covariance 1.82E-11 Equation: LOG(GDP_CAN)=C(10)+C(11)*T Tobservations: 43 R-squared 0.940785 Mean dependent var Adjusted R-squared 0.940785 Mean dependent var Adjusted R-squared 0.940785 Mean dependent var Observations: 43 0.930340 S.D. dependent var Adjusted R-squared 0.930340 S.D. dependent var	9.05859
C(40) 8.403292 0.030639 274.2682 0.0000 C(41) 0.032058 0.001256 25.52230 0.0000 Determinant residual covariance 1.82E-11 Equation: LOG(GDP_CAN)=C(10)+C(11)*T Equation: LOG(GDP_CAN)=C(10)+C(11)*T Observations: 43 0.973504 Mean dependent var 9.257129 R-squared 0.940785 Mean dependent var Adjusted R-squared 0.939340 S.D. dependent var Adjusted R-squared 0.939340 S.D. dependent var	0.39413
C(41) 0.032058 0.001256 25.52230 0.0000 Determinant residual covariance 1.82E-11 Durbin-Watson stat 0.060788 Equation: LOG(GDP_CAN)=C(10)+C(11)*T Observations: 43 Constrained 0.940785 Mean dependent var R-squared 0.973504 Mean dependent var 9.257129 0.9039340 S.D. dependent var	0.29096
Determinant residual covariance 1.82E-11 Equation: LOG(GDP_CAN)=C(10)+C(11)*T Equation: LOG(GDP_CAN)=C(10)+C(11)*T Observations: 43 R-squared 0.940785 Mean dependent var 9.257129 Adjusted R-squared 0.939340 S.D. dependent var 9.257129 Adjusted R-squared 0.939340	
Equation: LOG(GDP_CAN)=C(10)+C(11)*T Observations: 43 R-squared 0.940785 Mean dependent var Adjusted R-squared 0.939340 S.D. dependent var Adjusted R-squared 0.939340 S.D. dependent var Adjusted R-squared 0.940785 Mean dependent var Adjusted R-squared 0.939340 S.D. dependent var Adjusted R-squared 0.940785 Mean depe	
Observations: 43 Adjusted R-squared 0.939340 S.D. dependent var R-squared 0.973504 Mean dependent var 9.257129 Adjusted R-squared 0.102014 Sum organized could	9.07650
N-squared 0.575004 mean dependent var 5.257125 QE of rearrangian 0.102014. Sum equared resid	0.41501
Adjusted R-squared 0.972858 S.D. dependent var 0.347921 5.E. 01 regression 0.102214 Sum squared resid	0.42835
S.E. of regression 0.057320 Sum squared resid 0.134708 Durbin-Watson stat 0.084715	
Durbin-Watson stat 0.323229	

Figure 1.2 Statistical results based on a multivariate classical growth model

6 Panel Data Analysis Using EViews

Figure 1.3 The residuals graphs of the MCGM in Figure 1.2

- 5. On the other hand, by observing the residual graphs in Figure 1.3, then it can be said that a polynomial growth model should be explored for each state, such as quadratic regressions of *log(GDP_FRA)* and *log(GDP_GER)* on the time *t*, and at least third degree polynomials of *GDP_CAN* and *GDP_US* on the time *t*. Do this as an exercise.
- 6. As an additional illustration, Table 1.2 presents the correlations between the time t with the dependent variables of each model. Note that each parameter C(i2) has exactly the same value of the t-statistic, as well as Prob(t-stat). Compared to the results in Figure 1.2, the following notes and conclusions are made.
 - 6.1 The testing hypothesis on each C(i2), either a two- or one-sided hypothesis, can be done using the corresponding bivariate correlation. To generalize the results, the set of simple linear regressions can be presented using a correlation matrix of the set of variables considered.

Table 1.2 Bivariate correlations of time t with each of the dependent variables of the multivariate model in Figure 1.2

	LOG(GDP_CAN)	LOG(GDP_US)	LOG(GDP_FRA)	LOG(GDP_GER)
Time <i>t</i>	0.986 663	0.98 635	0.97 745	0.96 994
<i>t</i> -stat	38.81 228	38.34 938	29.63 753	25.52 230
Prob.	0.00 000	0.00 000	0.00 000	0.00 000

0 260500

0.342288

0.040724

9.473482

0.227124

0.024938

9.076151

0 381517

0.013587

9.098903

0.392866

0.020114

On the other hand, by doing a series of state-by-state analyses, we obtain exactly the same set of 6.2 four regressions as presented in Figure 1.2. For this reason the model presented in Figure 1.2 will be referred to as the system of independent states.

Example 1.3 A MAR(1)_GM unexpected result

Figure 1.4 presents the statistical results based on a MAR(1) GM = MAR(1,1,1,1) GM of the four time series GDP CAN, GDP US, GDP FRA, and GDP GER. Based on these results, the following findings and notes are presented.

- 1. The estimate of C(31) = -0.212090 with a p-value = 0.9358, which should indicate the (adjusted) growth rate of GDP FRA, is an unexpected result, since r(log(GDP FRA),t) = 0.97448 with a *p*-value = 0.0000 and obtains a simple linear regression function of $LOG(GDP_FRA) = 8.3841 + 100000$ 0.0307^*t as presented in Figure 1.2, with an exponential growth rate of GDP_FRA as r = 0.0307.
- 2. This finding indicates the impact of using an AR(1) on the parameter estimates is in fact unpredictable. Nothing is wrong with the model, but the structure of the data set cannot provide acceptable estimates. Compared to the growth curve of GDP_FRA in Figure 1.1, the AR(1)_GM of GDP_FRA should be considered as an unacceptable or inappropriate time series model for representing the *GDP* of France. The results of the author's experimentation based on the variable GDP_FRA, are presented in the following examples.
- 3. On the other hand, we find the residual matrix correlation, says $M(\varepsilon)$, is not a diagonal matrix. For comparison, application to the WLS or SUR estimation methods is recommended. Do this as an exercise.
- 4. For a comparison study, Table 1.3 presents a summary of the statistical results using the series of stateby-state analyses based on the LS AR(1) GMs. Note that this table shows the coefficients of the time tand the AR(1) terms are exactly the same as those in Figure 1.4, but they have different intercepts. Compare this to the other statistics.

System: SYS01 Estimation Method: It Date: 07/07/09 Time Sample: 1951 1992 Included observation: Total system (balanci Convergence achieve	erative Least Squa : 15:05 s: 43 ed) observations f ed after 2 iterations	ares 168 S		Equation: LOG(GDP_C; Observations: 42 R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Equation: LOG(GDP_U:	(N)=C(10)+C(0.991522 0.991087 0.032314 1.510506 S)=C(20)+C(2	11)*T+[AR(1)=C(12)] Mean dependent var S.D. dependent var Sum squared resid 1)*T+[AR(1)=C(22)]		
	Coefficient	Std. Error	t-Statistic	Prob.		Observations: 42 R-squared	0.988209	Mean dependent var
						Adjusted R-squared	0.987604	S.D. dependent var
C(10)	8.675757	0.117154	74.05426	0.0000		S.E. of regression	0.025287	Sum squared resid
C(11)	0.025588	0.003869	6.613016	0.0000		Durbin-Watson stat	1.762500	
C(12)	0.881066	0.094300	9.343263	0.0000				
C(20)	9.080932	0.045963	197.5692	0.0000		Equation: LOG(GDP_FF	A)=C(30)+C(3)	31)*T+[AR(1)=C(32)]
C(21)	0.017432	0.001607	10.84940	0.0000		Observations: 42		
C(22)	0.788836	0.104235	7.567884	0.0000		R-squared	0.997723	Mean dependent var
C(30)	86,20318	1629,510	0.052901	0.9579		Adjusted R-squared	0.997607	S.D. dependent var
C(31)	-0.212090	2 627543	-0.080718	0.9358		S.E. of regression	0.018665	Sum squared resid
C(32)	0.996671	0.035945	27 72798	0.0000		Durbin-Watson stat	1.414278	
C(40)	8 768484	0 188648	46 48057	0.0000				1411T-14D(4)-0(10)
C(41)	0.020326	0.004748	4 281062	0.0000		Equation: LOG(GDP_G	=R)=C(40)+C(41)"1+[AR(1)=C(42)]
C(42)	0.891366	0.035255	25 28374	0.0000		Diservations. 42	0.006921	Mean dependent var
0(42)	0.031300	0.033233	23.20314	0.0000		Adjusted R-squared	0.990621	SD dependent var
Determinant residual	Determinant residual covariance					S.E. of regression Durbin-Watson stat	0.022710	Sum squared resid

Figure 1.4 Statistical results based on a MAR(1)_GM of the GDP of four countries

Variable		Dependent Variables													
	log(Gd	p_Can)	log(Go	dp_US)	log(Go	lp_Fra)	log(Gdp_Ger)								
	Coef.	t-Stat.	Coef.	t-Stat.	Coef.	Coef. <i>t</i> -Stat.		t-Stat.							
С	8.701 345	76.60812	9.098 363	204.4720	85.99109	0.052 856	8.788810	47.76036							
Т	0.025 588	6.613016	0.017 432	10.84 940	-0.212090	-0.080718	0.020326	4.281 062							
AR(1)	0.881 066	9.343 263	0.788836	7.567 884	0.996671	27.72798	0.891 366	25.28374							
R-squared	0.991 522		0.988 209		0.997723		0.996 821								
Adjusted R-squared	0.991 087		0.987 604		0.997 607		0.996658								
S.E. of regression	0.032314		0.025 287		0.018665		0.022710								
F-statistic	2280.633		1634.300		8545.536		6115.340								
Prob(F-statistic)	0.000 000		0.000 000		0.000000		0.000 000								
Durbin–Watson stat	1.510 506		1.762 500		1.414 278		1.596264								

 Table 1.3
 Summary of the statistical results based on the four LS AR(1)_GMs in Figure 1.4

1.2.2 Discontinuous Growth Models

Corresponding to the inappropriate estimate of C(31) = -0.212090 in Figure 1.4, experimentation should be done based on the data of the *GDP_FRA*. See the following examples.

Example 1.4 An experimentation based on GDP_FRA

By using trial-and-error methods, we finally obtain the statistical results in Figure 1.5, based on two subsamples of sizes 29 and 30, respectively, for T < 31 and T < 32. Based on these results the following findings and notes are presented.

1. Based on the results in Figure 1.5(a), the null hypothesis H_0 : $C(2) \le 0$ is rejected, based on the *t*-statistic of $t_0 = 1.819125$ with a *p*-value = 0.0804/2 = 0.0402 < 0.05. Therefore, it can be

Dependent Variable: L Method: Least Square: Date: 07/08/09 Time: Sample: 1950 1992 IF Included observations Convergence achieved	OG(GDP_FRA s 09:55 T< 31 : 29 d after 4 iteratio) ms			Dependent Variable: Method: Least Squai Date: 07/08/09 Tim Sample: 1950 1992 Included observatior Convergence achiev	LOG(GDP_FRA es e: 09:56 IF T< 32 es: 30 ed after 4 iteratio) Ins		
	Coefficient	Std. Error	t-Statistic	Prob.		Coefficient	Std. Error	t-Statistic	Prob
C T AR(1)	8.494952 0.031080 0.941059	0.705860 0.017085 0.107208	12.03490 1.819125 8.777880	0.0000 0.0804 0.0000	C T AR(1)	9.809473 0.076572 1.019645	18.01907 0.197390 0.102863	0.544394 0.387924 9.912682	0.590 0.701 0.000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.997041 0.996814 0.018911 0.009299 75.50578 4380.578 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		8.904769 0.335020 -5.000398 -4.858954 -4.956100 1.490196	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.996862 0.996629 0.019750 0.010531 76.75080 4288.174 0.000000	 Mean dependent var S.D. dependent var S.D. dependent var Akaike info criterion Schwarz criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat 		8.92041 0.34016 -4.91672 -4.77660 -4.87189 1.52798
Inverted AR Roots	.94				Inverted AR Roots	1.02 Estimated A	R process is no	onstationary	
		(a)					(b)		

Figure 1.5 Statistical results based on an AR(1)_GM of GDP_FRA using two sub-samples

concluded that *GDP_FRA* has a significant positive growth rate of 3.11% within the time period t = 1 to t = 30.

2. On the other hand, Figure 1.5(b) shows a note "*Estimated AR process is nonstationary*", which indicates that the AR(1)_GM is an inappropriate time series model within the period t = 1 to t = 31. Finally, based on the whole data set, the Inverted AR Root = 1.00 is obtained, however, without the statement "*Estimated AR process is nonstationary*".

Example 1.5 A piece-wise growth model of GDP_FRA

As the complement of the AR(1)_GM of *GDP_FRA* for t < 31, Figure 1.6(a) presents another piece of AR(1)_GM of *GDP_FRA* for t > = 31, which should be considered an acceptable time series model, in a statistical sense. Note that this model shows that GDP_FRA has a significant positive growth rate of 2.18% based on the *t*-statistic of $t_0 = 7.425573$ with a *p*-value = 0.0000, for t > = 31, compared to the growth rate of 3.11% for t < 31. Therefore, based on these findings the growth model of *GDP_FRA* could be presented by a two-piece GM using dummy variables *Dt1* and *Dt2*, which should be generated for the two time periods.

Figure 1.6(b) presents the statistical results based on an acceptable two-piece $AR(2)_GM$ of $log(GDP_FRA)$, in a statistical sense. Based on these results, the following pair of regression functions can be derived.

$$\log(GDP_FRA) = 8.3274 + 0.0359^*t + [AR(1) = 1.2142, AR(2) = -0.3301], \text{ for } t < 31$$

$$\log(GDP_FRA) = 9.0101 + 0.0127^*t + [AR(1) = 1.2142, AR(2) = -0.3301], \text{ for } t \ge 31$$

Based on these findings, the MAR(1)_GM presented in Figure 1.4 should be modified to a MAR (1,1,2,1)_GM, with the statistical results presented in Figure 1.7.

Dependent Variable: LOG(GDP_FRA) Method: Least Squares Date: 07/08/09 Time: 16:45 Sample: 1950 1992 IF T> 30 Included observations: 13 Convergence achieved after 4 iterations												
Coefficient Std. Error t-Statistic Prob.												
C 8.639295 0.118147 73.12313 0.0000												
T 0.021810 0.002937 7.426573 0.0000												
AR(1) 0.610004 0.158493 3.848772 0.003												
R-squared	0.976634	Mean depend	ent var	9.458464								
Adjusted R-squared	0.971960	S.D. depende	nt var	0.078091								
S.E. of regression	0.013076	Akaike info crit	terion	-5.636837								
Sum squared resid	0.001710	Schwarz criter	ion	-5.506464								
Log likelihood	39.63944	Hannan-Quinr	n criter.	-5.663634								
F-statistic	208.9827	Durbin-Watso	n stat	1.417305								
Prob(F-statistic)	0.000000											
Inverted AR Roots	.61											
	(a)										

Dependent values Execution Method: Least Squares Date: 07/08/09 Sample (adjusted): 1952 Included observations: 41 after adjustments Convergence achieved after 12 iterations LOG(GDP_FRA)=(C(11)+C(12)*T)*DT1+(C(21)+C(22)*T)*DT2 +[AR(1)=C(1), AR(2)=C(2)]												
Variable Coefficient Std. Error t-Statistic Prob.												
C(11)	84.56308	0.0000										
C(12)	C(12) 0.035929 0.004369 8.22382											
C(21)	9.010104	0.211207	42.65998	0.0000								
C(22)	0.012724	0.005679	2.240634	0.0315								
C(1)	1.214156	0.161654	7.510837	0.0000								
C(2)	-0.330056	0.173660	-1.900584	0.0656								
R-squared	0.998026	Mean depend	lent var	9.093576								
Adjusted R-squared	0.997744	S.D. depende	nt var	0.368947								
S.E. of regression	0.017522	Akaike info cr	iterion	-5.116229								
Sum squared resid	0.010746	Schwarz crite	rion	-4.865462								
Log likelihood	110.8827	Hannan-Quin	n criter.	-5.024913								
Durbin-watson stat	2.000139											
Inverted AR Roots .80 .41												
(b)												

Figure 1.6 Statistical results based on (a) an AR(1)_GM of GDP_FRA for t > = 31, and (b) a two-piece (discontinuous) AR(1)_GM of GDP_FRA

System: SYS04 Estimation Method: It Date: 07/08/09 Time Sample: 1951 1992 Included observation Total system (unbala Convergence achieve	terative Least Squa e: 18:20 is: 43 anced) observation ed after 12 iteration	ares s 167 1s			Eq <u>Ob</u> R-s Adj S.E Du	uation: LOG(GDP_C, servations: 42 squared usted R-squared to fregression rbin-Watson stat	AN)=C(10)+C(0.991522 0.991087 0.032314 1.510506	11)*T+[AR(1)=C(12)] Mean dependent var S.D. dependent var Sum squared resid	9.269590 0.342288 0.040724
	Coefficient	Std. Error	t-Statistic	Prob.		servations: 42	0 988209	Mean dependent var	9 473482
C(10) C(11) C(12)	8.675757 0.025588 0.881066	0.117154 0.003869 0.094300	74.05426 6.613016 9.343263	0.0000 0.0000 0.0000	Adj S.E Du	usted R-squared . of regression rbin-Watson stat	0.987604 0.025287 1.762500	S.D. dependent var Sum squared resid	0.227124 0.024938
C(20) C(21) C(22)	9.080932 0.017432 0.788836	197.5692 10.84940 7.567884	0.0000 0.0000 0.0000	Eq Ob	uation: LOG(GDP_FRA)=(C(30)*C(31)*T)*DT1+(C(32)+C(33)*T)*DT2 +[AR(1)=C(34),AR(2)=C(35)] servations: 41				
C(30) C(31) C(32) C(33) C(34)	8.327353 0.035928 9.010076 0.012725 1.214152	0.098426 0.004367 0.211183 0.005678 0.161655	84.60564 8.227148 42.66470 2.240981 7.510770	0.0000 0.0000 0.0265 0.0000	R-s Adj S.E Du	squared usted R-squared 5. of regression rbin-Watson stat	0.998026 0.997744 0.017522 2.000128	Mean dependent var S.D. dependent var Sum squared resid	9.093576 0.368947 0.010746
C(35) C(40)	-0.330039 8.768484	0.173659 0.188648	-1.900506 46.48057	0.0593	Eq	uation: LOG(GDP_G	ER)=C(40)+C(41)*T+[AR(1)=C(42)]	
C(41) C(42)	0.020326 0.891366	0.004748 0.035255	4.281062 25.28374	0.0000 0.0000	R-s Adj	squared usted R-squared	0.996821	Mean dependent var S.D. dependent var	9.098903 0.392866
Determinant residua	l covariance			Du	rbin-Watson stat	1.596264	Sum squared resid	0.020114	

Figure 1.7 Statistical results based on a MAR(1,1,2,1)_GM of GDP_Can, GDP_US, GDP_Fra and GDP_Ger

1.3 Alternative Multivariate Growth Models

As an extension of all the continuous and discontinuous growth models presented in Agung (Agung, 2009a, Chapters 2 and 3), various multivariate growth models can easily be derived. However, only some selected models will be presented in the following sub-sections.

1.3.1 A Generalization of MAR(p)_GM

As an extension of the MAR(p)_GM in (1.2), the following growth model is presented.

$$\log(Y_{i}) = F_{i}(t, C(i^{*})) + \mu_{it}$$

$$\mu_{it} = \rho_{i1}\mu_{i,t-1} + \rho_{i,t-2}\mu_{i,t-2} + \dots + \rho_{i,t-p_{i}}\mu_{i,t-p_{i}}$$
(1.3)

where $F_i(t, C(i^*))$ can be any functions of t, such as the polynomial and the natural logarithmic of t, either continuous or discontinuous functions, as well as nonlinear with a finite number of parameters, namely $C(i^*)$, for each i = 1, ..., N. Note that any continuous and discontinuous growth models in Agung (2009a) could be inserted for the function $F_i(t, C(i^*))$. For example, as follows:

1.3.1.1 A Polynomial Growth Model

The independent-states system of polynomial growth models has the following equation for i = 1, ..., N.

$$\log(Y_{i_t}) = c(i_0) + c(i_1)^* t + \ldots + c(i_k)^* t^{k_i} + \mu_{i_t}$$
(1.4a)

1.3.1.2 A Translog Linear Model

The independent-states system of the translog linear growth models has the following equation for i = 1, ..., N.

$$\log(Y_{i_t}) = c(i0) + c(i1)^* \log(t) + \mu_{i_t}$$
(1.4b)

1.3.1.3 The Simplest Nonlinear Growth Model

The independent-states system of the simplest nonlinear growth model has the following equation for i = 1, ..., N.

$$\log(Y_{i_t}) = c(i0) + c(i1)^* t^{c(i2)} + \mu_{i_t}$$
(1.4c)

1.3.1.4 A Two-Piece Growth Model

The independent-states system of two-piece growth models has the following equation for i = 1, ..., N.

$$\log(Y_{i_t}) = (c(i10) + c(i11)^*t)^*Dt1 + (c(i20) + c(i21)^*t)^*Dt2 + \mu_{i_t}$$
(1.4d)

where Dt1 and Dt2 are dummy variables of two time periods considered, such as $t < t_0$ and $t \ge t_0$, which are defined to be valid for all states or individuals, or all i = 1, ..., N. To generalize, the dummy variables would be dependent on *i*, namely Dt(i1) and Dt(i2), the model can easily be extended to three or more time periods, and the linear function of *t* within each time period could be replaced by other functions of *t*. For further illustration, refer to various discontinuous growth models presented in Chapter 3, (Agung, 2009a), specifically the multivariate models by states and time periods in the general models (3.79) to (3.87).

1.3.2 Multivariate Lagged Variables Growth Models

Corresponding to the MAR(p)_GM in (1.2), a multivariate lagged variables growth model, namely MLV(q)_GM, may be considered an alternative growth model with the following general equation, where the error terms should also be assumed or accepted in a theoretical sense to have an *i.i.d.N*($0, \sigma^2$).

$$\log(Y_{i_t}) = C(i0) + \sum_{j=1}^{q_i} C(ij)^* \log(Y_{i_{t-j}}) + C(i, q_i + 1)^* t + \varepsilon_{it}$$
(1.5)

Note that the lag variable $log(Y_{i_{t-j}})$ is not a cause factor of $log(Y_{i_t})$, but is an up-stream or a predictor variable. Also, the exogenous variables, namely X_{i_t} and $X_{i_{t-j}}$, used in most models are not really the true cause factors of the dependent variable of these models. See the models presented in Section 1.4.

All lagged variables and autoregressive models, in fact, are *dynamic models* (Gujarati, 2003, Gourierroux and Manfort, 1997, Hamilton, 1994, and Kmenta, 1986). Therefore, various models in (1.5) should be considered as *multivariate dynamic growth models* (MDGM), or multivariate *dynamic models with trend*, for i = 1, ..., N. Wooldridge (2002; 493) presents another type of dynamic model, called *dynamic unobserved effects models*.

Example 1.6 A MLV(1)_GM of GDP? in Figure 1.7

As an alternative multivariate growth model of GDP in Figure 1.7, Figure 1.8 presents the statistical results based on an MLV(1)_GM, where the regression of *GDP_Fra* is a two-piece LV(1)_GM. Based on the results in Figures 1.7 and 1.8, the following findings and notes are presented.

1. The estimates of the parameter C(12) in both models have exactly the same values of 0.881066, which indicates the first-order autocorrelation of $log(GDP_Can)$. Similarly for the parameters C(22) and C(42), respectively, there is first-order autocorrelation of $log(GDP_US)$ and $log(GDP_Ger)$.

Estimation Method: L Date: 08/21/09 Time Sample: 1951 1992 Included observation: Total system (balanc	east Squares 5: 15:10 s: 42 ed) observations 1	168			Observations: 42 R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat	0.991522 0.991087 0.032314 1.510506	Mean dependent var S.D. dependent var Sum squared resid	9.269590 0.342288 0.040724
	Coefficient	Std. Error	t-Statistic	Prob.	Equation: LOG(GDP_I Observations: 42	JS)=C(20)+C(2	1)*T+C(22)*LOG(GDP_U	5(-1))
C(10)	1 057433	0.815685	1 296374	0 1968	R-squared	0.988209	Mean dependent var	9.473482
C(11)	0.003043	0.002651	1 147831	0.2528	Adjusted R-squared	0.987604	S.D. dependent var	0.227124
C(12)	0.881066	0.094300	9 343263	0.0000	S.E. of regression	1 762600	Sum squared resid	0.024938
C(20)	1.934999	0.944323	2.049086	0.0422	Durbin-watson stat	1.702500		
C(21)	0.003681	0.001951	1.886825	0.0611	Equation: LOG(GDP)	RA)=(C(310)+(C(311)*T+C(312)*LOG(GE	P FRA(-1)))
C(22)	0.788836	0.104235	7.567884	0.0000	*DT1+(C(320)+C	321)*T+C(322)	*LOG(GDP_FRA(-1)))*DT	2
C(310)	-0.116130	0.793076	-0.146430	0.8838	Observations: 42	,		_
C(311)	-0.001504	0.003765	-0.399557	0.6900	R-squared	0.997960	Mean dependent var	9.076151
C(312)	1.019645	0.095786	10.64503	0.0000	Adjusted R-squared	0.997676	S.D. dependent var	0.381517
C(320)	4.084122	2,518689	1.621527	0.1070	S.E. of regression	0.018391	Sum squared resid	0.012176
C(321)	0.010357	0.005974	1733656	0.0850	Durbin-Watson stat	1.557845		
C(322)	0 529470	0 288767	1 833553	0.0687				
C(40)	0.972882	0.295011	3 297777	0.0012	Equation: LOG(GDP_	GER)=C(40)+C(41)*T+C(42)*LOG(GDP_	GER(-1))
C(41)	0.002208	0.001180	1 871744	0.0632	Observations: 42			
C(42)	0.891366	0.035255	25 28374	0.0000	R-squared	0.996821	Mean dependent var	9.098903
	0.001000	OLOODEOD	FOFFOOLA	0.0000	Adjusted R-squared	0.990058	S.D. dependent var	0.392866
Determinant residual	covariance	2 04E-14			Durbin-Wateon etat	1.506264	Sullisqualed lesid	0.020114
						1.550204		

Figure 1.8 Statistical results based on a MLV(1)_GM of GDP_Can, GDP_US, GDP_Fra and GDP_Ger

- 2. Corresponding to the regression model of log(GDP_Fra), Figures 1.7 and 1.8 present different types of two-piece growth models. Figure 1.7 presents a two-piece AR(2)_GM, where the autocorrelation of the error terms AR(1) and AR(2) should be valid for the whole time period. On the other hand, Figure 1.8 presents a two-piece LV(1) GM, where $\hat{C}(312) = 1.019645$ is the AR(1) of log(GDP Fra) for t < 31, and $\hat{C}(312) = 0.382358$ is its AR(1) for $t \ge 31$.
- 3. However, Figure 1.8 presents a negative adjusted growth rate of log(GDP_Fra), for t < 31, namely $\hat{C}(311) = -0.001504$ which is an inappropriate estimate. For this reason, the statistical results based on a MLV(1,1,2,1) are presented in Figure 1.9, where the two-piece regressions of $log(GDP_Fra)$ is

Date: 08/21/09 Tim Sample: 1951 1992 Included observation Total system (unbala	e: 15:21 as: 42 anced) observation	s 167			Equation: LOG(GDP_CAN)=C(10)+C(11)*T+C(12)*LOG(GDP, Observations: 42 R-squared 0.991522 Mean dependent var Adjusted R-squared 0.991087 S.D. dependent var S.E. of regression 0.032314 Sum squared resid Durbin Watcon et 1 516505	_CAN(-1)) 9.26 0.34 0.04					
	Coefficient	Std. Error	t-Statistic	Prob.	Equation: LOG(GDP_US)=C(20)+C(21)*T+C(22)*LOG(GDP_I	JS(-1))					
C(10)	1.057433	0.815685	1.296374	0.1968	Observations: 42						
C(11)	0.003043	0.002651	1.147831	0.2529	K-squared 0.988209 Mean dependent var	9.47					
C(12)	0.881066	0.094300	9.343263	0.0000	Adjusted R-squared 0.987604 S.D. dependent var	0.22					
C(20)	1.934999	0.944323	2.049086	0.0422	Durbin-Watson stat 1 762500	0.02					
C(21)	0.003681	0.001951	1.886825	0.0611	Burbin-Walson stat 1.702500						
C(22)	0.788836	0.104235	7.567884	0.0000	Equation: LOG(GDP_FRA)=(C(310)+C(311)*T+C(312)*LOG(0	DP FRA					
C(310)	0.300243	0.872774	0.344011	0.7313	+C(313)*LOG(GDP_FRA(-2)))*DT1+(C(320)+C(321)*T+C(322)						
C(311)	0.000601	0.004205	0.142842	0.8866	*LOG(GDP_FRA(-1))+C(323)*LOG(GDP_FRA(-2)))*DT2						
C(312)	1.221207	0.192555	6.342122	0.0000	Observations: 41						
C(313)	-0.253122	0.209560	-1.207873	0.2290	R-squared 0.997910 Mean dependent var	9.09					
C(320)	3.984467	2.545501	1.565297	0.1196	Adjusted R-squared 0.997467 S.D. dependent var	0.36					
C(321)	0.009331	0.006145	1.518485	0.1310	S.E. of regression 0.018568 Sum squared resid	0.01					
C(322)	0.876620	0.492666	1.779340	0.0772	Durbin-Watson stat 1.954962						
C(323)	-0.333157	0.381130	-0.874129	0.3834	Equation: LOC(CDB, CEB)=C(40)+C(44)*T+C(42)*LOC(CDB	OEB(4))					
C(40)	0.972882	0.295011	3.297777	0.0012	Observations: 42	_GER(-1))					
C(41)	0.002208	0.001180	1.871744	0.0632	R-squared 0.996821 Mean dependent var	9.09					
C(42)	0.891366	0.035255	25.28374	0.0000	Adjusted R-squared 0.996658 S.D. dependent var	0.39					
					S.E. of regression 0.022710 Sum squared resid	0.02					
Determinant residua	l covariance	1.96E-14			Durbin-Watson stat 1.596264						

Mean dependent var 9.269590 S.D. dependent var 0.342288 Sum squared resid 0.040724 21)*T+C(22)*LOG(GDP_US(-1)) Mean dependent var 9.473482 S.D. dependent var 0 227124 Sum squared resid 0.024938 +C(311)*T+C(312)*LOG(GDP_FRA(-1)) T1+(C(320)+C(321)*T+C(322) OG(GDP_FRA(-2)))*DT2 Mean dependent var 9.093576 0.368947 S.D. dependent var Sum squared resid 0.011378 (41)*T+C(42)*LOG(GDP_GER(-1)) 9.098903 Mean dependent var S.D. dependent var 0.392866 Sum squared resid 0.020114

Figure 1.9 Statistical results based on a MLV(1,1,2,1)_GM of GDP_Can, GDP_US, GDP_Fra and GDP_Ger

LV(2)_GM, and the two regressions represent positive growth rates of GDP_Fra , namely $\hat{C}(311) = 0.000601$ and $\hat{C}(321) = 0.009331$, respectively, for t < 31 and $t \ge 31$, adjusted for $log(GDP_Fra(-1))$ and $log(GDP_Fra(-2))$.

1.3.3 Multivariate Lagged-Variable Autoregressive Growth Models

As an extension of LVAR(1,1)_GM presented in Agung (2009a), data analysis based on a multivariate lagged variables autoregressive model, MLVAR(p;q)_GM, where $p = (p_i)$ and $q = (q_i)$, of the time series Y_i , for i = 1, ..., N, will have the following general equation.

$$\log(Y_{i_{l}}) = C(i0) + \sum_{j=1}^{p_{i}} C(ij)^{*} \log(Y_{i_{l-j}}) + C(i, p_{i}+1)^{*}t + \mu_{it}$$

$$\mu_{it} = \sum_{k=1}^{q_{i}} \rho_{ik} \mu_{i,t-k} + \varepsilon_{it}$$
(1.6)

Note that for q = 0, the MLV(p)_GM will be obtained, and the MAR(q)_GM obtained for p = 0. Various special cases would be obtained, where $p_i = p$ and $q_i = q$ for all i = 1, ..., N.

1.3.4 Bounded MLVAR(p;q)_GM

As an extension of the general MLVAR(p;q)_GM in (1.6) as well as the bounded growth model presented in Agung (2009a), the bounded MLVAR(p;q)_GM, of the time series Y_i , i = 1, 2, ..., N, has the following general equation.

$$\log\left(\frac{Y_{-i} - Li}{Ui - Y_{-i}}\right) = C(i0) + \sum_{j=1}^{p_i} C(ij)^* \log(Y_{-i_{t-j}}) + C(i, p_i + 1)^* t + \mu_{it}$$

$$\mu_{it} = \sum_{k=1}^{q_i} \rho_{ik} \mu_{i,t-k} + \varepsilon_{it}$$
(1.7)

where Li and Ui are the lower and upper bounds of Y_{-i} , which are theoretically selected fixed numbers.

1.3.5 Special Notes

Based on the findings presented previously, the following special notes are presented.

- Unexpected parameter estimates can be obtained by using autoregressive or lagged variables growth models. In general, by inserting an additional independent variable to a model, we can never predict its impact on the parameter estimates. Refer to the special notes in Agung (2009a, Section 2.14.2). For this reason, one should use the trial-and-error method to develop several acceptable growth models, in both theoretical and statistical senses. Note that this statement also should be applicable for any statistical model.
- 2. Graphic representations between each of the independent variables and the corresponding dependent variable should be analyzed to evaluate their possible patterns of relationship. Specifically, whether a linear or non-linear model would acceptable. Refer to Chapter 1 in Agung (2009a).

14 Panel Data Analysis Using EViews

- 3. Furthermore, residuals analysis should be done to identify the limitation of each model. Refer to Agung (2009a).
- 4. Corresponding to the relationship between Y_{i_t} and its lag $Y_{i_{t-s}}$, specific for s = 1, s = 4, and s = 12, respectively, if and only if the time series data are annually, quarterly, and monthly data sets, the following notes are presented.
 - 4.1 The observed values of $Y_{i_{t-s}}$ and Y_{i_t} can be considered as the observations before and after a natural-experiment for the *i*-th individual, with a set of environmental variables could be the treatment or experimental factors, namely $Z_t = (Z_1, Z_2, ..., Z_k)_t$. Refer to Section 1.8.
 - 4.2 The lag variable $Y_{i_{t-s}}$ should be considered as a *covariate* in any time series models having Y_{i_t} as the dependent variable. So the "*classical growth model of* Y_{i_t} with a covariate $Y_{i_{t-s}}$ " for the *i*-th individual may have the following alternative equations.

$$\log(Y_{i_t}) = C(i0) + C(i1)^* t + C(i2)^* Y_{i_{t-s}} + \mu_{i_t}$$
(1.8a)

$$\log(Y_{i_t}) = C(i0) + C(i1)^* t + C(i2)^* \log(Y_{i_{t-s}}) + \mu_{i_t}$$
(1.8b)

1.4 Various Models Based on Correlated States

It is known that stock prices of selected countries have a causal relationship. In this section, as an extension of the previously mentioned models, I consider the models based on correlated states. The definition is that two states are correlated if, and only if, their endogenous variables have a causal relationship. Note that if all variables are assumed or defined to be correlated, then all the time series models presented in Agung (2009a) can easily be applied.

With regards to the time series data by states or unstacked data considered, it is acceptable that growth of a problem indicator or variable of a state (country, region, firm or agency) should be theoretically influenced by the factors of the other state(s). For illustrative examples, at the first stage the *GDP* of two states, namely *GDP_US*, and *GDP_Can* in POOLG7.wf1, are defined to have a causal relationship. Here, two alternative causal relationships are considered, as presented in Figure 1.10, out of a lot of possible models.

Note that Figure 1.10(a) presents the path diagram where *GDP_US* is defined as the cause factor of *GDP_Can*. Based on this path diagram, the *simplest causal model* with trend would have the following system specification.

$$GDP_US = C(10) + C(11)^*GDP_US(-1) + C(12)^*t$$

$$GDP_Can = C(20) + C(21)^*GDP_Can(-1) + C(22)^*GDP_US$$

$$+ C(23)^*GDP_US(-1) + C(24)^*t$$
(1.9)

Figure 1.10 Two alternative causal relationships between GDP_US and GDP_Can

Note that each multiple regression in the model is an additive regression model of its independent variables. For instance, the first regression is an additive model of GDP_US on $GDP_US(-1)$, and the time t. In other words, this model represents the linear adjusted effects of $GDP_US(-1)$, and the time t on GDP_US . In fact, there are a lot more models that could be subjectively defined by the researchers. Refer to various time series models presented in Agung (2009a).

On the other hand, Figure 1.10(b) presents the path diagram where *GDP_US* and *GDP_Can* are defined to have a simultaneous causal linear effects or two-way causal effects. Based on this path diagram, the simplest causal model with trend would have the following system specification.

$$GDP_US = C(10) + C(11)^*GDP_US(-1) + C(12)^*GDP_Can + C(13)^*GDP_Can(-1) + C(14)^*t GDP_Can = C(20) + C(21)^*GDP_Can(-1) + C(22)^*GDP_US + C(23)^*GDP_US(-1) + C(24)^*t$$
(1.10)

Note that the models (1.9) and (1.10) are not the VAR (Vector Autoregressive) models, since they do not have the same set of independent variables. For this reason, Agung (2009a) has introduced the MAR (Multi-variate Autoregressive Model) and the SCM (Seemingly Causal Model) instead of the System Equation Model (SEM), because the term SEM is already used for the structural equation model. The following subsections present empirical examples of SCM and VAR Models.

To generalize, a problem indicator by states may be presented as Y_s , for the states s = 1, ..., S. Then, the relationship between the indicators Y_s , s = 1, ..., S, would be a matter of subjective or expert judgment by the researchers. It could be very difficult to define the path diagram of an SCM based on the *GDP* of the seven states as presented in POOLG7.wf1, even more so for the number of states greater than seven. For this reason, I recommend to all students planning to write theses or dissertations, select only two or three states for the data analysis, since they can apply various MLVAR(p,q) models and study the limitations of each model using residual analysis. Note that with a single variable Y, one would have to consider the variable Y, the time *t*-variable and the categorical state variable, as well as the lagged of Y, say $Y(-1), \ldots, Y(-p)$ for a selected integer p, as well as the indicators $AR(1), \ldots, AR(q)$.

1.4.1 Seemingly Causal Models with Trend

For illustrative purposes, Figure 1.10 presents two alternative theoretically defined SCMs between GDP_US and GDP_Can . Note that the arrows with dotted lines from the time *t* indicate that this is not a real causal factor. However, the following example presents data analysis based on the model (1.10) only.

Example 1.7 SCMs with trend

Figure 1.11(a) presents statistical results based on a bivariate first-order lagged-variable SCM, namely $LV(1)_SCM$, of *GDP_US* and *GDP_Can*, which show that the error terms of each regression have the first autocorrelation problem, indicated by the small value of its Durbin–Watson statistic. For this reason, Figure 1.11(b) presents statistical results based on its AR(1) model, namely LVAR(1,1)_SCM, which is acceptable, in both theoretical and statistical senses. Note that these models are not growth models. Based on this output, the following conclusions are derived.

1. The *p*-value = 0.0000 of the parameter C(12) in the first regression indicates that GDP_Can has a significant positive adjusted linear effect on GDP_US , and the *p*-value = 0.0000 of the parameter C(22) in the second regression indicates that GDP_US also has a significant positive adjusted linear effect on GDP_Can .

System: UNTITLED Estimation Method: Lea Date: 08/13/09 Time: 1 Sample: 1951 1992 Included observations: 4 Total system (balanced	ist Squares 10:33 42) observations	84			System: UNTITLED Estimation Method: Ite Date: 08/13/09 Time: Sample: 1952 1992 Included observations Total system (balance Convergence achieved	rative Least Squ 10:36 : 42 d) observations d after 8 iteratior	ares 82 15		
	Coefficient	Std. Error	t-Statistic	Prob.		Coefficient	Std. Error	t-Statistic	Prob.
C(10)	2340.532	678.8094	3.447996	0.0009	C(10)	3705 368	1399 393	2 647840	0.0100
C(11)	0.703819	0.097711	7.203047	0.0000	C(11)	0.513887	0 213813	2 403435	0.0189
C(12)	0.580407	0.100906	5.751936	0.0000	C(12)	0.598526	0.099965	5 987379	0.0000
C(13)	-0.554104	0.099596	-5.563521	0.0000	C(13)	-0.556744	0.120949	-4.603130	0.0000
C(14)	62.09836	20.53535	3.023974	0.0034	C(14)	105.4857	39.25613	2.687115	0.0090
C(20)	-1888.823	869.9183	-2.171264	0.0331	C(15)	0.432322	0.254010	1.701991	0.0932
C(21)	0.873552	0.070032	12.47358	0.0000	C(20)	-2473.391	1294,467	-1.910741	0.0601
C(22)	0.813339	0.141403	5.751936	0.0000	C(21)	0.769470	0.193263	3.981463	0.0002
C(23)	-0.500667	0.159265	-3.143598	0.0024	C(22)	0.845435	0.141269	5.984574	0.0000
C(24)	-35 34991	26,51819	-1.333044	0.1866	C(23)	-0.395862	0.221602	-1.786366	0.0784
	00.0.000	2010-10-10		0.1000	C(24)	-38.84161	43.44929	-0.893953	0.3744
Determinant residual co	ovariance	1.78E+09			C(25)	0.477109	0.264250	1.805520	0.0753
Equation: GDP_US = C(*GDP_CAN(-1)+C(* Observations: 42 R-squared Adjusted R-squared S.E. of regression	(10)+C(11)*GE 14)*T 0.994199 0.993572 236.0718	DP_US(-1)+C(1 Mean depend S.D. depende Sum squared	2)*GDP_CAI lent var ent var t resid	13335.29 2944.502 2062006	Equation: GDP_US = (*GDP_CAN(-1)+C Observations: 41 R-squared	C(10)+C(11)*GE (14)*T+[AR(1)=0 0.994937	1.21E+09 P_US(-1)+C(1 C(15)] Mean depend	2)*GDP_CAN	+C(13)
Durbin-Wateon etat	1 432001	oumoqueros	116314	2002000.	Adjusted R-squared	0.994214	S.D. depende	ent var	2904.200
Equation: GDP_CAN = (*GDP_US(-1)+C(24	C(20)+C(21)*G	DP_CAN(-1)+C	C(22)*GDP_U	JS+C(23)	S.E. of regression Durbin-Watson stat	220.9119 1.921317	Sum squared		1708072.
Observations: 42	., .				*GDP_US(-1)+C(2	24)*T+[AR(1)=C	(25)]	C(22)"GDF_C	15+0(23)
R-squared	0.995001	Mean depend	lent var	11224.90	Observations: 41				
Adjusted R-squared	0.994460	S.D. depende	ent var	3754.577	R-squared	0.995644	Mean depend	dent var	11342.95
S.E. of regression	279.4560	Sum squared	resid	2889540.	Adjusted R-squared	0.995022	S.D. depende	ent var	3721.474
Durbin-Watson stat	1.229405				S.E. of regression Durbin-Watson stat	262.5740 1.876369	Sum squared	d resid	2413079.
	(a)				(b)		

Figure 1.11 Statistical results based on the models with trends in (1.10), namely (a) a LV(1)_SCM, and (b) a LVAR(1,1)_SCM

- 2. Therefore, based on the SCM in Figure 1.11(b), it can be concluded that the data supports the hypothesis that *GDP_US* and *GDP_Can* have simultaneous causal linear effects, adjusted for the other independent variables in the model.
- 3. In order to conduct the unadjusted simultaneous causal effects, the bivariate correlation analysis can easily be applied (Agung, 2006, 2009a, 2011). In this case, $H_0:\rho(GDP_US, GDP_Can) = 0$ is rejected based on the *t*-statistic of $t_0 = 36.43270$ with a *p*-value = 0.0000.
- 4. Various univariate and multivariate hypotheses could easily be tested using the Wald test.

Example 1.8 Translog linear SCMs with trend

The alternative models of those in Figure 1.11, Figure 1.12(a) and (b) present statistical results based on a translog linear LV(1)_SCM, and LVAR(1,1)_SCM. Based on these results the following notes are presented.

- 1. The translog linear LVAR(1,1)_SCM is an unacceptable model, in a statistical sense, based on the data set used, since the AR(1) of both regressions are insignificant with such a large *p*-values of 0.82 and 0.42, respectively.
- 2. In this case, the translog linear LV(1)_SCM would be a better model, supported by the fact that each independent variable has a significant adjusted effect on its corresponding dependent variable with sufficiently large DW statistics and their residual graphs, as shown in Figure 1.13. It would not be the best out of all possible models, which have not been explored.
- 3. Note that this translog-linear LV(1)_SCM can be viewed as a bivariate growth model, where C(14) indicates the adjusted exponential growth rate of GDP_US , and C(24) indicates the adjusted exponential growth rate of GDP_Can .

System: SYS02 Estimation Method: Le: Date: 08/13/09 Time: Sample: 1951 1992 Included observations: Total system (balance)	ast Squares 10:53 : 42 d) observations	84			S E S I I O	System: SYS03 Estimation Method: Itera Date: 08/13/09 Time: 1 Sample: 1952 1992 ncluded observations: Total system (balanced Convergence achieved	ative Least Squ 10:57 42) observations after 6 iteration	ares 82 Is		
	Coefficient	Std. Error	t-Statistic	Prob.	=		Coefficient	Std. Error	t-Statistic	Prob.
C(10) C(11) C(12) C(13) C(14) C(20) C(21) C(21) C(23) C(23) C(24)	2.609122 0.735920 0.572822 -0.597241 0.005485 -2.724012 0.916529 0.927723 -0.546423 -0.004779	0.648857 0.086255 0.088428 0.089866 0.001553 0.882777 0.077391 0.143216 0.166390 0.002146	4.021103 8.531956 6.477804 -6.645922 3.532318 -3.085729 11.84283 6.477805 -3.283987 -2.227028	0.0001 0.0000 0.0000 0.0007 0.0029 0.0000 0.0000 0.0000 0.0016 0.0290	=	C(10) C(11) C(12) C(13) C(14) C(15) C(20) C(21) C(21) C(22) C(23) C(24)	2.670910 0.751711 0.561529 -0.609972 0.005971 0.042296 -2.799240 0.903637 0.951495 -0.549361 -0.004892	0.721082 0.101318 0.087604 0.090577 0.001652 0.185503 1.021972 0.108494 0.149107 0.186524 0.002609	3.704031 7.419300 6.409872 -6.734285 3.613867 0.228008 -2.739057 8.328919 6.381282 -2.945253 -1.875427	0.0004 0.0000 0.0000 0.0006 0.8203 0.0078 0.0000 0.0000 0.0000 0.0044 0.0649
Determinant residual of	ovariance	4.96E-08			_	C(25)	0.157224	0.195886	0.802631	0.4249
Equation: LOG(GDP_U *LOG(GDP_CAN)+ Observations: 42	JS) = C(10)+C(1 +C(13)*LOG(GE	11)*LOG(GDP_I)P_CAN(-1))+C	US(-1))+C(12 :(14)*T	!)	E	Equation: LOG(GDP_U *LOG(GDP_CAN)+	ovariance S) = C(10)+C(1 C(13)*LOG(GD	4.56E-08 1)*LOG(GDP_I 0P_CAN(-1))+C	US(-1))+C(12)) =C(15)]
R-squared	0.994925	Mean depend	ient var	9.473482	4	Observations: 41	0.005076	Hoop depend	lantung	0 400115
Adjusted R-squared S.E. of regression Durbin-Watson stat	0.994376 0.017033 1.814607	S.D. depende Sum squared	nt var resid	0.227124 0.010735	- /- /- /- /- /- /- /- /- /- /- /- /- /-	<-squared Adjusted R-squared S.E. of regression Durbin-Watson stat	0.994373 0.016718 1.844620	S.D. depende Sum squared	entvar ntvar resid	0.222860 0.009782
Equation: LOG(GDP_C *LOG(GDP_US)+0 Observations: 42	AN) = C(20)+C C(23)*LOG(GDF	(21)*LOG(GDP 2_US(-1))+C(24	_CAN(-1))+C(i)*T	(22)	E	Equation: LOG(GDP_C/ *LOG(GDP_US)+C	AN) = C(20)+C((23)*LOG(GDF	(21)*LOG(GDP /_US(-1))+C(24	_CAN(-1))+C(; i)*T+[AR(1)=C	22) (25)]
R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat	0.996381 0.995990 0.021677 1.688250	Mean depend S.D. depende Sum squared	ent var nt var Fresid	9.269590 0.342288 0.017385	F A S C	Adjusted R-squared S.E. of regression Durbin-Watson stat	0.996343 0.995821 0.021778 1.773246	Mean depend S.D. depende Sum squared	ent var nt var I resid	9.281978 0.336874 0.016599
	(a)			-		(b)		

Figure 1.12 Statistical results based on (a) translog linear LV(1)_SCM, and (b) translog linear LVAR(1,1)_SCM; with trend

4. To generalize, the variable *GDP* could easily be replaced by a variable *Y*. Then, as a modified model, the SCM will be written as pair of nonlinear models as follows:

$$Y_US = Y_US(-1)^{C(11)}Y_Can^{C(12)}Y_Can(-1)^{C(13)}Exp(C(10) + C(14)^*t)$$

$$Y_Can = Y_Can(-1)^{C(21)}Y_US^{C(22)}Y_US(-1)^{C(23)}Exp(C(20) + C(24)^*t)$$
(1.11)

Figure 1.13 Residual graphs of the LV(1)_SCM in Figure 1.11(a)

18 Panel Data Analysis Using EViews

5. Finally, for the seven states in POOLG7.wf1, a much more complex path diagram should be developed or defined to represent the theoretical causal model between the seven time series variables. Therefore, based on the path diagram, the system specification of a SCM would easily be written, either as translog linear or nonlinear models. However, by using many independent variables, the error messages of "*near singular matrix*" or "*overflow*", as well as the unexpected estimates of parameters, may be obtained. Refer to special notes in Agung (2009a, Section 2.14).

1.4.2 The Application of the Object "VAR"

EViews provides the object "*VAR*" for conducting the data analysis based on a *vector autoregressive* (VAR) and *vector error correction* (VEC) models, which are special cases of the *multivariate autoregressive* (MAR) models and SCMs, (Agung, 2009a). See the following example.

Example 1.9 A VAR model

Figure 1.14 presents the statistical result based on a VAR model of $log(GDP_US)$ and $log(GDP_Can)$, using the lag interval of endogenous "1 1", and exogenous variables "*C T*" with the default options. Based on this result the following notes are presented.

- 1. Note that this VAR model in fact is a special case of the MAR(1)_GM, where all regressions have exactly the same independent variables. Compared to the path diagram in Figure 1.10, the path diagram of this VAR model presented in Figure 1.15 shows the causal relationship between *log(GDP_US)* and *log(GDP_Can)* is not taken into account.
- 2. However, the quantitative coefficient of correlations of the independent variables $log(GDP_US(-1))$, $log(GDP_Can)$ and the time *t* should be taken into account in the regression analysis, and it is well-known that they have an unpredictable impact on the estimate of the model parameters. Refer to Section 2.14.2 in Agung (2009a).

Vector Autoregression Es Date: 08/13/09 Time: 12 Sample (adjusted): 1951 Included observations: 4: Standard errors in () & t-	stimates ::31 1992 2 after adjustmer statistics in []	nts	R-squared Adj: R-squared Sum sq. resids S.E. equation F-statistic Log likelihood Akalke AIC Schwarz SC	0.989169 0.988313 0.022909 0.024553 1156.763 98.19675 -4.485560 -4.320067	0.992276 0.991666 0.037102 0.031247 1627.292 88.07141 -4.003401 -3.837908		
	LOG(GDP_US)	LOG(GDP	Mean dependent S.D. dependent	9.473482 0.227124	9.269590 0.342288		
LOG(GDP_US(-1))	0.902551 (0.11868) [7.60498]	0.290894 (0.15103) [1.92602]	Determinant resid co Determinant resid co Log likelihood Akaike information cr Schwarz criterion	variance (dof adj.) variance iterion	2.76E-07 2.26E-07 202.1872 -9.247008 -8.916024		
LOG(GDP_CAN(-1))	-0.154154 (0.08402) [-1.83475]	0.773517 (0.10692) [7.23425]	Estimation Proc:				
С	2.238143 (0.93168) [2.40226]	-0.647635 (1.18568) [-0.54621]	LS 11LOG(GDP_US)LOG(VAR Model:	imation Proc: 			
т	0.005864 (0.00224) [2.62140]	0.000661 (0.00285) [0.23215]	$C(1,3) + C(1,4)^{*}T$ $LOG(GDP_CAN) = C(2,1)^{*}LC(2,3) + C(2,4)^{*}T$)G(GDP_US(-1)) + C(2,2)*I	_OG(GDP_CAN(-1)) +		
	(a)			(b)			

Figure 1.14 Statistical results based on a VAR Model of log(GDP_US) and log(GDP_Can)

Figure 1.15 The path diagram of the VAR model in Figure 1.14

- 3. Furthermore, note that the symbol C(i,j) is used to present the model parameters, and test the hypotheses using the Wald test, that is the *Block Exogeinity Wald Test*.
- 4. For a model with many endogenous or exogenous variables, applying the object "*System*" is recommended instead of the object "*VAR*", because in general, the good fit multiple regressions in the model would have different sets of independent variables.
- 5. Refer to Chapter 6 in Agung, (2009a; p. 316), for more detailed notes on various VAR models, as well as their residual analysis, and a special causality test; the VAR Granger Causality/Block Exogeneity Wald Tests.
- 6. Furthermore, in order to match conditions in previous and recent years, Agung (2009a) proposes special VAR models using the lag interval of endogenous "4 4" for a quarterly data set, and "12 12" for a monthly data set.

Example 1.10 A vector error correction (VEC) model

Figure 1.16 presents the statistical result based on a VEC model by inserting the endogenous variables " $log(GDP_US) \ log(GDP_Can)$ ", the lag interval of endogenous "1 1", and exogenous variables "T" with the default options. Based on this result the following notes are presented.

- 1. By inserting the endogenous variables *log(GDP_US)* and *log(GDP_Can)*, the output directly presents two regressions with the first differences *Dlog(GDP_US)* and *Dlog(GDP_Can)* as their dependent variables.
- 2. Note that, in general, the first difference of $log(Y_s)$, in fact indicates the exponential growth rate of Y_s , which can be presented as follows:

$$D\log(Y_s) = \log(Y_{s_t}) - \log(Y_{s_{t-1}}) = R_t(Y_s)$$
(1.12)

Then, the two independent variables $Dlog(Y_US(-1))$ and $Dlog(Y_Can(-1))$, can be presented as follows:

$$D\log(Y_s(-1)) = \log(Y_s_{t-1}) - \log(Y_s_{t-2}) = R_{t-1}(Y_s)$$
(1.13)

For these reasons, the VEC model in fact presents a bivariate LV(1) model of $R_t(GDP_US)$ and $R_t(GDP_Can)$ with exogenous variables.

3. Beside the independent or exogenous variables *C* and *T*, both regressions in the VEC model have a special independent variable, called the *Cointegrating Equation*, namely:

$$CointEg1 = \log(GDP_US(-1)) + 0.286109 \log(GDP_Can) - 12.1466$$

4. For more detailed notes on various VEC models, as well as the characteristics of alternative cointegrating equations, refer to Section 6.3 in Agung (2009a).

Vector Error Correction Es	stimates		P-squared	0 163536	0.060650
Sample (adjusted): 1952	.48		Adi R-squared	0.070596	-0.043723
Included observations: 4	1 after adjustme	nts	Sum sa resids	0.022341	0.040184
Standard errors in () & t-s	statistics in []		S.E. equation	0.024911	0.033410
			F-statistic	1.759578	0.581090
Cointegrating Eq:	CointEq1		Log likelihood	95.87921	83.84437
			Akaike AIC	-4.433132	-3.846067
LOG(GDP_US(-1))	1.000000		Schwarz SC	-4.224160	-3.637095
	0.006400		Mean dependent	0.016525	0.023027
LOG(GDP_CAN(-1))	0.280109		S.D. dependent	0.025840	0.032703
	(0.20780)				
	[1.000 10]		Determinant resid cova	ariance (dof adj.)	3.02E-07
с	-12.11466		Determinant resid cova	ariance	2.33E-07
			Log likelihood		196.7108
Error Correction:	D(LOG(GDP	D(LOG(GDP	Akaike information crite	erion	-9.010285
			Schwarz criterion		-8.508751
CointEq1	-0.229705	-0.041189			
	(0.10087)	(0.13528)			
	[-2.21122]	[-0.30447]	Estimation Proc:		
D(LOG(GDP_US(-1)))	0.118220	0.203617			
	(0.20449)	(0.27426)	EC(C,1) 11 LOG(GDP_05) LOG(GD	P_CAN) @ I	
	[0.57812]	[0.74243]	VAR Model:		
			D(LOG(GDP_US)) = A(1.1)*(B(1.1)*L	=== OG(GDP_US(-1)) + B(1.2)*L(OG(GDP CAN(-1)) + B
D(LOG(GDP_CAN(-1)))	0.013610	0.107740	(1,3)) + C(1,1)*D(LOG(GDP_US(-1)))	+ C(1,2)*D(LOG(GDP_CAN	(-1))) + C(1,3) + C(1,4)*T
	(0.19289)	(0.25869)	D(LOG(GDP_CAN)) = A(2.1)*(B(1.1)*	LOG(GDP_US(-1)) + B(1 2)*	OG(GDP_CAN(-1)) + B
	[0.07056]	[0.41648]	(1,3)) + C(2,1)*D(LOG(GDP_US(-1)))	+ C(2,2)*D(LOG(GDP_CAN	(-1))) + C(2,3) + C(2,4)*T
C	-0 117662	-0.002766	VAR Model - Substituted Coefficients		
0	(0.06156)	(0.08256)		==	
	[-1.91131]	[-0.03350]	D(LOG(GDP_US)) = - 0.2297050117 (GDP_CAN(-1)) - 12.1146586662) + 0.0136103060211*D(LOG(GDP_CA)	793*(LOG(GDP_US(-1)) + 0. 0.118220324*D(LOG(GDP_ N(-1))) - 0.117662329679 + 0	286109023785*LOG US(-1))) +).00599184978411*T
т	0.005992	0.000896	D/LOC/CDB_CANIX = 0.04119044	10722*(1,00/00B, 119/ 4)) -	0.296400022795*1.00
	(0.00270)	(0.00362)	(GDP_CAN(-1)) - 12.1146586662) +	0.203617013369*D(LOG(GI	DP_US(-1))) +
	[2.21965]	[0.24751]	0.107740204007*D(LOG(GDP_CAN	(-1))) - 0.00276581170121 +	0.000896101575108*T

Figure 1.16 Statistical results based on a VEC Model of log(GDP_US) and log(GDP_Can)

1.4.3 The Application of the Instrumental Variables Models

It is not an easy task to define a "good fit" instrumental variables model, since there is no general guide on how to select an acceptable set of instrumental variables corresponding to any defined statistical model. For this reason, Agung (2009a, p. 382) suggests everyone has *two-stages of problems* (TSOP), in demonstrating or developing an instrumental model. First, he/she should develop a model with at least one exogenous variable which is significantly correlated with the residual of the model. Second, he/she has to search to find the best possible set of instrumental variables. For various examples with special notes on instrumental variables models, refer to Chapter 7 in Agung (2009a).

Example 1.11 (A two-stage LSE method)

Figure 1.17 presents the statistical results based on an instrumental variable model with a trend of $log(GDP_US)$ and $log(GDP_Can)$. Based on this result the following notes are presented.

1. Figure 1.17(a) presents the statistical results based on a bivariate AR(1,1)_SCM, where both regressions in the model are the simplest AR(1) linear regressions, with the same set of instrumental variables. These

System: SYS05 Estimation Method: Itera Date: 08/13/09 Time: 1 Sample: 1951 1992 Included observations: / Total system (balanced	ative Two-Stage 5:55 43) observations	e Least Square: 84	S		Estimation Method: Iter Date: 08/13/09 Time: Sample: 1952 1992 Included observations: Total system (unbalan Convergence achieved	ative Two-Stage 16:04 42 ced) observation after 7 iteration	e Least Square ns 81 Is	95	
Convergence achieved	after 12 iteratio	ns				Coefficient	Std. Error	t-Statistic	Prob.
	Coefficient	Std. Error	t-Statistic	Prob.	C(10) C(11)	4.360923	0.645500	6.755880	0.0000
					C(12)	0.812034	0.086502	9.387500	0.0000
C(10)	3.627138	0.616561	5.882853	0.0000	C(13)	1.245268	0.153931	8.089757	0.0000
C(11)	0.632266	0.065137	9.706704	0.0000	C(14)	-0.417304	0.152645	-2.733820	0.0079
C(12)	0.842680	0.090564	9.304761	0.0000	C(20)	-1.022586	0.510377	-2.003591	0.0489
C(20)	-4.491572	1.349184	-3.329102	0.0013	C(21)	0.771526	0.093052	8.291338	0.0000
C(21)	1.451370	0.140951	10.29701	0.0000	C(22)	0.333348	0.141338	2.358516	0.0211
C(22)	0.851882	0.082311	10.34959	0.0000	C(23)	0.199423	0.186186	1.071095	0.2877
Equation: LOG(GDP_US Instruments: C T LOG(G Observations: 42	S) = C(10)+C(1 SDP_US(-1)) L(0 993172	8.01E-09 1)*LOG(GDP_(OG(GDP_CAN(CAN)+[AR(1) -1)) ent var	=C(12)]	Equation: LOG(GDP_U *LOG(GDP_CAN)+ Instruments: C T LOG(-1)) LOG(GDP_US Observations: 40	IS) = C(10)+C(1 -[AR(1)=C(13), A GDP_US(-1)) L((-3)) LOG(GDP_	1)*LOG(GDP_ AR(2)=C(14)] OG(GDP_US(- _CAN(-2))	US(-1))+C(12 2)) LOG(GDP	2) 2_CAN(
Adjusted R-squared	0.992822	SD depende	ntvar	0 227124	R-squared	0.993566	Mean depend	dent var	9.490958
SE of regression	0.019243	Sum squared	resid	0.014441	SE of regression	0.992831	Sum square	tresid	0.218292
Durbin-Watson stat	1.622016	oumoquarea	10010	0.014441	Durbin-Watson stat	1.781571	oumsquares	10510	0.011007
Equation: LOG(GDP_C/ Instruments: C T LOG(G Observations: 42	AN) = C(20)+C(SDP_CAN(-1))	(21)*LOG(GDP_ LOG(GDP_US(_US)+[AR(1) -1))	=C(22)]	Equation: LOG(GDP_C *LOG(GDP_US)+[/ Instruments: C T LOG(-1))	AN) = C(20)+C(AR(1)=C(23)] GDP_CAN(-1))	(21)*LOG(GDF LOG(GDP_CA	2_CAN(-1))+C N(-2)) LOG(G	;(22) :DP_US(
R-squared	0.993355	Mean depend	ent var	9.269590	Observations: 41				
Adjusted R-squared	0.993014	S.D. depende	nt var	0.342288	R-squared	0.994549	Mean depend	dent var	9.281978
S.E. of regression	0.028609	Sum squared	resid	0.031921	Adjusted R-squared	0.994107	S.D. depende	entvar	0.336874
Durbin-Watson stat	1.577089				S.E. of regression Durbin-Watson stat	0.025861 1.874247	Sum squared	dresid	0.024746
	(8	a)			0	(b)		

Figure 1.17 Statistical results based on bivariate models (a) AR(1,1)_SCM, and (b) LVAR(1,1;2,1)_SCM, with sets of instrumental variables

results show that $log(GDP_Can)$ and $log(GDP_US)$ have significant simultaneous causal effects, since $log(GDP_Can)$ has a significant positive effect on $log(GDP_US)$ based on the *t*-statistic of $t_0 = 9.706704$ with a *p*-value = 0.0000/2 = 0.0000, and $log(GDP_US)$ also has a significant positive effect on $log(GDP_Can)$ based on the *t*-statistic of $t_0 = 10.29701$ with a *p*-value = 0.0000/2 = 0.0000. Note that in this case the *p*-values in the output should be divided by 2 for testing the one-sided hypotheses.

Figure 1.17(b) presents the statistical results based on a LVAR(1,1;2,1)_SCM, where the first regression is a LVAR(1,2) model with an exogenous variable log(GDP_Can) and the second regression is a LVAR (1,1) model with an exogenous variable log(GDP_US). Compared to the model in Figure 1.14(a), the regressions in this model have different sets of instrumental variables

1.5 Seemingly Causal Models with Time-Related Effects

As the extension of the SCMs with trends in (1.9) and (1.10), the following system equations present SCMs with time-related effects.

1.5.1 SCM Based on the Path Diagram in Figure 1.10(a)

As an extension of the additive model in (1.9), a SCM with time-related effects based on the path diagram in Figure 1.10(a), will have the following system specification. Note that the two-way interaction t^*GDP_US

is inserted as an additional independent variable of the second regression to indicate the time-related effect of DGP_US on GDP_Can. In other words, the effect of DGP_US on GDP_Can depends on the time t.

$$GDP_US = C(10) + C(11)^*GDP_US(-1) + C(12)^*t$$

$$GDP_Can = C(20) + C(21)^*GDP_Can(-1) + C(22)^*GDP_US$$

$$+ C(23)^*GDP_US(-1) + C(24)^*t + C(25)^*t^*GDP_US$$
(1.14)

Note that this model is indicating that the effect of GDP US on GDP Can depends on the time t, indicated by the following partial derivative:

$$\frac{\partial GDP_Can}{\partial GDP_US} = c(24) + c(25)^* t$$

1.5.2 SCM Based on the Path Diagram in Figure 1.10(b)

As an extension of the interaction model in (1.14), a SCM with the time-related effects based on the path diagram in Figure 1.10(b), will have the following system specification. Note that the second regressions of the SCMs in (1.14) and (1.15) are identical models.

$$GDP_US = C(10) + C(11)^*GDP_US(-1) + C(12)^*GDP_Can + C(13)^*GDP_Can(-1) + C(14)^*t + C(15)^*t^*GDP_Can GDP_Can = C(20) + C(21)^*GDP_Can(-1) + C(22)^*GDP_US + C(23)^*GDPGDP_US(-1) + C(24)^*t + C(25)^*t^*GDP_US$$
(1.15)

9.473482 0.227124

0.010852

9.269590

0.342288

0.017265

Example 1.12 A translog linear SCM with time-related effects

We find that the statistical results based on the model in (1.15) present several insignificant independent variables, including the two-way interactions t^*GDP_Can and t^*GDP_US . So, by using the trial-and-error method we can finally obtain a good fit translog linear SCM with time-related effects as presented in Figure 1.18,

Estimation Method: I Date: 08/13/09 Tim Sample: 1951 1992 Included observation Total system (balance	Least Squares le: 17:12 ns: 42 ced) observations (34			*LOG(GDP_CAN)+ *LOG(GDP_CAN) Observations: 42 R-squared Adjusted R-squared	0.994869 0.994314	Mean dependent var S.D. dependent var	9.473
	Coefficient	Std. Error	t-Statistic	Prob.	S.E. of regression Durbin-Watson stat	0.017126 1.858029	Sum squared resid	0.010
C(10) C(11) C(12)	2.520206 0.769750 0.568780	0.638031 0.083439 0.088966	3.949973 9.225269 6.393227	0.0002	Equation: LOG(GDP_C/ *LOG(GDP_US)+C Observations: 42	AN) = C(20)+C (23)*LOG(GD)	(21)*LOG(GDP_CAN(-1)) P_US(-1))+C(25)*T*LOG(+C(22) GDP_US)
C(13)	-0.617770	0.092585	-6.672465	0.0000	R-squared	0.996406	Mean dependent var	9.269
C(15)	0.000562	0.000163	3.455584	0.0009	Adjusted R-squared	0.996017	S.D. dependent var	0.342
C(20)	-2.759283	0.875206	-3.152724	0.0023	S.E. of regression	0.021601	Sum squared resid	0.017
C(21)	0.928523	0.079587	11.66681	0.0000	Durbin-Watson stat	1.723052		
C(22)	0.934923	0.143415	6.519011	0.0000				
C(23)	-0.561499	0.166267	-3.377087	0.0012	L			
C(25)	-0.000504	0.000220	-2.291717	0.0248				
Determinant residua	al covariance	4.94E-08						

Figure 1.18 Statistical results based on a reduced model of a modified model in (1.15)

which is in fact a nonhierarchical reduced model of the modified model in (1.15). Based on these results the following notes are presented.

- 1. The *p*-value of the two-way interaction $T^*log(GDP_Can)$ in the first regression indicates that the adjusted effect $log(GDP_Can)$ on $log(GDP_US)$ is significantly dependent on the time *t*, and the *p*-value of the two-way interaction $T^*log(GDP_US)$ in the second regression also indicates that the adjusted effect $log(GDP_US)$ on $log(GDP_Can)$ is significantly dependent on the time *t*.
- 2. Therefore, based on this SCM, it can be concluded that the data support the hypothesis *log(GDP_US)* and *log(GDP_Can)* have simultaneous causal effects dependent on the time *t*.

1.6 The Application of the Object POOL

Many students, as well as less experienced analysts, have used the object *POOL* to present statistical results or outputs based on either fixed or random effects models, without considering or discussing the characteristics of the models, not to mention their limitations. For this reason, the following examples present illustrative statistical results with special notes.

The steps of the analysis using the object "POOL" are as follows:

- 1. By selecting *Object/New Objects/Pool* ... OK, the window in Figure 1.19(a) appears.
- 2. By inserting Cross-Section Identifiers, namely the series _*CAN _US _FRA _GER*, and then clicking *"Estimate*", then options in Figure 1.19(b) appear.

1.6.1 What is a Fixed-Effect Model?

The following example presents the statistical results based on simple multivariate growth models with special notes on the acceptability of the models.

Figure 1.19 The windows and options for using the object "POOL"

24 Panel Data Analysis Using EViews

Example 1.13 A fixed-effect MAR(1)_GM

For comparison with the statistical results in Figure 1.2, Figure 1.20(a) presents the statistical results by selecting cross-section: *Fixed*, inserting log(GDP?) as the dependent variable, and the series "*c t ar*(1)" as the *Regressors and AR*() term Common Coefficients.

Then by selecting *View/Representation*, the estimation equation in Figure 1.20(b) is obtained. Based on these results, the following conclusions and comments are presented.

- 1. Note that this fixed-effect AR(1) model has special characteristics, where the four regressions in the model have special intercept parameters, namely C(4) + C(1), C(5) + C(1), C(6) + C(1), and C(7) + C(1), respectively, where the parameters C(4) to C(7) are named as the cross-section fixed-effect parameters.
- 2. However, we find the equality of the parameters C(4), C(5), C(6) and C(7) cannot tested using the Wald test.
- 3. The growth rates of *GDP* are presented by a single parameter of C(2) in the four countries, as well as a single autocorrelation of C(3) for the four regressions, which should be inappropriate or unrealistic estimates, in a theoretical sense. For this reason, compared to the model in Figure 1.2 along with the model in Figure 1.20, this MAR(1)_GM should be considered unacceptable for representing growth rates of the *GDP* in the four countries.

Example 1.14 A fixed effect MLV(1)_GM

For a comparison with the statistical results in Figure 1.9, Figure 1.21(a) presents the statistical results by selecting Cross-section: *Fixed*, inserting $\log(GDP?)$ as the dependent variable, and the series "*c t log(GDP*?)

Figure 1.20 Statistical results based on a fixed effect MAR(1)_GM of GDP_Can, GDP_US, GDP_Fra and GDP_Ger

Dependent Variable: LC Nethod: Pooled Least S Date: 07/10/09 Time: 1 Sample (adjusted): 195 ncluded observations: Cross-sections include Fotal pool (balanced) of	G(GDP?) quares 4:11 1 1992 42 after adjus d: 4 oservations: 1	tments 68		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.684159	0.172521	3.965655	0.0001
Т	0.001406	0.000575	2.445828	0.0155
LOG(GDP?(-1))	0.925098	0.020089	46.04897	0.0000
Fixed Effects (Cross)	-7 155-05			
	0.009831			
FRA-C	-0.008606			
_GERC	-0.001153			
_				
	Effects Sp	ecification		
Cross-section fixed (du	mmv variable	s)		
	,	-,		
R-squared	0.995548	Mean depend	ent var	9.229532
Adjusted R-squared	0.995410	S.D. depende	nt var	0.375014
S.E. of regression	0.025406	Akaike info cri	terion	-4.472593
Sum squared resid	0.104566	Schwarz criter	ION	-4.361023
Log likelihood	381.69/8	Hannan-Quini	n criter.	-4.42/312
Prob/E-statistic)	0 000000	Durbin-Watso	n stat	1.012980
F100(F-3(2030C)	0.000000			
	(a)		

Figure 1.21 Statistical results based on a fixed effect MLV(1)_GM of GDP_Can, GDP_US, GDP_Fra and GDP_Ger

(-1)" as the *Regressors and AR() term Common Coefficients*. Then by selecting *View/Representation*, the estimation equation in Figure 1.21(b) can be obtained. This model also has the same problem as the fixed-effect MAR(1)_GM, so it should be considered inappropriate for representing the growth rates of the *GDP* in the four countries.

1.6.2 What is a Random Effect Model?

The AR() terms cannot be used for a random effect model. For this reason, the following examples only present results based on the classical growth model and a random effect MLV(1)_GM.

Example 1.15 A random effect multivariate classical growth model: REMCGM

Figure 1.22 presents the statistical results based on a REMCGM of *GDPs* for the four countries, as well as the four regression functions having the same growth rates of C(2). This model is also an inappropriate model in a theoretical sense, aside from the very small value of the weighted DW statistic of 0.078 665. For this reason, a random effect MLV(1)_GM is presented in the following example.

Example 1.16 A random effect MLV(1)_GM

For comparison with the statistical results based on the fixed effect MLV(1)_GM in Figure 1.21, Figure 1.23 presents the results based on a random effect MLV(1)_GM, which shows that the four regression functions have exactly the same coefficients of C(1), C(2) and C(3); and C(4) = C(5) = C(6) = C(7) = 0. In a theoretical sense, this is the worst model.

Dependent Variable: LOG(GDP?) Method: Pooled EGLS (Cross-section random effects) Date: 07/10/09 Time: 15:19 Sample: 1950 1992 Included observations: 43 Cross-sections included: 4 Total pool (balanced) observations: 172 Swamy and Arora estimator of component variances									
Variable	Coefficient	Std. Error	t-Statistic	Prob.					
C T	8.618096 0.027090	0.095592 0.000616	90.15486 43.97470	0.0000					
Random Effects (Cross _CANC _USC _FRAC	s) 0.042773 0.248363 -0.154467								
GERC -0.136669 Effects Specification									
			S.D.	Rho					
Cross-section random Idiosyncratic random			0.188634 0.100261	0.7797 0.2203					
	Weighted	Statistics							
R-squared Adjusted R-squared S.E. of regression F-statistic Prob(F-statistic)	0.919193 0.918718 0.100261 1933.774 0.000000	Mean depend S.D. depende Sum squared Durbin-Watso	ent var nt var resid n stat	0.744397 0.351667 1.708871 0.078665					
	Unweighte	d Statistics							
R-squared 0.755259 Mean dependent var 9.214 Sum squared resid 6.299071 Durbin-Watson stat 0.021									

Figure 1.22 Statistical results based on a RECGM of GDP_Can, GDP_US, GDP_Fra and GDP_Ger

Dependent Variable: LOG(GDP?) Method: Pooled EGLS (Cross-section random effects) Date: 07/10/09 Time: 14:58 Sample (adjusted): 1951 1992 Included observations: 42 after adjustments Cross-sections included: 4 Total pool (balanced) observations: 168 Swamy and Arora estimator of component variances								
Variable Coefficient Std. Error t-Statistic P								
С	0.452666	0.087556	5.169991	0.0000				
Т	0.000666	0.000323	2.059916	0.0410				
LOG(GDP?(-1))	0.952062	0.010187	93.45688	0.0000				
Random Effects (Cros	s)							
_CANC	0.000000							
_USC	0.000000							
_FRAC	0.000000							
_GERC	0.000000							
	Effects Spe	ecification						
			S.D.	Rho				
Cross-section random	ı		0.000000	0.0000				
Idiosyncratic random			0.025406	1.0000				

Estimation Command: LS(CX=R) LOG(GDP?) C T LOG(G	DP?(-1))							
Estimation Equations: ====================================	(2)*T + C(3)*LOG	(GDP_CAN(-1))						
LOG(GDP_US) = C(5) + C(1) + C(2)*T + C(3)*LOG(G	DP_US(-1))						
LOG(GDP_FRA) = C(6) + C(1) + C(2)*T + C(3)*LOG((GDP_FRA(-1))						
$LOG(GDP_GER) = C(7) + C(1) + C(2)*T + C(3)*LOG(GDP_GER(-1))$								
Substituted Coefficients:								
LOG(GDP_US) = 0 + 0.452666208	449 + 0.0006656	17512811*T + 0.952061931017*LOG	(GDP_US(-1))					
LOG(GDP_FRA) = 0 + 0.45266620	8449 + 0.0006658	617512811*T + 0.952061931017*LO	G(GDP_FRA(-1))					
LOG(GDP_GER) = 0 + 0.45266620	8449 + 0.000665	617512811*T + 0.952061931017*LC	G(GDP_GER(-1))					
	Weighted	I Statistics						
R-squared Adjusted R-squared S.E. of regression F-statistic Prob(F-statistic)	0.995433 0.995377 0.025497 17980.39 0.000000	Mean dependent var S.D. dependent var Sum squared resid Durbin-Watson stat	9.229532 0.375014 0.107270 1.614198					
	Unweighte	d Statistics						
R-squared	0.995433	Mean dependent var	9.229532					

0.107270 Durbin-Watson stat

1.614198

Figure 1.23 Statistical results based on a random effect MLV(1)_GM of GDP_Can, GDP_US, GDP_Fra and GDP_Ger

Sum squared resid

1.6.3 Special Notes

Based on the statistical results of the multivariate fixed and random effects growth models using the object "POOL" presented previously, please note the following special points.

- In general, a multivariate fixed and random effects growth model is the worst multivariate growth model by states, in a theoretical sense. This is even more so if it is known that a state should have a discontinuous or piece-wise growth curve, as this may be because of some external factors. Therefore, in general one should use models with heterogeneous slopes or *heterogeneous regressions* (Agung, 2006, 2011). For an additional illustration, Chandrasekaran and Tellis (in Malhotra, 2007, p. 45) present the findings of Golder and Tellis (2004) on piece-wise mean growth rates of a product's life cycle over six time periods; namely during the introduction, takeoff, growth, slowdown, early maturity and late maturity.
- 2. Referring to the ANCOVA models, in a statistical sense, models that have homogeneous slopes or *homogeneous regressions* (Agung, 2006, 2011) with various intercepts are acceptable. The main objectives of ANCOVA are to test the hypotheses on the *adjusted means differences* of the corresponding dependent variables, which in fact are the hypotheses on *the intercept differences* of the homogeneous regressions considered. However, analysis should be conducted using the object "*System*", instead of the object "*POOL*" refer to point (2) in Example 1.13. See the following example.

Example 1.17 A MAR(1) ANCOVA growth model

For illustration, Figure 1.24 presents the statistical results based on a MAR(1) ANCOVA growth model, using the object "*System*". Based on these results the following conclusions and notes are presented.

1. Note that the growth rates of *GDP* of the four states are assumed to be equal to $\hat{C}(11) = 0.011266$ which are unacceptable in a theoretical sense. Similarly so for the first autoregressive indicator $\hat{C}(12) = 0.960457$.

Fotal system (balance) Convergence achieved	d) observations I after 2 iteration	168 IS		
	Coefficient	Std. Error	t-Statistic	Prob.
C(10)	9.378796	0.344686	27.20967	0.0000
C(11)	0.011266	0.006555	1.718618	0.0876
C(12)	0.960457	0.009552	100.5540	0.0000
C(20)	9.452469	0.438635	21.54973	0.0000
C(30)	9.057210	0.362113	25.01213	0.0000
C(40)	9.573194	0.549645	17.41705	0.0000
)eterminant residual o	covariance	5.73E-14		
Equation: LOG(GDP_U Dbservations: 42	JS)=C(10)+C(11	I)*T+[AR(1)=C(1	12)]	
Equation: LOG(GDP_U Observations: 42 R-squared	JS)=C(10)+C(11	I)*T+[AR(1)=C(1)	12)] ent var	9.473482
Equation: LOG(GDP_U <u>Dbservations: 42</u> R-squared Adjusted R-squared	US)=C(10)+C(11 0.987376 0.986729	I)*T+[AR(1)=C(1 Mean depend S.D. depende	12)] ent var nt var	9.473482
Equation: LOG(GDP_U Dbservations: 42 R-squared Vojusted R-squared S.E. of regression Durbin Metage net	US)=C(10)+C(11 0.987376 0.986729 0.026165	I)*T+[AR(1)=C(1 Mean depend S.D. depende Sum squared	12)] ent var nt var resid	9.473482 0.227124 0.026699
Equation: LOG(GDP_U Dbservations: 42 R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat	US)=C(10)+C(11 0.987376 0.986729 0.026165 1.957912	1)*T+[AR(1)=C(1 Mean depend S.D. depende Sum squared	12)] ent var nt var resid	9.473482 0.227124 0.026699
Equation: LOG(GDP_L Deservations: 42 R-squared kdjusted R-squared 8.E. of regression Durbin-Watson stat Equation: LOG(GDP_G Deservations: 42	US)=C(10)+C(11 0.987376 0.986729 0.026165 1.957912 SER)=C(20)+C(I)*T+[AR(1)=C(1 Mean depend S.D. depende Sum squared 11)*T+[AR(1)=C	12)] ent var nt var resid ;(12)]	9.473482 0.227124 0.026699
Equation: LOG(GDP_L Dbservations: 42 R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Equation: LOG(GDP_G Dbservations: 42 R-squared	US)=C(10)+C(11 0.987376 0.986729 0.026165 1.957912 GER)=C(20)+C(1) 0.996285	I)*T+[AR(1)=C(1 Mean depend S.D. depende Sum squared 11)*T+[AR(1)=C Mean depend	12)] ent var nt var resid :(12)] ent var	9.473482 0.227124 0.026699 9.098903
Equation: LOG(GDP_L) Dbservations: 42 R-squared Adjusted R-squared 3.E. of regression Durbin-Watson stat Equation: LOG(GDP_C) Dbservations: 42 R-squared djusted R-squared	JS)=C(10)+C(11 0.987376 0.986729 0.026165 1.957912 SER)=C(20)+C(0.996285 0.996094	I)*T+[AR(1)=C(1 Mean depend S.D. depende Sum squared 11)*T+[AR(1)=C Mean depend S.D. depende	12)] ent var nt var resid c(12)] ent var nt var	9.473482 0.227124 0.026699 9.098903 0.392866
Equation: LOG(GDP_L Dbservations: 42 R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat Equation: LOG(GDP_G Dbservations: 42 R-squared Adjusted R-squared S.E. of regression	US)=C(10)+C(11) 0.987376 0.986729 0.026165 1.957912 SER)=C(20)+C(0.996285 0.996094 0.024552	I)*T+[AR(1)=C(1) Mean depend S.D. depende Sum squared 11)*T+[AR(1)=C Mean depend S.D. depende Sum squared	12)] ent var nt var resid :(12)] ent var nt var resid	9.473482 0.227124 0.026699 9.098903 0.392866 0.023510

R-souared	0.993413	Mean dependent var	9.064748	
Adjusted R-squared	0.993075	S.D. dependent var	0.260995	
S.E. of regression	0.021719	Sum squared resid	0.018397	
Durbin-Watson stat	1.526476			
Equation: LOG(GDP_JF Observations: 42	PN)=C(40)+C(1	1)*T+[AR(1)=C(12)]		
R-squared	0.998088	Mean dependent var	8.728910	
Adjusted R-squared	0.997990	S.D. dependent var	0.698799	
S.E. of regression	0.031331	Sum squared resid	0.038284	
Durbin-Watson stat	1.075140			
Wald Test: System: SYS09				
Test Statistic	Valu	ie df	Probability	
Test Statistic Chi-square	Valu 8.4641	ie df 32 3	Probability 0.0373	
Test Statistic Chi-square Null Hypothesis Su	Valu 8.4641 Immary:	ie df 32 3	Probability 0.0373	
Test Statistic Chi-square Null Hypothesis Su Normalized Restric	Valu 8.4641 Immary: ction (= 0)	le df 32 3 Value	Probability 0.0373 Std. Err.	
Test Statistic Chi-square Null Hypothesis Su Normalized Restric C(10) - C(40)	Valu 8.4641 Immary: ction (= 0)	e df 32 3 Value -0.194398	Probability 0.0373 Std. Err. 0.275429	
Test Statistic Chi-square Null Hypothesis Su Normalized Restric C(10) - C(40) C(20) - C(40)	Valu 8.4641 Immary: tion (= 0)	e df 32 3 Value -0.194398 -0.120724	Probability 0.0373 Std. Err. 0.275429 0.187951	

Figure 1.24 Statistical results based on an MAR(1) ANCOVA growth model

System: SYS10 Estimation Method: Iter Date: 08/19/09 Time: Sample: 1951 1992 Included observations: Total system (balance Convergence achieved	rative Least Squ 11:06 : 43 d) observations d after 7 iteration:	ares 168 s			Equation: LOG(GDP_UK <u>Observations: 42</u> R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat	()=C(30)+C(11 0.993821 0.993504 0.021035 1.471386)*T+[AR(1)=C(32)] Mean dependent var S.D. dependent var Sum squared resid	9.064748 0.260995 0.017257
	Coefficient	Std. Error	t-Statistic	Prob.	Equation: LOG(GDP_JP	N)=C(40)+C(1	1)*T+[AR(1)=C(42)]	
C(10)	9 078944	0.038474	235 9787	0.0000	Observations: 42			
C(11)	0.018204	0.001356	13,42234	0.0000	R-squared	0.998109	Mean dependent var	8.728910
C(12)	0.784511	0.103526	7.577923	0.0000	Adjusted R-squared	0.998012	S.D. dependent var	0.698799
C(20)	8.872253	0.077353	114.6988	0.0000	S.F. of regression	0.031155	Sum squared resid	0.037854
C(22)	0.903524	0.020657	43.73899	0.0000	Durbin-Watson stat	1 089900	cantequareateria	0.001001
C(30)	8.689235	0.051048	170.2162	0.0000	Darbin Walson Stat	1.000000		
C(32)	0.853583	0.092179	9.260062	0.0000	-			
C(40)	9.303788	0.251365	37.01301	0.0000				
Determinant residual of	covariance	3.87E-14			Wald Test: System: SYS10			
Equation: LOG(GDP_L	IS)=C(10)+C(11)*T+[AR(1)=C(1	12)1		Test Statistic	Value	e df	Probability
Observations: 42	0)-0(10)-0(11	/ 1. [/at(1)=0(Chi-square	120.946	57 2	0.0000
R-squared	0.988132	Mean depend	ent var	9.473482	onioquare	100.040	., 5	0.0000
Adjusted R-squared	0.987523	S.D. depende	nt var	0.227124				
S.E. of regression	0.025370	Sum squared	resid	0.025101	Null Hypothesis Sur	mmary:		
Durbin-Watson stat	1.743993							
Equation: LOG(GDP_G	GER)=C(20)+C(1	1)*T+[AR(1)=C	(22)]		Normalized Restrict	tion (= 0)	Value	Std. Err.
Observations: 42					C(10) - C(40)		-0 224815	0 241215
R-squared	0.996809	Mean depend	ent var	9.098903	C(20) - C(40)		-0.431517	0.242261
Adjusted R-squared	0.996645	S.D. depende	ntvar	0.392866	C(30) - C(40)		-0.614530	0.240215
S.E. 01 regression	1.022750	Sumsquared	resid	0.020196				
Durbin-watson stat	1.007202				Restrictions are line	ar in coeffic	ients.	

Figure 1.25 Statistical results based on an alternative MAR(1) ANCOVA growth model

- 2. However, in a statistical sense, this model is an acceptable MANCOVA model of the variables $log(GDP_US)$, $log(GDP_Ger)$, $log(GDP_UK)$, and $log(GDP_JPN)$, where the time t is considered covariate, with the intercept parameters: C(10), C(20), C(30), and C(40).
- 3. Therefore, various hypotheses on the adjusted means differences of the log(GDP?) between any subsets of the four states can easily be tested using the Wald test. For example, H_0 : C(10) = C(20) = C(30) = C(40) is rejected based on the Chi-square statistic of $\chi_0^2 = 8.464132$, with df = 3 and a *p*-value = 0.0373, which indicates that the four states have significant adjusted means differences of the log(GDP?).
- 4. As a comparison, Figure 1.25 presents the statistical results based on an alternative MAR(1)_GM, under the assumption the time *t* has the same slopes of C(11), but various intercepts as well as AR(1). For this model, H₀: C(10) = C(20) = C(30) = C(40) is rejected based on the Chi-square statistic of χ₀² = 130.9457, with df = 3 and a *p*-value = 0.0000.
- 5. On the other hand, the null hypothesis H_0 : C(12) = C(22) = C(32) = C(42) should be considered in comparing this model with the model in Figure 1.24. The null hypothesis is rejected based on the Chi-square statistic of $\chi_0^2 = 10.43420$, with df = 3 and a *p*-value = 0.0152. Then, in a statistical sense, this model is a better fit compared to the model in Figure 1.24.
- 6. Note that the Durbin–Watson statistics of the regressions in Figures 1.21 and 1.24 indicate that other models should be explored, such as the higher order AR models. However, try it as an exercise.

Example 1.18 A MAR(1) heterogeneous growth model

Building on the model in Figure 1.25, as well as for further comparison, Figure 1.26 presents the statistical results based on a MAR(1) heterogeneous growth model. Based on these results, note the following:

1. The main objectives of this model are to test the hypotheses of the exponential growth rate differences between the GDPs of the four states, indicated by the parameters C(11), C(21), C(31) and C(41).

System: SYS11 Estimation Method: Ite Date: 08/19/09 Time: Sample: 1951 1992 Included observations Total system (balance Convergence achieved	rative Least Squ 12:12 : 43 d) observations d after 2 iteratior	Jares 168 Is			Equation: LOG(GDP_U+ Observations: 42 R-squared Adjusted R-squared S.E. of regression	()=C(30)+C(31 0.994162 0.993863 0.020446)*T+[AR(1)=C(32)] Mean dependent var S.D. dependent var Sum squared resid	9.064748 0.260995 0.016304
	Coefficient	Std. Error	t-Statistic	Prob.	Durbin-Watson stat	1.3/6546		
C(10) C(11)	9.098363 0.017432	0.044497 0.001607	204.4720 10.84940	0.0000	Equation: LOG(GDP_JP Observations: 42	N)=C(40)+C(4	1)*T+[AR(1)=C(42)]	
C(12) C(20) C(21) C(22) C(30)	0.788836 8.788810 0.020326 0.891366 8.623544	0.104235 0.184019 0.004748 0.035255 0.025492	7.567884 47.76036 4.281062 25.28374 338.2892	0.0000 0.0000 0.0000 0.0000 0.0000	R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat	0.998137 0.998041 0.030927 1.130107	Mean dependent var S.D. dependent var Sum squared resid	8.728910 0.698799 0.037302
C(31) C(32) C(40) C(41) C(42)	0.020563 0.709349 15.62487 -0.041003 0.984128	0.000956 0.116626 27.31062 0.188326 0.030234	21.51224 6.082249 0.572117 -0.217721 32.55033	0.0000 0.0000 0.5681 0.8279 0.0000	Wald Test: System: SYS11			
Determinant residual	covariance	3.27E-14			Test Statistic	Value	e df	Probability
Equation: LOG(GDP_L	JS)=C(10)+C(1	1)*T+[AR(1)=C(12)]		Chi-square	2.92370	08 3	0.4035
R-squared Adjusted R-squared	0.988209 0.987604 0.025287	Mean depend S.D. depende Sum squared	ent var nt var resid	9.473482 0.227124 0.024938	Null Hypothesis Su	mmary:		
Durbin-Watson stat	1.762500	eani equarea		0.02.1000	Normalized Restric	tion (= 0)	Value	Std. Err.
Equation: LOG(GDP_0 Observations: 42	GER)=C(20)+C(21)*T+[AR(1)=C	(22)]		C(11) - C(41)		0.058434	0.188333
R-squared Adjusted R-squared S.E. of regression	0.996821 0.996658 0.022710	Mean depend S.D. depende Sum squared	ent var nt var resid	9.098903 0.392866 0.020114	C(21) - C(41) C(31) - C(41)		0.061329 0.061565	0.188386 0.188329
Durbin-Watson stat	1.596264				Restrictions are line	ear in coeffic	cients.	

Figure 1.26 Statistical results based on an alternative MAR(1) heterogeneous growth model

- 2. The null hypothesis H_0 : C(11) = C(21) = C(31) = C(41) is accepted based on the Chi-square statistic of $\chi_0^2 = 2.923708$, with df = 3 and a *p*-value = 0.4035, which indicates that the four growth rates are insignificantly different in the corresponding populations. Based on this finding then, the model in Figure 1.25 can be considered to be a better fit, in a statistical sense, compared to the model in Figure 1.26. However, in a theoretical sense, would you be very confident in saying that the four growth rates of the GDPs are equal?
- 3. Compare the growth curve of $log(GDP_JPN)$ in Figure 1.27 to the negative estimate of its growth rate, namely $\hat{C}(41) = -0.014003$ in Figure 1.26: this indicates that the model is inappropriate for representing the *GDP_JPN*. So a modified model should be explored. Do this as an exercise: refer to the case of the *GDP_FRA* presented in Examples 1.3 to 1.5.

1.7 Growth Models of Sample Statistics

In many studies, we should consider the time series of sample statistics, such as the mean, median and SD (standard deviation), of groups of individuals based on sample surveys as well as experiments. In general, the symbol $Y_gi(t)$ will be used to indicate the time series of a single endogenous variable Y of the *i*-th individual within the g-th group, for g = 1, ..., G, and $i = 1, ..., I_g$. The panel data file, a set of time series Y_gi with the format shown in Table 1.4, where the first group (g = 1) contains five individuals and the second group (g = 2) contains eight individuals.

Based on this data set the time series of the mean, median and SD of the Y-variable can easily be generated, namely MY_g , $MedY_g$, and SDY_g , for g = 1, ..., G, either using EViews or Excel.

Figure 1.27 The growth curves of the endogenous variables in Figure 1.26

A latent variable, or a set of either independent or dependent factors or latent variables, can easily be generated for each group of individuals in order to reduce the dimension of the multivariate considered. For a detailed stepped analysis, refer to Chapter 10 in Agung (2011).

Therefore, all growth models previously presented, as well as their extensions, should be applicable for the time series of the sample statistics MY_g , $MedY_g$ and SDY_g , as well as latent variables.

Time		g = 1			G = 2	
	Y_11		Y_15	Y_21		Y_28
1	Y_11(1)		Y_15(1)	Y_21(1)		Y_28(1)
t	 Y_11(t)		Y_51(t)	Y_1G(t)	 	$Y_8G(t)$
Т	· · · · Y_11(T)		· · · · Y_51(T)	Υ_1 <i>G</i> (<i>T</i>)		· · · · Y_8G(T)

Table 1.4 Illustrated format of a set of time series by two groups of individuals

Example 1.19 Generating sample statistics using the object "POOL"

For an illustration, the group of *GDP_FRA*, *GDP_GER* and *GDP_ITA* will be considered for data analysis. The steps of the analysis are as follows:

- 1. By selecting *Object/New Object/Pool* ... OK, Figure 1.28(a) appears on the screen.
- 2. By entering "*_fra _ger _ita*" and selecting *View/Descriptive Statistics* . . . , Figure 1.28(b) is shown on the screen. Then by entering "*gdp*?" and selecting "*Time period specific*", the sample statistics in Figure 1.29 are obtained.
- 3. Each of the sample statistics can easily be copied to the file. For example, by using the copy-paste method of *Mean GDP*?, the POOLG7.wf1 will have an additional variable *Series01*. Then this variable can be renamed, for example as *M_GDP* or *Mean GDP*? Similarly, this can be done for each of the others.
- 4. The other copy-paste method can be done using Excel, by copying all sample statistics in Figure 1.29 as an Excel file, then opening the Excel file as an EViews work file.
- 5. As a result, data analysis based on various models of sample statistics of each group can be easily performed.

Figure 1.28 The cross section identifiers and options of the pool descriptive statistics

	vs - [Pool: UN11	ILED Workfile:	POOLG /:: Poolg /	J MGe daw	Uala
		View Proc	QUICK Options	window	пер
View Pro	Object Print	Name Freeze E	stimate Define Po	olGenr	
obs	Mean GDP?	Med GDP?	Sd GDP?	Min GDP?	Max GDP?
1950	3449.000	3415.000	644.6728	2822.000	4110.000
1951	3658.667	3673.000	628.6226	3023.000	4280.000
1952	3867.667	4013.000	675.8234	3131.000	4459.000
1953	4058.000	4278.000	626.6650	3351.000	4545.000
1954	4234.667	4577.000	669.6972	3463.000	4664.000
1955	4560.667	4861.000	769.7729	3686.000	5135.000
1956	4799.333	5195.000	857.9023	3815.000	5388.000
1957	4986.333	5389.000	895.6731	3960.000	5610.000
1958	5123.000	5463.000	884.4524	4119.000	5787.000
1959	5380.667	5610.000	936.3068	4351.000	6181.000
1960	5740.667	5948.000	1012.055	4641.000	6633.000

Figure 1.29 Sample statistics of GDP_FRA, GDP_GER and GDP_ITA

32 Panel Data Analysis Using EViews

1.8 Special Notes on Time-State Observations

Corresponding to time-series models for independent states, as well as the models for dependent or correlated states illustrated previously, the following notes are made.

- 1. The time-state or time-cross-section observations should have much larger time-point observations compared to the cross-sectional observations.
- 2. As *a rule of thumb* the time points should be at least five times the total number of the variables in the system specification considered. Most researchers make the number of the units of analysis at least 10 times the number of variables in the model.
- 3. On the other hand, if panel data has a much larger cross-section observation compared to time-point observations, the following alternative data analysis is suggested.
 - 3.1 Conduct the analysis based on time series models of sample statistics by groups of states or individuals, such as the mean and standard deviation of the groups, or latent variables as presented in Section 1.7, in addition to the descriptive statistical summaries by groups.
 - 3.2 If the panel data has only a few time-point observations, then the panel data should be presented or considered as a set of cross-section data by times or a cross-section over times (which will be discussed in Part II). As a special case for a two-year observation, the panel data can be considered a *natural-experimental* data set.

1.9 Growth Models with an Environmental Variable

Suppose Y_{i_t} is an endogenous time series, say the productivity and return rates of the *i*-th industry or firm in a state/country, then in general there is an environmental or external time series with the same scores/values for all industries, namely Z_t , such as income per capita, inflation rate, exchange rate of US\$, *GDP* and others at the state/country level.

Referring to the *GDPs* of three states in Europe in POOL7 G.wf1, namely $Y_1_t = GDP_Fra_t$, $Y_2_t = DGP_Ger_t$ and $Y_3 = GDP_Ita_t$, to generalize, they can be presented as Y_1_t , Y_2_t , and Y_3_t ; or Y_a_t , Y_b_t , and Y_c_t ; respectively. There should be at least one environmental factor, say Z_t , such as the US\$ exchange rate or an external factor out of Europe, which could be defined or judged as a causal factor of the *GDPs* of the three states. Would you consider *GDP_US* or *GDP_Jpn*, or both for use as external factors?

Therefore, corresponding to the MLVAR(p;q)_GM in (1.6), the following general MLVAR(p;q)_GM with an environmental variable Z_t is made.

$$\log(Y_{i_{t}}) = C(i0) + \sum_{j=1}^{p_{i}} C(ij)^{*} \log(Y_{i_{t-j}}) + C(i, p_{i}+1)^{*} t + C(i, p_{i}+2)^{*} Z_{t} + \mu_{it}$$

$$\mu_{it} = \sum_{k=1}^{q_{i}} \rho_{ik} \mu_{i,t-k} + \varepsilon_{it}$$
(1.16)

However, in general, we know the effect of Z_t on Y_i is dependent on t. For this reason, applying the model with a time-related-effect (TRE) is recommended, as follows:

$$\log(Y_{i_{t}}) = C(i0) + \sum_{j=1}^{p_{i}} C(ij)^{*} \log(Y_{i_{t-j}}) + C(i, p_{i} + 1)^{*} t + C(i, p_{i} + 2)^{*} Z_{t} + C(i, p_{i} + 3)^{*} t^{*} Z_{t} + \mu_{it}$$
(1.17)
$$\mu_{it} = \sum_{k=1}^{q_{i}} \rho_{ik} \mu_{i,t-k} + \varepsilon_{it}$$

Note that various two- and three-way interaction models have been demonstrated in Agung (2009a) if a vector of environmental variable, namely $Z_t = (Zl_t, Z2_t, ...)$, should be considered. Furthermore, under the assumption that Y_{i_t} for some i = 1, 2, ..., N, are correlated, then a lot of advanced models, (such as various VAR, VEC and Instrumental Variables Models (IVMs), as well as various TGARCH(a, b, c) models), could easily be subjectively defined by a researcher. However, not everyone can always be very sure as to which is the true population model, since unexpected estimates of the model parameters could be obtained as the impact of the multicollinearity of all variables in the model, and these are highly dependent on the data set that happens to be selected or available to the researcher. Refer to special notes presented in Section 2.14 (Agung, 2009a). See the following selected models.

1.9.1 The Simplest Possible Model

The simplest model is a MLVAR(1,1) model with an environmental variable and TRE as follows:

$$\log(Y_{i_{t}}) = C(i0) + C(i1)^{*}\log(Y_{i_{t-1}}) + C(i2)^{*}t + C(i3)^{*}Z_{t} + C(i4)^{*}t^{*}Z_{t} + \mu_{i_{t}}$$

$$\mu_{i_{t}} = \rho_{i1}\mu_{i_{t}-1} + \varepsilon_{i_{t}}$$
(1.18)

For an illustration, a hypothetical data set is generated based on the data in POOL7 G.wf1, where $X_1 = GDP_US$, $Y_1 = GDP_Can$, $X_2 = GDP_Fra$, $Y_2 = GDP_UK$, $X_3 = GDP_Ger$, and $Y_3 = GDP_Ita$, and the environmental variable $Z1 = GDP_Jpn$ is taken. See the following examples.

For a vector of the environmental variable, namely $\mathbf{Z} = (Z1, \dots, Zk)$, the model in (1.18) can be extended to a more general M LVAR(1,1), as follows:

$$\log(Y_{i_{t}}) = C(i0) + C(i1)^{*}\log(Y_{i_{t-1}}) + F_{i}(t, Z1, \dots, Zk) + \mu_{it}$$

$$\mu_{it} = \rho_{i1}\mu_{i,t-1} + \varepsilon_{it}$$
(1.19)

where $F_i(t,Z1,...,Zk)$ is a function of the time, t and an external or environmental vector $\mathbf{Z} = (Z1,...,Zk)$ with a finite number of parameter for each i = 1, 2, ..., N. Therefore, there would be a lot of possible functions of two-way interaction factors, namely t^*Zk and Zt^*Zj , and a few selected three-way interactions.

On the other hand, specific to the quarterly and monthly data sets, Agung (2009a) proposes two alternative models using the lags $Y_{i_{t-4}}$ and $Y_{i_{t-12}}$ respectively, in order to match the conditions in the previous and recent years.

Example 1.20 An application of the system equation

Figure 1.30 presents the statistical results based on a MLVAR(1,1) model in (1.17). The main objective of this model is to test the hypothesis that the effect of the environmental variable Z1 on the trivariate (Y_1, Y_2, Y_3) depends on the time, t. Based on these results, see the following notes and comments.

- 1. Note that the interaction t^*Z1 has a significant effect on each of the variables Y_1 , Y_2 and Y_3 , with a *p*-value of 0.0003, 0.0370 and 0.0102, respectively. It can then be directly concluded that the effect of *Z1* on the trivariate (Y_1 , Y_2 , Y_3) is significantly dependent on the time *t*.
- 2. On the other hand, if the effects of t^*ZI on Y_i are insignificant for the *i*-th individual, testing the null hypothesis is suggested H_0 : C(13) = C(14) = C(23) = C(24) = C(34) = 0, using the Wald test. Refer to the following example.

34 Panel Data Analysis Using EViews

System: SYS15 Estimation Method: S Date: 11/01/09 Tim Sample: 1952 1992 Included observation Total system (baland Iterate coefficients af Convergence not act	Geemingly Unrelate e: 17:36 e: 42 e: d) observations f ter one-step weigh ieved after 1 weigh	ed Regressior 123 Iting matrix	1 total coefitera	tions				
Convergence not ac	Coefficient	Std. Error	t-Statistic	Prob.	Equation: Y_1=C(10)+C +(AB(1)=C(15))	(11)*Y_1(-1)+	C(12)*T+C(13)*Z1+C(14)	*T*Z1
					Observations: 41			
C(10)	-2.013163	0.577742	-3.484536	0.0007	R-squared	0.998530	Mean dependent var	9.093576
C(11)	0.649242	0.079103	8.207511	0.0000	Adjusted R-squared	0.998320	S.D. dependent var	0.368947
C(12)	0.095458	0.026042	3.665576	0.0004	S.E. of regression	0.015122	Sum squared resid	0.008004
C(13)	0.544602	0.109193	4.987528	0.0000	Durbin-Watson stat	1.712889		
C(14)	-0.009671	0.002562	-3.774172	0.0003				
C(15)	0.118118	0.146734	0.804976	0.4227	Equation: Y_2=C(20)+C	(21)*Y_2(-1)+	C(22)*T+C(23)*Z1+C(24)	*T*Z1
C(20)	0.897583	1.802112	0.498073	0.6195	+[AR(1)=C(25)]			
C(21)	0.123505	0.136029	0.907932	0.3660	Observations: 41			
C(22)	0.133851	0.057065	2.345572	0.0209	R-squared	0.997409	Mean dependent var	9.120614
C(23)	0.716732	0.145310	4.932445	0.0000	Adjusted R-squared	0.997039	S.D. dependent var	0.371363
C(24)	-0.012416	0.005878	-2.112352	0.0370	S.E. of regression	0.020209	Sum squared resid	0.01429
C(25)	0.734109	0.076490	9.597462	0.0000	Durbin-Watson stat	1.378654		
C(30)	-0.816335	1.059428	-0.770543	0.4427				
C(31)	0.484293	0.176536	2.743304	0.0072	Equation: Y_3=C(30)+C	(31)*Y_3(-1)+	C(32)*T+C(33)*Z1+C(34)	*T*Z1
C(32)	0.150537	0.058116	2.590258	0.0110	+[AR(1)=C(35)]			
C(33)	0.544049	0.157995	3.443462	0.0008	Observations: 41			
C(34)	-0.014455	0.005522	-2.617849	0.0102	R-squared	0.998144	Mean dependent var	8.88970
C(35)	0.291409	0.176220	1.653669	0.1012	Adjusted R-squared	0.997879	S.D. dependent var	0.43071
Determinant residua	l covariance	1.03E-11			S.E. of regression Durbin-Watson stat	0.019839 1.718009	Sum squared resid	0.01377

Figure 1.30 Statistical results based on a MLVAR(1,1) Model in (1.18)

- 3. On the other hand, a reduced model should be made by deleting either one of t and Z1, or both, since t, Z1 and t^*Z1 in many cases are highly correlated, and their impacts on the parameter estimates are unpredictable. Refer to special notes in Section 2.14.3 (Agung, 2009a). In many cases, then it would be found t^*Z1 would have a significant effect in the reduced model.
- 4. Considering the previous results, note that the AR(1) term is insignificant with a *p*-value = 0.4227, in the first regression, and $Y_2(-1)$ is insignificant in the second regression with a *p*-value = 0.3660. Since their *p*-values > 0.20; a reduced model should be explored. Do it as an exercise. For the intercept of the third regression, namely *C*(30), it is not a problem.

1.9.2 The Application of VAR and VEC Models

As an extension of the model in (1.17), the application of the VAR and VEC Models are presented in the following examples. Refer to various VAR and VEC models and their limitations presented in Chapter 6 (Agung, 2009a).

Example 1.21 A VAR model using the object "System"

Corresponding to the model in Example 1.19, since a single environmental variable ZI is defined to be a cause of factors Y_I , Y_2 and Y_3 , then Y_I , Y_2 and Y_3 should be correlated in a theoretical sense. For this reason a VAR model could be applied. Referring to various VAR models presented in Chapter 6 (Agung, 2009a), then based on the variables Y_I , Y_2 , Y_3 , ZI and t, a lot of VAR models could easily be derived or defined. However, Agung (2009a; 380) states that the system function (estimation method) is the preferred method used to develop alternative multivariate time series models, since it is more flexible to use for developing a multivariate model where multiple regressions could have different sets of exogenous variables.

System: SYS20 Estimation Method: S Date: 11/03/09 Time Sample: 1951 1992 Included observation: Total system (balance Linear estimation afte	eemingly Unrelate 13:39 s: 42 ed) observations f er one-step weigh	ed Regression 126 ting matrix	n	
	Coefficient	Std. Error	t-Statistic	Prob.
C(10) C(11) C(12) C(13) C(14) C(15) C(16) C(20) C(21) C(22) C(23) C(23) C(24)	-2.767715 0.509448 0.123211 0.182611 0.023549 0.485480 -0.002907 -1.364387 -0.309881 0.944625 0.086933 0.024415	0.510882 0.081353 0.048940 0.101597 0.026241 0.088796 0.002519 0.824546 0.131300 0.078987 0.163974 0.042352	-5.417524 6.262231 2.517595 1.797398 0.897414 5.467380 -1.153915 -1.654713 -2.360093 11.95920 0.530161 0.576476	0.0000 0.0000 0.0133 0.0751 0.3716 0.0000 0.2512 0.1010 0.0201 0.0201 0.0000 0.5971 0.5655
C(25) C(30) C(31) C(32) C(33) C(34) C(35) C(36)	0.415637 -0.002543 -1.566476 -0.132370 0.189123 0.621420 0.058630 0.458434 -0.005686	0.143313 0.004066 0.726523 0.115691 0.069597 0.144481 0.037317 0.126276 0.003583	2.900193 -0.625490 -2.156129 -1.144169 2.717401 4.301053 1.571123 3.630408 -1.586888	0.0045 0.5330 0.0334 0.2552 0.0077 0.0000 0.1192 0.0004 0.1155
Determinant residual	covariance	1.04E-11		

Figure 1.31 Statistical results based on a VAR model using the object system

As an illustration and an extension of the model in Figure 1.30, Figure 1.31 presents the results of a VAR model using the system function, or the object "*System*". Based on these results, the following notes and conclusions are made.

- 1. The model represents a VAR model by entering "1 1" as the lag interval of endogenous. Refer to alternative lag intervals of alternative VAR models presented in Chapter 6 (Agung, 2009a), as well as the limitation of a VAR model compared to the system equation.
- 2. Since it is defined that the effect of Z1 on (Y_1, Y_2, Y_3) depends on time, t, then the null hypothesis H_0 : C(15) = C(16) = C(25) = C(26) = C(35) = C(36) = 0 should be tested at the first stage of testing the hypothesis. The null hypothesis can then be rejected based on the Chi-square test of $\chi_0^2 = 40.50483$ with df = 6 and a *p*-value = 0.000. Then we can conclude that the effect of Z1 on (Y_1, Y_2, Y_3) is significantly dependent on the time t, adjusted or conditional for all other variables in the model.
- 3. Since some of the independent variables have large *p*-values, a reduced model should be explored. So, in general, three multiple regressions having different sets of independent variables are obtained. Therefore, the reduced model is not a VAR model anymore. Try this as an exercise.
- 4. In order to keep having a reduced VAR model, then one or two of the variables t, Z1 or t^*Z1 should be deleted from the three regressions. However, note that each of the variables has significant positive or negative adjusted effects on Y_3 , at a significance level of $\alpha = 0.10$. So, in a statistical sense, it is not wise to delete one of the variables from the third regression.
- 5. Based on each of the regressions, the following findings are derived.
 - 5.1 Based on the first regression, at a significance level of $\alpha = 0.10$, t^*ZI has insignificant effect on Y_1 , however, the null hypothesis H_0 : C(15) = C(16) = 0 is rejected based on the Chi-square test

Figure 1.32 Path diagrams of the models in (a) Figure 1.30, and (b) Figure 1.31

of $\chi_0^2 = 537.53410$ with df = 2 and a *p*-value = 0.000. It can then be concluded that the effect of *Z1* on *Y_1* is significantly dependent on the time *t*, specifically the effect depends on a linear function of *t*, namely $[C(15) + C(16)^*t]$ adjusted for all variables in the model, not just the independent variable of the first regression.

- 5.2 On the other hand, even though each of t and t^*ZI has an insignificant adjusted effect, it is found that the variables t, ZI and t^*ZI have significant joint adjusted effects on Y_I , since the null hypothesis H_0 : C(14) = C(15) = C(16) = 0 is rejected based on the Chi-square test of $\chi_0^2 = 42.67729 = 42.67729$ df = 3 and a *p*-value = 0.000. Based on this conclusion, if a reduced model should be obtained then, at most, two of the variables t, ZI and t^*ZI can be deleted.
- 5.3 Similar analysis can easily be done based on the other two regressions. Do it as an exercise.
- 6. For a graphical illustration, Figure 1.32(a) and (b), respectively, presents the path diagrams of the models in Figures 1.30 and 1.31. Based on these diagrams, the following notes are made.
 - 6.1 Note that Figure 1.32(a) shows that $Y_{i_{t-1}}$ has a direct effect on each Y_{i_t} only, but Figure 1.32(b) shows that the trivariate $(Y_1, Y_2, Y_3)_{t-1}$ has direct effect on Y_{i_t} .
 - 6.2 The effect of Z_t on each endogenous variable Y_{i_t} , which is defined to be dependent on the time t, is represented as an arrow from t to Z_t , and then from Z_t to Y_{i_t} , and in the regression indicated by the term $(i3) + c(i4)^*t)^*Z$ in Figure 1.30, and in Figure 1.31 by $(C(i5) + c(i6)^*t)^*Z$.
 - 6.3 The possible causal effects between Y_1, Y_2 and Y_3 are not identified, however, their quantitative correlations are taken into account in the estimation process. If they should have a type of causal effect, then a new model should be defined; either additive, two- or three-way interaction models. Refer to the models demonstrated in Agung (2009a), as well as the following chapter.
- 7. As an extension of the model in Figure 1.31, we might consider Z_t as a function of t, then the following general model would also need to be considered.

$$y_{-1} = c(10) + c(11)^{*}y_{-1}(-1) + c(12)^{*}Y_{-2}(-1) + c(13)^{*}Y_{-3}(-1) + c(14)^{*}t + c(15)^{*}z1 + c(16)^{*}t^{*}z1$$

$$y_{-2} = c(20) + c(21)^{*}Y_{-1}(-1) + c(22)^{*}Y_{-2}(-1) + c(23)^{*}Y_{-3}(-1) + c(24)^{*}t + c(25)^{*}z1 + c(26)^{*}t^{*}z1$$

$$y_{-3} = c(30) + c(31)^{*}y_{-1}(-1) + c(32)^{*}Y_{-2}(-1) + c(33)^{*}Y_{-3}(-1) + c(34)^{*}t + c(35)^{*}z1 + c(36)^{*}t^{*}z1$$

$$Z = c(40) + F(t)$$

(1.20)

where F(t) is a function of the time, t with a finite number of parameters, without a constant parameter, such as $F(t) = C(41)^* log(t)$, and $F(t) = C(41)^* t + C(42)^* t^2 + \ldots + C(4k)^* t^k$.

Vector Error Correction E Date: 11/04/09 Time: 11 Sample (adjusted): 1952 Included observations: 4 Standard errors in () & t-	stimates :08 :1992 1 after adjustmei statistics in []	nts		с	-3.352072 (0.64536) [-5.19409]	-2.258550 (1.10927) [-2.03607]	-1.128369 (1.10092) [-1.02493]
Cointegrating Eq:	CointEq1			T	-0.004842 (0.01300)	-0.063879 (0.02235)	-0.006958 (0.02218)
Y_1(-1)	1.000000				[-0.37242]	[-2.85840]	[-0.31372]
Y_2(-1)	-0.188327 (0.10802) [-1.74350]			Z1	0.375213 (0.07155) [5.24404]	0.261613 (0.12298) [2.12724]	0.129550 (0.12206) [1.06139]
Y_3(-1)	-0.697651 (0.17410) [-4.00729]			T*Z1	-0.000315 (0.00129) [-0.24487]	0.005822 (0.00221) [2.63512]	0.000392 (0.00219) [0.17875]
с	-1.176237			R-squared	0.691509	0.534601	0.315831
Error Correction:	D(Y_1)	D(Y_2)	D(Y_3)	Adj. R-squared	0.626071	0.435880	0.170704
CointEq1	-0.559820 (0.09342) [-5.99236]	-0.313246 (0.16058) [-1.95076]	-0.154371 (0.15937) [-0.96864]	Sum sq. resids S.E. equation F-statistic Log likelihood	0.005403 0.012795 10.56746 124.9793	0.021993 5.415263 102.7720	0.021827 2.176242 103.0817
D(Y_1(-1))	0.081726 (0.14843) [0.55061]	-0.135375 (0.25512) [-0.53063]	0.207249 (0.25320) [0.81852]	Akaike AIC Schwarz SC Mean dependent S.D. dependent	-5.706306 -5.371951 0.029314 0.020924	-4.623024 -4.288668 0.034892 0.029282	-4.638131 -4.303776 0.035789 0.023969
D(Y_2(-1))	0.121231 (0.11383) [1.06499]	0.116966 (0.19566) [0.59780]	0.163731 (0.19419) [0.84316]	Determinant resid cova Determinant resid cova	riance (dof adj.) riance	2.36E-11 1.23E-11 340.4857	
D(Y_3(-1))	-0.276045 (0.11378) [-2.42613]	-0.307600 (0.19557) [-1.57286]	-0.164907 (0.19410) [-0.84962]	Akaike information crite Schwarz criterion	rion	-15.29199 -14.16354	

Data Analysis Based on a Single Time Series by States 37

Figure 1.33 Statistical results based on a VEC model

Example 1.22 A VEC model

Figure 1.33 presents the statistical results based on a VEC model of the first differences between endogenous variables DY_1 , DY_2 and DY_3 , exogenous variables t, Z1 and t^*Z1 , and "1 1" as the lag interval of endogenous variables. Refer to the characteristics of various VEC models and their limitations presented in Chapter 6 (Agung, 2009a).

1.9.3 Application of ARCH Model

Various TGARCH(a,b,c) time series models along with their limitations have been presented in Agung (2009a). For this reason, this section only presents the example of an ARCH(1) = TGARCH(1,0,0) model.

Example 1.23 A reduced ARCH(1) model

Figure 1.34 presents the statistical results based on a reduced ARCH(1) model, where its full mean model is presented in Figure 1.30. Based on these results, note the following:

- 1. Note that the regression of Y_2 has only two independent variables, namely $Y_2(-1)$ and t^*Z1 , compared to the other two hierarchical regression models.
- 2. Based on the output, it can easily be derived that the effect of Z1 on (Y_1, Y_2, Y_3) is significantly dependent on the time *t*. Otherwise, it can be tested using the Wald test.
- 3. The data supports that error terms have a multivariate Student's *t*-distribution based on z-Statistic of $Z_0 = 0.108608$ with a *p*-value = 0.9135.

38 Panel Data Analysis Using EViews

Covariance specificatio Date: 11/04/09 Time: Sample: 1951 1992 Included observations: Total system (balanced Disturbance assumptio	n: Constant Co 13:19 42 J) observations on: Student's t di	nditional Corre 126 listribution	lation		R-squared Adjusted R-squared S.E. of regression Durbin-Watson stat	0.998580 0.998427 0.015133 1.495363	Mean depende S.D. depende Sum squared	lent var ent var I resid	9.07615 0.38151 0.00847
Presample covariance: Convergence achieved	after 162 iterati	meter =0.7)			Equation: Y_2=C(20)+	C(21)*Y_2(-1)+C	C(24)*T*Z1		
					R-squared	0.996801	Mean depend	lent var	9.09890
	Coefficient	Std. Error	z-Statistic	Prob.	Adjusted R-squared	0.996637	S.D. depende	ent var	0.39286
C(10)	-1.858822	0.775986	-2.395431	0.0166	S.E. of regression	0.022782	Sum squared	Iresid	0.020242
C(11)	0.690433	0.115008	6.003364	0.0000	Durbin-Watson stat	1.560383			
C(12)	0.087609	0.040721	2.151449	0.0314					
C(13) C(14)	-0.008910	0.004033	-2.209131	0.0272	Equation: Y_3=C(30)+	C(31)*Y_3(-1)+C	C(32)*T+C(33)*	'Z1+C(34)*T*	Z1
C(20)	1.103364	0.387836	2.844924	0.0044	R-squared	0.998161	Mean depend	lent var	8.86885
C(21)	0.876077	0.046077	19.01343	0.0000	Adjusted R-squared	0.997962	S.D. depende	ent var	0.44637
C(24) C(30)	-0.605071	1 049288	-0 576649	0.0808	S.E. of regression	0.020149	Sum squared	l resid	0.01502
C(31)	0.667993	0.165157	4.044583	0.0001	Durbin-Watson stat	1.516532			
C(32)	0.091821	0.063656	1.442456	0.1492					
C(33)	0.361825	0.196797	1.838565	0.0660					
G(34)	Variance Equat	tion Coefficient	-1.429544 S	0.1528	Covariance specification	on: Constant Co	nditional Corre	ation	
0.00.51					COV(i,i) = R(i,i)*OSOR		RCH(i))		
C(35)	0.000268	0.000199	1.345405	0.1785	CO1(ij) = 1(ij) @SQ1				
C(37)	0.000375	0.000279	1.341809	0.1797		Tranformed Va	riance Coefficie	ante	
C(38)	0.231851	0.652811	0.355158	0.7225		rianonneu va	nance coenicie	ents	
C(39)	0.000392	0.000148	2.646134	0.0081		O		- 01-1-1-	Deck
C(40)	-0.077905	0.445042	-0.175050	0.8610		Coemcient	Std. Error	z-statistic	Prop
C(42)	0.511081	0.224333	2.278228	0.0227					
C(43)	0.272723	0.253580	1.075494	0.2822	M(1)	0.000268	0.000199	1.345405	0.178
					A1(1)	-0.251133	0.520293	-0.482676	0.629
					M(2)	0.000375	0.000279	1.341809	0.179
	Distribution (D		lom)		A1(2)	0.231851	0.652811	0.355158	0.722
		egree of Freed	10111)		M(3)	0.000392	0.000148	2.646134	0.008
C(44)	52 61603	494 4564	0 109609	0.0135	A1(3)	-0 077905	0 445042	-0 175050	0.861
0(44)	52.01005	404.4504	0.100000	0.3155	R(12)	0 501524	0 259212	1 934804	0.053
oa likelihood	339.2191	Schwarz crite	rion	-14.10647	R(1,3)	0.511081	0.224333	2 278228	0.022
va. loa likelihood	2.692215	Hannan-Quin	in criter.	-14.70926	P(2,3)	0.272723	0.253590	1 075404	0.022
kaike info criterion	-15.05805					0.212125	0.233300	1.073434	0.202
stimation Comm	and:				Variance and Covar	iance Equatio	ons:		
RCH(DERIV=AA.	TDIST) @C	CC C ARCH	H(1)		CARCH1 = C(25) + /		1/ 1/02		
					GARCHT = C(35) +		0(4)40		
stimated Equation	ns:				GARCH2 = C(37) +	C(38)"RESID	2(-1)*2		
					GARCH3 = C(39) +	C(40)*RESID	3(-1)^2		
1=C(10)+ C(11)	*Y_1(-1)+C(12)*T+C(13	3)*Z1+C(1	4)*T*Z1	COV(1, 2 - C(41)) = C(41)				
2=C(20)+C(21)*	Y 2(-1)+C(2	24)*T*Z1	-		001/2 - 0(41) @		I GARCHA	-)	
3=C(30)+C(31)*	Y_3(-1)+C(2	32)*T+C(33)*71+C(3/	4)*T*71	COV1_3 = C(42)*@	SQRT(GARCI	H1*GARCH3	3)	
_3=0(30)+0(31)	1_3(-1)+0(3	2) 1+0(33	/21+0(3-	+) 2	COV2_3 = C(43)*@	SQRT(GARCI	H2*GARCH3	3)	
ubstituted Coeffic	ients:				Substituted Coefficie	ents:			
1-1 050+0.000	X 1(1)+0	000*7+0 44	0*74 0 0	00****74					
_11.009+0.090		000 1+0.45	21-0.0	091121	GARCH1 = 0.00026	7768110001	- 0 2511329	76834*RF	SID1(-1
	Y_2(-1)+0.0	003*T*Z1			GARCITI = 0.00020	4644760600	- 0.2311323	00004 ILL	
_2=1.103+0.876*	*V 2(1)+0 0	092*T+0.36	2*Z1-0.00)9*T*Z1	GARCH2 = 0.00037 GARCH3 = 0.00039	4011/00099	+ 0.2318512	204332"RE	-31D2(-
_2=1.103+0.876* _3=-0.605+0.668	1_3(-1)+0.0				0/11010-0.00000	23/0233009	-0.0779040	94//4/ R	EOID2(
_2=1.103+0.876* _3=-0.605+0.668 ariance and Cova	riance Repr	resentation	s:		001/1 0 = 0.501503	23/0233009		14*0ADOU	
_2=1.103+0.876* _3=-0.605+0.668 ariance and Cova	riance Repr	resentation	S:		COV1_2 = 0.501523	3819388*@S	QRT(GARCH	H1*GARCH	2)
_2=1.103+0.876* _3=-0.605+0.668 ariance and Cova ====================================	ariance Repr ====== A1(i)*RESID	resentation	S:		COV1_2 = 0.501523 COV1_3 = 0.511080	819388*@S(942222*@S(QRT(GARCH	H1*GARCH	2) 3)

Figure 1.34 Statistical results based on an ARCH(1) model

1.9.4 The Application of Instrumental Variables Models

Based on the variables Y_1 , Y_2 , Y_3 , $Y_1(-1)$, $Y_2(-1)$, $Y_3(-1)$, Z1 and the time t used in previous models, a lot of instrumental variables models can easily be subjectively defined. Corresponding to an instrumental variables model (IVM), Agung (2009a) states that there would be two stages of problems

(TSOP) in defining instrumental variables models, since the true population model can never be known and there is no general rule as to how to select the best possible set of instrumental variables.

Example 1.24 An application of the 2SLS estimation method

As an extension of the model in Figure 1.32, under the assumption that Y_1 , Y_2 and Y_3 are correlated, and we define that the effect of Z1 on the trivariate (Y_1 , Y_2 , Y_3) depends on the time t, then by using *trial-and-error methods*, the statistical results presented in Figure 1.34 are obtained using the 2SLS. Based on these results, the following notes and conclusions are made.

- 1. Even though each of Y_2 and Y_3 has an insignificant adjusted effect on Y_1 , the joint effects of Y_2 and Y_3 on Y_1 are significant, since the null hypothesis H_0 : C(11) = C(12) = 0 is rejected based on a Chi-square test of $\chi_0^2 = 324.1802$ with df = 2 and a *p*-value = 0.000. The same conclusions are obtained based on the other two regressions. Therefore, we can conclude that the data supports the assumption that variables Y_1 , Y_2 and Y_3 are correlated.
- 2. In a statistical sense, a reduced model should be explored, since one of the independent variables in each regression has a *p*-value > 0.20 (or 0.25). Do it as an exercise.

Example 1.25 An application of the 3SLS estimation method

As a modification of the MAR(1)_IVM in Figure 1.35, the following system specification is considered.

$$y_{-1} = c(10) + c(11)^{*}y_{-2} + c(12)^{*}Y_{-3} + [ar(1) = c(13)] @c z1@t t^{*}z1$$

$$y_{-2} = c(20) + c(21)^{*}Y_{-1} + c(22)^{*}Y_{-3} + [ar(1) = c(23)] @c z1@t t^{*}z1$$

$$y_{-3} = c(30) + c(31)^{*}Y_{-1} + c(32)^{*}Y_{-2} + [ar(1) = c(33)] @c z1@t t^{*}z1$$

(1.21)

However, an error message of "*Near Singular Matrix*" is obtained so trial-and-error methods should be applied to delete one or two of the variables from the model in (1.21). Finally, an unexpected good fit model is obtained, in a statistical sense, since each of the independent variables has significant adjusted effect with a *p*-value = 0.000, as presented in Figure 1.36.

System: SYS28 Estimation Method: It Date: 11/04/09 Time Sample: 1951 1992 Included observation Total system (balanc Convergence achiev	terative Two-Stage e: 15:51 us: 43 :ed) observations 4 ed after 22 iteration	Least Square 126 ns	s		Equation: Y_1=C(10)+ C(11)*Y_2+C(12)*Y_3+[AR(1)=C(13)] Instruments: C T Z1 T*Z1 Y_1(-1) Y_2(-1) Y_3(-1) Observations: 42 R-squared 0.998316 Mean dependent var 9.07615 Adjusted R-squared 0.998183 S.D. dependent var 0.38151' S.E. of regression 0.016262 Sum squared resid 0.01004 Durbin-Watson stat 1.542501 0.01004
	Coefficient	Std. Error	t-Statistic	Prob.	Equation: Y_2=C(20)+C(21)*Y_1+C(22)*Y_3+[AR(1)=C(23)]
C(10)	0 107289	1 086964	0.098706	0 9215	Instruments: C T Z1 T*Z1 Y_2(-1) Y_1(-1) Y_3(-1)
C(11)	0.626658	0.435041	1,440455	0.1525	Observations: 42
C(12)	0.365074	0.339414	1.075602	0.2844	R-squared 0.997385 Mean dependent var 9.098903
C(13)	0.824692	0.062984	13.09361	0.0000	Adjusted R-squared 0.997179 S.D. dependent var 0.39286
C(20)	1.609625	0.672274	2.394299	0.0183	S.E. of regression 0.020868 Sum squared resid 0.01654
C(21)	0.201697	0.351989	0.573021	0.5678	Durbin-Watson stat 1.662941
C(22)	0.640546	0.303956	2.107366	0.0373	
C(23)	0.776692	0.068356	11.36242	0.0000	Equation: Y_3=C(30)+C(31)*Y_1+C(32)*Y_2+[AR(1)=C(33)]
C(30)	-2.091905	0.534275	-3.915405	0.0002	Instruments: C T Z1 T*Z1 Y_3(-1) Y_1(-1) Y_2(-1)
C(31)	0.205612	0.417156	0.492891	0.6230	Observations: 42
C(32)	0.997769	0.435167	2.292841	0.0237	R-squared 0.997115 Mean dependent var 8.86885
C(33)	0.753684	0.080540	9.357851	0.0000	Adjusted R-squared 0.996887 S.D. dependent var 0.44637
					S.E. of regression 0.024905 Sum squared resid 0.02356
Determinant residual	l covariance	7.79E-14			Durbin-Watson stat 1.713668

Figure 1.35 Statistical results based on a MAR(1) instrumental variables model, using the 2SLS estimation method

40 Panel Data Analysis Using EViews

System: SYS29 Estimation Method: Thr Date: 11/04/09 Time: 1 Sample: 1951 1992 Included observations: Total system (balanced Iterate coefficients after Convergence achieved	ee-Stage Least 16:35 43 I) observations 1 one-step weigh after: 1 weight n	Squares 126 ting matrix natrix, 467 tota	al coef iteration	s	Equation: Y_1=C(10)+ C(11)*Y_2+C(12)*Y_3+[AR(1)=C(13)] Instruments: C Z1 @ T T*Z1 Y_1(-1) Y_2(-1) Y_3(-1) Observations: 42 R-squared 0.995587 Mean dependent var Adjusted R-squared 0.995239 S.D. dependent var S.E. of regression 0.026326 Sum squared resid Durbin-Watson stat 1.735812	9.076151 0.381517 0.026336
	Coefficient	Std. Error	t-Statistic	Prob.	Equation: Y_2=C(20)+C(21)*Y_1+C(22)*Y_3+[AR(1)=C(23)] Instruments: C Z1 @ T T*Z1 Y 2(-1) Y 1(-1) Y 3(-1)	
C(10)	2 370430	0 412806	5 742231	0 0000	Observations: 42	
C(11)	-0.494364	0.142092	-3.479179	0.0007	R-squared 0.983786 Mean dependent var	9.098903
C(12)	1,263649	0.123065	10.26818	0.0000	Adjusted R-squared 0.982506 S.D. dependent var	0.392866
C(13)	0.752916	0.086334	8,721014	0.0000	S.E. of regression 0.051963 Sum squared resid	0.102606
C(20)	4.679244	0.765912	6.109373	0.0000	Durbin-Watson stat 1.733474	
C(21)	-1.947988	0.347784	-5.601151	0.0000		
C(22)	2,492620	0.320799	7,770038	0.0000	Equation: Y_3=C(30)+C(32)*Y_2+[AR(1)=C(33)]	
C(23)	0.750676	0.086492	8.679110	0.0000	Instruments: C Z1 @ T T*Z1 Y_3(-1) Y_2(-1)	
C(30)	-2.230141	0.518800	-4.298655	0.0000	Observations: 42	
C(32)	1.217461	0.055994	21,74282	0.0000	R-squared 0.996452 Mean dependent var	8.868850
C(33)	0.753724	0.053324	14.13487	0.0000	Adjusted R-squared 0.996270 S.D. dependent var	0.446376
					S.E. of regression 0.027261 Sum squared resid	0.028983
Determinant residual c	ovariance	4.36E-15			Durbin-Watson stat 1.678885	

Figure 1.36 Statistical results based on a MAR(1) instrumental variables model, using the 3SLS estimation method

Note that the regression of Y_3 only has a single independent variable Y_2 . The reader could try deleting other variable(s) from the model in (1.20), including modifying the instrumental variables, but leaving the AR(1) terms as they are.

1.10 Models with an Environmental Multivariate

If an endogenous variable by states, namely Y_{-i_t} , i = 1, ..., N, is known or defined to be effected by the same environmental multivariate, say $Z_t = (Zl_t, ..., Zk_t, ...)$, then the set of Y_{-i_t} , i = 1, ..., N, should be correlated, including the possibility of having causal relationships for some states. As an illustration, the following section presents selected models using two endogenous variables Y_{-1} and Y_{-2} , which could easily be extended to three or more states.

1.10.1 Bivariate Correlation and Simple Linear Regressions

Data analysis based on the bivariate correlation of Y_{i_t} and Y_{j_t} , the simple linear regression of Y_{i_t} on Y_{j_t} , and the simple linear regression of Y_{j_t} on Y_{i_t} , would give exactly the same values of the *t*-statistic for testing the hypothesis that Y_{j_t} is a causal factor of Y_{i_t} , as well as Y_{i_t} and Y_{j_t} having simultaneous causal effects.

Based on these findings, it can be concluded that correlation analysis can be used to test the hypothesis stated earlier. On the other hand, it could be said that independent of a model, the independent variable may not be a causal factor of the corresponding dependent variable. Note that the causal relationship between any pair of variables should be derived based on a strong theoretical foundation: it is not based on the conclusion of testing a hypothesis. See the following example.

Example 1.26 Special findings

Figure 1.37(a), (b) and (c), respectively, present the statistical results based on the bivariate correlation of Y_1_t and Y_2_t , the simple linear regression (SLR) of Y_1_t on Y_2_t , and the SLR of Y_2_t on Y_1_t , which show exactly the same values of the *t*-statistic of $t_0 = 46.39045$.

Figure 1.37 Statistical results based on (a) covariance analysis of Y_1_t and Y_2_t (b) the SLR of Y_1_t on Y_2_t and (c) the SLR of Y_1_t on Y_2_t

Based on these results, the following notes and comments are presented.

- 1. Even though the regressions have very small DW-statistics, because their R-squares are very large, namely $R^2 = 0.981217$, then the SLR should be considered to be a good fit.
- 2. As an alternative analysis, Figure 1.38(a) presents the statistical results based on system equations of two SLRs using the LS estimation method, where both SLRs also show the same values of the *t*-statistic of $t_0 = 46.39045$. Thus the results of these system equations can be represented by the result of the covariance analysis in Figure 1.37(a). In other words, the simultaneous causal effects of Y_1 and Y_2 tested using the system equations in Figure 1.38(a) can be substituted by covariance analysis.

Estimation Method: Lea Date: 11/18/09 Time: 0 Sample: 1950 1992 Included observations: 4 Total system (balanced)	st Squares 9:02 43) observations	86				Estimation Method: See Date: 11/18/09 Time: 0 Sample: 1950 1992 Included observations: / Total system (balanced) Linear estimation after (mingly Unrela 9:34 43) observations one-step weigt	ted Regression 86 nting matrix		
	Coefficient	Std. Error	t-Statistic	Prob.			Coefficient	Std. Error	t-Statistic	Prob.
C(10) C(11) C(20) C(21)	0.519552 0.940785 -0.372242 1.043070	0.184257 0.020280 0.203867 0.022485	2.819716 46.39045 -1.825905 46.39045	0.0060 0.0000 0.0715 0.0000		C(10) C(11) C(20) C(21)	0.438979 0.949662 -0.461398 1.052913	0.127950 0.014068 0.141554 0.015598	3.430871 67.50334 -3.259524 67.50334	0.0009 0.0000 0.0016 0.0000
Determinant residual co	variance	1.67E-07				Determinant residual co	variance	3.78E-12		
Equation: Y_1=C(10)+C	(11)*Y_2					Equation: Y_1=C(10)+C Observations: 43	(11)*Y_2			
R-squared	0.981305	Mean depend	lent var	9.058594	1 1	R-squared	0.981217	Mean depend	ent var	9.058594
Adjusted R-squared	0.980849	S.D. depende	ntvar	0.394138	1 1	SE of regression	0.980759	S.D. depende	regid	0.394138
Durbin-Watson stat	0.054544	Sum squared	resia	0.121977		Durbin-Watson stat	0.176200	oun squared	16314	0.122347
Equation: Y_2=C(20)+C Observations: 43	(21)*Y_1					Equation: Y_2=C(20)+C Observations: 43	(21)*Y_1			
R-squared	0.981305	Mean depend	lent var	9.076509	1 1	R-squared	0.981217	Mean depend	ent var	9.076509
Adjusted R-squared	0.980849	S.D. depende	ntvar	0.415012		Adjusted R-squared	0.980759	S.D. depende	ntvar	0.415012
S.E. of regression Durbin-Watson stat	0.057433 0.177446	Sum squared	resid	0.135238		S.E. of regression Durbin-Watson stat	0.057567 0.176219	Sum squared	resia	0.135870
	(4	a)					((b)		

Figure 1.38 Statistical results based on (a) a system equation of SLRs of Y_1_t and Y_2_t , and (b) a MAR(1) of Y_1_t on Y_2

42 Panel Data Analysis Using EViews

- 3. For a comparison, Figure 1.38(b) presents the statistical results using the SUR estimation method, which show different values of the *t*-statistic of $t_0 = 67.50334$ for both SLRs.
- 4. Compared to the regressions in Figure 1.37(b), the four regressions in Figure 1.38 also have very small DW-statistics, but very large R-squares.
- 5. Further analysis can easily be done based on MLV(p), MAR(q) or MLVAR(p,q) models using the variables Y_1 and Y_2 , which will have much larger DW-statistics. Do it as an exercise.

1.10.2 Simple Models with an Environmental Multivariate

Since Y_1_t and Y_2_t are correlated, specifically linearly correlated, then simple models of Y_1_t and Y_2_t with an environmental multivariate Z_t and the time *t* as independent variables will have the following general equation.

$$Y_{-1_{t}} = C(10) + C(11)^{*} Y_{-2_{t-j}} + F(t, Z_{t}, C(1^{*})) + \mu_{1t}$$

$$Y_{-2_{t}} = C(20) + C(21)^{*} Y_{-1_{t-j}} + F(t, Z_{t}, C(2^{*})) + \mu_{1t}$$
(1.22)

for a subscript $j \ge 0$, where $F(t, \mathbf{Z}_{p}^{*})$ can be any functions $ZI_{t}, \ldots, Zk_{t}, \ldots$, and the time *t*, including some selected two- and three-ways of their interactions, with a finite number of parameters but no constant parameter. For instance, if the effect of ZI on Y_{i} depends on Z2, then $ZI^{*}Z2$ should be used as an independent variable or a term of the function $F(t, \mathbf{Z}_{t}^{*})$. Note that there would be a lot of possible time-series models.

However, the following four groups of models will be considered, corresponding to selected forms of the function $F(t, \mathbf{Z}_{b}^{*})$, such as follows:

- 1. Additive models or two functions, namely $F(t, \mathbf{Z}_{b}^{*}) = F_{I}(t,^{*}) + F_{2}(\mathbf{Z}_{b}^{*})$. Refer to the models (1.4a) to (1.4d) for the alternative functions of $F_{I}(t,^{*})$, and $F_{2}(\mathbf{Z}_{b}^{*})$ can be additive or interaction functions of the components of \mathbf{Z}_{t} .
- 2. Models with trend: $F(t, \mathbf{Z}_{t}, C(i^{*}) = C(i2)^{*}t + F_{2}(\mathbf{Z}_{t}, C(ik)), i = 1, 2, \text{ and } k > 2.$
- 3. Models with Trend-Related Effects (TRE):

$$F(t, \mathbf{Z}_t, C(i^*) = C(i2)^* t + F_2(\mathbf{Z}_t, C(ik)) + t^* F_2(\mathbf{Z}_t, C(i^*)), \quad \text{for } i = 1, 2, \text{ and } k > 2.$$

4. Models without the time *t*: $F(t, \mathbf{Z}_{b}^{*}) = F_{2}(\mathbf{Z}_{b}^{*})$. Refer to all seemingly causal models (SCMs) presented in Chapter 4 (Agung, 2009a).

Comparing these to the models in Figure 1.38, the models in (1.22), for j = 0 in fact show that Y_1_t and Y_2_t have simultaneous causal relationships.

To generalize, the following general model can be applied

$$G_{1}(Y_{1_{t}}) = C(10) + C(11)^{*}Y_{2_{t-j}} + F(t, Z_{t}, C(1^{*})) + \mu_{1t}$$

$$G_{2}(Y_{2_{t}}) = C(20) + C(21)^{*}Y_{1_{t-j}} + F(t, Z_{t}, C(2^{*})) + \mu_{1t}$$
(1.23)

where $G_i(Y_i_t)$ is a function of Y_{i_t} having no parameter, such as $G_i(Y_i_t) = Y_{i_t}$, $log(Y_i_t)$ or $log[(Y_i_t-Li)/(Ui-Y_i_t)]$, where Li and Ui are the lower and upper bounds of Y_i_t , which should be subjectively selected by the researchers.

If there are correlated endogenous variables for three states, namely Y_1 , Y_2 and Y_3 , then the simple models of $G_i(Y_{i_t})$, i = 1, 2 and 3 will have the general equation as follows:

$$G_{1}(Y_{1_{t}}) = C(10) + C(11)^{*}Y_{2_{t-j}} + C(12)^{*}Y_{3_{t-j}} + F(t, Z_{t}, C(1^{*})) + \mu_{1_{t}}$$

$$G_{2}(Y_{2_{t}}) = C(20) + C(21)^{*}Y_{1_{t-j}} + C(22)^{*}Y_{3_{t-j}} + F(t, Z_{t}, C(2^{*})) + \mu_{1_{t}}$$

$$G_{3}(Y_{3_{t}}) = C(30) + C(31)^{*}Y_{1_{t-j}} + C(32)^{*}Y_{2_{t-j}} + F(t, Z_{t}, C(3^{*})) + \mu_{1_{t}}$$
(1.24)

1.10.3 The VAR Models

1.10.3.1 Basic General VAR Models

For illustration, a VAR model of Y_1 and Y_2 with "1 p" as the lag intervals for the endogenous variables, and the time t and Z_t as exogenous variables will be considered. The model considered has the following general equation.

$$Y_{-1_{t}} = C(110) + \sum_{j=1}^{p} C(11j)^{*} Y_{-1_{t-j}} + \sum_{j=1}^{p} C(12j)^{*} Y_{-2_{t-j}} + F(t, Z_{t}, C(13^{*})) + \varepsilon_{1t}$$

$$Y_{-2_{t}} = C(210) + \sum_{j=1}^{p} C(21j)^{*} Y_{-1_{t-j}} + \sum_{j=1}^{p} C(22j)^{*} Y_{-2_{t-j}} + F(t, Z_{t}, C(23^{*})) + \varepsilon_{1t}$$
(1.25)

1.10.3.2 Special VAR Interaction Models

With multivariate environmental variables, it is generally known that an effect of at least one of its components on the endogenous variables depends on the other component(s). Under these criteria, this section presents three alternative VAR interaction models of Y_1 , Y_2 and Y_3 with the lag intervals for the endogenous: "1 1", and the environmental variables Z1 and Z2, such as follows:

1. A VAR interaction model with trend:

$$Y_{i} = C(i0) + C(i1)^{*}Y_{-1}(-1) + C(i2)^{*}Y_{-2}(-1) + C(i3)^{*}Y_{-3}(-1) + C(i4)^{*}t + C(i5)^{*}Z1 + C(i6)^{*}Z2 + C(i7)^{*}Z1^{*}Z2$$
(1.26)
for $i = 1, 2, 3$

2. A VAR interaction model with time-related effects:

$$Y_{i} = C(i0) + C(i1)^{*}Y_{1}(-1) + C(i2)^{*}Y_{2}(-1) + C(i3)^{*}Y_{3}(-1) + C(i4)^{*}t + C(i5)^{*}Z1 + C(i6)^{*}Z2 + C(i7)^{*}Z1^{*}Z2 + C(i8)^{*}t^{*}Z1 + C(i9)^{*}t^{*}Z2 + C(i10)^{*}t^{*}Z1^{*}Z2$$
(1.27)
for $i = 1, 2, 3$

3. A VAR interaction model without the time *t*:

$$Y_i = C(i0) + C(i1)^* Y_1(-1) + C(i2)^* Y_2(-1) + C(i3)^* Y_3(-1) + C(i4)^* Z1 + C(i5)^* Z2 + C(i6)^* Z1^* Z2$$
(1.28)
for $i = 1, 2, 3$

Corresponding to these VAR interaction models, note the following:

- 1. In practice, a reduced model obtained would be a good fit in a statistical sense, because the three variables Z1, Z2 and $Z1^*Z2$ are highly or significantly correlated in general. More so for the independent variables of the model in (2.27).
- 2. Since it is defined that the effects of Z1 (Z2) on Y_{-i} , i = 1,2 and 3 depend on Z2 (Z1) in a theoretical sense, then the interaction $Z1^*Z2$ should be used in the model, as well as in the reduced model(s). So a reduced model should be obtained by deleting either Z1 or Z2, or both Z1 and Z2. Note that a model can be considered an acceptable or good fit, even though some of its independent variables have insignificant adjusted effects.
- 3. Note that three models here are hierarchical two- and three-way interaction models. However, corresponding to the earlier notes, an empirical acceptable model obtained would be non-hierarchical in general. See the following example.

Example 1.27 A reduced VAR interaction model

Figure 1.39 presents the statistical results based on two reduced models of the VAR interaction model in (1.26). Based on these results, the following conclusions and notes are made.

1. By using the full model in (1.26), each of the independent variables *Z1*, *Z2* and *Z1***Z2* has insignificant adjusted effects. By deleting either *Z1* or *Z2*, the results in Figure 1.39(a) and (b) are obtained.

Vector Autoregression E Date: 11/17/09 Time: 1 Sample (adjusted): 195 Included observations: 4 Standard errors in () & t	stimates 3:53 1 1992 42 after adjustmer -statistics in []	nts		Vector Autoregression E Date: 11/17/09 Time: 1 Sample (adjusted): 195 Included observations: 4 Standard errors in () & t	stimates 4:31 1 1992 42 after adjustmer -statistics in []	nts	
	Y_1	Y_2	Y_3		Y_1	Y_2	Y_3
Y_1(-1)	0.491574 (0.07191) [6.83628]	-0.332933 (0.13066) [-2.54814]	-0.140681 (0.11241) [-1.25148]	Y_1(-1)	0.493659 (0.07233) [6.82556]	-0.332149 (0.13155) [-2.52493]	-0.128280 (0.11174) [-1.14802]
Y_2(-1)	0.138289 (0.04156) [3.32759]	0.957298 (0.07551) [12.6773]	0.220475 (0.06497) [3.39357]	Y_2(-1)	0.136375 (0.04279) [3.18684]	0.953908 (0.07783) [12.2557]	0.205518 (0.06611) [3.10854]
Y_3(-1)	-0.085190 (0.10994) [-0.77488]	-0.214036 (0.19976) [-1.07144]	0.337287 (0.17187) [1.96245]	Y_3(-1)	-0.094441 (0.11487) [-0.82216]	-0.216255 (0.20893) [-1.03507]	0.283936 (0.17747) [1.59991]
с	2.285288 (1.24927) [1.82929]	4.147653 (2.26998) [1.82717]	4.394102 (1.95300) [2.24992]	С	2.264351 (0.40767) [5.55438]	3.244793 (0.74149) [4.37606]	3.073037 (0.62984) [4.87909]
т	-0.002228 (0.00155) [-1.43840]	0.002815 (0.00282) [1.00008]	0.004795 (0.00242) [1.97991]	т	-0.001988 (0.00198) [-1.00489]	0.003159 (0.00360) [0.87810]	0.006566 (0.00306) [2.14866]
Z1	-0.005993 (0.11600) [-0.05166]	-0.105799 (0.21078) [-0.50194]	-0.174082 (0.18135) [-0.95994]	Z2	0.020480 (0.11596) [0.17662]	0.096814 (0.21091) [0.45904]	0.240974 (0.17915) [1.34510]
Z1*Z2	0.023509 (0.00535) [4.39597]	0.025581 (0.00972) [2.63254]	0.027959 (0.00836) [3.34432]	Z1*Z2	0.021824 (0.00872) [2.50330]	0.014612 (0.01586) [0.92153]	0.004119 (0.01347) [0.30583]
	(a)				(b)		

Figure 1.39 Statistical results based on two reduced models of the model in (1.26)

- 2. The model in Figure 1.39(a) is a better model, in a statistical sense, since the effect of the interaction ZI^*Z2 on each Y_i , i = 1,2 and 3 is significant, based on *t*-statistics greater than 2.6. Based on this model, the following conclusions are derived.
 - 2.1 The data supports the hypothesis stated that the effect of Z1 (Z2) on each Y_i depends on Z2 (Z1).
 - 2.2 An disadvantage of this model is ZI has a negative adjusted effect on each Y_i , in fact ZI and Y_i are significantly positive correlated, which shows the unexpected impact of the multicollinearity between the independent variables, specifically between ZI and ZI^*ZZ .
 - 2.3 Furthermore, since ZI has insignificant adjusted effect on each Y_i , based on such a small *t*-statistics, then ZI could be deleted. Try it as an exercise.
- 3. On the other hand, based on the results in Figure 1.39(b) we draw the following conclusions.
 - 3.1 Since the interaction $Z1^*Z2$ has a significant adjusted effect on Y_1 , it cannot be deleted from the VAR model.
 - 3.2 Since Z2 has an insignificant adjusted effect on each Y_i , based on such a small *t*-statistics, then Z2 could be deleted. The reduced model obtained would be the same as the reduced model by deleting Z1 from the model in Figure 1.39(a). We find the final reduced model can be considered the best fit, conditional for the data used.

Example 1.28 Additional analyses for a VAR model

As an illustration, the VAR model in Figure 1.39(a) will be referred to. EViews provides so many alternative options for doing additional analyses for a VAR model. By selecting *View/Residuals Tests*, the options in Figure 1.40(a) shown on the screen, and Figure 1.40(b) obtained by selecting *View/Lag Structure*. However, only several analyses will be demonstrated, such as follows:

1. Residual Analysis

1.1 Residual Autocorrelation Tests

Figure 1.41 presents the two statistics for testing the residual autocorrelation, which shows the null hypothesis, no residual autocorrelation up to lag 4, is accepted. As a result, the VAR model does not have the autocorrelation problem.

1.2 Basic Assumptions of Residuals

Figure 1.42 shows that the null hypothesis, residuals are multivariate normal, is accepted. So it can be concluded that the data supports a basic assumption of the residuals. The other assumption is the

Figure 1.40 Options for residual and lag structure, using EViews 6 or 7 Beta

ample: 1 icluded c	950 1992 950 servations: 4	2			
Lags	Q-Stat	Prob.	Adj Q-Stat	Prob.	df
1	3.150951	NA*	3.227804	NA*	NA*
2	14.16143	0.5867	14.78880	0.5402	16
3	23.67465	0.5382	25.03382	0.4605	25
4	34.52254	0.4428	37.02358	0.3312	34

Null Hypol Date: 11/1 Sample: 1 Included o	hesis: no serial 9/09 Time: 09: 950 1992 observations: 42	correlation 37
Lags	LM-Stat	Prob
1	5.867162	0.7531
2	12.27446	0.1983
3	8.502711	0.4844
4	10.25424	0.3303
4 Probs fror	10.25424 n chi-square wit	0.3303 h 9 df.

Figure 1.41 The residual autocorrelation tests for the VAR model in Figure 1.39(a)

VAR Residual N Orthogonalizati Null Hypothesis Date: 11/19/09 Sample: 1950 1	Normality Tests on: Cholesky (L s: residuals are Time: 09:52 1992	utkepohl) multivariate norm	nal			Component 1 2 3	Kurtosis 2.234073 4.403388 2.912283	Chi-sq 1.026626 3.446619 0.013465	df 1 1 1	Prob. 0.3110 0.0634 0.9076
Included observ	ations: 42					Joint		4.486710	3	0.2135
Component	Skewness	Chi-sq	df	Prob.		Component	Jarque-Bera	df	Prob.	
1	0.274744	0.528389	1	0.4673			1 666016	2	0.4505	
2	-0.235376	0.387813	1	0.5335	1 1	2	2.024422	2	0.4595	
3	-0.156196	0.170780	1	0.6794		2	3.03443Z	2	0.1470	
loint		1 086083	3	0 7802			0.164245	2	0.9120	
		1.000903		0.7802		Joint	5.573693	6	0.4726	

Figure 1.42 The residual normality tests for the VAR model in Figure 1.39(a)

heterokedasticity of the residuals, which can easily be done by selecting the *Residual Tests/White heterokedasticity(*)*. Corresponding to the testing of the basic assumptions of the residuals, refer to the special notes and comments presented in Section 2.14.3 (Agung, 2009a).

2. The Lag Structure

2.1 The AR Roots

By selecting *Lag Structure/AR Roots*, it is found that the three AR Roots are strictly less than one. Then we can conclude that the VAR satisfies the stability condition.

2.2 Granger Causality Tests

By selecting Lag Structure/Granger Causality/Block Exogeneity Wald Tests, the results in Figure 1.43 are obtained for making conclusions of the corresponding tests. For example, Y_1 and Y_2 have significant Granger causalities with the *p*-values of 0.0009 and 0.0108, respectively, but Y_1 and Y_3 have insignificant Granger causalities with *p*-values of 0.4384 and 0.2108, respectively.

However, the three variables Y_1 , Y_2 and Y_3 have significant Granger causalities with *p*-values of 0.0029, 0.0015 and 0.0019, respectively.

2.3 The VAR Lag Exclusion Wald Tests

Based on the results in Figure 1.44 we can conclude that the first lags $Y_1(-1)$, $Y_2(-1)$ and $Y_3(-1)$ have significant joint effects on each of Y_1, Y_2 and Y_3 , as well as on the trivariate (Y_1, Y_2, Y_3) .

Date: 11/18/09 Time: 15:28 Sample: 1950 1992 Included observations: 42								
Dependent vari	able: Y_1							
Excluded	Chi-sq	df	Prob.					
Y_2	11.07285	1	0.0009					
Y_3	0.600436	1	0.4384					
A11	11.66778	2	0.0029					

Excluded	Chi-sq	df	Prob.
Y_1 Y_3	6.493032 1.147988	1 1	0.0108 0.2840
All	12 00939	2	0.0015
ependent vari	able: Y_3	2	0.0015
ependent vari	able: Y_3 Chi-sq	df	Prob.
Excluded	able: Y_3 Chi-sq 1.566190	df 1	Prob. 0.2108
Excluded Y_1 Y_2	able: Y_3 Chi-sq 1.566190 11.51633	2 df 1 1	Prob. 0.2108 0.0007

Figure 1.43 Statistical results for the VAR Granger causality tests

Figure 1.44 The VAR lag exclusion Wald tests

However, in general, the joint effects of the exogenous variables of a VAR cannot be tested using the VAR model. For this reason, Agung (2009a) recommends applying the object *System*, instead of the VAR model, since by using the object *System*, each regression in the model can have a different set of independent variables, and various hypotheses can easily be tested using Wald tests.

2.4 The Lag Order Selection Criteria

By selecting Lag Structure/Lag Length Criteria..., and then insert the lags to include $= 2 \dots OK$, the results in Figure 1.45 are obtained. These results show that 1 (one) is the lag order selected by the five criteria. Therefore, we can conclude that the VAR model is best based on these five criteria.

Lag	LogL	LR	FPE	AIC	SC	HQ
0	291.6335	NA	2.40e-10	-13.64066	-13.13912	-13.45803
1	355.7553	106.3485*	1.64e-11*	-16.32953*	-15.45185*	-16.00992*
2	359.8311	6.163353	2.13e-11	-16.08932	-14.83549	-15.63275

Figure 1.45 The VAR lag order selection criteria using two lags

Lag	LogL	LR	FPE	AIC	SC	HQ
0	288.6945	NA	9.53e-11	-14.56287	-14.04574	-14.37888
1	331.8760	70.45396	1.59e-11	-16.36189	-15.45691*	-16.03991
2	338.3978	9.611067	1.86e-11	-16.23146	-14.93863	-15.77148
3	351.5898	17.35788	1.57e-11	-16.45209	-14.77141	-15.85412
4	366.8876	17.71331*	1.22e-11*	-16.78356*	-14.71503	-16.04759*
5	375.2866	8.398951	1.43e-11	-16.75192	-14.29555	-15.87796

Figure 1.46 The VAR lag order selection criteria using five lags

However, we find that by inserting lags to include greater than 2, contradictory conclusions could be obtained. As an illustration, Figure 1.46 presents another result using five lags, which shows that 1 (one) is the lags' order selected by the SC criterion only. On the other hand, an error message is obtained, "*Near singular matrix*", using 10 lags. These contradictory findings lead to a great problem, since there are 9 (nine) alternatives results using 1–9 lags to consider. Based on the author's point of view, the simplest possible model should be the best selection. As an exercise, do the analysis based on a VAR model using the lags interval for the endogenous "4 4" and "1 4".

1.10.3.3 Special Notes and Comments

Corresponding to the environmental multivariate $\mathbf{Z}_t = (ZI_t, \dots, ZK_t)$, which has been defined or known to be the causal factor of the set of the endogenous variables Y_{i_t} , $i = 1, \dots, N$ of the *N*-states (individuals), the following special notes and comments are made.

- 2. For a small number of (N + K), say 2–5, then all models presented in Agung (2009a) and Section 1.8, should be applicable. Following the step-by-step methods presented in Agung (2009a), everyone should have no difficulty in doing the data analysis.
- 3. On the other hand for a large *N*, reducing the dimension is recommended using the following alternative methods.
 - 3.1 To defined groups of states (individuals), using either the judgmental method or cluster analysis, then the groups' statistics, such as the means and SDs, can be considered as the derived time series for further time-series data analysis.
 - 3.2 To reduce the dimension using factor analysis. Then the time series latent variables models would be applied. Refer to Chapter 10 in Agung (2011).
- 4. Similarly, for a large K of the environmental multivariate. However, note that some of its components might not be correlated, in a theoretical sense.
- 5. Furthermore, the environmental variables can be dummy variables of the time periods, thereby piecewise time-series models should be applied.

1.11 Special Piece-Wise Models

As an illustration, the panel data used are the data of daily stock prices of 15 individuals (agencies or industries) consisting of eight banks and seven mining companies, used by one of the author's advisories, namely Mulia (2010), for her thesis. The symbols B_ and M_ respectively, are used to identify the stock prices (*SP*) of the banks and mining companies. Furthermore, we see there are two break time points, which represent the time points of the *auto-rejection regulations* or *price limitations* of the stock prices. The objectives of the analysis are to study the differences of the statistics, such as growth rates, variances (volatilities) and means of *SP*, between 15 days before and after each break point so that four time periods to be considered in the analyses. For a better graphical presentation of the statistical results, the break points are set at *Day* = 0 and *Day* = 40, so that the growth curves of each individual stock price (*SP*) are not very far apart. See the following examples.

1.11.1 The Application of Growth Models

For a preliminary information of the data set, and further data analysis, Figure 1.47(a) and (b) present the scatter graphs of (*Mean_Bank*, *Day*) and (*Mean_Mining,Day*) with their *Nearest Neighbor Fit Curves*. The individual time series, namely B_ and M_, can easily be presented. Try it as an exercise.

Example 1.29 A four-piece classical growth model

Figure 1.48 presents the statistical results based on a four-piece classical growth model of the mean stock prices of eight banks, namely *Mean_Bank*, using four dummy variables, namely *D1*, *D2*, *D3*, and *D4*. Based on these statistical results, the following notes and conclusions are made.

1. The regression in Figure 1.48 represents four classical growth functions, as follows:

$$log(Mean_Bank) = 7.089238 - 0.030904^*Day, for Period = 1$$

 $log(Mean_Bank) = 7.463123 - 0.020809^*Day, for Period = 2$
 $log(Mean_Bank) = 7.401909 + 0.002723^*Day, for Period = 3$
 $log(Mean_Bank) = 7.724826 - 0.006886^*Day, for Period = 4$

2. By using the Wald test, we discover that the growth rate 15 days before the Day = 0 is smaller than after Day = 0, based on the *t*-statistic of $t_0 = -2.355063$ with df = 54 and a *p*-value = 0.0222/2 = 0.0111,

Figure 1.47 Scatter graphs of (Mean_Bank, Day) and (Mean_Mining, Day) with their nearest neighbor fit curves

Figure 1.48 Statistical results based on a four-piece growth model of Mean_Bank

Figure 1.49 Scatter graphs of the four-piece regression in Figure 1.48 and its fitted values, by time period

and the growth rate 15 days before the Day = 40 is smaller than after Day = 40, based on the *t*-statistic of $t_0 = 2.241761$ with df = 54 and a *p*-value = 0.0291/2 = 0.01455. For a comparison, see the following example.

- 3. The residuals graph indicates that a nonlinear regression of *log(Mean_Bank)* on *Day* should be explored. On the other hand, Figure 1.49 clearly shows that a polynomial regression may be applied within each of the four time periods considered. See Example 1.30.
- 4. However, based on the $R^2 = 0.843 \, 170 > 80\%$, it could be concluded that the independent variables are good predictors for *log(Mean_Bank)*.
- 5. Note that exactly the same analysis can easily be conducted based on the *SP* of each individual, as well as the *Mean_Mining*.

Example 1.30 AR(2) four-piece growth model

By taking into account the autocorrelation of the classical growth model in Figure 1.49, Figure 1.50 presents the statistical results based on an AR(2) four-piece growth model, as a comparison.

Example 1.31 The nearest neighbor fit of *log(Mean_Bank)*

Figure 1.51 presents the scatter graph of (*log(Mean_Bank),Day*) with its *Nearest Neighbor Fit* by the time periods. The four graphs clearly show that nonlinear models should be applied within each time period. See the following example.

Example 1.32 A four-piece polynomial growth model

By using trial-and-error methods, statistical results are obtained based on a four-piece polynomial growth model presented in Figure 1.52. Based on these results, note the following:

1. Compared to the classical growth model in Figure 1.48 and the AR(2) growth model in Figure 1.49, this polynomial growth model has the largest value of $R^2 = 0.957224$. So, in a statistical sense, this model

Figure 1.50 Statistical results based on an AR(2) four-piece growth model of Mean_Bank

Figure 1.51 Scatter graphs of (log(Mean_Bank), Day) with its nearest neighbor fit by time period

Dependent Vanapie: LUG(MEAN_BAN_BANK) Method: Least Squares Date: 12/06/09 Time: 21:11 Sample: 10/08/2008 2/04/2009 Included observations: 62 LOG(MEAN_BANK)=(C(10)+C(11)*DAY+C(12)*DAY^2+C(13)*DAY^3+C(14) *DAY^4)*D1+(C(20)+C(21)*DAY+C(22)*DAY^2)*D2+(C(30)+C(31)*DAY +C(32)*DAY^2+C(33)*DAY^3+C(34)*DAY^4)*D3+(C(40)+C(42)*DAY^2 +C(43)*DAY^3)*D4									
	Coefficient	Std. Error	t-Statistic	Prob.					
C(10)	7.273184	0.026987	269.5056	0.0000					
C(11)	0.193225	0.026699	7.237188	0.0000					
C(12)	0.055096	0.007600	7.249808	0.0000					
C(13)	0.004689	0.000773	6.063391	0.0000					
C(14)	0.000130	2.56E-05	5.081061	0.0000					
C(20)	7.362563	0.026770	275.0267	0.0000					
C(21)	0.014683	0.007699	1.907029	0.0628					
C(22)	-0.002218	0.000468	-4.740573	0.0000					
C(30)	46.35971	27.27787	1.699535	0.0960					
C(31)	-4.792701	3.435079	-1.395223	0.1696					
C(32)	0.218807	0.160933	1.359620	0.1806					
C(33)	-0.004387	0.003325	-1.319543	0.1935					
C(34)	3.26E-05	2.56E-05	1.276490	0.2082					
C(40)	8.448153	0.361846	23.34736	0.0000					
C(42)	-0.001244	0.000473	-2.628171	0.0116					
C(43)	1.62E-05	6.53E-06	2.482523	0.0168					
R-squared	0.957224	Mean depend	lent var	7.376567					
Adjusted R-squared	0.943276	S.D. depende	ent var	0.126189					
S.E. of regression	0.030054	Akaike info cr	iterion	-3.953987					
Sum squared resid	0.041550	Schwarz crite	rion	-3.405049					
Log likelihood Durbin-Watson stat	138.5736 1.375620	Hannan-Quin	n criter.	-3.738460					

Figure 1.52 Statistical results based on a four-piece polynomial growth model of Mean_Bank

should be considered the best of the three growth models, even though it is a standard multiple regression. In other words, independent variables are the best predictors for *log(Mean_Bank)*.

2. The multiple regression in Figure 1.52 in fact represents the following four polynomial regressions within the four time periods, namely Period = 1, 2, 3 and 4, respectively.

$$log(Mean_Bank) = 7.273 + 0.193^{*}t + 0.055^{*}t^{2} + 0.004689^{*}t^{3} + 0.000130^{*}t^{4}$$

$$log(Mean_Bank) = 7.363 + 0.015^{*}t - 0.002218^{*}t^{2}$$

$$log(Mean_Bank) = 46.360 - 4.793^{*}t + 0.219^{*}t^{2} - 0.004387^{*}t^{3} + 3.3e - 05^{*}t^{4}$$

$$log(Mean_Bank) = 8.448 - 0.001^{*}t^{2} + 1.6e - 05^{*}t^{3}$$

1.11.2 Equality Tests by Classifications

The option "*Equality Tests by Classifications*" provides the statistics for testing a hypothesis on the difference of the mean, median or variance of single variables between groups of individuals/objects generated by one or more classification or treatment factors.

Example 1.33 Test for equality of variances

As an illustration, Figure 1.53(a) and (b) presents the statistical results for testing the equality of variances of the variable B_1 (SP for Bank-1), 15 days before and after the first and second break point, respectively, indicated by the Period = 1, 2, and Period = 3, 4. Based on these results, the following notes and conclusions are presented.

- 1. Based on the *F*-test, it can be concluded that the variances of B_1 have significant differences between 15 days before and after each break point, namely at Day = 0 and Day = 40. Therefore, the *volatilities* of the B_1s stock prices before and after each break point have significant differences.
- 2. However, the Siegel–Tukey test should be questionable, since it has such a very small value compared to the others, specifically in Figure 1.53(b).

Test for Equali Categorized by Date: 12/07/09 Sample: 10/08 Included obse	ty of Variances (values of PERI Time: 08:32 /2008 2/04/2009 rvations: 31	of B_1 OD 9 IF PERIOD<	3				Test for Equalit Categorized by Date: 12/07/09 Sample: 10/08 Included obser	ty of Variances (values of PERI Time: 08:36 /2008 2/04/2009 rvations: 31	of B_1 OD 9 IF PERIOD>	2		
Method		df	Value	Probability			Method		df	Value	Probability	
F-test Siegel-Tukey		(14, 15)	9.379213 2.040246	0.0001 0.0413			F-test Siegel-Tukey		(14, 15)	5.045106 0.186106	0.0036 0.8524	
Bartlett Levene		(1, 29)	14.47209 9.325066	0.0001			Bartlett Levene		(1, 29)	8.1/9/16	0.0042	
Brown-Forsyth	e	(1, 29)	7.331016	0.0112			Brown-Porsym	e	(1, 29)	3.699104	0.0643	
Category Statis	stics						Category Statis	atics				
PERIOR	Count	Old Day	Mean Abs.	Mean Abs.	Mean Tukey-		BEBIOD	Count	Std Day	Mean Abs.	Mean Abs.	Mean Tukey-
PERIOD	Count	316 2290	242 107E	224 27E0	12 7E000		2	16	176 99/15	126 5625	121.9750	16 22202
2	15	102 9332	242.1075	254.3750	19.46667		4	15	78,75520	62 22222	51,66667	15.65556
All	31	246.1723	166.3978	162.0968	16.00000		ILA	31	233.9872	95.43011	87.90323	16.00000
Bartlett weight	ed standard dev	iation: 237.73	805				Bartlett weighte	ed standard dev	iation: 138.49	904		
		(a))				(b)					

Figure 1.53 Test for equality of the variances of B_1, 15 days before and after two break points

Test for Equal Categorized b Date: 12/07/09 Sample: 10/09 Included obse	ity of Means of y values of PEI 9 Time: 08:39 8/2008 2/04/20 ervations: 31	B_1 RIOD 09 IF PERIOD<	3		Test for Equal Categorized b Date: 12/07/09 Sample: 10/08 Included obse	ity of Means of y values of PEI 9 Time: 08:38 8/2008 2/04/20 ervations: 31	B_1 RIOD 09 IF PERIOD>	-2	
Method		df	Value	Probability	Method		df	Value	Probability
t-test Satterthwaite- Anova F-test Welch F-test*	Welch t-test*	29 18.35150 (1, 29) (1, 18.3515)	-1.780006 -1.828579 3.168421 3.343701	0.0856 0.0838 0.0856 0.0838	t-test Satterthwaite- Anova F-test Welch F-test*	Welch t-test*	29 21.00718 (1, 29) (1, 21.0072)	7.525814 7.695656 56.63788 59.22312	0.0000 0.0000 0.0000 0.0000
*Test allows f	or unequal cell	variances			*Test allows f	or unequal cell	variances		
Analysis of Va	riance				Analysis of Va	riance			
Source of Vari	ation	df	Sum of Sq.	Mean Sq.	Source of Vari	ation	df	Sum of Sq.	Mean Sq.
Between Within		1 29	179065.9 1638958.	179065.9 56515.80	Between Within		1 29	1086292. 556208.3	1086292. 19179.60
Total		30	1818024.	60600.81	Total		30	1642500.	54750.00
Category Stati	stics				Category Stati	stics			
PERIOD 1 2 All	Count 16 15 31	Mean 2631.250 2783.333 2704.839	Std. Dev. 315.2380 102.9332 246.1723	Std. Err. of Mean 78.80950 26.57723 44.21385	PERIOD 3 4 All	Count 16 15 31	Mean 3181.250 2806.667 3000.000	Std. Dev. 176.8945 78.75520 233.9872	Std. Err. of Mean 44.22363 20.33450 42.02534
		(a)					(b)		

Figure 1.54 Test for equality of the means of B_1, 15 days before and after two break points

Example 1.34 Test for equality of means

In addition to the testing of variances presented in Figure 1.53(a) and (b), Figure 1.54(a) and (b) presents the statistical results for testing the equality of means of B_1 , 15 days before and after the two break points, respectively. Corresponding to heterogeneity of the variances in a statistical sense, then the Welch *F*-test should be used to making the conclusion of the testing hypothesis on the means differences. In this case, however, the other tests also give exactly the same conclusion, at the significance level of either 5 or 10%.

On the other hand, the cell-mean model is not an appropriate time-series model generally – refer to Section 4.3.1 in Agung (2009a). So I cannot recommend conducting a test on the mean differences of a time series between long time periods: this is similarly so for testing equality of medians. We recommend the reader study and test their growth differences.