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Data Analysis Based on a Single
Time Series by States

1.1 Introduction

Panel data can be viewed as a finite set of time-series data. As an illustration Table 1.1 presents part of the
data in POOLG7.wfl, namely unstacked data, consisting of a single time series GDP from seven countries.
Note that this table shows seven time series variables, namely GDP_CAN, to GDP_US,.

Based on each time series of GDP by states, various growth models can be considered as presented in
Agung (2009a, Chapter 2), starting with classical growth models, namely geometric and exponential growth
models, and their extensions. Therefore, based on the seven states, the multivariate growth models should be
applied as presented in the following sections.

1.2 Multivariate Growth Models

1.2.1 Continuous Growth Models

In general, let Y;; be the observed value of the variable Y for the i-th individual (a country, state, region,
agency, community, household or person) at time ¢, fori=1,...,N, and t=1,...,T. In panel data analysis,
the symbol Y_i(¢), Y_i;, or Y_“Name”, will be used to indicate the time series variable Y;;, such as the varia-
ble GDP_Can, to GDP_US, in POOL7.wfl. In this chapter, the panel data set will be considered as a finite
set of time-series variables. For this reason, the simplest model considered is a multivariate classical growth
model with the following general equation.

log(Y_i;) = C(il) + C(i2)"t + p (1.1)
where C(i2) indicates the exponential growth rate of Y_i, that is the growth rate of the variable Y for the i-th

individual (country, state, region, community, household, firm or agency), C(il) is the intercept parameter,
and u;, their residuals which, in general, should be autocorrelated (see to Agung 2009a, Chapter 2).
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Table 1.1 A subset of the unstacked data in POOLG7.wf1

Year GDP_CAN GDP_FRA GDP_GER GDP_ITA GDP_JPN GDP_UK GDP_US

1950 6209 4110 3415 2822 1475 5320 8680
1951 6385 4280 3673 3023 1649 5484 9132
1952 6752 4459 4013 3131 1787 5517 9213
1953 6837 4545 4278 3351 1884 5791 9450
1954 6495 4664 4577 3463 1972 5971 9177
1955 6907 4861 5135 3686 2108 6158 9756
1956 7349 5195 5388 3815 2249 6238 9756
1957 7213 5389 5610 3960 2394 6322 9724
1958 7061 5463 5787 4119 2505 6340 9476
1959 7180 5610 6181 4351 2714 6569 9913

Therefore, the basic growth model considered should be a multivariate autoregressive growth model,
namely MAR(qy, .. .,q; ...)_GM =MAR(q)_GM, with the following general equation, where the error
terms ¢&;, would be assumed or accepted to have an i.i.d.N(0,0?), in a theoretical sense. Refer to the special
notes presented in Section 2.14.3 (Agung, 2009a).

log(Y_i,) = C(il) + C(i2)"t + p;

1.2

Mig = PixMi—1 + PigoMip2 oo+ P g Mir—g, T Eit (12

However, for a multivariate GLM, the vector of the error terms (&1, ¢, ... ,&y), in general, would have a

residual correlation matrix, namely CM(g), or a residual covariance matrix, namely 2(g), which is not a diago-

nal matrix, and should indicate that the endogenous variables log(Y_i) or Y_i, for the states i=1,2,..., N, are

correlated in a statistical sense, even though they may not be correlated in a theoretical sense. In other words,
the quantitative correlations between all Jog(Y_i) are taken into account in the estimation process.

Example 1.1 Illustrative growth curves

As an illustration, Figure 1.1 presents the growth curves GDP, of two pairs of neighboring countries,
namely (a) GDP_CAN and GDP_US, and (b) GDP_FRA and GDP_GER, which clearly show differential
characteristics. Corresponding to growth curves, we find that each pair of the five variables GDP_CAN,
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Figure 1.1 Growth curves of GDP_CAN, GDP_US, GDP_FRA and GDP_GE
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GDP_US, GDP_FRA, GDP_GER and the time ¢ variable are significantly positively correlated with a
p-value = 0.0000. However, unexpected statistical results are obtained based on the model in (1.2), as
presented in Example 1.3.

Growth curves are important descriptive statistics in any time series, as well as panel data analyses. Many
findings and conclusions can be derived based on descriptive statistical summaries. See various continuous
and discontinuous growth curves and time series models presented in Agung (2009a), and the descriptive
statistical summaries presented in Agung (2004, 2009b, 2011). For additional illustrations, see the graphical
presentations in Leary (2009), and Chambers and Dimson (2009).

Example 1.2 A multivariate classical growth model MCGM)

Figure 1.2 presents the statistical results based on a MCGM of GDP_Can, GDP_US, GDP_Fra, and

GDP_Ger. Its residuals graphs are obtained by selecting View/Residuals/Graphs, as presented in Figure 1.3.
Based on these results, the following notes are presented.

1. Note that the four regressions in the model in fact represent a growth model by states, which has been
presented as a multiple regression model or a single time series model using dummy variables of the
states in Agung (2009a).

2. Using the standard -test statistic in the output, it can be concluded that GDP_Can, GDP_US, GDP_Fra
and GDP_Ger, have significant positive exponential growth rates of

C(11) = 0.0273339, C(21) = 0.018282, C(31) = 0.030681, and C(41) = 0.032058.

3. The null hypothesis Hy: C(11)=C(21)= C(31) = C(41) is rejected based on the Chi-square statistic of
X3 = 242.8469 with df =3 and a p-value = 0.0000. Therefore, it can be concluded that the growth rates
of GDP of the four countries have significant differences. The other hypotheses on the growth rates
differences can easily be tested using the Wald test.

4. However, note that the MCGM is an inappropriate time series model indicated by the very small Dur-
bin—Watson statistics values of the four regressions, as well as their residuals graphs in Figure 1.3. For
this reason, a modified GM will be presented in the following example. Refer also to Chapter 2 in
Agung (2009a).

Estimation Method: Least Squaras .
Date: 08122109 Time: 18:49 Equation: LOG(GDP_US)=C(20}+C(21)'T
Sample: 1950 1992 Observations: 43
Included observalions: 43 ) R-squared 0.972878 Mean dependentvar 9.464070
Total system (balanced) obsenvations 172 Adjusted R-squared 0972216 S.D. dependentvar 0.232736
Coeflicient  Sid Eor  LStalistic  Prob. S.E. of regression 0.038794 Sum squared resid 0.061702
Durbin-Watson stat 0.452012
c(10) 8683015 0017182 5053611  0.0000
c(11) 0027339 0000704 3881228  0.0000 n P FRAJ= +CR1T
C(20) 9.080149 0011628  780.8541  0.0000 gﬁﬁ':fa..-;}gqﬁo —FRA)=CEOFCED
c(21) 0018282  0.000477  38.34938  0.0000
C(30) 8414288 0025252 3332182  0.0000 R-squared 0.955405 Mean dependent var 9.058594
C(31) 0.030681  0.001035  29.63753  0.0000 Adjusted R-squared 0.954317 S.D. dependentvar 0.394138
C(40) 8.403292  0.030638  274.2682  0.0000 S.E. of regression 0.084241 Sum squared resid 0.290960
C(41) 0.032058 0.001256 2552230 0.0000 Durbin-Watson stat 0.060788
Determinant residual covariance 1.82E-11 .
Equation: LOG(GDP_GER)=C(40)+C(41)*T
Observations: 43
Eg”m“; '—C‘GEDF'-C’"FCUOPCU T R-squared 0.940785 Mean dependent var 9076509
senalions; .
Rsquared 579504 Tean dependentvar 3557735 Adjusted R-squared 0.939340  8.D. dependent var 0.415012
Adjusted R-squared 0.072858 S.D.dependentvar 0.347921 SE. pr regression 0.102214 Sum squared resid 0.428355
S.E. of regression 0057320 Sum squared resid 0.134708 Durbin-Watson stat 0.084715
Durbin-Watson stat 0323229

Figure 1.2 Statistical results based on a multivariate classical growth model
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Figure 1.3 The residuals graphs of the MCGM in Figure 1.2

5. On the other hand, by observing the residual graphs in Figure 1.3, then it can be said that a polynomial
growth model should be explored for each state, such as quadratic regressions of log(GDP_FRA) and
log(GDP_GER) on the time ¢, and at least third degree polynomials of GDP_CAN and GDP_US on the
time ¢. Do this as an exercise.

6. As an additional illustration, Table 1.2 presents the correlations between the time ¢ with the dependent
variables of each model. Note that each parameter C(i2) has exactly the same value of the z-statistic, as
well as Prob(#-stat). Compared to the results in Figure 1.2, the following notes and conclusions are made.
6.1 The testing hypothesis on each C(i2), either a two- or one-sided hypothesis, can be done using the

corresponding bivariate correlation. To generalize the results, the set of simple linear regressions
can be presented using a correlation matrix of the set of variables considered.

Table 1.2 Bivariate correlations of time t with each of the dependent variables of the multivariate model
in Figure 1.2

LOG(GDP_CAN) LOG(GDP_US) LOG(GDP_FRA) LOG(GDP_GER)
Time ¢t 0.986 663 0.98635 0.97745 0.96994
t -stat 38.81228 38.34938 29.63753 25.52230

Prob. 0.00000 0.00000 0.00000 0.00000
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6.2  On the other hand, by doing a series of state-by-state analyses, we obtain exactly the same set of
four regressions as presented in Figure 1.2. For this reason the model presented in Figure 1.2 will
be referred to as the system of independent states.

Example 1.3 A MAR(1)_GM unexpected result

Figure 1.4 presents the statistical results based on a MAR(1)_GM =MAR(1,1,1,1)_GM of the four time
series GDP_CAN, GDP_US, GDP_FRA, and GDP_GER. Based on these results, the following findings
and notes are presented.

1.

The estimate of C(31) =—0.212090 with a p-value =0.9358, which should indicate the (adjusted)
growth rate of GDP_FRA, is an unexpected result, since r(log(GDP_FRA),t) =0.97 448 with a
p-value =0.0000 and obtains a simple linear regression function of LOG(GDP_FRA)=8.3841 +
0.0307"t as presented in Figure 1.2, with an exponential growth rate of GDP_FRA as
r=20.0307.

This finding indicates the impact of using an AR(1) on the parameter estimates is in fact unpredictable.
Nothing is wrong with the model, but the structure of the data set cannot provide acceptable estimates.
Compared to the growth curve of GDP_FRA in Figure 1.1, the AR(1)_GM of GDP_FRA should be
considered as an unacceptable or inappropriate time series model for representing the GDP of France.
The results of the author’s experimentation based on the variable GDP_FRA, are presented in the fol-
lowing examples.

On the other hand, we find the residual matrix correlation, says M(g), is not a diagonal matrix. For
comparison, application to the WLS or SUR estimation methods is recommended. Do this as an
exercise.

For a comparison study, Table 1.3 presents a summary of the statistical results using the series of state-
by-state analyses based on the LS AR(1)_GMs. Note that this table shows the coefficients of the time ¢
and the AR(1) terms are exactly the same as those in Figure 1.4, but they have different intercepts.
Compare this to the other statistics.

System: SYS01 Equation; LOG(GDP_CAN)=C(10)+C(11)*T+AR(1)=C(12)]
Estimation Method: terative Least Squares Observations: 42
Date: 07/07/09 Time: 15:05 R-squared 0.991522 Mean dependent var 9.269590
Sample: 1951 1992 Adjusted R-squared 0.991087 S.D. dependentvar 0.342288
Included observations: 43 SE ofregression 0.032314 Sum squared resid 0.040724
Total system (balanced) observations 168 Durbin-Watson stat 1510508
Convergence achieved afler 2 terations Equation: LOG(GDP_US)=C(20)+C(21)"T+{AR(1)=C(22)]
. - Observations: 42
Coeflicient  Std. Error  +Statistic  Prob. R-squared 0.988209 Mean dependentvar 9.473482
Adjusted R-squared 0987604 S.D. dependentvar 0227124
C(10) 8.675757 0117154 74.05426  0.0000 SE. of regression 0.025287 Sum squared resid 0.024938
C{11) 0.025588  0.003869 6.613016 0.0000 Durbin-Watson stat 1.762500
c(12) 0.881066  0.094300 9.343263  0.0000
C{20) 9.080932  0.045963 197.5692  0.0000 Equation: LOG(GDP_FRA=C(30+C(31FT+AR(1)=C(32)]
c(21) 0017432  0.001607  10.84940  0.0000 Obsenations: 42
= E 2SN ¥ ..
g(zu] 86.20318 1629.510 0.052901 0.9579 S.E ofregression 0.018665 Sum squared resid 0.013587
(31) -0.212090 2627543  -0.080718 0.9358 Durbin-Watson stat 1414278
C(32) 0.996671 0.035945 27.72798 0.0000
C(40) 8768484 0188648  46.48057 0.0000 Equation: LOG(GDP_GER)=C(40)+C{41)*T+AR(1)=C(42)]
Ci41) 0.020326  0.004748 4281062  0.0000 Observations: 42
Ci42) 0891366 0035255 2528374  0.0000 R-squared 0.996821 Mean dependent var 9.098903
Adjusted R-squared 0.996658 S.D. dependentvar 0.392866
Determinant residual covariance 2 00E-14 S.E ofregression 0.022710 Sum squared resid 0.020114
Durbin-Watson stat 1596264

Figure 1.4 Statistical results based on a MAR(1)_GM of the GDP of four countries
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Table 1.3 Summary of the statistical results based on the four LS AR(1)_GMs in Figure 1.4

Variable Dependent Variables
log(Gdp_Can) log(Gdp_US) log(Gdp_Fra) log(Gdp_Ger)
Coef. t-Stat. Coef. t-Stat. Coef. t-Stat. Coef. t-Stat.

C 8.701345 76.60812 9.098363 204.4720 85.99109 0.052856 8.788810 47.76036
T 0.025588 6.613016 0.017432 10.84940 —0.212090 —-0.080718 0.020326 4.281062
AR(1) 0.881066 9.343263 0.788836 7.567 884 0.996 671 27.72798 0.891366 25.28374
R-squared 0.991522 0.988209 0.997 723 0.996 821

Adjusted R-squared 0.991 087 0.987 604 0.997 607 0.996 658

S.E. of regression 0.032314 0.025 287 0.018 665 0.022710

F-statistic 2280.633 1634.300 8545.536 6115.340
Prob(F-statistic) 0.000 000 0.000000 0.000 000 0.000 000
Durbin-Watson stat 1.510506 1.762 500 1.414278 1.596 264

1.2.2 Discontinuous Growth Models

Corresponding to the inappropriate estimate of C(3/) =—0.212090 in Figure 1.4, experimentation should
be done based on the data of the GDP_FRA. See the following examples.

Example 1.4 An experimentation based on GDP_FRA

By using trial-and-error methods, we finally obtain the statistical results in Figure 1.5, based on two sub-
samples of sizes 29 and 30, respectively, for T <31 and T < 32. Based on these results the following
findings and notes are presented.

1. Based on the results in Figure 1.5(a), the null hypothesis H,: C(2) <0 is rejected, based on the
t-statistic of 7p=1.819125 with a p-value =0.0804/2 =0.0402 < 0.05. Therefore, it can be

Dependent Variable: LOG(GDP_FRA) Dependent Variable: LOG(GDP_FRA)
Method: Least Squares Method: Least Squares

Date: 07/08/09 Time: 09:55 Date: 07/08/09 Time: 09:56

Sample: 1950 1992 IF T= 31 Sample: 1950 1992 IF T= 32

Included observations: 30

Included observations: 29
Convergence achieved after 4 iterations

Convergence achieved after 4 iterations

Cosficient Std. Error t-Statistic Prob. Coefficient Std. Error t-Statistic Prab.

c 8494052 0705850 1203490 00000 T Q076572 0497390 0387924 07011
T 0.031080  0.017085  1.819125  0.0804 AR(1) 1019645 0102863  0.912682  0.0000
AR(1) 0941059 0107208 8777880  0.0000
R-squared 0996862 Mean dependentvar 8920418
R-squared 0.997041 Mean dependentvar 8.904769 Adjusted R-squared 0.996628 S.D. dependentvar 0.340169
Adjusted R-squared 0996814 S.D. dependentvar 0.335020 S.E. of regression 0.019750 Akaike info criterion -4.916720
S.E. of regression 0.018911 Akaike info criterion -5.000398 Sum squared resid 0.010531 Schwarz criterion -4 776600
Sum squared resid 0.008299  Schwarz criterion -4.858954 Log likelihood 76.75080 Hannan-Quinn criter. -4.871895
Log likelihood 7550578 Hannan-Quinn criter. -4 956100 F-statistic 4288174 Durbin-Watson stat 1527986
F-statistic 4380578 Durbin-Watson stat 1.490196 Prob(F-statistic) 0.000000
Prob(F-statistic) 0.000000
Inverted AR Roots 1.02
Inverted AR Roots 94 Estimated AR process is nonstationary
(a) (b)

Figure 1.5 Statistical results based on an AR(1)_GM of GDP_FRA using two sub-samples
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concluded that GDP_FRA has a significant positive growth rate of 3.11% within the time period
t=1 to t=30.

2. On the other hand, Figure 1.5(b) shows a note “Estimated AR process is nonstationary”, which indi-
cates that the AR(1)_GM is an inappropriate time series model within the period # =1 to # = 31. Finally,
based on the whole data set, the Inverted AR Root = 1.00 is obtained, however, without the statement
“Estimated AR process is nonstationary”.

Example 1.5 A piece-wise growth model of GDP_FRA
As the complement of the AR(1)_GM of GDP_FRA for t <31, Figure 1.6(a) presents another piece of
AR(1)_GM of GDP_FRA for t > =31, which should be considered an acceptable time series model,
in a statistical sense. Note that this model shows that GDP_FRA has a significant positive growth rate
of 2.18% based on the z-statistic of 7, =7.425573 with a p-value =0.0000, for ¢t > =31, compared to
the growth rate of 3.11% for #<31. Therefore, based on these findings the growth model of
GDP_FRA could be presented by a two-piece GM using dummy variables Dt/ and D¢2, which should
be generated for the two time periods.

Figure 1.6(b) presents the statistical results based on an acceptable two-piece AR(2)_GM of
log(GDP_FRA), in a statistical sense. Based on these results, the following pair of regression functions
can be derived.

log(GDP_FRA) = 8.3274 + 0.0359"1 + [AR(1) = 1.2142,AR(2) = —0.3301], fors < 31

log(GDP_FRA) = 9.0101 + 0.0127" + [AR(1) = 1.2142, AR(2) = —0.3301], for ¢ > 31

Based on these findings, the MAR(1)_GM presented in Figure 1.4 should be modified to a MAR
(1,1,2,1)_GM, with the statistical results presented in Figure 1.7.

Dependent Variable: LOG(GDP_FRA) Dependent Variable: LOG(GDP_FRA)
- Method: Least Squares
r’mm“d'?j',‘em S?F‘are_': 4 Date: 07/08/08 Time: 1756
Date: 07/08/09 Time: 16:45 Sample (adjusted): 1952 1892
Sample; 1950 1992 IF T= 30 Included observations: 41 after adjustments
Included observations: 13 Convergence achieved after 12 iterations
Convergence achieved after 4 iterations LOG(GDF_FRA=(C11+C(12)* T DT1+(C(21)+C{22)"T)"DT2
HAR(1)=C(1), AR(2)=C(2)]
Coefficient ~ Std.Error  t-Statistic  Prob Variable Coeficient  Std Eror  t-Statistic  Prob
c 8630205 0118147 7312313 0.0000 c(11) 8327340 0098475 8456308  0.0000
c(12) 0035928 0004369 8223822  0.0000
T 0021810  0.002937 7420573  0.0000 c(21) 9.010104 0211207 4265992  0.0000
AR(1) 0.610004 0.158493 3.848772 0.0032 ciz2) 0012724 0.005679 5 240634 0.0315
Ci1) 1.214156 0161654 7.510837 0.0000
R-squared 0976634 Mean dependentvar 9.458464 Ci2) -0.330056 0173660 -1.900584 0.0656
Adjusted R-squared 0.971960 S.D. dependentvar 0.078091 = " 0993026 Mean d = 0093578
z T 2 Py _ ~square: x @an dependentvar .
SE. of regressmn_ 0013076 Akaike |r|f0_cr|t_er|on 5.636837 Adjusted R-squared 0997744 S.D. dependent var 0.368947
Sum squared resid 0.001710  Schwarz criterion -5.506464 SE. of regression 0.017522  Akaike info criterion -5.116229
Log likelihood 39.63944 Hannan-Quinn criter. -5.663634 Sum squared resid 0.010746 Schwarz criterion -4.865462
F-statistic 208.9827 Durbin-Watson stat 1.417305 Log likelihood 110.8827 Hannan-Quinn criter. -5.024913
Probi(F-statistic) 0.000000 Durbin-Watson stat 2000139
Inverted AR Roots 20 A1
Inverted AR Roots 61
(a) (b)

Figure 1.6 Statistical results based on (a) an AR(1)_GM of GDP_FRA for t>= 31, and (b) a two-piece (dis-
continuous) AR(1)_GM of GDP_FRA
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System: SYS04 Equation: LOG(GDP_CAN)=C{10)+C(11)* T+HAR(1)=C(12)]

Estimation Method: lterative Least Squares Observations: 42

Date: 07/08/09 Time: 18:20 R-squared 0.991522 Mean dependent var 9.269590
Sample: 1951 1992 Adjusted R-squared 0.991087 S.D. dependentvar 0.342288
Included obsemnvations: 43 S.E. ofregression 0.032314  Sum squared resid 0.040724
Total system (unbalanced) observations 167 Durbin-Watson stat 1510506

Convergence achieved after 12 iterations )
Equation: LOG(GDP_US)=C(20+C(21)* T+AR{1)=C(22)]

: it Observations: 42
Coeficient Std. Error +Stafistic Prob. R-squared 0988209 Mean dependent var 9473482
Adjusted R-squared 0.987604 S.D. dependentvar 0227124
7! 1
gg?: 3352532 ggw;;g; ;‘g?ggfg ggggg S.E. of regression 0.025287 Sum squared resid 0.024938
c(12) 0881066 0004300 9343263  0.0000 Durbin-Watson stat 1762500
C{20 9080932 0045962  197.5692  0.0000 )
CE21; 0017432 0001607 1084540  0.0000 Equation: LOG(GDP_FRA)=(C(20)+C(31)*T)*'DT1+(C(32)+C(23)*T)*DT2
c(22) 0788836 0104235 7.567884  0.0000 Obs::;;Jr}l;cgd}.amz}:ctasn
g(gm gsg;g;g o'g?:;é? :42'2256; n.uogu R-squared 0.998026 Mean dependent var 9.093576
(31) : 0. 227148 0.0000 Adjusted R-squared 0997744 S.D.dependentvar 0.368947
ggg; gg:gg;g gg;;g?g ;22-22323 ggggg S.E. of regression 0.017522 Sum squared resid 0.010746
. - . . Durbin-Watson stat 2000128
C(34) 1.214152 0.161655 7.510770 0.0000
G oomm um e || oo
. . - . Observations: 42
Ci41) 0020326  0.004748 4281062  0.0000 R-squared 0.996821 Mean dependent var 9098903
C(42) 0891366 0035255 2528374  0.0000 Adjusted R-squared 0.996658 S.D. dependentvar 0.392866
S.E. ofregression 0.022710 Sum squared resid 0.020114
Determinant residual covariance 1.85E-14 Durbin-Watson stat 1.596264

Figure 1.7  Statistical results based on a MAR(1,1,2,1)_GM of GDP_Can, GDP_US, GDP_Fra and GDP_Ger

1.3 Alternative Multivariate Growth Models

As an extension of all the continuous and discontinuous growth models presented in Agung (Agung, 2009a,
Chapters 2 and 3), various multivariate growth models can easily be derived. However, only some selected
models will be presented in the following sub-sections.

1.3.1 A Generalization of MAR(p)_GM
As an extension of the MAR(p)_GM in (1.2), the following growth model is presented.
log(Y_i) = Fi(t,C(i")) + wa
(1.3)
Mig = PitMi—1 + PigoMir—2 oo P p Mir—p,

where F(t,C(i*)) can be any functions of #, such as the polynomial and the natural logarithmic of ¢, either
continuous or discontinuous functions, as well as nonlinear with a finite number of parameters, namely
C(i*), for each i=1,...,N. Note that any continuous and discontinuous growth models in Agung (2009a)
could be inserted for the function F(t,C(i*)). For example, as follows:

1.3.1.1 A Polynomial Growth Model

The independent-states system of polynomial growth models has the following equation fori=1,...,N.

log(Y_i;) = ¢(i0) + (i)t + ... + c(ik;) 1 + (1.4a)

1.3.1.2 A Translog Linear Model
The independent-states system of the translog linear growth models has the following equation for i=1,...,N.

log(Y_i;) = ¢(i0) + ¢(i1)"log(t) + p; (1.4b)
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1.3.1.3 The Simplest Nonlinear Growth Model

The independent-states system of the simplest nonlinear growth model has the following equation for
i=1,...,N.

log(Y_i;) = ¢(i0) + c(i1)* ™ 4 (1.4¢)

1.3.1.4 A Two-Piece Growth Model

The independent-states system of two-piece growth models has the following equation fori=1,...,N.
log(Y_i;) = (c(i10) 4 ¢(i11)*2)"Dt1 + (¢(i20) + ¢(i21)"1) " D12 + (1.4d)

where Dt1 and D2 are dummy variables of two time periods considered, such as # < ¢y and ¢ > ¢, which are
defined to be valid for all states or individuals, or all i=1, ... ,N. To generalize, the dummy variables would
be dependent on 7, namely Dz(il) and Dt(i2), the model can easily be extended to three or more time peri-
ods, and the linear function of ¢ within each time period could be replaced by other functions of ¢. For
further illustration, refer to various discontinuous growth models presented in Chapter 3, (Agung, 2009a),
specifically the multivariate models by states and time periods in the general models (3.79) to (3.87).

1.3.2 Multivariate Lagged Variables Growth Models

Corresponding to the MAR(p)_GM in (1.2), a multivariate lagged variables growth model, namely
MLV(q)_GM, may be considered an alternative growth model with the following general equation,
where the error terms should also be assumed or accepted in a theoretical sense to have an i.i.d.N(0,0?).

qi
log(Y_i,) = C(i0) + Z C(ij) log(Y_ir—;) + C(i,q; + 1)t + & (1.5)

J=1

Note that the lag variable log(Y_i, ;) is not a cause factor of log(Y_i,), but is an up-stream or a predictor
variable. Also, the exogenous variables, namely X_i, and X_i,;, used in most models are not really the true
cause factors of the dependent variable of these models. See the models presented in Section 1.4.

All lagged variables and autoregressive models, in fact, are dynamic models (Gujarati, 2003, Gourierroux
and Manfort, 1997, Hamilton, 1994, and Kmenta, 1986). Therefore, various models in (1.5) should be con-
sidered as multivariate dynamic growth models (MDGM), or multivariate dynamic models with trend, for
i=1,...,N. Wooldridge (2002; 493) presents another type of dynamic model, called dynamic unobserved
effects models.

Example 1.6 A MLV(1)_GM of GDP? in Figure 1.7

As an alternative multivariate growth model of GDP in Figure 1.7, Figure 1.8 presents the statistical results
based on an MLV(1)_GM, where the regression of GDP_Fra is a two-piece LV(1)_GM. Based on the
results in Figures 1.7 and 1.8, the following findings and notes are presented.

1. The estimates of the parameter C(12) in both models have exactly the same values of 0.881 066, which
indicates the first-order autocorrelation of log(GDP_Can). Similarly for the parameters C(22) and
C(42), respectively, there is first-order autocorrelation of log(GDP_US) and log(GDP_Ger).
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System: SYS05_LAG Equation: LOG(GDP_CAN)=C(10)+C(11)T+C({12)*LOG(GDP_CAN(-1))
Estimation Method: Least Squares Observations: 42
Date: 082109 Time: 15:10 R-squared 0.991522 Mean dependent var 9.269590
Sample 1951 1992 Adjusted R-squared 0991087 S.D. dependent var 0.342288
Included observations: 42 SEE. of regression 0.032314  Sum squared resid 0.040724
Total system (balanced) observations 168 Durbin-Watson stat 1510508
’ . Equation: LOG{GDP_US)=C(20+C({21)T+C(22)"LOG(GDP_US(-1))
Coefficient Std. Error t-Statistic Prob. Observations: 42
R-sq d 0988209 Mean dependentvar 9473482
co) 1.057433 0815685  1.296374  0.1963 Adjusted R-squared 0.987604 S.D. dependentvar 0.227124
c(11) 0.003043  0.002651 1147831  0.2528 SE. of regression 0025287 Sum squared resid 0.024938
C(12) 0.881066 0.094300 9.343263 0.0000 Durbin-Watson stat 1.762500
C(20) 1.834999 0.8944323 2.049086 0.0422
c(21) 0.003681 0.001951 1.886825 0.0611 Equation; LOG(GDP_FRA)=(C(210+C(311) T+C(312) LOG(GDP_FRA(-1)))
C(22) 0.788836 0.104235 7567384 0.0000 *DTA+(C(320+C(321)* T+C(322)*LOG(GDP_FRA-1))1'DT2
C(310) -0.116130 0.793076 -0.146430 0.8838 Observations: 42
C(311) -0.001504 0.003765 -0.399557 0.6900 R-squared 0.997960 Mean dependent var 9.076151
c(312) 1.019645 0.095786 10.64503 0.0000 Adjusted R-squared 0997676 S.D. dependentvar 0.381517
(320 4.084122 2518689 1621527 0.1070 S.E. ofregression 0.018391 Sum squared resid 0.012176
c(321) 0010357 0005974  1.733656  0.0850 Durbin-Watsan stat 1857845
C(322) 0.529470 0.288767 1.833553 0.0687 - - . " _
C(40) 0972882 0295011 3297777 00012 g:::minlﬁf:i‘rgop_(;en)-cmo;+c:41] T+C(42)"LOG(GDP_GER(-1))
cla1) 0002208 0001180 1.671744  0.0632 R-squared 0996621 Mean dependent var 9098903
Ci42) 0.891366 0035255 2528374  0.0000 Adjusted R-squared 0.996658 S.D. dependentvar 0.392866
S.E. of regression 0.022710 Sum squared resid 0.020114
Determinant residual covariance 2.04E-14 Durbin-Watson stat 1.596264

Figure 1.8 Statistical results based on a MLV(1)_GM of GDP_Can, GDP_US, GDP_Fra and GDP_Ger

2. Corresponding to the regression model of log(GDP_Fra), Figures 1.7 and 1.8 present different types of
two-piece growth models. Figure 1.7 presents a two-piece AR(2)_GM, where the autocorrelation of the
error terms AR(1) and AR(2) should be valid for the whole time period. On the other hand, Figure 1.8
presents a two-piece LV(1)_GM, where (:‘(312) = 1.019645 is the AR(1) of log(GDP_Fra) for t <31,
and 6(312) = (0.382358 is its AR(1) for ¢ > 31.

3. However, Figure 1.8 presents a negative adjusted growth rate of log(GDP_Fra), for 7 <31, namely

C(311) = —0.001504 which is an inappropriate estimate. For this reason, the statistical results based
on a MLV(1,1,2,1) are presented in Figure 1.9, where the two-piece regressions of log(GDP_Fra) is

Estimation Method: Least Squares Equation: LOG(GDP_CAM)=C{10)+C(11)*T+C{12)*LOG(GDP_CAN(-1))
Date: 08/21/09 Time: 15:21 Observations: 42
Sample; 1951 1992 R-squared 0991522 Mean dependent var 9.269590
Included observations: 42 Adjusted R-squared 0.991087 S.D. dependentvar 0.342288
Total system (unbalanced) observations 167 S.E. of regression 0.032314 Sum squared resid 0.040724
Durbin-Watson stat 1510506
Coefiicient Std. Error t-Statisfic Prob X
Equation: LOG{GDP_US)=C(20)+C(21)*T+C(22)*LOG(GDP_US(-1))
Observations: 42
Eﬂ?; ;33;33; gg;ggg? 1%3?2;: g;ggg R-squared 0.988209 Mean dependentvar 9.473482
' ' . b Adjusted R-squared 0.987604 S.D. dependentvar 0227124
C12) 0881066 0094300 9343263  0.0000 S.E. of regression 0.025287 Sum squared resid 0.024938
C(20) 1934999 (.944323  2.040086  0.0422 Durbin-Watson stat 1.762500
C(21) 0.003681 0.001951 1.886825 0.0611
C(22) 0788836 0104235 7567884  0.0000 Equation: LOG(GDP_FRA)}=(C(310)+C(311)*T+C(312)"LOG(GDP_FRA(-1))
C(310) 0300243 0872774 0344011 07313 +C(313)"LOGIGDP_FRA(-2)))"DT1+(C(320)+C(321)*T+C(322)
C(311) 0.000601 0.004205 0.142842 0.8866 *LOG({GDP_FRA(-1))+C(323)"LOG(GDP_FRA(-2)))*DT2
C(312) 1221207 0192555  6.342122  0.0000 Observations: 41
C(313) .253122 0.209560 -1.207873 0.2200 R-squared 0.997910 Mean dependentvar 9.093576
©(320) 3.984467 2 545501 1565297 0.1196 Adjusted R-squared 0.997467 S.D. dependentvar 0.368047
c321) 0009331 0006145 1518485 01310 S.E. of regression 0.018568 Sum squared resid 0.011378
C(322) 0.876620 0492666 1779340  0.0772 Durbin-Watson stat 1.954962
C(323) 0333157 0381130 0874129 03834 - - - T+ - .
Ciay o702 0295011 3297777 00n1a E?J:i‘:\?:ﬁ EI'_HCL?EDP_GER) C(40)+C(41)*T+C{42)"LOG(GDP_GER(-1))
C(41) 0002208 0001180 1871744 00632 R-squared 0996821 Mean dependentvar 9.098903
C(42) 0.891366  0.035255 2528374  0.0000 Adjusted R-squared 0.996658 S.D. dependentvar 0.392866
S.E. of regression 0.022710 Sum squared resid 0.020114
Determinant residual covariance 1.96E-14 Durbin-Watson stat 1.596264

Figure 1.9 Statistical results based on a MLV(1,1,2,1)_GM of GDP_Can, GDP_US, GDP_Fra and GDP_Ger
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LV(2)_GM, and the two regressions represent positive growth rates of GDP_Fra, namely C (311) =
0.000601 and C(321) = 0.009331, respectively, for £ <31 and ¢ > 31, adjusted for log(GDP_Fra(—1))
and log(GDP_Fra(—2)).

1.3.3 Multivariate Lagged-Variable Autoregressive Growth Models

As an extension of LVAR(1,1)_GM presented in Agung (2009a), data analysis based on a multivariate lag-
ged variables autoregressive model, MLVAR(p;q)_GM, where p = (p;) and g = (g;), of the time series Y_i,,
fori=1,...,N, will have the following general equation.

p!
log(Y_ii) = C(i0) + > C(&j) log(Y_ii) + Cli,p; + 1)'1 +
o (1.6)

qi
M = E PitcMi—k + &it
k=1

Note that for ¢ =0, the MLV (p)_GM will be obtained, and the MAR(g)_GM obtained for p = 0. Various
special cases would be obtained, where p;=p and ¢;=¢ foralli=1,...,N.

1.3.4 Bounded MLVAR(p;q)_GM

As an extension of the general MLVAR(p;q)_GM in (1.6) as well as the bounded growth model presented in
Agung (2009a), the bounded MLVAR(p;q)_GM, of the time series Y_i,, i=1,2,...,N, has the following
general equation.

Y_i—Li , P . : :
IOg (l]l——Y_l> = C(ZO) =+ ;C(l]) IOg(Y_ltfj) + C(l,pi + 1) t+ My
B (1.7)

qi
Mip = Zpikﬂi,t—k + &
k=1

where Li and Ui are the lower and upper bounds of Y_i, which are theoretically selected fixed numbers.

1.3.5 Special Notes

Based on the findings presented previously, the following special notes are presented.

1. Unexpected parameter estimates can be obtained by using autoregressive or lagged variables growth
models. In general, by inserting an additional independent variable to a model, we can never predict its
impact on the parameter estimates. Refer to the special notes in Agung (2009a, Section 2.14.2). For this
reason, one should use the trial-and-error method to develop several acceptable growth models, in both
theoretical and statistical senses. Note that this statement also should be applicable for any statistical
model.

2. Graphic representations between each of the independent variables and the corresponding dependent
variable should be analyzed to evaluate their possible patterns of relationship. Specifically, whether a
linear or non-linear model would acceptable. Refer to Chapter 1 in Agung (2009a).



14 Panel Data Analysis Using EViews

3. Furthermore, residuals analysis should be done to identify the limitation of each model. Refer to
Agung (2009a).

4. Corresponding to the relationship between Y_i, and its lag Y_i,_,, specific for s=1, s=4, and s =12,
respectively, if and only if the time series data are annually, quarterly, and monthly data sets, the follow-
ing notes are presented.

4.1 The observed values of Y_i,., and Y_i, can be considered as the observations before and after a
natural-experiment for the i-th individual, with a set of environmental variables could be the treat-
ment or experimental factors, namely Z, = (Z1,7Z2, ... ,Zk),. Refer to Section 1.8.

4.2 The lag variable Y_i, ; should be considered as a covariate in any time series models having Y_i,
as the dependent variable. So the “classical growth model of Y_i, with a covariate Y_i,_.;” for the
i-th individual may have the following alternative equations.

log(Y_i;) = C(i0) + C(i1)"t + C(i2)"Y _iy_s + 11
log(Y_i,) = C(i0) + C(i1)*t + C(i2)"log(Y _i;—s) +

(1.8a)
(1.8b)

1.4 Various Models Based on Correlated States

It is known that stock prices of selected countries have a causal relationship. In this section, as an extension
of the previously mentioned models, I consider the models based on correlated states. The definition is that
two states are correlated if, and only if, their endogenous variables have a causal relationship. Note that if all
variables are assumed or defined to be correlated, then all the time series models presented in
Agung (2009a) can easily be applied.

With regards to the time series data by states or unstacked data considered, it is acceptable that growth of
a problem indicator or variable of a state (country, region, firm or agency) should be theoretically influenced
by the factors of the other state(s). For illustrative examples, at the first stage the GDP of two states, namely
GDP_US, and GDP_Can in POOLG7.wfl, are defined to have a causal relationship. Here, two alternative
causal relationships are considered, as presented in Figure 1.10, out of a lot of possible models.

Note that Figure 1.10(a) presents the path diagram where GDP_US is defined as the cause factor of
GDP_Can. Based on this path diagram, the simplest causal model with trend would have the following
system specification.

GDP_US = C(10) + C(11)*GDP_US(—1) + C(12)"¢
GDP_Can = C(20) + C(21)"GDP_Can(—1) + C(22)*GDP_US (1.9)
+ C(23)"GDP_US(—1) + C(24)"t

Gdp_US(-1) —»Gdp_US Gdp_US(-1)— Gdp_US,,

~ ~

Gdp_Can(-1) — Gdp_Can*®
(a)

Gdp_Can(—1)—»Gdp_Can ¥
(b)

Figure 1.10 Two alternative causal relationships between GDP_US and GDP_Can
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Note that each multiple regression in the model is an additive regression model of its independent varia-
bles. For instance, the first regression is an additive model of GDP_US on GDP_US(—1), and the time ¢. In
other words, this model represents the linear adjusted effects of GDP_US(—1), and the time ¢t on GDP_US.
In fact, there are a lot more models that could be subjectively defined by the researchers. Refer to various
time series models presented in Agung (2009a).

On the other hand, Figure 1.10(b) presents the path diagram where GDP_US and GDP_Can are defined
to have a simultaneous causal linear effects or two-way causal effects. Based on this path diagram, the
simplest causal model with trend would have the following system specification.

GDP_US = C(10) + C(11)*GDP_US(—1) + C(12)*GDP_Can
+ C(13)’GDP_Can(—1) + C(14)*t

GDP_Can = C(20) + C(21)*GDP_Can(—1) + C(22)"GDP_US
+C(23)"GDP_US(—1) + C(24)"1

(1.10)

Note that the models (1.9) and (1.10) are not the VAR (Vector Autoregressive) models, since they do not
have the same set of independent variables. For this reason, Agung (2009a) has introduced the MAR (Multi-
variate Autoregressive Model) and the SCM (Seemingly Causal Model) instead of the System Equation
Model (SEM), because the term SEM is already used for the structural equation model. The following sub-
sections present empirical examples of SCM and VAR Models.

To generalize, a problem indicator by states may be presented as Y_s, for the states s =1,...,S. Then, the
relationship between the indicators Y_s, s=1,..., S, would be a matter of subjective or expert judgment by
the researchers. It could be very difficult to define the path diagram of an SCM based on the GDP of the
seven states as presented in POOLG7.wf1, even more so for the number of states greater than seven. For
this reason, I recommend to all students planning to write theses or dissertations, select only two or three
states for the data analysis, since they can apply various MLVAR(p,q) models and study the limitations of
each model using residual analysis. Note that with a single variable Y, one would have to consider the varia-
ble Y, the time #-variable and the categorical state variable, as well as the lagged of Y, say Y(—1),....,Y(—p)
for a selected integer p, as well as the indicators AR(1),...,AR(q).

1.4.1 Seemingly Causal Models with Trend

For illustrative purposes, Figure 1.10 presents two alternative theoretically defined SCMs between GDP_US
and GDP_Can. Note that the arrows with dotted lines from the time # indicate that this is not a real causal
factor. However, the following example presents data analysis based on the model (1.10) only.

Example 1.7 SCMs with trend

Figure 1.11(a) presents statistical results based on a bivariate first-order lagged-variable SCM, namely
LV(1)_SCM, of GDP_US and GDP_Can, which show that the error terms of each regression have the
first autocorrelation problem, indicated by the small value of its Durbin—Watson statistic. For this reason,
Figure 1.11(b) presents statistical results based on its AR(1) model, namely LVAR(1,1)_SCM, which is
acceptable, in both theoretical and statistical senses. Note that these models are not growth models. Based
on this output, the following conclusions are derived.

1. The p-value = 0.0000 of the parameter C(12) in the first regression indicates that GDP_Can has a signifi-
cant positive adjusted linear effect on GDP_US, and the p-value =0.0000 of the parameter C(22) in the
second regression indicates that GDP_US also has a significant positive adjusted linear effect on GDP_Can.
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System: UNTITLED

Estimation Method: Least Squares

Date: 08/M13/09 Time: 10:33

Sample: 1951 1992

Included observations: 42

Total system (balanced) observations 84

System: UNTITLED

Estimation Method: lterative Least Squares
Date: 08/13/09 Time: 10:26

Sample: 1952 1992

Included observations: 42

Total system (balanced) observations 82
Convergence achieved after 8 iterations

Coeflicient Std. Error t-Statistic Prob.

Coefficlent  Std. Eror  t-Statistic  Prob.
C{10) 2340532 678.8094 3447996 0.0009 c(10) 3705.368 1399303 2 547340 0.0100
ci11)y 0703819 0.097711  7.203047  0.0000 c11) 0513887  0.213813 2403435  0.0139
c(12) 0.580407 0100906 5751936  0.0000 c(12) 0598526  0.099965 5987379  0.0000
C(13) 0554104  0.099596 -5563521  0.0000 c13) 0556744 0120949 -4603130 00000
C(14) 62.09836 2053535  3.023974  0.0034 C(14) 1054857 39225613 2687115 0.0090
{20} -1888.823 8699183  -2171264 0.0331 C{15) 0.432322 0.254010 1.701991 0.0932
c(21) 0.873552 0.070032 12.47358 0.0000 C{20) -2473.301 1294.467  -1.910741 0.0601
C(22) 0.81333% 0.141403 5751936 0.0000 C{21) 0.769470 0.193263 3981463 0.0002
c(23) -0.500667  0.159265 -3.143508  0.0024 c(22) 0845435 0141269 5084574  0,0000
Ci24) -35.34991 2651819 -1.333044 0.1866 C(23) -0.395862 0.221602  -1.786366 0.0734
c(24) -38.84161  43.44929  .0.893953  0.3744
Determinant residual covariance 1.78E+09 Ci25) 0477109 0.264250 1.805520 0.0753
Determinant residual covariance 1.21E+09

Equation: GDP_US = C(101+C(11)*GDP_US(-1+C(12)*GDP_CAN+C(13)
*GDP_CAN-1)+C(14)0'T

Observations: 42 Equation: GDP_US = C(10)+C(11)GDP_US{-1)+C(12)"GDP_CAN+C(13)

*GDP_CAN(-1}+C(14)* THAR(1)=C(15)]

R-zsquared 0984199 Mean dependent var 13335.29 Obsanations: 41
Adj - i 7. ndent var 44 -
Durbin-Watson stat 1432991 . Adjusted R-squared 0994214 5D dependentvar 2904.200
" : S.E. of regression 2209119 Sum squared resid 1708072,
Durbin-Watson stat 1.921317

Equation: GDP_CAN = C(20)+C(21y*GDP_CAN(-1)+C{22)*GDP_US+C(23)
*GDP_US(-1)+C(24)T
Dbservations: 42

Equation: GDP_CAN = C{20)+C(21)*GDP_CAN(-1)+C(22)*GDP_US+C{23)
*GDP_US(-1)+C(24 ' THAR(1)=C(25)]

R-squared 0.995001 Mean dependent var 11224.90 Observations: 41
Adjusted R-squared 0.994460 S.D. dependentvar 3754577 R-squared 0.095644 Mean dependent var 1134295
SE of regression 279.4560 Sum squared resid 2889540, Adjusted R-squared 0995022 S.0. dependentvar 3721474
Durbin-Watson stat 1.229405 S.E. of regression 2625740 Sum squared resid 2413079,
Durbin-Watson stat 1.876369
(a) (b)

Figure 1.11 Statistical results based on the models with trends in (1.10), namely (a) a LV(1)_SCM, and (b) a
LVAR(1,1)_SCM

Therefore, based on the SCM in Figure 1.11(b), it can be concluded that the data supports the
hypothesis that GDP_US and GDP_Can have simultaneous causal linear effects, adjusted for

In order to conduct the unadjusted simultaneous causal effects, the bivariate correlation analysis can
easily be applied (Agung, 2006, 2009a, 2011). In this case, Hy:p(GDP_US, GDP_Can) = 0 is rejected

2.

the other independent variables in the model.
3.

based on the 7-statistic of 7y =36.43 270 with a p-value = 0.0000.
4.

Various univariate and multivariate hypotheses could easily be tested using the Wald test.

Example 1.8 Translog linear SCMs with trend
The alternative models of those in Figure 1.11, Figure 1.12(a) and (b) present statistical results based on a
translog linear LV(1)_SCM, and LVAR(1,1)_SCM. Based on these results the following notes are presented.

The translog linear LVAR(1,1)_SCM is an unacceptable model, in a statistical sense, based on the data
set used, since the AR(1) of both regressions are insignificant with such a large p-values of 0.82 and

In this case, the translog linear LV(1)_SCM would be a better model, supported by the fact that each
independent variable has a significant adjusted effect on its corresponding dependent variable with suf-
ficiently large DW statistics and their residual graphs, as shown in Figure 1.13. It would not be the best

1.

0.42, respectively.
2.

out of all possible models, which have not been explored.
3.

Note that this translog-linear LV(1)_SCM can be viewed as a bivariate growth model, where C(14)
indicates the adjusted exponential growth rate of GDP_US, and C(24) indicates the adjusted exponen-
tial growth rate of GDP_Can.
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System: SYS02

Estimation Method: Least Squares

Date: 08/M13/09 Time: 10:53

Sample: 1951 1992

Included observations: 42

Total system (balanced) obsenvations 84

Coefficient Std. Error 1-Statistic Frob.

System: SYS03

Esfimation Method: Rerative Least Squares
Date: 08/13/09 Time: 10:57

Sample: 1952 1992

Included observations: 42

Total system (balanced) observations 82
Convergence achieved after 6 iterations

Coeflcient Std. Error t-Statistic Prob.

C{10) 2609122 0.648857 4.021103 0.0001
C(11) 0.735920 0.086255 8531956 0.0000
c(12) 0.572822 0.088428 6.477804 0.0000
C{13) -0.597241 0.089866  -56.645922 0.0000
C(14) 0.0054385 0.001552 3532318 0.0007
C(20) -2724012 0.882777  -3.085729 0.0029
Ci{21) 0.916529 0.077391 11.84283 0.0000
C(22) 0827723 0.143216 6.477805 0.0000
Ci{23) -0.546423 0.166390  -3.283987 0.0016
Ci24) -0.004779 0002146  -2.227028 0.0290
Determinant residual covariance 4.96E-08

Equation: LOG(GDP_US) = C(10)+C{11)*LOG(GDP_US(-1))+C(12)
*LOG(GDP_CAN}+C(13)*"LOG(GDP_CAN(-1)}+C(14)"T
Obsernvations: 42

C{10) 2670910 0721082 3704031 0.0004
C{11) 0.751711 0.101318 7.419300 0.0000
c(12) 0.561528 0.087604 6.409872 0.0000
C(13) -0.609972 0.090577  -6.734285 0.0000
C(14) 0.005971 0.001652 3613867 0.0006
C{(15) 0.042206 0.185503 0.228008 0.8203
C{20) -2.799240 1.021972 -2.738057 0.0078
C(21) 0.903637 0.108484 8.328919 0.0000
C(22) 0.951495 0.149107 6.381282 0.0000
C(23) -0.549361 0.186524 -2.945253 0.0044
C(24) -0.004892 0.002609 -1.875427 0.0649
C(25) 0.157224 0.195886 0.802631 0.4249
Dreterminant residual covariance 4.56E-08

R-squared 0.994825 Mean dependentvar 9.473482
Adjusted R-squared 0.994376 S.D. dependentwvar 0227124
S.E. of regression 0.017033 Sum squared resid 0.010735
Durbin-Watson stat 1.814607

Equation: LOG(GDP_CAN) = C(20)+C(21)*LOG{GDP_CAN(-1))+C(22)
*LOG(GDP_USHC(23)"LOG(GDP_US(-1)+C(24) T
Obsemnvations: 42

R-squared 0.996381 MWean dependentvar 9.269590
Adjusted R-squared 0.995990 S.D.dependentwvar 0.242288
S.E. of regression 0.021677 Sum squared resid 0.017385
Durbin-Watson stat 1.688250

(a)

Equation: LOG(GDP_US) = C(10)+C(11)"LOG(GDP_US(-1)+C(12)
TLOG(GDP_CANMC13yLOGIGDP_CAN-1)+C(14) T+AR(1)}=C(15)]

Observations: 41

R-squared 0995076 Mean dependent var 9.482115
Adjusted R-sguared 0984372 S.D. dependentvar 0.222860
S.E. of regression 0.016718 Sum squared resid 0.008782
Durbin-Watson stat 1.844620

Equation: LOG(GDP_CAN) = C{20+C{21)"LOG(GDP_CAN(-1)+C{22)
*LOGIGDP_US)+C(23"LOG(GDP_US(-1)+Ci24)" T+AR(1)=C(25)]
Observations: 41

R-squared 0996343 Mean dependent var 9281978
Adjusted R-squared 0995821 S.D. dependentvar 0.336874
S.E. of regression 0.021778 Sum squared resid 0.016599
Durbin-Watson stat 1.773246

(b)

Figure 1.12 Statistical results based on (a) translog linear LV(1)_SCM, and (b) translog linear LVAR(1,1)_SCM,;

with trend

4. To generalize, the variable GDP could easily be replaced by a variable Y. Then, as a modified model,
the SCM will be written as pair of nonlinear models as follows:

Y_US=Y_US(—1)"y_can®Dy_Can(—1)"Exp(C(10) + C(14)"1)

Y_Can=Y_Can(—1)“®Vy_usc@y_us(—1)“® Exp(C(20) + C(24)"1)

(1.11)
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Figure 1.13 Residual graphs of the LV(1)_SCM in Figure 1.11(a)
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5. Finally, for the seven states in POOLG7.wf1, a much more complex path diagram should be developed
or defined to represent the theoretical causal model between the seven time series variables. Therefore,
based on the path diagram, the system specification of a SCM would easily be written, either as translog
linear or nonlinear models. However, by using many independent variables, the error messages of “near
singular matrix” or “overflow”, as well as the unexpected estimates of parameters, may be obtained.
Refer to special notes in Agung (2009a, Section 2.14).

1.4.2 The Application of the Object “VAR”

EViews provides the object “VAR” for conducting the data analysis based on a vector autoregressive (VAR)
and vector error correction (VEC) models, which are special cases of the multivariate autoregressive
(MAR) models and SCMs, (Agung, 2009a). See the following example.

Example 1.9 A VAR model

Figure 1.14 presents the statistical result based on a VAR model of log(GDP_US) and log(GDP_Can), using
the lag interval of endogenous “1 17, and exogenous variables “C T” with the default options. Based on this
result the following notes are presented.

1. Note that this VAR model in fact is a special case of the MAR(1)_GM, where all regressions have
exactly the same independent variables. Compared to the path diagram in Figure 1.10, the path diagram
of this VAR model presented in Figure 1.15 shows the causal relationship between log(GDP_US) and
log(GDP_Can) is not taken into account.

2. However, the quantitative coefficient of correlations of the independent variables log(GDP_US(—1)),
log(GDP_Can) and the time ¢ should be taken into account in the regression analysis, and it is well-
known that they have an unpredictable impact on the estimate of the model parameters. Refer to Sec-
tion 2.14.2 in Agung (2009a).

; . R-squared 0.989169 0.992276
Vector Autoregres_smn Estimates Ad]. R-squared 0.085313 0.991666
Date: 08/13/09 Time: 12:31 Sum sq. resids 0.022909 0.037102
Sample (adjusted): 1951 1992 S.E. equation 0.024553 0.031247
Included observations: 42 after adjustments E;Sgﬁnt::set:ﬁmoa ;;iﬁgégg ;g%ﬁfif
Standard errors in ( ) & t-statistics in [] Akalke AIC -4,485560 -4.003401
Schwarz SC -4.320067 -3.837908
Mean dependent 9.473482 9. 269590
LOG(GDP_US) LOG(GDP_... S.D. dependent 0.227124 0.242288
_ Determinant resid covariance (dof adj.) 2 76E-07
LOG{GDP_US( 1)) 0.902551 0.290894 Determinant resid covariance 2.26E-07
(0.11868) (0.15103) Log likelihood 202.1872
[7.60498] [1.92602] Akaike information criterion -9.247008
Schwarz criterion -8.916024

LOG(GDP_CAN(-1)) -0.154154 0773517

(0.08402) (0.10692)

[1.83475] [7.23425] Estimation Proc:
c 2238143 -0.647635 LS 11LOG(GDP_US) LOG(GDP_CAN) @CT

(0.93168) (1.18568)

(240226]  [0.54621] VAR Hodel:

LOG(GDP_US) = C(1,1)*LOG(GDP_US(-1}) + C(1,2)*LOG(GDP_CAN{-1)) +

T 0.005864  0.000661 C(1,3)+COLaFT
(0.00224) (0.00285) LOGIGDP_CAN) = C{2 1)*LOG(GDP_US(-1)) + C{2.2)*LOG(GDP _CAN(-1)) +
[2.62140]  [0.23215] ceanrcoaT - -

(@) (b)

Figure 1.14 Statistical results based on a VAR Model of log(GDP_US) and log(GDP_Can)
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log(Gdp_us(—1))——log(Gdp_us)
V..

log(Gdp_Can(-1))——» log(Gdp_Can)

Figure 1.15 The path diagram of the VAR model in Figure 1.14

Furthermore, note that the symbol C(i,j) is used to present the model parameters, and test the hypothe-
ses using the Wald test, that is the Block Exogeinity Wald Test.

For a model with many endogenous or exogenous variables, applying the object “System” is recom-
mended instead of the object “VAR”, because in general, the good fit multiple regressions in the model
would have different sets of independent variables.

Refer to Chapter 6 in Agung, (2009a; p. 316), for more detailed notes on various VAR models, as well
as their residual analysis, and a special causality test; the VAR Granger Causality/Block Exogeneity
Wald Tests.

Furthermore, in order to match conditions in previous and recent years, Agung (2009a) proposes special
VAR models using the lag interval of endogenous “4 4” for a quarterly data set, and “12 12” for a
monthly data set.

Example 1.10 A vector error correction (VEC) model

Figure 1.16 presents the statistical result based on a VEC model by inserting the endogenous variables
“log(GDP_US) log(GDP_Can)”, the lag interval of endogenous “1 17, and exogenous variables “7” with
the default options. Based on this result the following notes are presented.

1.

2.

By inserting the endogenous variables log(GDP_US) and log(GDP_Can), the output directly presents two
regressions with the first differences Dlog(GDP_US) and Dlog(GDP_Can) as their dependent variables.
Note that, in general, the first difference of log(Y_s), in fact indicates the exponential growth rate of Y_s,
which can be presented as follows:

Dlog(Y_s) = log(Y_s,) — log(Y_s,—1) = R,(Y_s) (1.12)

Then, the two independent variables Dlog(Y_US(—1)) and Dlog(Y_Can(—1)), can be presented as
follows:

Dlog(Y_s(—1)) =log(Y_s;—1) — log(Y_s;—2) = R—1(Y_s) (1.13)

For these reasons, the VEC model in fact presents a bivariate LV(1) model of R,(GDP_US) and
R,(GDP_Can) with exogenous variables.
Beside the independent or exogenous variables C and 7, both regressions in the VEC model have a
special independent variable, called the Cointegrating Equation, namely:

CointEgl = 1og(GDP_US(—1)) + 0.286109 log(GDP_Can) — 12.1466

For more detailed notes on various VEC models, as well as the characteristics of alternative cointegrat-
ing equations, refer to Section 6.3 in Agung (2009a).
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Vector Error Correction Estimates

Date: 08/13/09 Time: 14:48 R-squared 0.163536 0.060650
Sample (adjusted): 1952 1992 Ad]. R-squared 0.070596 -0.043723
Included observations: 41 after adjustments Sum sq. resids 0.022341 0.040184
Standard errors in () & t-statistics in [] S.E. equation 0.024911 0.033410
F-statistic 1.759578 0.581090
Cointegrating Eq: CointEq1 Log likelihood 95.87921 83.84437
Akaike AIC -4.433132 -3.846067
LOG(GDP_US(-1) 1.000000 Schwarz SC -4224160  -3.637095
Mean dependent 0.016525 0.023027

LOG(GDP_CAN(-1)) 0.286109
(0.26786) S.D. dependent 0.025840 0.032703
[1.06813] Determinant resid covariance (dof adj.) 3.02E-07
c 12.11466 Determinant resid covariance 2.33E-07
Log likelihood 196.7108
Error Correction: D(LOG(GDP... D(LOG(GDP... Akaike information criterion -9.010285
Schwarz criterion -8.508751

CointEq1 -0.229705 -0.041189

(0.10087) (0.13528)
[2.27722] [-0.30447]

Estimation Proc

D(LOG(GDP_US(-1))) 0.118220 0.203617 EC(C.1}11 LOG(GDP_US) LOG(GDP_CAN) @ T
(0.20449) (0.27426)
[0.57812] [0.74243) VAR Mode!
D(LOG(GDP_US)) = A(1,1)(B(1,17LOG(GDP_US(-1)) + B(1,2/"LOG(GDP_CAN(-1)} + B
D(LOG(GDP_CAN(-1))) 0.013610 0.107740 {1,3)) + C(1,1/"D(LOG(GDP _US(-1)}) + C(1,2)'D{LOG(GDP_CAN(-1))) + C(1,3) + C{1,41T
(0.19289) (0.25869)
[0.07056] [0.41648] DILOGIGOP_CAN)) = A(2.1)*(B(1,1)"LOG(GOP_US(-1)) + B(1, 2)'LOGIGDP_CAN(-1)) + B

(1,3)) + C(2 1" DILOG(GDP_US(-1))) = Ci2. 2y D{LOG(GDP_CAN(-1))) + C(2,3) + C(2,4)"T

c -0.117662 -0.002766 VAR Model - Substiuted Coefficients:

(0.06156) (0.08256) DILOGIGOP_US)) = - 0.220705011793*( LOG(GOP_US(-1)) + 0.286109023785°L0G
[1.91131] [-0.03350] (GOP_CAN(-1)) - 121146586662 ) + 0.118220324°D(LOG(GDP_US(-1))) +
0.0136103060211°D{LOG(GDP_CAN(-1))) - 0.117662320679 + 0.00599184978411°T

T 0.005992 0.000896 D(LOG(GDP_CAN)) = - 0.0411894448722°( LOG(GDP_US(-1)) + 0.286109023785°LOG
(0.00270) (0.00362) (GDP_CAN(-1)) - 12.1146586662 ) + 0. 203617013369 D(LOG(GOP_US{-1))) +
[2.21965] [0.24751] 0.107740204007*DILOG(IGDP_CAN(-1))) - 0.00276581170121 + 0.000896101575108°T

Figure 1.16 Statistical results based on a VEC Model of log(GDP_US) and log(GDP_Can)

1.4.3 The Application of the Instrumental Variables Models

It is not an easy task to define a “good fit” instrumental variables model, since there is no general guide on
how to select an acceptable set of instrumental variables corresponding to any defined statistical model. For
this reason, Agung (2009a, p. 382) suggests everyone has two-stages of problems (TSOP), in demonstrating
or developing an instrumental model. First, he/she should develop a model with at least one exogenous
variable which is significantly correlated with the residual of the model. Second, he/she has to search to
find the best possible set of instrumental variables. For various examples with special notes on instrumental
variables models, refer to Chapter 7 in Agung (2009a).

Example 1.11 (A two-stage LSE method)
Figure 1.17 presents the statistical results based on an instrumental variable model with a trend of
log(GDP_US) and log(GDP_Can). Based on this result the following notes are presented.

1. Figure 1.17(a) presents the statistical results based on a bivariate AR(1,1)_SCM, where both regressions in
the model are the simplest AR(1) linear regressions, with the same set of instrumental variables. These
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System: SYS05 Estimation Method: lterative Two-Stage Least Squares

Estimation Method: lterative Two-Stage Least Squares Date: 061308 Thme: 16:04

. - ) Sample: 1952 1992
Date: 08/13/109 Time: 15:55 Included observations: 42

Sample: 1951 1992 Total system (unbalanced) observations 81
Included observations: 43 (o \ce achieved after 7 iterati
Total system (balanced) observations 84
Convergence achieved after 12 iterations Coeflicient Std. Error -Stalistic Prob,
: it C10) 4.360923 0.645500 6.755880 0.0000
Coeficient  Std Eror  t-Stafistic  Prob. cii1) 0284102 0108895 2312221 00236
c{12) 0812034 0086502  9.387500  0.0000
Cc10) 3627138 0.616561 5.882853 0.0000 c13) 1,.245268 0.152931 8.089757 0.0000
C(11) 0.632266 0.065137 9.706704 0.0000 C(14) -0.417304 0.152645  -2.733820 0.0079
C(12) 0.842680 0.090564 9.304761 0.0000 Ci20) -1.022586 0.510377  -2.003591 0.0489
C(20) 4491572 1349184 -3329102  0.0013 ci21) 0771526  0.093052 8291338  0.0000
cl21) 1451370 0140951 1029701  0.0000 ce2) 0333348 Daataas  23%e816 0021
c(22) 0851882 0082311 1034050  0.0000 c@3) 0199423 0186186 1071095 02877
a n i Determinant residual covariance 1.39E-07
Determinant residual covariance 8.01E-09
Equation: LOG(GDP_US) = C(10)+C{11yLOG(GDP_US(-1))+C(12)
Equation: LOG(GDP_US) = C{(10+C(11)*LOG(GDP_CANAR(1)=C(12)] | W'LOGftGDgf?_g"é}(‘éﬁ‘b:;q?]JL%-%(&;}E%“L‘E[ 2)) LOG(GDP_CAN(
. X 2 nstruments: - u - = -
Ig:trumeﬂnts. Q;;LOG(GDP_US{ 1)) LOG(GDP_CAN(-1)) 1)) LOG(GDP_US(.3)) LOG(GDP._CAN(-2))
servalions. Observations: 40
R-squared 0993172 Mean dependentvar 9473482 R-squared 0993566 Mean dependentvar 3490958
Adjusted R-squared 0.992822 S.D. dependentvar 0227124 Adjusted R-squared 0992831 S.D. dependentvar 0.218292
SE. of regression 0019243 Sum squared resid 0.014441 S.E. ofregression 0.018483 Sum squared resid 0.011957
Durbin-Watson stat 1.622016 Durbin-Watson stat 1.781571

Equation: LOG(GDP_CAN) = C{20)+C(21)'LOG(GDP_CAN(-1})+C(22)

Equation: LOG(GDP_CAN) = C(20)+C({21)*LOG(GDP_US)+[AR(1)}=C{22)] *LOG(GDP_USHAR(1)=C(23))

Instruments: C T LOG(GDP_CAN(-1)) LOG(GDP_US(-1)) Instruments: C T LOG(GDP_CAN(-1)) LOG(GDP_CAN(-2)) LOG(GDP_US(
Obsemvations: 42 B
R-squared 0.993355 Mean dependentvar 9.269590 DObservations: 41
Adjusted R-squared 0.993014 S.D. dependentvar 0.342288 R-squared 0.994549 Mean dependent var 9281978
SE. of regrassion 0.028609 Sum squared resid 0.031921 Adjusted R-squared 0.984107 S.D. dependent var 0.235874
Durbin-Walson stat 4577089 S.E. of regression 0025861 Sum squared resid 0.024746
Durbin-Watson stat 1.874247
~
(a) (b)

Figure 1.17  Statistical results based on bivariate models (a) AR(1,1)_SCM, and (b) LVAR(1,1,2,1)_SCM, with sets
of instrumental variables

results show that log(GDP_Can) and log(GDP_US) have significant simultaneous causal effects, since
log(GDP_Can) has a significant positive effect on log(GDP_US) based on the ¢-statistic of 7, =9.706704
with a p-value =0.0000/2=0.0000, and log(GDP_US) also has a significant positive effect on
log(GDP_Can) based on the t-statistic of #y=10.29 701 with a p-value = 0.0000/2 = 0.0000. Note that in
this case the p-values in the output should be divided by 2 for testing the one-sided hypotheses.

2. Figure 1.17(b) presents the statistical results based on a LVAR(1,1;2,1)_SCM, where the first regression
is a LVAR(1,2) model with an exogenous variable log(GDP_Can) and the second regression is a LVAR
(1,1) model with an exogenous variable log(GDP_US). Compared to the model in Figure 1.14(a), the
regressions in this model have different sets of instrumental variables

1.5 Seemingly Causal Models with Time-Related Effects

As the extension of the SCMs with trends in (1.9) and (1.10), the following system equations present SCMs
with time-related effects.

1.5.1 SCM Based on the Path Diagram in Figure 1.10(a)

As an extension of the additive model in (1.9), a SCM with time-related effects based on the path diagram in
Figure 1.10(a), will have the following system specification. Note that the two-way interaction *GDP_US
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is inserted as an additional independent variable of the second regression to indicate the time-related effect
of DGP_US on GDP_Can. In other words, the effect of DGP_US on GDP_Can depends on the time ¢.

GDP_US = C(10) + C(11)*GDP_US(—1) + C(12)"t
GDP_Can = C(20) + C(21)*GDP_Can(—1) + C(22)"GDP_US (1.14)
+ C(23)"GDP_US(—1) 4+ C(24)"t + C(25)""GDP_US

Note that this model is indicating that the effect of GDP_US on GDP_Can depends on the time ¢, indi-
cated by the following partial derivative:

OGDP_Can
GOUT AN (24) + ¢(25)"
oGpp s — (24 T e3)1

1.5.2 SCM Based on the Path Diagram in Figure 1.10(b)

As an extension of the interaction model in (1.14), a SCM with the time-related effects based on the path
diagram in Figure 1.10(b), will have the following system specification. Note that the second regressions of
the SCMs in (1.14) and (1.15) are identical models.

GDP_US = C(10) + C(11)"GDP_US(—1) + C(12)"GDP_Can

+ C(13)"GDP_Can(—1) + C(14)"t + C(15)"t*GDP_Can
GDP_Can = C(20) + C(21)"GDP_Can(—1) + C(22)"GDP_US

+ C(23)"GDPGDP_US(—1) + C(24)"t + C(25)"r*GDP_US

(1.15)

Example 1.12 A translog linear SCM with time-related effects

We find that the statistical results based on the model in (1.15) present several insignificant independent varia-
bles, including the two-way interactions t*"GDP_Can and t*GDP_US. So, by using the trial-and-error method
we can finally obtain a good fit translog linear SCM with time-related effects as presented in Figure 1.18,

System: UNTITLED Equation: LOG(GDP_US) = C{10)+C(11)"LOG(GDP_US(-1)+C(12)
Estimation Method: Least Squares *LOG(GDP_CAN)+C(13)"LOG(GDP_CAN(-1)) +C(15)*T
Date: 08/13/09 Time: 17:12 *LOG(GDP_CAN)
Sample: 1951 1992 Observations: 42
Included observations: 42 R-squared 0994869 Mean dependent var 9473482
Total system (balanced) observations 84 Adjusted R-squared 0.994314 S.D.dependentvar 0.227124
S.E ofregression 0.017126 Sum squared resid 0.010852
Coefficient Std. Ermror t-Statistic Frob. Durbin-Watson stat 1.858029
C(10) 2520206 0.638031 3.949973 0.0002 Equation: LOG{GDP_CAN) = C{20+C{21)"LOG(GDP_CAN(-1))+C(22)
C(11) 0.769750 0.083439 9225269 0.0000 *LOG{GDP_USPC{23)*LOG(GDP_US(-1))+C(25)'T*"LOG(GDP_US)
C(12) 0.568780 0.088966 6.393227 0.0000 Observations: 42
C(13) -0.617770 0.092585  -6.672465 0.0000 R-squared 0.996406 Mean dependentvar 9269590
Cc({15) 0.000562  0.000163  3.455584  0.0009 Adjusted R-squared 0.996017 S.D. dependentvar 0.342288
C(20) -2 759283 0.875206 -3152724 0.0023 S.E. of regression 0.021601 Sum squared resid 0.017265
c{21) 0928523  0.079587 11.66681 0.0000 Durbin-Watson stat 1.723052
c{22) 0934923 0143415 6519011 0.0000
C(23) -0.561499 0.166267 -3.377087 0.0012
C(25) -0.000504  0.000220 -2.291717  0.0248
Determinant residual covariance 4.94E-08

Figure 1.18 Statistical results based on a reduced model of a modified model in (1.15)
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which is in fact a nonhierarchical reduced model of the modified model in (1.15). Based on these results the
following notes are presented.

1. The p-value of the two-way interaction T"log(GDP_Can) in the first regression indicates that the
adjusted effect log(GDP_Can) on log(GDP_US) is significantly dependent on the time ¢, and the
p-value of the two-way interaction T"log(GDP_US) in the second regression also indicates that
the adjusted effect log(GDP_US) on log(GDP_Can) is significantly dependent on the time z.

2. Therefore, based on this SCM, it can be concluded that the data support the hypothesis log(GDP_US)
and log(GDP_Can) have simultaneous causal effects dependent on the time ¢.

1.6 The Application of the Object POOL

Many students, as well as less experienced analysts, have used the object POOL to present statistical
results or outputs based on either fixed or random effects models, without considering or discussing
the characteristics of the models, not to mention their limitations. For this reason, the following
examples present illustrative statistical results with special notes.

The steps of the analysis using the object “POOL” are as follows:

1. By selecting Object/New Objects/Pool ... OK, the window in Figure 1.19(a) appears.
2. By inserting Cross-Section Identifiers, namely the series _CAN _US _FRA _GER, and then clicking
“Estimate”, then options in Figure 1.19(b) appear.

1.6.1 What is a Fixed-Effect Model?

The following example presents the statistical results based on simple multivariate growth models with
special notes on the acceptability of the models.

et i vt oL | | [ e o mam— e
view | Proc|[Object | (Print|[ame [Freeze | [Estimate|[Define | PociGenr | Sheet spedification | Options |
C Section Identifiers: (Enter identifiers below this li
ross Section Idenfifiers: (Enter identifiers below this line) Depanclant varisble Regressors and AR() terms
can oolode?) Common coefficents:
s < tar(l)
_FRA J Estmation method il
GER
_ Fixed and Random Effects Cross-section spedific coefficients:
Cross-section: | Nome: =
Period: None -
e g Period specific coefficents:
Weights: | N weights b4 ke
Estmation settings
Method: (LS - Least Squares (and AR) |
. - [ Balance
sample: 1950 1992 E TSM*
(a) (b)

Figure 1.19 The windows and options for using the object “POOL”
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Example 1.13 A fixed-effect MAR(1)_GM
For comparison with the statistical results in Figure 1.2, Figure 1.20(a) presents the statistical results by
selecting cross-section: Fixed, inserting log(GDP?) as the dependent variable, and the series “c ¢ ar(1)” as
the Regressors and AR() term Common Coefficients.

Then by selecting View/Representation, the estimation equation in Figure 1.20(b) is obtained. Based on
these results, the following conclusions and comments are presented.

1. Note that this fixed-effect AR(1) model has special characteristics, where the four regressions in the
model have special intercept parameters, namely C(4)+ C(1), C(5)+ C(1), C(6)+ C(1), and C(7)+
C(1), respectively, where the parameters C(4) to C(7) are named as the cross-section fixed-effect
parameters.

2. However, we find the equality of the parameters C(4), C(5), C(6) and C(7) cannot tested using the Wald
test.

3. The growth rates of GDP are presented by a single parameter of C(2) in the four countries, as well as a
single autocorrelation of C(3) for the four regressions, which should be inappropriate or unrealistic
estimates, in a theoretical sense. For this reason, compared to the model in Figure 1.2 along with the
model in Figure 1.20, this MAR(1)_GM should be considered unacceptable for representing growth
rates of the GDP in the four countries.

Example 1.14 A fixed effect MLV(1)_GM
For a comparison with the statistical results in Figure 1.9, Figure 1.21(a) presents the statistical results by
selecting Cross-section: Fixed, inserting log(GDP?) as the dependent variable, and the series “c ¢ log(GDP?

Dependent Variable: GDP?
WMethod: Pooled Least Squares
Date: 07110/09 Time: 13:04
Sample (adjusted): 1951 1992
Included observations: 42 after adjustments
Cross-sections included: 4
Total pool (balanced) observations: 168
Convergence achieved after 3 iterations
Variable Coeflicient Std. Error -Statistic Prob.
C 4683.423 4242855 11.03840 0.0000
T 2689511 13.41703 20.04550 0.0000
AR(1) 0.863802  0.038453 2246383  0.0000
Fixed Effects (Cross)
_CAN-C 3251818
_uUs-C 2299204
FRA-C -1570.708 Tt
. C{2P'T + [AR{1)=C(3
TGER-C -1053.678 IR RRCE
GOP_US = C(8) + C(1) » CI2PT + [AR(1)=C13))
Effects Specification GOP_FRA = (5] = C{1} + C(2)'T + [BR(1}=C3)
Cross-section fixed (dummy variables) GDP_GER = C(7) = C(1)+ C2I'T + [AR(1)=C(3]
R-squared 0.994053 Mean dependentvar 10871.11
Adjusted R-squared 0993870 S.D. dependentvar 3660.970
SE. of regression 286.6443  Akaike info criterion 14.18942 +4683.43277354 + 268.951075506°T + [AR{1)=0.863802466030]
fg;nliigﬁ:gi%resm :113133150;‘211 3::1wn:nmér:;:0;ngr 1:323?3 GDP_US = 2299 20385389 + 4683 43277154 + 268 951075506"T + [AR(1)=0.863802456939)
F-statistic 5415789 Durbin-Watson stat 1.514880 GDP_FRA =-1570 70754267 + 4583 43277354 + 268551075506 + [AR(1)=0 863802455939]
Prob(F-statistic) 0.000000 GDP_GER =-1053.67819505 + 4683.43277354 + 268.951075506°T + [AR(1)=0.863802466339]
(a) (b)

Figure 1.20 Statistical results based on a fixed effect MAR(1)_GM of GDP_Can, GDP_US, GDP_Fra and
GDP_Ger
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Dependent Variable: LOG(GDP?)
Method: Pooled Least Squares

Date: 07110/09 Time: 14:11

Sample (adjusted) 1951 1992

Included observations: 42 after adjustments
Cross-sections included: 4

Total pool (balanced) observations: 168

Variable Coefficient Std. Error t-Statistic Prob.
c 0.684159 0.172521 3.965655 0.0001
T 0.001406 0.000575 2445828 0.0155
LOG(GDP?(-1)) 0.925098 0.020089 46.04897 0.0000
Fixed Effects (Cross)
_CAN-C -7.15E-05
_Us-cC 0.009821
_FRA-C -0.008606 Fsimaion Command:
_GER-C -0.001153

Effects Specification th= CE2YT + CEILOGIGOR_CANA1T

Cross-section fixed (dummy variables) ICGIGOP_LIS) = €451 + 1) + CLIT + COPLOGIEIR_ LS
[LOGIGOF_FRAI = Gif = i1} = CRIT + COTLOGIGDP_FRAC-1]}H

R-squared 0.995548 Mean dependent var 9.220532 |-CGIGOR_GER) = CiT) + Cif) + CiZI'T + CRLOGICOP_CERLAH

Adjusted R-squared 0.995410 S.D. dependentvar 0.375014 )

S.E. of regression 0.025406 Akaike info criterion -4,472593 [Putalhuies Coafivierks:

Sum squared resid 0.104566 Schwarz criterion -4,361023 e ABETT + DSOS TO0NGTLOGE0R_CANIT)

Log likelihood 381.6978 Hannan-Quinn criter. -4.427312 LOCoOF_U; 13251 + 0. ! T LOGICOF_LISEA)

F-statistic 7244806 Durbin-Watson stat 1.612986 CEENF_FRE = + DRBHSARMATS + 33155°T + 0 925IETTATN L DGIGNP_FRACTY

Flro D(F'Slatlstlc} 000 0000 JOGIGOP_GER) = -0.001 1504589 1855 + (634155004375 + 0.0071406004 331567 + GH2S08F 000N LOGIGDR_GERE-1)
(@) (b)

Figure 1.21 Statistical results based on a fixed effect MLV(1)_GM of GDP_Can, GDP_US, GDP_Fra and
GDP_Ger

(—1)” as the Regressors and AR() term Common Coefficients. Then by selecting View/Representation, the
estimation equation in Figure 1.21(b) can be obtained. This model also has the same problem as the fixed-
effect MAR(1)_GM, so it should be considered inappropriate for representing the growth rates of the GDP
in the four countries.

1.6.2 What is a Random Effect Model?

The AR() terms cannot be used for a random effect model. For this reason, the following examples only
present results based on the classical growth model and a random effect MLV(1)_GM.

Example 1.15 A random effect multivariate classical growth model: REMCGM

Figure 1.22 presents the statistical results based on a REMCGM of GDPs for the four countries, as well as
the four regression functions having the same growth rates of C(2). This model is also an inappropriate
model in a theoretical sense, aside from the very small value of the weighted DW statistic of 0.078 665. For
this reason, a random effect MLV (1)_GM is presented in the following example.

Example 1.16 A random effect MLV(1)_GM

For comparison with the statistical results based on the fixed effect MLV(1)_GM in Figure 1.21, Figure 1.23
presents the results based on a random effect MLV (1)_GM, which shows that the four regression functions
have exactly the same coefficients of C(/), C(2) and C(3); and C(4) = C(5) = C(6) = C(7)=0. In a theoreti-
cal sense, this is the worst model.



26 Panel Data Analysis Using EViews

Dependent Variable: LOG{GDP?)

Method: Pooled EGLS (Cross-section random effects)
Date: 07/10/08 Time: 15:19

Sample: 1950 1992

Included observations: 43

Cross-sedclions included: 4

Total pool (balanced) observations: 172

Swamy and Arora estimator of component variances

Variable Coefficient Std. Error -Statistic Prob.
Cc 8618096 0.095592 9015486 0.0000
T 0.027090 0.000616 43.97470 0.0000
Random Effects (Cross)
_CAN-C 0.042773
_us-c 0.248363 E—
_FRA-C -0.154467 stimation Command:
GER-C -0.136669 o =
- LS{CX=R) LOG(GDF?)C T
Effects Specification . N
sD. Rho ffllmahon Equations: )
Cross-section random 0188634 07797 [OGIGDP_CAN) = C(3) = C(1) » C2IT
Idiosyncratic random 0.100261 02203 LOGIGDP_US) = Cld) + C(1) + C2P'T
Weighted Statistics ILOG({GDP_FRA) = C(5) + C(1) + C{2)*T
R-sguared 0.919193  Mean dependent var 0.744397 ILOG(GDP_GER) = C{B) + C(1) + C(2)'T
Adjusted R-squared 0918718 S.D. dependentvar 0.351667
SE. ofregression 0.100261 Sum squared resid 1.708871
F-statistic 1933774 Durbin-Watson stat 0.078665
Prob(F-statistic) 0.000000 = ==
ILOG{GDP_CAN) = 0.0427728268614 + 8.61809606213 + 0.0270899687917°T
Unweighted Statistics
LOG(GDP_US) = 0.248362979351 + 8.61809606213 + 0.0270899687917°T
R-squared 0.755259 Mean dependent var 9214075
Sum squared resid 6.299071 Durbin-Watson stat 0.021341 LOG(GDP_FRA) =-0.154467059659 + 8.61809606213 + 0.0270899687917"T
ILOG{GDP_GER) = -0.136668746553 + 8.61809606213 + 0.0270899687917*T

Figure 1.22 Statistical results based on a RECGM of GDP_Can, GDP_US, GDP_Fra and GDP_Ger

Eslima$on Command.

Dependent Variable: LOG(GDP?)

)G TLOGIGDPTCA)

Method: Pooled EGLS (Cross-seciion random effects)

Date: 07/10/09 Time: 14.58 .

Sample (adjusted). 1951 1992 LOGIGDP_CAN) = C{4) = C{1) + CI2)'T + CI3ILOGIGDP_CAN-1)
Included observations: 42 after adjustments LOG{GDP_US)= Ci5) = C{1) = CIZIT + CI3PLOGIGDR_USH-1)
Cross-sections included: 4 LOGIGOP_FRA] = ClE} + i1} + CLZPT + CI3PLOGIGDP_FRA-11)

Total pool (balanced) observations: 168

i . LOGGOP_GER) = C(7) + C{1) + C{2PT + CIIPLOGIGDR_GERI-1))
Swamy and Arora estimator of component variances

Variable Coefficient Std. Error t-Statistic Prob. LOG(GDP_CAN) = 0 + 0.452656208449 + 0.000SES617512811°T + 095206193101 7°LOGIGOP_CAN(-11}
LOGIGOP_US) = 0 + 0 452056208449 + 0 000605617512811°T + 0 052061831017*LOGIGOP_US(-1})
$ ggggg gg ggg;ggg ;;g:gié ggggg LOG(GDP_FRA} =0 + 0.452666208442 + 0.000665617512811°T + 0.952061831017°LOGIGDP_FRA{-1))
LOG(GOP?(-1)) 0'9520 52 0'0101 a7 9'3 45688 0'0000 LOGIGOP_GER) =0 + 0 452666202440 + 0 000BESH1TS12811°T + D 952061931017 L OG{GDP_GERL-1)
Random Effects (Cross)
—%ﬁg'g ggggg gg Weighted Statistics
__FR,&-C [l:[JD[JIJ[IU R-squared 0.995433 Mean dependent var 9.229532
Adjusted R-squared 0.995377 S.D. dependent var 0.375014
GER-C 0.000000 SE. of regression 0.025497 Sum squared resid 0.107270
— F-statistic 17980.29  Durbin-Watson stat 1614188
Effects Specification Prob(F-statistic) 0.000000
SD. Rho
Unweighted Statistics
Cross-section random 0.000000  0.0000 R-squared 0005423 Mean dependentvar 0220522
Idiosyncratic random 0.025406  1.0000 Sum squared resid 0.107270 Durbin-Watson stat 1614198

Figure 1.23 Statistical results based on a random effect MLV(1)_GM of GDP_Can, GDP_US, GDP_Fra and
GDP_Ger
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1.6.3 Special Notes

Based on the statistical results of the multivariate fixed and random effects growth models using the object
“POOL” presented previously, please note the following special points.

1.

In general, a multivariate fixed and random effects growth model is the worst multivariate growth model
by states, in a theoretical sense. This is even more so if it is known that a state should have a dis-
continuous or piece-wise growth curve, as this may be because of some external factors. Therefore, in
general one should use models with heterogeneous slopes or heterogeneous regressions (Agung, 2006,
2011). For an additional illustration, Chandrasekaran and Tellis (in Malhotra, 2007, p. 45) present the
findings of Golder and Tellis (2004) on piece-wise mean growth rates of a product’s life cycle over six
time periods; namely during the introduction, takeoff, growth, slowdown, early maturity and late maturity.
Referring to the ANCOVA models, in a statistical sense, models that have homogeneous slopes or
homogeneous regressions (Agung, 2006, 2011) with various intercepts are acceptable. The main objec-
tives of ANCOVA are to test the hypotheses on the adjusted means differences of the corresponding
dependent variables, which in fact are the hypotheses on the intercept differences of the homogeneous
regressions considered. However, analysis should be conducted using the object “System”, instead of
the object “POOL” — refer to point (2) in Example 1.13. See the following example.

Example 1.17 A MAR(1) ANCOVA growth model
For illustration, Figure 1.24 presents the statistical results based on a MAR(1) ANCOVA growth model,
using the object “Systen”. Based on these results the following conclusions and notes are presented.

1.

Note that the growth rates of GDP of the four states are assumed to be equal to C(11) = 0.011266 which
are unacceptable in a theoretical sense. Similarly so for the first autoregressive indicator C(12) = 0.960457.

System: SYS09 Equation; LOG(GDP_UK)=C(30+C(11) T+HAR(1)=C(12
Estimation Method: Iterative Least Squares Ogservaﬁnns ‘{12 UKI=CE0RCIITHAR(1)=C(12)]
Date: 08/19/09_ Time: 09:53 R-squared 0093213 Mean dependentvar  9.064748
Samele: 1951 1952 Adjusted R d 0993075 SD.dependent 0.260995
Incuded obesrvalions: 43 Adjusted R-square . .D. dependent var .
Total system (balanced) observations 158 S.E.qfregressnon 0.021719  Sum squared resid 0.018397
Convergence achieved after 2 iterations Durbin-Watson stat 1.526476
Coefficient  Std. Emor  t-Statistic Prob. Equation: LOG(GDP_JPN)=C(40p+C(11FT+AR(1)=C(12]]
Observations: 42
C(10) 9378796 0.244686 27.20967 0.0000 R-squared 0.998088 Mean dependentvar 8.728910
c{11) 0.011266  0.006555 1718618  0.0876 Adjusted R-squared 0.997990 S.D. dependent var 0.698799
C{12) 0.960457 0.009552 100.5540 0.0000 S.E. of regression 0.031331  Sum squared resid 0.038284
C(20) 9452468 0438635 21.54973 0.0000 Durbin-Watson stat 1.075140
C(30) 9057210 0262113 2501213 0.0000
C(40) 9573194 0.549645 1741705 0.0000
K K K Wald Test
Determinant residual covariance 5.73E-14 System: SYS09
Equation: LOG(GDP_US)=C(10)+C(11)* T+AR(1)=C{12)] Test Statistic Value df  Probability
Observations: 42 R
R-squared 0.987376 Mean dependentvar 9473482 Chi-square 8.464132 3 0.0373
Adjusted R-squared 0986729 S.D. dependentvar 0227124
SE. of regression 0.026165 Sum squared resid 0.026699 . .
Durbin-Watson stat 1957912 Null Hypothesis Summary.
Equation: LOG(GDP_GER)=C(20}+C(11) T+]AR()=C(12)] Mormalized Restriction (= 0) Value Std. Err.
Observations: 42
R-squared 0.996285 Mean dependent var 9.098903 g:;g;_gg:g; _g:ggggg gf;ggg?
Adjusted R-squared 0.996094 S.D. dependentvar 0.392866 C(30) - C(40) _0'515984 0'255385
SE. of regression 0.024552 Sum squared resid 0.023510 _ )
Durbin-Watson stat 1.457365 Restrictions are linear in coefficients.

Figure 1.24 Statistical results based on an MAR(1) ANCOVA growth model
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System: SYS10 — _ " _

Estimation Method: lterative Least Squares Equation: LO.G{GDP'UK}_C[30}+C(11) T+AR(1)=C(32)

Date: 08/19/09 Time: 11:06 Observations: 42

Sample: 1951 1992 R-squared 0993821 Mean dependentvar 9.064748
Included observations: 43 Adjusted R-squared 0993504 S.D. dependentvar 0.260995
Total system (balanced) observalions 168 SE. ofregression 0021035 Sum squared resid 0.017257
Convergence achieved after 7 iterations Durbin-Watson stat 1471386

Coefficient _ Std Emor _ tSfafistic _ Prab. Equation: LOG(GDP_JPN)=C{401+C(11) T+AR(1)=C(42)]

c{10) 9078944 0038474 2359787  0.0000 Obsenvations: 42
c(11) 0.018204 0.001356 13.42234 0.0000 R-squared 0998109 Mean dependentvar 8728010
c(12) 0784511 0103526 7577923  0.0000 Adjusted R-squared 0.998012 S.D. dependentvar 0.608799
g%g g-ggggg:i g-g;:ggg 1;4?-2333 g-gggg S.E of regression 0031155 Sum squared resid 0.037854
( : 40 43 Durbin-Watson stat 1.089900
C(20) 8689235  0.051048  170.2162  0.0000
C(32) 0.853583 0.082179 9.260062 0.0000
C(40) 9.303788 0.251365 37.01301 0.0000
C(42) 0.962359 0.007906 121.7262 0.0000
Wald Test:
Determinant residual covariance 387E-14 System: SYS10
Test Statistic Value df Probability
Equation: LOG(GDP_US)=C(10)+C(11)* T+AR{1)=C(12]]
Observations: 42 Chi-square 130.9457 3 0.0000
R-squared 0.982132 Mean dependentvar 9.473482
Adjusted R-squared 0987523 S.D. dependentvar 0227124
S.E. of regression 0.025370 Sum squared resid 0.025101 i -
Durbin-Watson stat 1.743993 Null Hypothesis Summary-
MNormalized Restriction (= 0) Value Std. Err.

Equation: LOG(GDP_GER)=C(20)+C(11FT+AR(1)=C(22)]
Observations: 42

R-squared 0.996809 Mean dependentvar 9098903 C(10) - C(40) 0224815 0.241215
Adjusted R-squared 0.996645 S.D.dependentvar 0.392865 C(20) - C(40) -0.431517  0.242261
SE. of regression 0.022756 Sum squared resid 0.020196 C(20) - C(40) -0.614530  0.240215
Durbin-Watson stat 1.607262

Restrictions are linear in coefiicients.

Figure 1.25 Statistical results based on an alternative MAR(1) ANCOVA growth model

2. However, in a statistical sense, this model is an acceptable MANCOVA model of the variables
log(GDP_US), log(GDP_Ger), log(GDP_UK), and log(GDP_JPN), where the time ¢ is considered
covariate, with the intercept parameters: C(10), C(20), C(30), and C(40).

3. Therefore, various hypotheses on the adjusted means differences of the log(GDP?) between any subsets
of the four states can easily be tested using the Wald test. For example, Hy: C(10) = C(20) = C(30) =
C(40) is rejected based on the Chi-square statistic of X% = 8.464132, with df=3 and a p-value = 0.0373,
which indicates that the four states have significant adjusted means differences of the log(GDP?).

4. As a comparison, Figure 1.25 presents the statistical results based on an alternative MAR(1)_GM,
under the assumption the time 7 has the same slopes of C(11), but various intercepts as well as AR(1).
For this model, Hy: C(10) = C(20) = C(30) = C(40) is rejected based on the Chi-square statistic of
X3 = 130.9457, with df=3 and a p-value = 0.0000.

5. On the other hand, the null hypothesis Hy: C(12) = C(22) = C(32) = C(42) should be considered
in comparing this model with the model in Figure 1.24. The null hypothesis is rejected based on the
Chi-square statistic of X% = 10.43420, with df=3 and a p-value = 0.0152. Then, in a statistical sense,
this model is a better fit compared to the model in Figure 1.24.

6. Note that the Durbin—Watson statistics of the regressions in Figures 1.21 and 1.24 indicate that other
models should be explored, such as the higher order AR models. However, try it as an exercise.

Example 1.18 A MAR(1) heterogeneous growth model
Building on the model in Figure 1.25, as well as for further comparison, Figure 1.26 presents the statistical
results based on a MAR(1) heterogeneous growth model. Based on these results, note the following:

1. The main objectives of this model are to test the hypotheses of the exponential growth rate differences
between the GDPs of the four states, indicated by the parameters C(11), C(21), C(31) and C(41).
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System: SYS11

Date: 0819109 Time: 1212
Sample: 1951 1992
Included observations: 43

Convergence achieved after 2 iterations

Estimation Method: lterative Least Squares

Total system (balanced) observations 168

Coefficient Std. Error t-Statistic Frab.

C{10) 9.088363 0.044497 204.4720 0.0000
C{11) 0.017432 0.001607 10.84540 0.0000
c(12) 0788336 0.104235 7567384 0.0000
C(20) 8.788810 0184018 47.76036 0.0000
Ci{21) 0.020326 0.004743 4281062 0.0000
c(22) 0891366 0.035255 2528374 0.0000
C(30) 8.623544 0025492 3382892 0.0000
C{31) 0.020563 0.000956 21.51224 0.0000
C(32) 0.709349 0.116626 6.082249 0.0000
C(40) 15.62487 27.31062 0.572117 0.5681
Cia1) -0.041003 0188326 -0.217721 0.8279
Ci42) 0984128 0.030224 32.55033 0.0000

Determinant residual covariance 3.27E-14

Equation: LOG(GDP_US)=C(10)+C{11yT+AR{1)=C(12)]

Observations: 42

R-squared 0988209 Mean dependentvar 9.473482

Adjusted R-squared 0.987604 S.D. dependentvar 0.227124

SE. of regression 0025287 Sum squared resid 0.024938

Durbin-Watson stat 1.762500

Equation: LOG(GDP_GER)=C(20)+C{21)"THAR({1)=C{22)]

Observations: 42

R-sgquared 0.996821 Mean dependentvar 9.098903

Adjusted R-squared 0996658 SD.dep it var 0.392866

SE. of regression 0.022710 Sum squared resid 0.020114

Durbin-Watson stat 1.596264

Obsenvations: 42

Equation: LOG(GDP_UK)=C{30)+C(31)'T+[AR(1)=C(32)]

Obsemvations: 42

R-squared 0.994162 Mean dependent var 9.064748
Adjusted R-squared 0.993863 S.D. dependentvar 0.260995
SE. ofregression 0.020446 Sum squared resid 0.016204
Durbin-Watson stat 1.376546

Equation: LOG(GDP_JPN)=C(40)+C(41)*T+AR(1)=C(42)]

System: 8YS11

R-squared 0.998137 Mean dependentvar 8.728910
Adjusted R-squared 0.998041 S.D. dependentvar 0.698799
SE. of regression 0.030927 Sum squared resid 0.037302
Durbin-Watson stat 1130107

Wald Test.

Test Statistic Value df Probability
Chi-square 2923708 3 0.4035
Mull Hypothesis Summary:

MNormalized Restriction (= 0) Value Std. Err

C(11) - C(41)
C(21) - C(41)
C(31) - C(41)

0.058434 0.188333
0.061329 0.188386
0.061565 0.188329

Restrictions are linear in coefficients.

Figure 1.26 Statistical results based on an alternative MAR(1) heterogeneous growth model

2. The null hypothesis Hy: C(11) = C(21) = C(31) = C(41) is accepted based on the Chi-square statistic of
X% =2.923708, with df=3 and a p-value =0.4035, which indicates that the four growth rates
are insignificantly different in the corresponding populations. Based on this finding then, the model
in Figure 1.25 can be considered to be a better fit, in a statistical sense, compared to the model in
Figure 1.26. However, in a theoretical sense, would you be very confident in saying that the four growth
rates of the GDPs are equal?

3. Compare the growth curve of log(GDP_JPN) in Figure 1.27 to the negative estimate of its growth rate,
namely 6(41) = —0.014003 in Figure 1.26: this indicates that the model is inappropriate for represent-
ing the GDP_JPN. So a modified model should be explored. Do this as an exercise: refer to the case of
the GDP_FRA presented in Examples 1.3 to 1.5.

1.7 Growth Models of Sample Statistics

In many studies, we should consider the time series of sample statistics, such as the mean, median and SD
(standard deviation), of groups of individuals based on sample surveys as well as experiments. In general,
the symbol Y_gi(t) will be used to indicate the time series of a single endogenous variable Y of the i-th
individual within the g-th group, for g=1,...,G, and i=1,...,I,. The panel data file, a set of time series
Y_gi with the format shown in Table 1.4, where the first group (g = 1) contains five individuals and the
second group (g = 2) contains eight individuals.

Based on this data set the time series of the mean, median and SD of the Y-variable can easily be gener-
ated, namely MY_g, MedY_g, and SDY_g, for g=1,...,G, either using EViews or Excel.
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LOG(GDP_US) LOG(GDP_GER)
10.0 10.0
9.8+ 9.6+
9.6+ 9.2+
9.44 8.8+
9.2+ 8.4+
9'0 'lI'IlI'II'III'II'I'lI'IlI'Il'll'l'll'lll'll'lll'll'l'll'lll 8'0 'IlI'II'I'II'Il'l'lI'IlI'II'I[l'll'lll'll'l'l'll'l'll'll'l'l
50 55 60 65 70 75 80 85 90 50 55 60 65 70 75 80 85 90
LOG(GDP_UK) LOG(GDP_JPN)
9.6 10.0
9.4+ 9.5+
9.24 9.0
9.0+ 8.5+
8.8+ 8.0
8.6+ 7.5+
8'4 llllllll.llllllllllllllllllllll'lllllllll ?'O lllllllllllllllllllllllllllll'lllllllll'l
50 55 60 65 70 75 80 85 90 50 55 60 65 70 75 80 85 90

Figure 1.27 The growth curves of the endogenous variables in Figure 1.26

A latent variable, or a set of either independent or dependent factors or latent variables, can easily be
generated for each group of individuals in order to reduce the dimension of the multivariate considered. For
a detailed stepped analysis, refer to Chapter 10 in Agung (2011).

Therefore, all growth models previously presented, as well as their extensions, should be applicable for
the time series of the sample statistics MY_g, MedY_g and SDY_g, as well as latent variables.

Table 1.4 |Illustrated format of a set of time series by two groups of individuals

Time g=1 G=2

Y_11 Y_15 Y_21 . Y_28
1 Y_11(1) Y_15(1) Y _21(1) Y_28(1)
-t )./_.1.1(1‘) \./_'5'7(1‘) \"_'T'G(t) . )./_.8.G(t)
ll' )‘/_‘7.1 (T) )./_'5'7(T) )'/_'I'G(T) o )./_.8.G(T)
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Example 1.19 Generating sample statistics using the object “POOL”
For an illustration, the group of GDP_FRA, GDP_GER and GDP_ITA will be considered for data analysis.
The steps of the analysis are as follows:

—_

By selecting Object/New Object/Pool . .. OK, Figure 1.28(a) appears on the screen.

By entering “_fra _ger _ita” and selecting View/Descriptive Statistics . . . , Figure 1.28(b) is shown
on the screen. Then by entering “gdp?” and selecting “Time period specific”, the sample statistics in
Figure 1.29 are obtained.

Each of the sample statistics can easily be copied to the file. For example, by using the copy-paste method
of Mean GDP?, the POOLG7.wfl will have an additional variable SeriesOl. Then this variable can be
renamed, for example as M_GDP or Mean GDP? Similarly, this can be done for each of the others.

The other copy-paste method can be done using Excel, by copying all sample statistics in Figure 1.29 as
an Excel file, then opening the Excel file as an EViews work file.

As a result, data analysis based on various models of sample statistics of each group can be easily
performed.

| Pook UNTITLED. Workfe: POOLGT: Poclg? Pool Descriptive Statistics ¢ (S5
(view eroc [obect] [Estmte [peine [pooiGen sheet)
Cross Seclion |dentifiers. (Enter identifiers below this line) List of ordinary and pool (specified with ?) series
_fra _ger _ita
gdp?
I Data organization Sample
© stacked data © Individual
| @ Stacked - means removed @ @
| (© Cross section spedific _)
i (@ Time period specific () Balanced
[ ok | [ cancel |
(@) (b)

Figure 1.28 The cross section identifiers and options of the pool descriptive statistics

e — R —

O File Edit Object View Proc Quick Options Window Help

obs | MeanGDP?| MedGDP?]  SdGDP?]  Min GDP?|  Max GDP?|
1950 3449.000 3415.000 6446728  2822.000 4110.000
1951 3658.667  3673.000 628.6226|  3023.000)  4280.000
1952 3867.667  4013.000 6758234  3131.000|  4450.000]
1953 4058.000)  4278.000 626.6650|  3351.000  4545.000
1954 4234667 4577.000 660.6972  2463.000 4664.000
1955 4560667  4861.000 769.7729|  3686.000  5135.000
1956 4799.333] 5195000  857.9023| 3815000  5388.000
1957 4986333  5389.000 8956731  3960.000  5610.000
1958 5123.000 5463.000 884.4524|  4119.000 5787.000
1959 5380.667  5610.000 936.3068| 4351000  6181.000
1960 5740.667  5948.000 1012055  4641.000|  6633.000

Figure 1.29 Sample statistics of GDP_FRA, GDP_GER and GDP_ITA
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1.8 Special Notes on Time-State Observations

Corresponding to time-series models for independent states, as well as the models for dependent or corre-
lated states illustrated previously, the following notes are made.

1. The time-state or time-cross-section observations should have much larger time-point observations
compared to the cross-sectional observations.

2. As a rule of thumb the time points should be at least five times the total number of the variables in the
system specification considered. Most researchers make the number of the units of analysis at least

10 times the number of variables in the model.

3. On the other hand, if panel data has a much larger cross-section observation compared to time-point
observations, the following alternative data analysis is suggested.

3.1 Conduct the analysis based on time series models of sample statistics by groups of states or indi-
viduals, such as the mean and standard deviation of the groups, or latent variables as presented in
Section 1.7, in addition to the descriptive statistical summaries by groups.

3.2 If the panel data has only a few time-point observations, then the panel data should be presented
or considered as a set of cross-section data by times or a cross-section over times (which will be
discussed in Part IT). As a special case for a two-year observation, the panel data can be consid-
ered a natural-experimental data set.

1.9 Growth Models with an Environmental Variable

Suppose Y_i, is an endogenous time series, say the productivity and return rates of the i-th industry or firm
in a state/country, then in general there is an environmental or external time series with the same scores/
values for all industries, namely Z,, such as income per capita, inflation rate, exchange rate of US$, GDP
and others at the state/country level.

Referring to the GDPs of three states in Europe in POOL7 G.wfl, namely Y_I,=GDP_Fra, Y_2,=
DGP_Ger,; and Y_3 = GDP__Ita,, to generalize, they can be presented as Y_1, Y _2,,and Y_3,; or Y_a,
Y_b,, and Y_c;; respectively. There should be at least one environmental factor, say Z;, such as the US$
exchange rate or an external factor out of Europe, which could be defined or judged as a causal factor of the
GDPs of the three states. Would you consider GDP_US or GDP_Jpn, or both for use as external factors?

Therefore, corresponding to the MLVAR(p;q¢)_GM in (1.6), the following general MLVAR(p;q)_GM
with an environmental variable Z; is made.

Pi
log(Y_i;) = C(i0) + ZC(U)*IOg(Y_ir—j) +C(A,p;+ 1)t +C(i,p; +2)Zi + pi
j=1
4 (1.16)
Wit = Y Piklisk + &
k=1
However, in general, we know the effect of Z, on Y_i, is dependent on ¢. For this reason, applying the
model with a time-related-effect (TRE) is recommended, as follows:
Di
log(Y_ir) = C(i0) + > _C(ij) log(¥ _iy—;) + C(i,p; + 1)"t
j=1
+C(i,p; +2)Z + Cli,p; +3)" 1 Z, + wjy (1.17)

qi
My = Zpikﬂi,t—k + &ir
k=1
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Note that various two- and three-way interaction models have been demonstrated in Agung (2009a) if a
vector of environmental variable, namely Z, = (Z1,Z2,, .. .), should be considered. Furthermore, under the
assumption that Y_i, for some i=1,2,...,N, are correlated, then a lot of advanced models, (such as various
VAR, VEC and Instrumental Variables Models (IVMs), as well as various TGARCH(a,b,c) models), could
easily be subjectively defined by a researcher. However, not everyone can always be very sure as to which is
the true population model, since unexpected estimates of the model parameters could be obtained as the
impact of the multicollinearity of all variables in the model, and these are highly dependent on the data set
that happens to be selected or available to the researcher. Refer to special notes presented in Section 2.14
(Agung, 2009a). See the following selected models.

1.9.1 The Simplest Possible Model

The simplest model is a MLVAR(1,1) model with an environmental variable and TRE as follows:

log(Y_ir) = C(i0) + C(i1) Tog(Y_ir—1) + C(i2)"t + C(13)"Z, + C(i4)" ' Z, + s
Mir = PitMig—1 + & (1.18)
For an illustration, a hypothetical data set is generated based on the data in POOL7 G.wfl, where X_1 =
GDP_US, Y I1=GDP_Can, X 2=GDP_Fra, Y 2=GDP_UK, X 3=GDP_Ger, and Y_3=GDP_Ita,
and the environmental variable ZI = GDP_Jpn is taken. See the following examples.

For a vector of the environmental variable, namely Z = (Z1, ... ,Zk), the model in (1.18) can be extended
to a more general M LVAR(1,1), as follows:

log(Y_i,) = C(i0) + C(i1)"log(Y_i;—1) + Fi(t, Z1,. .., Zk) + 1
M = PiMig—1 + &

(1.19)

where Fi(t,Z1,...,Zk) is a function of the time, ¢ and an external or environmental vector Z=(Z1,...,
Zk) with a finite number of parameter for each i=1,2,...,N. Therefore, there would be a lot of possi-
ble functions of two-way interaction factors, namely ¢*Zk and Zi*Zj, and a few selected three-way
interactions.

On the other hand, specific to the quarterly and monthly data sets, Agung (2009a) proposes two alterna-
tive models using the lags Y_i, ;, and Y_i,_;, respectively, in order to match the conditions in the previous and
recent years.

Example 1.20 An application of the system equation

Figure 1.30 presents the statistical results based on a MLVAR(1,1) model in (1.17). The main objective of
this model is to test the hypothesis that the effect of the environmental variable ZI on the trivariate (Y_1,
Y_2,Y_3) depends on the time, 7. Based on these results, see the following notes and comments.

1. Note that the interaction ¢*ZI has a significant effect on each of the variables Y_I, Y_2 and Y_3, with a
p-value of 0.0003, 0.0370 and 0.0102, respectively. It can then be directly concluded that the effect of
Z1 on the trivariate (Y_1,Y_2,Y_3) is significantly dependent on the time .

2. On the other hand, if the effects of *Z1 on Y_i are insignificant for the i-th individual, testing the null
hypothesis is suggested Hy: C(13) = C(14) = C(23) = C(24) = C(33) = C(34) =0, using the Wald test.
Refer to the following example.
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System: SYS15
Estimation Method: Seemingly Unrelated Regression
Date: 11/01/08 Time: 17:36
Sample: 1952 1992
Included observations: 42
Total system (balanced) observations 123
lterate coefficients after one-step weighting matrix
Convergence not achieved after: 1 weight matrix, 584 fotal coef iterations
Equation: ¥_1=C{10)+C(11)*Y_1(-1}+ C(12)*T+C(13)*Z1+C(14)*T*Z1
Coefficient Std. Error t-Statistic Prob. HAR(11=C(15)]
Observations: 41
C(10) -2013163 0577742 -3484536  0.0007 R-squared 0398530 Mean dependentvar 9.093576
C(11) 0649242  0.079103 8207511 0.0000 Adjusted R-squared 0.998320 $5.D. dependentvar 0.368947
c(12) 0.095458  0.026042  3.665576  0.0004 S.E. of regression 0.015122  Sum squared resid 0.008004
C{13) 0.544602 0.109183 4.987528 0.0000 Durbin-Watson stat 1712889
C(14) -0.009671 0.002562 -3.774172 0.0003
c(15) 0118118 0146734 0.804076 04237 Equation: ¥_2=C(20+C(21)"Y_2(-1)+ C(22)*T+C(23)"Z1+C(24)'T"Z1
C(20) 0.897583  1.802112 0498073  0.6195 +AR(1)=C(25]]
c21) 0123505  0.136029 0.907932 0.3660 Observations: 41
c(22) 0133851 0057065 2345572  0.0209 R-squared 0.997408 Mean dependent var 9.120614
C(23) 0716732 0145210 4932445  0.0000 Adjusted R-squared 0997032 S.D. dependent var 0.371363
C(24) -0.012416 0005878 -2112352  0.0370 S.E ofregression 0.020209 Sum squared resid 0.014294
C(25) 0.734109 0.076490 9587462 0.0000 Durbin-Watson stat 1.278654
C(30) -0.816335  1.059428 -0.770543 0.4427
C(31) 0484293 0176536 2743304  0.0072 Equation: ¥_3=C(30)+C{31)*Y_3(-1)+ C(32)*T+C(33)*Z1+C(34)*T*Z1
c(32) 0150537 0058116 2590258  0.0110 HAR(1}=C(35]]
C(33) 0544049 0157995 3443462  0.0008 Observations: 41
C(34) -0.014455 0005522 -2617848  0.0102 R-squared 0.998144 Mean dependentvar 8.889700
C(35) 0291409 0176220 1653669 01012 Adjusted R-squared 0997879 S.D. dependentvar 0.430718
SE. of regression 0.01983% Sum squared resid 0.013775
Determinant residual covariance 1.02e-11 Durbin-Watson stat 1718009

Figure 1.30 Statistical results based on a MLVAR(1,1) Model in (1.18)

3. On the other hand, a reduced model should be made by deleting either one of ¢ and ZI, or both, since ¢,
Z1 and t*ZI in many cases are highly correlated, and their impacts on the parameter estimates are
unpredictable. Refer to special notes in Section 2.14.3 (Agung, 2009a). In many cases, then it would be
found #*Z1 would have a significant effect in the reduced model.

4. Considering the previous results, note that the AR(1) term is insignificant with a p-value =0.4227, in
the first regression, and Y_2(—1) is insignificant in the second regression with a p-value = 0.3660. Since
their p-values > 0.20; a reduced model should be explored. Do it as an exercise. For the intercept of the
third regression, namely C(30), it is not a problem.

1.9.2 The Application of VAR and VEC Models

As an extension of the model in (1.17), the application of the VAR and VEC Models are presented in the
following examples. Refer to various VAR and VEC models and their limitations presented in Chapter 6
(Agung, 2009a).

Example 1.21 A VAR model using the object “System”

Corresponding to the model in Example 1.19, since a single environmental variable Z/ is defined to be a
cause of factors Y I, Y 2and Y 3,then Y I, Y 2 and Y_3 should be correlated in a theoretical sense. For
this reason a VAR model could be applied. Referring to various VAR models presented in Chapter 6
(Agung, 2009a), then based on the variables Y_1I, Y_2, Y_3, ZI and ¢, a lot of VAR models could easily be
derived or defined. However, Agung (2009a; 380) states that the system function (estimation method) is the
preferred method used to develop alternative multivariate time series models, since it is more flexible to
use for developing a multivariate model where multiple regressions could have different sets of
exogenous variables.
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System: SYS20
Estimation Method: Seemingly Unrelated Regression
Date: 11/03/09 Time: 13:39
Sample: 1951 1992
Included observations: 42
Total system (balanced) observations 126
Linear estimation after one-step weighting matrix
Coefficient  Std. Error  ©-Statistic  Prob.
C{10) -2767715 0510882 -5.417524 0.0000
c(11) 05089448 0081353 6262231  0.0000 oY A= W ALABCAIY S 3
c12) 0123211 0048940 2517565  0.0133 B A e
Ci{13) 0.182611 0.101597 1797398 0.0751 Observations: 42
C(14) 0.023549  0.026241 0897414 03716 R-zquarad 0998976 Mean dependentvar 09.076151
C(15) 0485480 0088796 5467380  0.0000 Adjusted R-squared 0998800 S.D. dependentvar 0.381517
C(16) -0.002907 0.002519 -1.153915 0.2512 SE. of regression 0.013215 Sum squared resid 0.006112
C(20) -1.364387 0824546 -1654713 01010 Durbin-Watson stat 2045999
c(21) -0.309881 0131300 -2360093  0.0201
C(22) 0944625  0.078987 11.95820  0.0000 Equation: Y_2=C(20p+C(21)*Y_1(-1#C(22PY_2(-1+C(23)*Y_3(-1)+C(24)
C(23) 0.086933 0.163974 0530161 0.5971 *T+C(25)"Z1+C(26)T*Z1
c(24) 0.024415 0042352 0576476  0.5655 Observations: 42
c(25) 0.415637 0143313 2900193  0.0045 i“fq”f:f; . g-gg;gg; gﬂ[)a'hdﬂﬂﬂgdﬂpt“a' g-ggg:gg
C(26) -0.002543  0.004066 -0.625490 05330 Justed R-square - L. CApancant var .
C(30) 1566476 0726523 -2156120  0.0334 gfm?;f:vga'fsﬁ":: " ggﬂ;‘gg Sum squased resid 0.015829
C(31) -0.132370 0115681 -1.144169 02552 ’
c(32) 0189123  0.069597 2717401  0.0077 Equation: ¥_3=CEORCEANY_ACACEIY_2-AFCEINY_IAPCEH)
C(33) 0621420 0144431 4301053  0.0000 “T+C(@5)Z1+C8)TZ1
C(34) 0.058630 0037317 1571123 01192 Observations: 42
Ci35) 0458434 0126276  3.630408  0.0004 R-squared 0.998487 MWean dependentvar 8.868850
C(36) -0.005686 0003583 -1.586888  0.1155 Adjusted R-squared 0.998228 S.D. dependentvar 0.446376
S.E of regression 0.018792 Sum squared resid 0.012360
Determinant residual covariance 1.04E-11 Durbin-Watson stat 1.697621

Figure 1.31 Statistical results based on a VAR model using the object system

As an illustration and an extension of the model in Figure 1.30, Figure 1.31 presents the results of a VAR
model using the system function, or the object “Systen”. Based on these results, the following notes and
conclusions are made.

1. The model represents a VAR model by entering “1 1” as the lag interval of endogenous. Refer to alter-
native lag intervals of alternative VAR models presented in Chapter 6 (Agung, 2009a), as well as the
limitation of a VAR model compared to the system equation.

2. Since it is defined that the effect of ZI on (Y_I,Y_2,Y_3) depends on time, #, then the null
hypothesis Hy: C(15)=C(16) =C(25) = C(26) = C(35) =C(36) =0 should be tested at the first
stage of testing the hypothesis. The null hypothesis can then be rejected based on the Chi-square
test of X(z) = 40.50483 with df=6 and a p-value =0.000. Then we can conclude that the effect of
ZI1 on (Y_1,Y_2,Y_3) is significantly dependent on the time #, adjusted or conditional for all other
variables in the model.

3. Since some of the independent variables have large p-values, a reduced model should be explored. So,
in general, three multiple regressions having different sets of independent variables are obtained. There-
fore, the reduced model is not a VAR model anymore. Try this as an exercise.

4. 1In order to keep having a reduced VAR model, then one or two of the variables ¢, ZI or t*ZI should be
deleted from the three regressions. However, note that each of the variables has significant positive or
negative adjusted effects on Y_3, at a significance level of o =0.10. So, in a statistical sense, it is not
wise to delete one of the variables from the third regression.

5. Based on each of the regressions, the following findings are derived.

5.1 Based on the first regression, at a significance level of a = 0.10, £*ZI has insignificant effect on
Y_1, however, the null hypothesis Hy,: C(15) = C(16) =0 is rejected based on the Chi-square test
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Y_1 t-1 *b Y_ 1,
=T
Y72 t-1 —p Y_21 ;
Z,

Y3 yy s

Figure 1.32  Path diagrams of the models in (a) Figure 1.30, and (b) Figure 1.31

of X(z) = 537.53410 with df=2 and a p-value = 0.000. It can then be concluded that the effect of
ZI1 on Y_I is significantly dependent on the time ¢, specifically the effect depends on a linear
function of ¢, namely [C(15) + C(16)"t] adjusted for all variables in the model, not just the inde-
pendent variable of the first regression.

5.2 On the other hand, even though each of ¢ and #*ZI has an insignificant adjusted effect, it is
found that the variables ¢, ZI and ¢*ZI have significant joint adjusted effects on Y_1I, since
the null hypothesis Hy: C(14) = C(15)=C(16) =0 is rejected based on the Chi-square test
of x% =42.67729=42.67729 df=3 and a p-value =0.000. Based on this conclusion, if a
reduced model should be obtained then, at most, two of the variables ¢, ZI and ¢*ZI can be
deleted.

5.3 Similar analysis can easily be done based on the other two regressions. Do it as an exercise.

For a graphical illustration, Figure 1.32(a) and (b), respectively, presents the path diagrams of the mod-

els in Figures 1.30 and 1.31. Based on these diagrams, the following notes are made.

6.1 Note that Figure 1.32(a) shows that Y_i,_; has a direct effect on each Y_i, only, but Figure 1.32(b)
shows that the trivariate (Y_1,Y_2,Y_3),.; has direct effect on Y_i,.

6.2 The effect of Z, on each endogenous variable Y_i,, which is defined to be dependent on the time ¢,
is represented as an arrow from ¢ to Z,, and then from Z, to Y_i,, and in the regression indicated by
the term (i3) + ¢(i4)"t)*Z in Figure 1.30, and in Figure 1.31 by (C(i5) + ¢(i6)"t)*Z.

6.3 The possible causal effects between Y_I,Y 2 and Y_3 are not identified, however, their
quantitative correlations are taken into account in the estimation process. If they should
have a type of causal effect, then a new model should be defined; either additive, two- or
three-way interaction models. Refer to the models demonstrated in Agung (2009a), as well
as the following chapter.

As an extension of the model in Figure 1.31, we might consider Z, as a function of ¢, then the following

general model would also need to be considered.

y_1=c(10)+c(11) y_1(=1)+¢c(12)" —1)+c(13)*Y_3(=1)+c(14)*t+c(15) 21 +¢(16)"1*z1
y_2=¢(20)+¢(21) Y _1(=1)+¢(22)°Y_2(—=1)+¢(23)"Y_3(—1) +c(24)" t+¢(25) 21 +¢(26)" 121
3 + ~ _3(—1)+¢(34) 1+ ¢(35) 21 +¢(36) 121

(1.20)

where F(?) is a function of the time, ¢ with a finite number of parameters, without a constant parameter, such
as F(t) = C(41)*log(1), and F(t) = C(41)*t + C(42)" + ... +C(4k)*1".
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Vector Efror Corection Estimat
Dea1£r11:rnz:ugm1?|m:;n1 1?031 s c -3.352072 -2.258550 -1.128369
Sample (agjusted) 1952 1992 (0.64536) (1.10927) (1.10082)
Included observations: 41 after adjustments [-5.19409] [-2.03607] [-1.024593]
Standard errors In () & t-statistics In[]
T -0.004842 -0.063879 -0.006958
Cointegrating Eq; CointEq1 (0.01300) (0.02235) (0.02218)
-0.3724 - 4 -0.31
PRIZT 1.000000 [-0.37242] [-2.85840] [-0.31372]
21 0375213 0.261613 0.129550
Y_2(1 -0.188327
el (0.10802) (0.07155) (0.12298) (0.12208)
[-1.74350] [ 5.24404] [2.12724] [1.06139]
Y_3(-1) -0.697651 TZ1 -0.000315 0.005822 0.000382
(0.17410) (0.00129) (0.00221) (0.00219)
[-4.00729] [-0.24487]  [263512]  [0.17875)
c 1176237 R-squared 0691509 0534601  0.315831
. Adj. R-squared 0.626071 0.435880 0.170704
jon: Y. Y
Error Correction o1} o2 b3 Sum sq. resids 0.005403 0.015962 0.015722
CointEq1 -0.559820 -0.313246 -0.154371 S.E. equation 0.012795 0.021993 0.021827
(0.09342) (0.16058) (0.15837) F-statistic 10.56746 5415263 2176242
[-5.99236] [-1.95076] [-0.96864] Log likelihood 124.9793 1027720 103.0817
Akaike AIC -5.706306 -4.623024 -4.638131
DOY_1¢-1) 0081726  -0.135375 0.207243 Schwarz SC -5,371951 -4.288668  -4.303776
(0.14843)  (0.25512)  (0.25320) Mean dependent 0029314 0034892  0.035789
1055007 053063  [0.81852) S.D. dependent 0020924 0029282  0.023969
D(Y_2(-1 0.121231 0.116966 0.163731
Y_2c10 wl_lﬁ 383) (0.19566) (0.19419) Determinant resid covariance (dof adj.) 236E-11
[ 1.06499] [0.59780] [0.84216] Determinant resid covariance 1.23E-11
Log likelihood 340.4857
DY_3(-1)) -0.276045 -0.307600 -0.164907 Akaike information criterion -15.28199
(0.11378) (0.19557) (0.19410) Schwarz criterion -14.16354
[-2.42613] [-1.57286] [-0.84962]

Figure 1.33 Statistical results based on a VEC model

Example 1.22 A VEC model
Figure 1.33 presents the statistical results based on a VEC model of the first differences between endoge-
nous variables DY_I, DY_2 and DY_3, exogenous variables ¢, ZI and t*ZI, and “1 17 as the lag interval of

endogenous variables. Refer to the characteristics of various VEC models and their limitations presented in
Chapter 6 (Agung, 2009a).

1.9.3 Application of ARCH Model

Various TGARCH(a,b,c) time series models along with their limitations have been presented in
Agung (2009a). For this reason, this section only presents the example of an ARCH(1) = TGARCH(1,0,0)
model.

Example 1.23 A reduced ARCH(1) model
Figure 1.34 presents the statistical results based on a reduced ARCH(1) model, where its full mean model is
presented in Figure 1.30. Based on these results, note the following:

1. Note that the regression of Y_2 has only two independent variables, namely Y_2(—1) and t*ZI, com-
pared to the other two hierarchical regression models.

2. Based on the output, it can easily be derived that the effect of Z/ on (Y_1,Y_2,Y_3) is significantly
dependent on the time #. Otherwise, it can be tested using the Wald test.

3. The data supports that error terms have a multivariate Student’s 7-distribution based on z-Statistic of
Zy=0.108 608 with a p-value =0.9135.
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Systermn: SYS27

Estimation Method: ARCH i Likelihood (]
Covariance specification: Constant Conditional Correlation
Date: 11/04/09 Time: 13:19

Sample: 1951 1992

Induded obseralions: 42

Total system (balanced) observations 126

Disturbance assumplion: Student's t distribution
Presample covariance. backcast (parameter =0.7)
Convergence achieved after 162 iterations

Coefficient Std. Error z-Statistic Prob.

c{10) -1.858822 0.775986 -2.395431 0.0166
c{11) 0.690432 0.115008 6.003364 0.0000
c(12) 0.087609 0.040721 2151449 0.0314
c(13) 0.490258 0161171 3.041859 0.0024
c(14) -0.008910 0.004033 =2.209131 0.0272
c(20) 1.103364 0.387836 2844924 0.0044
c(21) 0.876077 0.046077 19.01343 0.0000
c(24) 0.000274 0.000157 1.746065 0.0808
c30) -0.605071 1.049288 -0.576649 0.5642
c3E1) 0.667993 0165157 4044583 0.0001
c(32) D.0g18z21 0.063656 1.442456 01482
C(33) 0.361825 0196797 1.838565 0.0660
C(34) -D.00B852 0.006192 -1.429544 D.1528
Equation C
C(35) 0.000268 0.000189 1.245405 01785
C(36) -0.251133 0.520293 -0.482676 0.6293
c(37) 0.000375  0.000279 1341809 01797
C(38) 0.231851 0.652811 0355158  0.7225
C(39) 0.000392 0.000148 2646134 0.0081
Ci40) -0.077905 0.445042 -0.175050 0.8610
Ci41) 0.501524 0.259212 1.934804 0.0530
Ci42) 0.511081 0.224333 2278228 o.0227
Ci43) 0.272723 0.253580 1.075494 0.2822

t-Distribution (Degree of Freedom)

C(44) 5261603 484.4564 0108608  0.9135
Log likelinood 339.2191  Schwarz criterion -14.10647
Avg. log likelinood 2692215 Hannan-Quinn criter. -14.70926
Akaike info criterion -15.05805

Equation: Y_1=C(10)+ CO1J*Y_1(-1)+C{12)T+C(13)*Z1+C(14)*T*Z1

R-squared 0998580 Mean dependent var 9076151
Adjusted R-squared 0998427 5.D. dependentvar 0.381517
S.E. of regression 0015132  Sum squared resid 0.008473
Durbin-Watson stat 1.495363

Equation: Y_2=C(20)+C(21)*Y_2(-1+C(24)'T*Z1

R-squared 0996801 Mean dependent var 9098903
Adjusted R-squared 0996637 S5.D. dependentvar 0.392866
SE. ofregression 0.022782 Sum squared resid 0.020242
Durbin-Watson stat 1.560383

Equation: Y_3=C(30+C(31)"Y_3(-1C(32)T+C(33)*Z1+C(34)*T*Z1
R-squared 0.998161 Mean dependent var 8.868850
Adjusted R-squared 0997962 S.D. dependentvar 0.446376
SE. ofregression 0.020149 Sum squared resid 0.015022
Durbin-Watson stat 1516532

Covariance specification: Constant Conditional Correlation
GARCH(i) = M(i) + A1(I)*RESID()(-1y2
COV(ij) = R(ij)*@SQRT(GARCH(i)*GARCH())

Tranformed Variance Coefficients

Coefficient Std. Emor  z-Statistic Prob.

M(1) 0000268 0000199 1345405 01785
A1(1) -0.251133 0520293  -0.482676 006293
M(2) 0.000375  0.000279 1341809 01797
Al(2) 0231851 0652811 0355158  0.7225
M(3) 0000392 0000148 2646134  0.0081
A1(3) -0.077905 0445042 -0175050  0.8610
R(1.2) 0501524 0259212 1934804  0.0530
R(1,3) 0511081 0224333 2278228  0.0227
R(23) 0272723 0253580  1.075494 (02822

Estimation Command:

ARCH(DERIV=AA, TDIST) @CCC C ARCH(1)

Estimated Equations:

Y_1=C(10)+ COyY_1(-1)+C12yT+C(13)*Z1+C(14y*T*Z1
Y_2=C(20)+C(21)*Y_2(-1)+C(24)y*T*Z1
Y_3=C(30)+C(31)*Y_3(-1)+C(32)*T+C(33)*Z1+C(34)"T*Z1

Substituted Coefficients:

Y_1=-1.859+ 0.690*Y_1(-1)+0.088*T+0.490*Z1-0.009*T*Z1
Y_2=1.103+0.876*Y_2(-1)+0.0003*T*Z1
Y_3=-0.605+0.668*Y_3(-1)+0.092*T+0.362*Z1-0.009*T*Z1

Variance and Covariance Representations:

GARCHI(i) = M(i) + A1()*"RESID(i)-1y*2
COV(ij) = R(L.)"@SQRT(GARCHI(i)"GARCHI(j))

Variance and Covariance Equations:

GARCH1 = C(35) + C(36)*RESID1(-1)*2
GARCH2 = C(37) + C(38)*RESID2(-1)"2
GARCH3 = C(39) + C(40)*RESID3(-1)"2

COV1_2 = C(41)"@SQRT(GARCH1*GARCH2)
COV1_3 = C(42)*@SQRT(GARCH1*GARCH3)
COV2_3 = C(43)*@SQRT(GARCH2*GARCH3)

Substituted Coefficients:

GARCH1 = 0.000267768110001 - 0.251132976834*RESID1(-1)*2
GARCH2 = 0.000374611760699 + 0.231851204332*"RESID2(-1)"2
GARCH3 = 0.000392378253889 - 0.0779045947747*RESID3(-1)"2

COV1_2 =0.501523819388*@SQRT(GARCH1*GARCH2)
COV1_3 =0.511080942222*@SQRT(GARCH1*GARCH3)
COV2_3 = 0.272723253637*@SQRT(GARCHZ*GARCH3)

Figure 1.34 Statistical results based on an ARCH(1) model

1.9.4 The Application of Instrumental Variables Models

Based on the variables Y_1, Y 2, Y 3,Y I(—1), Y_2(—1), Y_3(—1), ZI and the time ¢ used in previous
models, a lot of instrumental variables models can easily be subjectively defined. Corresponding to an
instrumental variables model (IVM), Agung (2009a) states that there would be two stages of problems
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(TSOP) in defining instrumental variables models, since the true population model can never be known and
there is no general rule as to how to select the best possible set of instrumental variables.

Example 1.24 An application of the 2SLS estimation method

As an extension of the model in Figure 1.32, under the assumption that Y_7, Y_2 and Y_3 are correlated, and
we define that the effect of Z/ on the trivariate (Y_1I,Y_2,Y_3) depends on the time ¢, then by using trial-
and-error methods, the statistical results presented in Figure 1.34 are obtained using the 2SLS. Based on
these results, the following notes and conclusions are made.

1. Even though each of Y_2 and Y_3 has an insignificant adjusted effect on Y_1I, the joint effects of Y_2
and Y_3 on Y_]I are significant, since the null hypothesis Ho: C(11) = C(12) =0 is rejected based on a
Chi-square test of X% = 324.1802 with df =2 and a p-value = 0.000. The same conclusions are obtained
based on the other two regressions. Therefore, we can conclude that the data supports the assumption
that variables Y_17, Y 2 and Y_3 are correlated.

2. In a statistical sense, a reduced model should be explored, since one of the independent variables in
each regression has a p-value > 0.20 (or 0.25). Do it as an exercise.

Example 1.25 An application of the 3SLS estimation method
As a modification of the MAR(1)_IVM in Figure 1.35, the following system specification is considered.

y_1 = ¢(10) +¢(11)"y_ 2+ ¢(12)"Y_3 + [ar(1) = ¢(13)|@czl @1 121
y.2 = ¢(20) + c¢(21)'Y_1 +¢(22)"Y_3 + [ar(1) = ¢(23)]@czl @1 =1 (1.21)

y.3 =¢(30)+c(31)'Y_1+¢c(32)"Y 2+ [ar(1) = ¢(33)]@czl @121

However, an error message of “Near Singular Matrix” is obtained so trial-and-error methods should be
applied to delete one or two of the variables from the model in (1.21). Finally, an unexpected good fit model
is obtained, in a statistical sense, since each of the independent variables has significant adjusted effect with
a p-value = 0.000, as presented in Figure 1.36.

System: Y528 ) Equation: ¥_1=C{10)+ C(11)*Y_2+C{12)"Y_3+[AR(1)=C(13)]

Estimation Method: terative Two-Stage Least Squares Instruments: CTZ1T*Z1Y_1(-1) Y_2(-1) Y_3(-1)

Date: 11/04/09 Time: 15:51 Observations: 42 B 3 -

Fzmﬁleé 1‘?]51 1:32 - R-squared 0.998316 Mean dependent var 9.076151

Tnlul e [0 SG:II 9"96 b " 126 Adjusted R-squared 0998183 S.D. dependentvar 0381517
olal system (balanced) observations S.E. of regression 0.016262 Sum squared resid 0.010049

Convergence achieved after 22 iterations Durbin-Watson stat 1.542501

Coefficient  Std. Error  t-Statistic Prob. Y_2=C(20p+C21)*Y_1 +C(22)*Y_3+AR(1)=C(23)]

Instruments: C T Z1 T*Z1 Y_2(-1) Y_1(-1) Y_3(-1)

C{10) 0107289 1.086964 0.098706 09215 Observations: 42

gﬂ;; ggggg?i g;ggg:l 13;2;33 g;gii R-squared 0997385 Mean dependentvar 9.098903

ci13) 0.824692 0.062984 13.09361 0.0000 Adjusted R-squared 0.997179 S.D. dependentvar 0.392866

(20} 1.600625 0.672274 2304299 0.0183 S.E. of regression 0.020868 Sum squared resid 0.016548

c21) 0201697 0351989 0573021  0.5678 Durbin-Watson stat 1.662941

C{22) 0.640546 0.303956 2107366 0.0373

C(23) 0.776692 0.068356 11.36242 0.0000 Equation: Y_3=C(30)+C{31/*Y_1+C(32)Y_2+[AR({1)=C(33)]

C(30) -2091905 0534275 -3915405  0.0002 Instruments: CT 21 T*Z1 Y_3(-1) Y_1(-1) Y_2(-1)

C{31) 0.205612 0.417156 0.492891 0.6220 Observations: 42

C(32) 0.997769 0.435167 2292841 0.0237 R-squared 0.997115 MWean dependentvar 8.868850

C(33) 0.753684 0.080540 9.357851 0.0000 Adjusted R-squared 0.996887 S.D. dependentvar 0.446376

S.E. of regression 0.024905 Sum squared resid 0.023568

Determinant residual covariance T.79E-14 Durbin-Watson stat 1.713668

Figure 1.35 Statistical results based on a MAR(1) instrumental variables model, using the 25LS estimation
method
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System:; SYS29 E P - -

tem: quation: Y_1=C(10)+ C(11)*Y_2+C(12)*Y_3+[AR(1)=C(13]]

Estimation Method: Three-Stage Least Squares Instruments: CZ1 @ T T°21 Y_1(-1) ¥_2(-1) Y_3(-1)

Date: 11/04/08 Time: 16:35 . - = =

s Je 1951 1992 Dbservations: 42

madmgeo' beenvations: 43 R-squared 0.995587 Mean dependentvar 9.076151
uded obsenvations Adjusted R-squared 0995239 S.D. dependentvar 0.381517

Total system (balanced) observations 126
Iterate coefficients after one-step weighting matrix
Convergence achieved after: 1 weight matrix, 467 total coef iterations

S.E ofregression 0.026326 Sum squared resid 0.026336
Durbin-Watson stat 1735812

Equation: Y_2=C(20)+C{21)*Y_1 +C{22)Y_3+[AR(1)=C(23)]

B
Coeflicient Std. Error -Statistic Tob Instruments: CZ1 @ T T°21Y_261)Y_1-1) Y_3(-1)

Observalions: 42
gﬂ?: _gi;a;gg g:lgggg _g:;gﬁ; ggggg R-squared 0.983786 Mean dependent var 9.098903
c(12) 1.263649 0.123065 1026812 0.0000 Adjusted R-squared 0982506 S.D. dependentvar 0.392866
c13) 0752916 0085334 8721014 00000 SE. of regression 0.051963 Sum squared resid 0.1026086
C(20) 4679244 0765912  6£.109372  0.0000 Durbin-Watson stat 1733474
c21) -1947988 0347784 -5601151  0.0000
C(22) 21492620 0320799  7.770038  0.0000 Equation: Y_3=C(30)+C(32)"Y_2+AR(1)=C(33)]
C(23) 0750676  0.086492 8679110  0.0000 Instruments: C Z1 @ T T*Z1Y_3(-1)Y_2(-1)
C(30) -2230141 0518800 -4.298655  0.0000 Observations: 42
C(32) 1217461  0.055994 2174282  0.0000 R-squared 0996452 Mean dependent var 8868850
C(33) 0753724 0053324 1413487  0.0000 Adjusted R-squared 0.996270 5.0, dependentvar 0.446376
SE. of regression 0.027261 Sum squared resid 0.028983
Determinant residual covariance 4.36E-15 Durbin-Watson stat 1678885

Figure 1.36 Statistical results based on a MAR(1) instrumental variables model, using the 3SLS estimation
method

Note that the regression of Y_3 only has a single independent variable Y_2. The reader could try deleting
other variable(s) from the model in (1.20), including modifying the instrumental variables, but leaving the
AR(1) terms as they are.

1.10 Models with an Environmental Multivariate

If an endogenous variable by states, namely Y_i, i=1,...,N, is known or defined to be effected by the
same environmental multivariate, say Z,=(Z1l,...,Zk,,...), then the set of Y_i, i=1,...,N, should
be correlated, including the possibility of having causal relationships for some states. As an illustration, the
following section presents selected models using two endogenous variables Y_7 and Y_2, which could
easily be extended to three or more states.

1.10.1 Bivariate Correlation and Simple Linear Regressions

Data analysis based on the bivariate correlation of Y_i, and Y_ j,, the simple linear regression of Y_i, on Y_ j,,
and the simple linear regression of Y_ j, on Y_i,, would give exactly the same values of the #-statistic for testing
the hypothesis that Y_ j, is a causal factor of Y_i,, as well as Y_i, and Y_ j, having simultaneous causal effects.

Based on these findings, it can be concluded that correlation analysis can be used to test the hypothesis
stated earlier. On the other hand, it could be said that independent of a model, the independent variable may
not be a causal factor of the corresponding dependent variable. Note that the causal relationship between
any pair of variables should be derived based on a strong theoretical foundation: it is not based on the
conclusion of testing a hypothesis. See the following example.

Example 1.26 Special findings

Figure 1.37(a), (b) and (c), respectively, present the statistical results based on the bivariate correlation of
Y_I,and Y_2,, the simple linear regression (SLR) of Y_1/,0on Y_2,, and the SLR of Y_2, on Y_I,, which show
exactly the same values of the 7-statistic of 7y =46.39 045.



Covariance Analysis: Ordinary
Dale: 191803 Time: 08:21
Sample: 1950 1982

Included observations: 43

Corelation
1-Gatistic
Frobability Y1 Y2
Y1 1.000000
¥_2 0.980608 1.000000
46.39045 —
0.0000 —

(@)
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Dependent Variable: ¥_1 Dependent Vanable: Y_2
Method: Least Squares Metod: Least Squares
Date: 111808 Time: 09:22 Dae: 111809 Time: 08:24
Sample: 1950 1992 Sample: 1950 1992
Included obsenvations: 43 Included obsenvations: 43
Variadle Coeficient S Emor  LStalisic  Prob. Vaniable Coeficient  Std Emor  +Sfafsic  Prab

[ 0519552 0184257  2B19718  0.0074 c 0372262 0203857 -1BER0S Q7R

¥ 0940785 0020280 4639045  0.0000 1 1043070 0022435 4639045 00000
R-s_uluareﬂ 0.881305  Mean dependent var 9.058504 R-squared 0981305  Mean dependentvar 9076508
Adjusted R-squared 0080340 50 dependentvar 0304138 Adjusted R-squared 0980840 3.0, dependentvar 415012
SE. of regrassion 0.054544  Akaike info critenon -2.934225 SE of regression 0.057433  Akzike info crilerion -2831015
Sum squared resid 0121977  Schwarz aiterion -2.852308 Sum squared rasid 0135238 Schwarz critarion 2745000
Log likglinood 65.08584 Hannan-Quinn criter. 2904017 Loglikelnond 6265504 Hannan-Ouinnciter  -2.800807
F-statistic 2152074 Durbin-Watson stat 0473408 F-statisfic HME2074  Durkin-Watson siat 0477445
Frob[F-slakistic) 0.000000 ProbiF-stafsic) 0.000000 )

(b) ()

Figure 1.37 Statistical results based on (a) covariance analysis of Y_1, and Y_2,, (b) the SLR of Y_1; on Y_2,, and

(c)the SLRof Y_1,0nY_2,

Based on these results, the following notes and comments are presented.

1. Even though the regressions have very small DW-statistics, because their R-squares are very large,
namely R?=0.981 217, then the SLR should be considered to be a good fit.
2. As an alternative analysis, Figure 1.38(a) presents the statistical results based on system equations of
two SLRs using the LS estimation method, where both SLRs also show the same values of the #-statistic
of 19p=46.39045. Thus the results of these system equations can be represented by the result of the
covariance analysis in Figure 1.37(a). In other words, the simultaneous causal effects of Y_/ and Y_2
tested using the system equations in Figure 1.38(a) can be substituted by covariance analysis.

Estimation Method: Least Squares
Date: 11/18/09 Time: 09:02
Sample: 1950 1992
Included observations: 43
Total system (balanced) observations 86
Coefficient Std. Error t-Statisfic Prob.
C{10) 0.519552 0.184257 2819716 0.0060
C{11) 0940785 0.020280 46.39045 0.0000
C(20) -0.372242 0203867 -1.825905  0.0715
Ci21) 1.043070 0.022485 46.39045 0.0000
Determinant residual covariance 1.67E-07
Equation: Y_1=C(10+C(11)*Y_2
Observations: 43
R-squared 0.981305 Mean dependentvar 9.058594
Adjusted R-squared 0.980849 S.D. dependentvar 0.394138
S.E. of regression 0.054544 Sum squared resid 0121877
Durbin-Waltson stat 0.173408
Equation: ¥_2=C(20+-C(21)*Y_1
Observations: 43
R-squared 0.981305 Mean dependentvar 9.076509
Adjusted R-squared 0.980849 S.D. dependentvar 0.415012
S.E. ofregression 0.057433 Sum squared resid 0.135238
Durbin-Watson stat 0177446
(a)

Estimation Method: Seemingly Unrelated Regression
Date: 1118/09 Time: 09:34
Sample: 1950 1992
Included observations: 43
Total system (balanced) observalions 86
Linear estimation after one-step weighting matrix
Coeflicient Std. Error -Statistic Prob,
C{10) 0.438979 0.127950 3.430871 0.0009
c(11) 0.849662 0.014068 67.50334 0.0000
C{20) -0.461398 0.141554  -3.259524 0.0016
C{21) 1.052913 0.015598 67.50334 0.0000
Determinant residual covariance 3.78E-12
Equation: Y_1=C{10)+C(11)*Y_2
Observations: 43
R-squared 0.981217 Mean dependentvar 9.058594
Adjusted R-squared 0920758 S.D. dependenlvar 0.394138
SE. ofregression 0.054671 Sum squared resid 0.122547
Durbin-Watson stat 0176200
Equation: ¥_2=C(20)+C(21)*Y_1
Obsemvations: 43
R-squared 0.981217 Mean dependent var 9.076509
Adjusted R-squared 0.980759 S.D. dependentvar 0.415012
SE. of regression 0.057567 Sum squared resid 0.135870
Durbin-Watson stat 0.176219
(b)

Figure 1.38 Statistical results based on (a) a system equation of SLRs of Y_1, and Y_2,, and (b) a MAR(1) of Y_1,

onY_2
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3. For a comparison, Figure 1.38(b) presents the statistical results using the SUR estimation method,
which show different values of the ¢-statistic of ¢y = 67.50 334 for both SLRs.

4. Compared to the regressions in Figure 1.37(b), the four regressions in Figure 1.38 also have very small
DWe-statistics, but very large R-squares.

5. Further analysis can easily be done based on MLV (p), MAR(q) or MLVAR(p,q) models using the varia-
bles Y_1I and Y_2, which will have much larger DW-statistics. Do it as an exercise.

1.10.2 Simple Models with an Environmental Multivariate

Since Y_I, and Y_2, are correlated, specifically linearly correlated, then simple models of Y_/, and Y_2,
with an environmental multivariate Z, and the time ¢ as independent variables will have the following gen-
eral equation.

Y_1, = C(10) + C(11)"Y_2,; + F(t,Z;, C(1*)) + 1y, (1.22)
Y_2, = C(20) + C(21)'Y_1,; + F(1,Z;, C(2)) + 11, '
for a subscript j >0, where F(z, Z,”) can be any functions ZI,,...,Zk,,..., and the time ¢, including some
selected two- and three-ways of their interactions, with a finite number of parameters but no constant
parameter. For instance, if the effect of ZI on Y_i depends on Z2, then Z1*Z2 should be used as an indepen-
dent variable or a term of the function F(z, Z,*). Note that there would be a lot of possible time-series
models.

However, the following four groups of models will be considered, corresponding to selected forms of the
function F(t, Z,,*), such as follows:

1. Additive models or two functions, namely F(¢, Z,*) = F;(t,”) + Fx(Z,”).
Refer to the models (1.4a) to (1.4d) for the alternative functions of F;(¢,*), and F»(Z, ") can be additive
or interaction functions of the components of Z,.

2. Models with trend: F(¢t, Z,,C(i")= C(i2)"t + F5(Z,C(ik)), i= 1,2, and k > 2.

3. Models with Trend-Related Effects (TRE):

F(t,Z,,C(i*) = C(i2)"t + F2(Z,, C(ik)) + £ Fo(Z,,C(i*)), fori=1,2,andk > 2.

4. Models without the time ¢: F(t, Z,*) = F»(Z,”). Refer to all seemingly causal models (SCMs) presented
in Chapter 4 (Agung, 2009a).

Comparing these to the models in Figure 1.38, the models in (1.22), for j=0 in fact show that Y_/, and
Y_2, have simultaneous causal relationships.
To generalize, the following general model can be applied

Gi(Y_1,) = C(10) + C(11)"Y_2,_; + F(t,Z;,C(1*)) + py,
(1.23)
G2(Y_2,) = C(20) + C(21)"Y_1,; + F(t,Z,,C(2")) + 1,

where G(Y_i,) is a function of Y_i, having no parameter, such as G(Y_i,) =Y _i, log(Y_i,) or log[(Y_i,-Li)/
(Ui-Y_i,)], where Li and Ui are the lower and upper bounds of Y_i,, which should be subjectively selected by
the researchers.
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If there are correlated endogenous variables for three states, namely Y_1, Y_2 and Y_3, then the simple
models of G(Y_i,), i=1,2 and 3 will have the general equation as follows:

Gi(Y_1,) = C(10) + C(11)"Y_2,_; + C(12)'Y_3,; + F(t,Z,, C(1*)) + 1,
Gy(Y_2,) = C(20) + C21)*Y_1,j + C(22)'Y_3, ; + F(t,Z,, C(2%)) + y, (1.24)
G3(Y_3,) = C(30) + C(31)"Y_1,j + C(32)'Y_2,; + F(t,Z;, C(3%)) + 1,

1.10.3 The VAR Models
1.10.3.1 Basic General VAR Models

For illustration, a VAR model of Y_I and Y_2 with “1 p” as the lag intervals for the endogenous variables,
and the time 7 and Z, as exogenous variables will be considered. The model considered has the following
general equation.

4
Y_1, = C(110) Z (11/)'Y 1,,+Zc (12/)*Y 2, + F(t,Z;, C(13")) + &1

" o (1.25)
Y. 2, = C(210) + Z (21))"Y 1t,+2c (22))°Y_2,; + F(1,Z,, C(23%)) + &1:

Jj=1

1.10.3.2 Special VAR Interaction Models

With multivariate environmental variables, it is generally known that an effect of at least one of its compo-
nents on the endogenous variables depends on the other component(s). Under these criteria, this section
presents three alternative VAR interaction models of Y_1, Y_2 and Y_3 with the lag intervals for the endog-
enous: “1 17, and the environmental variables Z/ and Z2, such as follows:

1. AVAR interaction model with trend:

Y_i = C(i0) + C(i1)"Y_1(=1) + C(i2)"Y_2(—1) + C(i3)"Y_3(-1)
+ C(id)*t + C(i5)*Z1 + C(i6)"Z2 + C(i1)"Z1*Z2 (1.26)
fori=1,2,3
2. A VAR interaction model with time-related effects:

Y_i = C(i0) + C(i1)*Y_1(—1) + C(12)*Y_2(~1) + C(i3)"'Y_3(—1)
+ C(i4)"t + C(i5)*Z1 + C(i6)"Z2 + C(i7)*Z1*Z2

1.27
+ C(i8)"t*Z1 + C(i9)"t*Z2 + C(i10)" t* Z1*Z2 (127
fori=1,2,3
3. A VAR interaction model without the time ¢:
Y_i = C(i0) + C(i1)"Y_1(=1) + C(i2)"Y_2(—1) + C(i3)"Y_3(-1)
+ C(i4)"Z1 + C(i5)"Z2 + C(i6)"Z1*Z2 (1.28)

fori=1,2,3
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Corresponding to these VAR interaction models, note the following:

1. In practice, a reduced model obtained would be a good fit in a statistical sense, because the three varia-
bles ZI, Z2 and ZI*Z2 are highly or significantly correlated in general. More so for the independent
variables of the model in (2.27).

2. Since it is defined that the effects of ZI (Z2) on Y_i, i=1,2 and 3 depend on Z2 (ZI) in a theoretical
sense, then the interaction Z1*Z2 should be used in the model, as well as in the reduced model(s). So a
reduced model should be obtained by deleting either ZI or Z2, or both ZI and Z2. Note that a model can
be considered an acceptable or good fit, even though some of its independent variables have
insignificant adjusted effects.

3. Note that three models here are hierarchical two- and three-way interaction models. However, corre-
sponding to the earlier notes, an empirical acceptable model obtained would be non-hierarchical in
general. See the following example.

Example 1.27 A reduced VAR interaction model
Figure 1.39 presents the statistical results based on two reduced models of the VAR interaction model
in (1.26). Based on these results, the following conclusions and notes are made.

1. By using the full model in (1.26), each of the independent variables Z/, Z2 and ZI+Z2 has insignificant
adjusted effects. By deleting either Z/ or Z2, the results in Figure 1.39(a) and (b) are obtained.

Vector Autoregression Estimates Vector Autoregression Estimates
Date: 1117/09 Time: 13:53 Date: 1117/09 Time: 14:31
Sample (adjusted). 1951 1992 Sample (adjusted). 1951 1992
Included observations: 42 after adjustments Included observations: 42 after adjustments
Standard errors in () & t-statistics in [ ] Standard errors in () & t-statistics in []
Y_1 Y_2 Y_3 Y_1 Y_2 Y3
Y_1(-1) 0.491574 -0.332033 -0.140681 Y_10-1) 0.493659 -0.332149 -0.128280
(0.07191) (0.12066) (0.11241) (0.07233) (0.13155) 0.11174)
[6.83628) [-2.54814] [-1.25148] [ 6.82556] [-2.52493) [-1.14802)
Y_2(-1) 0.138289 0.957298 0.220475 Y_2(-1) 0.136375 0.953908 0.205518
(0.04156) (0.07551) (0.06497) (0.04279) (0.07783) (0.06611)
[3.32759] [12.6773] [3.39357] [3.18684] [12.2557] [3.10854]
Y_3(-1) -0.085190 -0.214036 0.337287 Y_3(-1) -0.094441 -0.216255 0.283936
(0.10994) (0.19976) (0.17187) (0.11487) (0.20893) (0.17747)
[-0.77488] [-1.07144] [ 1.96245] [-0.82216] [-1.03507] [1.59991]
[ 2285288 4147653 4394102 c 2264351 3244793 3.073037
(1.24927) (2.26998) (1.95300) (0.40767) (0.74149) (0.62984)
[1.82929] [1.82717] [2.24992] [5.55438] [4.37606] [4.87909]
T -0.002228 0.002815 0.004795 T -0.001988 0.003159 0.006566
(0.00155) (0.00282) (0.00242) (0.00198) (0.00360) (0.00306)
[-1.43840] [ 1.00008] [1.97991] [-1.00489] [0.87810] [2.14866]
1 -0.005993 -0.105799 -0.174082 2 0.020480 0.096814 0.240974
(0.11600) (0.21078) (0.18135) (0.11596) (0.21091) (0.17915)
[-0.05166) [-0.50194) [-0.95994) [0.17662]  [0.45904]  [1.34510]
Z1*Z2 0.023509 0.025581 0.027959 Z1%Z2 0.021824 0.014612 0.004119
(0.00535)  (0.00972)  (0.00836) (0.00872)  {0.1586)  (0.01347)
[ 4.39597] [ 2.63254] [3.34432] [2.50330] [0.92153] [0.30583]
(a) (b)

Figure 1.39 Statistical results based on two reduced models of the model in (1.26)
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2. The model in Figure 1.39(a) is a better model, in a statistical sense, since the effect of the interaction
Z1*7Z2 on each Y_i, i=1,2 and 3 is significant, based on z-statistics greater than 2.6. Based on this
model, the following conclusions are derived.

2.1 The data supports the hypothesis stated that the effect of Z/ (Z2) on each Y_i depends on Z2 (Z1).

2.2 An disadvantage of this model is ZI has a negative adjusted effect on each Y_i, in fact Z] and Y_i
are significantly positive correlated, which shows the unexpected impact of the multicollinearity
between the independent variables, specifically between Z1 and Z17Z2.

2.3 Furthermore, since ZI has insignificant adjusted effect on each Y_i, based on such a small #-statis-

tics, then ZI could be deleted. Try it as an exercise.

3. On the other hand, based on the results in Figure 1.39(b) we draw the following conclusions.

3.1 Since the interaction ZI*Z2 has a significant adjusted effect on Y_1, it cannot be deleted from the
VAR model.
Since Z2 has an insignificant adjusted effect on each Y_i, based on such a small #-statistics, then
Z2 could be deleted. The reduced model obtained would be the same as the reduced model by
deleting Z! from the model in Figure 1.39(a). We find the final reduced model can be considered
the best fit, conditional for the data used.

32

Example 1.28 Additional analyses for a VAR model

As an illustration, the VAR model in Figure 1.39(a) will be referred to. EViews provides so many alternative
options for doing additional analyses for a VAR model. By selecting View/Residuals Tests, the options in
Figure 1.40(a) shown on the screen, and Figure 1.40(b) obtained by selecting View/Lag Structure. However,
only several analyses will be demonstrated, such as follows:

1. Residual Analysis
1.1 Residual Autocorrelation Tests
Figure 1.41 presents the two statistics for testing the residual autocorrelation, which shows the null
hypothesis, no residual autocorrelation up to lag 4, is accepted. As a result, the VAR model does not have
the autocorrelation problem.
1.2 Basic Assumptions of Residuals
Figure 1.42 shows that the null hypothesis, residuals are multivariate normal, is accepted. So it can be
concluded that the data supports a basic assumption of the residuals. The other assumption is the

M2 EViews - [Var: VARDE Workfile: POC g7
File Edit Object View Proc Quick Options Window Help
[wm]?«o([cmm] [an[Name[Fruztl |Est|mate[5tusllmpulse[l‘.!sld;l

EViews - [Var: VARDZ Workfile: POOI nll

File Edit Object View Proc Quick Options Window Help
_\"I!W[PID([ODJQG] [Prlﬂl]N!ll!]Fl’t!zt] [Bnmatelstatslmuulse[ﬁ.e;lds]

Regresentations

Estimation Output Estimation Quiput
Besiduals b Residuale »
Endogenous Table usiments Endogenous Table isiments

Endogenous Graph

Lag Structure
Residual Tests
Cojintegration Test...
Impulse Response...

Variance Decomposition...

Label

¥_2 ¥_3

3 Correlograms...

Portmanteau Autocorrelation Test...
Autocorrelation LM Test...

Mormality Test...

White Heteroskedasticity (Mo Cross Terms)
White Heteroskedasticity (With Cross Terms)

(0.10954)
[0.77488]

(@)

(0.19978) (0.17187)
[-1.07144] [1.96245]

Endogenous Graph

Lag Structure
Residual Tests
Cointegration Test...

Impulse Response...

Veriance Decomposition...
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T == T
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Figure 1.40 Options for residual and lag structure, using EViews 6 or 7 Beta
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VAR Residual Portmanteau Tests for Autocorrelations VAR Residual Serial Correlation LM T
MNull Hypothesis: no residual autocorrelations up to lag h Null Hypothesis: no serial correlation ...
Date: 11/19/09 Time: 09:42 Date: 11/19/09 Time: 09:37

Sample: 1950 1992

Included observations: 42 Sample: 1950 1992

Included observations: 42

Lags Q-Stat Prob. Adj Q-Stat Prob. df
Lags LM-Stat Prob
1 3.150951 NA* 3.227804 NA* NA*
2 1416143 0.5867 14.78880 0.5402 16 1 5867162 0.7531
3 23.67465 0.5382 2503382 0.4605 25 2 12.27446 0.1983
4 3452254 0.4428 37.02358 0.3312 34 3 8502711 0.4844
4 10.25424 0.3303

*The test is valid only for lags larger than the VAR lag order.
df is degrees of freedom for (approximate) chi-square distribution
*df and Prob. may not be valid for models with exogenous variables

Probs from chi-square with 9 df.

Figure 1.41 The residual autocorrelation tests for the VAR model in Figure 1.39(a)

VAR Residual Mormality Tests Component Kurtosis Chi-sq df Prob
Orthogonalization: Cholesky (Lutkepohl)
MNull Hypothesis: residuals are multivariate normal 1 2234073 1.026626 1 0.3110
Date: 11/19/09 Time: 09:52 2 4.403388 3446619 1 0.0634
Sample: 1950 1992 3 2912283 0.013485 1 0.9078
Included observations: 42
Joint 4 486710 3 0.2135
Component  Skewness Chi-s df Prob.
J e Component  Jarque-Bera af Prob.
1 0.274744 0528389 1 0.4673 1 1555016 2 0.4595
2 -0.235376 0.387813 1 05335 2 3834432 > 0.1470
3 -0.156196  0.170780 1 0.6794 3 0194245 2 09130
Joint 1.086983 3 0.7802 Joint 5573593 6 0.4726

Figure 1.42 The residual normality tests for the VAR model in Figure 1.39(a)

heterokedasticity of the residuals, which can easily be done by selecting the Residual Tests/White hetero-
kedasticity(*). Corresponding to the testing of the basic assumptions of the residuals, refer to the special
notes and comments presented in Section 2.14.3 (Agung, 2009a).
2. The Lag Structure
2.1 The AR Roots
By selecting Lag Structure/AR Roots, it is found that the three AR Roots are strictly less than one. Then
we can conclude that the VAR satisfies the stability condition.
2.2 Granger Causality Tests
By selecting Lag Structure/Granger Causality/Block Exogeneity Wald Tests, the results in Figure 1.43
are obtained for making conclusions of the corresponding tests. For example, Y_I and Y_2 have significant
Granger causalities with the p-values of 0.0009 and 0.0108, respectively, but Y_7 and Y_3 have insignificant
Granger causalities with p-values of 0.4384 and 0.2108, respectively.
However, the three variables Y_I, Y_2 and Y_3 have significant Granger causalities with p-values of
0.0029, 0.0015 and 0.0019, respectively.
2.3 The VAR Lag Exclusion Wald Tests
Based on the results in Figure 1.44 we can conclude that the first lags Y_I(—1), Y_2(—1) and Y_3(—1)
have significant joint effects on each of Y_1,Y_2 and Y_3, as well as on the trivariate (Y_I,Y_2,Y_3).
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VAR Granger Causality/Block Exogeneity Wald Tests Dependent variable: ¥_2
Date: 11/18/09 Time: 15:28 Excluded Chi-sq Prob.
Sample: 1950 1992
Included observations: 42 Y_1 6.493032 0.0108
Y_3 1.147988 0.2840
Dependent variable: Y_1 All 12.99838 0-0015
Excluded Chi-sq df Prob. Dependent variable: ¥_3
Y 2 11.07285 1 0.0009 Excluded Chi-sq Prob.
Y. 3 0.600436 1 0.4384 Y_1 1566190 0.2108
Y_2 11.51633 0.0007
All 11.66778 2 0.0029
All 12.56475 0.0019

Figure 1.43 Statistical results for the VAR Granger causality tests

VAR Lag Exclusion Wald Tests
Date: 11/19/09 Time: 15:54
Sample: 1950 1992

Included observations: 42

MNumbers in [] are p-values

Chi-squared test statistics for lag exclusion:

Y_1 Y_2 Y_3 Joint
Lag1 92.81195 187.7680 28.13310 293.2393
[ 0.000000] [ 0.000000] [3.41e-06] [0.000000]
af 3 3 3 9

Figure 1.44 The VAR lag exclusion Wald tests

However, in general, the joint effects of the exogenous variables of a VAR cannot be tested using the
VAR model. For this reason, Agung (2009a) recommends applying the object System, instead of the VAR
model, since by using the object System, each regression in the model can have a different set of indepen-
dent variables, and various hypotheses can easily be tested using Wald tests.

2.4 The Lag Order Selection Criteria

By selecting Lag Structure/Lag Length Criteria. .., and then insert the lags to include =2 ... OK, the
results in Figure 1.45 are obtained. These results show that 1 (one) is the lag order selected by the five
criteria. Therefore, we can conclude that the VAR model is best based on these five criteria.

VAR Lag Order Selection Criteria
Endogenous variables: Y_1Y_2Y_3
Exogenous variables: CT 21 21722
Date: 11/19/08 Time: 11:01

Sample: 1950 1992

Included obsenvations: 41

Lag LogL LR FPE AT sC HQ

0 2916335 MA 2.40e-10 -13.64066 -13.13912 -13.45803
1 3557553 106.3485” 1.64e-11* -16.32953*  -15.45185*  -16.00992
2 350.8211 6.163353 213e-11 -16.08932 -14.82549 -15.63275

*indicates lag order selecled by the criterion

LR: sequential modified LR test statistic (each test at 5% level)
FPE: Final prediction error

AIC: Akaike information criterion

SC: Schwarz information criterion

HQ: Hannan-Quinn information criterion

Figure 1.45 The VAR lag order selection criteria using two lags
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VAR Lag Order Selection Criteria
Endogenous variables: ¥Y_1Y_2Y_3
Exogenous variables: CT Z121°22
Date: 1119/09 Time: 11:14
Sample: 1950 1992

Included observations: 38

Lag LogL LR FPE AlC sC HQ

o 288.6945 MA 9.53e-11 -14 56287 -14.04574 -14.37888
1 331.8760 70.45396 1.5%-11 -16.36189 -15.45691" -16.03991
2 3383078 9611067 1.86e-11 -16.23146 -14.93863 -15.77148
3 351.5898 17.35788 157e-11 -16.45209 1477141 -15.85412
4 366.8876 17.71331* 1.22e-11* -16.78356* -14.71503 -16.04759*
5 375.2866 8.393951 1.43e-11 -16.75192 -14.29555 -15.87796

*indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)
FPE: Final prediction error

AIC: Akaike information criterion

SC: Schwarz information criterion

HQ: Hannan-Quinn information criterion

Figure 1.46 The VAR lag order selection criteria using five lags

However, we find that by inserting lags to include greater than 2, contradictory conclusions could be
obtained. As an illustration, Figure 1.46 presents another result using five lags, which shows that 1 (one) is
the lags’ order selected by the SC criterion only. On the other hand, an error message is obtained, “Near
singular matrix”, using 10 lags. These contradictory findings lead to a great problem, since there are 9
(nine) alternatives results using 1-9 lags to consider. Based on the author’s point of view, the simplest possi-
ble model should be the best selection. As an exercise, do the analysis based on a VAR model using the lags
interval for the endogenous “4 4” and “1 4”.

1.10.3.3 Special Notes and Comments

Corresponding to the environmental multivariate Z, = (Z1,, . .. ,ZK,), which has been defined or known to be
the causal factor of the set of the endogenous variables Y_i,, i=1,...,N of the N-states (individuals), the
following special notes and comments are made.

1. In theoretical sense, the variables Y_i,, i=1,...,N should be correlated variables. Therefore the whole
set of (N + K) variables, namely Y_i, i=1,...,N, and Zk, k=1,..., K, can be viewed as single time-
series data containing (N + K) variables.

2. For a small number of (N + K), say 2-5, then all models presented in Agung (2009a) and Section 1.8,
should be applicable. Following the step-by-step methods presented in Agung (2009a), everyone should
have no difficulty in doing the data analysis.

3. On the other hand for a large N, reducing the dimension is recommended using the following alternative
methods.

3.1 To defined groups of states (individuals), using either the judgmental method or cluster analysis,
then the groups’ statistics, such as the means and SDs, can be considered as the derived time
series for further time-series data analysis.

3.2 To reduce the dimension using factor analysis. Then the time series latent variables models would
be applied. Refer to Chapter 10 in Agung (2011).

4. Similarly, for a large K of the environmental multivariate. However, note that some of its components
might not be correlated, in a theoretical sense.

5. Furthermore, the environmental variables can be dummy variables of the time periods, thereby piece-
wise time-series models should be applied.
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1.11 Special Piece-Wise Models

As an illustration, the panel data used are the data of daily stock prices of 15 individuals (agencies or indus-
tries) consisting of eight banks and seven mining companies, used by one of the author’s advisories, namely
Mulia (2010), for her thesis. The symbols B_ and M__ respectively, are used to identify the stock prices (SP)
of the banks and mining companies. Furthermore, we see there are two break time points, which represent
the time points of the auto-rejection regulations or price limitations of the stock prices. The objectives of
the analysis are to study the differences of the statistics, such as growth rates, variances (volatilities) and
means of SP, between 15 days before and after each break point so that four time periods to be considered
in the analyses. For a better graphical presentation of the statistical results, the break points are set at Day
=0 and Day = 40, so that the growth curves of each individual stock price (SP) are not very far apart. See
the following examples.

1.11.1 The Application of Growth Models

For a preliminary information of the data set, and further data analysis, Figure 1.47(a) and (b) present the
scatter graphs of (Mean_Bank, Day) and (Mean_Mining,Day) with their Nearest Neighbor Fit Curves. The
individual time series, namely B_ and M_, can easily be presented. Try it as an exercise.

Example 1.29 A four-piece classical growth model

Figure 1.48 presents the statistical results based on a four-piece classical growth model of the mean stock
prices of eight banks, namely Mean_Bank, using four dummy variables, namely DI, D2, D3, and D4. Based
on these statistical results, the following notes and conclusions are made.

1. The regression in Figure 1.48 represents four classical growth functions, as follows:

log(Mean_Bank) = 7.089238 — 0.030904* Day, for Period = 1
log(Mean_Bank) = 7.463123 — 0.020809*Day, for Period =2
log(Mean_Bank) = 7.401909 + 0.002723*Day, for Period =3
log(Mean_Bank) = 7.724826 — 0.006886" Day, for Period = 4

2. By using the Wald test, we discover that the growth rate 15 days before the Day = 0 is smaller than after
Day =0, based on the ¢-statistic of o= — 2.355063 with df = 54 and a p-value =0.0222/2=0.0111,
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= - = R
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5 1,400 : ¥ Z 30001 3 S
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1,200 ° > = 2500 °
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Figure 1.47 Scatter graphs of (Mean_Bank, Day) and (Mean_Mining, Day) with their nearest neighbor fit curves
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Dependent Variable: LOG{MEAN_BANK)

Method: Least Squares

Date: 12/06/09 Time: 15:31

Sample: 10/08/2008 2/04/2009

Included observations: 62

LOG(MEAN_BANK)=(C(10)+C(11)"DAY)*D1+C(20)+C(21)*DAY)*D2
+(C{30)+C(31)*DAY)*D3+{(C{40)+C(41)*DAY)*D4

Coefficient Std. Error t-Statistic Prob.
C(10) 7.089238 0.025358 279.5657 0.0000
c(11) -0.030904  0.002880 -10.72862  0.0000
Ci(20) 7463123 0.028860 258.6009 0.0000
C(21) -0.020809  0.003174 -6.555834  0.0000
C(30) 7401909 0.094553 78.28350 0.0000
C(31) 0.002723  0.002880 0945356 03487
C(40) 7.724826 0.152974 50.49751 0.0000
C(41) -0.006886  0.002174 -2169335  0.0345
R-squared 0.843170 Mean dependent var 7.376567
Adjusted R-squared 0822840 S.D. dependentvar 0126189
S.E. of regression 0.053113  Akaike info criterion -2.912860
Sum squared resid 0152336 Schwarz criterion -2.638391
Log likelihood 98.29865 Hannan-Quinn criter, -2.805096
Durbin-Watson stat 1.161126

20
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Seres: Residuals
Samgile 10/142008 2104/2008
Observations 80
Mean -7.30e-11
Median 000355
Maximeam 0.117081
Minimum 0.079062
Sud. Dev. 0.037108
Skeaness 0.378337
Kurtosis 3714334
Jarque-Bera 2891577
Frobabilty 0200282

Figure 1.48

Statistical results based on a four-piece growth model of Mean_Bank
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Figure 1.49 Scatter graphs of the four-piece regression in Figure 1.48 and its fitted values, by time period
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and the growth rate 15 days before the Day =40 is smaller than after Day =40, based on the #-statistic
of 1p=2.241761 with df =54 and a p-value = 0.0291/2 = 0.01 455. For a comparison, see the following
example.

3. The residuals graph indicates that a nonlinear regression of log(Mean_Bank) on Day should be
explored. On the other hand, Figure 1.49 clearly shows that a polynomial regression may be applied
within each of the four time periods considered. See Example 1.30.

4. However, based on the R>=0.843 170 > 80%, it could be concluded that the independent variables are
good predictors for log(Mean_Bank).

5. Note that exactly the same analysis can easily be conducted based on the SP of each individual, as well
as the Mean_Mining.

Example 1.30 AR(2) four-piece growth model
By taking into account the autocorrelation of the classical growth model in Figure 1.49, Figure 1.50 presents
the statistical results based on an AR(2) four-piece growth model, as a comparison.

Example 1.31 The nearest neighbor fit of log(Mean_Bank)

Figure 1.51 presents the scatter graph of (log(Mean_Bank),Day) with its Nearest Neighbor Fit by the time
periods. The four graphs clearly show that nonlinear models should be applied within each time period. See
the following example.

Example 1.32 A four-piece polynomial growth model
By using trial-and-error methods, statistical results are obtained based on a four-piece polynomial growth
model presented in Figure 1.52. Based on these results, note the following:

1. Compared to the classical growth model in Figure 1.48 and the AR(2) growth model in Figure 1.49, this
polynomial growth model has the largest value of R*=0.957 224. So, in a statistical sense, this model

Dependent Variable: LOG(MEAN_BANK) allZg
Method: Least Squares
Date: 12/06/09 Time: 13:58 .08+
Sample (adjusted). 1014/2008 2/04/2009
Included observations: 60 after adjustments 044 .
Convergence achieved after 12 iterations n afA b i f\ =
LOG(MEAN_BANK)=(C(10)+C{11)*DAY*D1+(C(20)+C(21)*DAY)*D2 00 ? W ¥ k{ H b\J
+C(30C(31)" DAY D3I+C(40)+C(41) DAY D4HAR(1)=C(1) AR(2)=C — 04+ VJ m H y V V‘W W
(20 :
Coeficient  Std Emor  tStaistc  Prob =

c(10) 7272001 0079335 9166159  0.0000 o0 57 & 10 17 16 22 30 12 18 o7 B

c(11) 0010064 0014238 -0706835 04830 ST e i e

C(20) 7.350336 0.086670 8480814 0.0000 [ == LOGIMEAN_ BANK) Fosiduais |

ci21 -0.014022 0.008803  -1.592873 0.1175

C{30) 7.626986 0.233346 32.68531 0.0000

Ci{31) -0.003712 0.007029 -0.528084 0.5998

C{40) 7.682881 0.374227 20.53002 0.0000

C(41) -0.005994  0.007862 -0.762305  0.4495 1 P————

c(1) 1.241128 0.138661 8950818 0.0000 Sample 10142008 204/2008

C(2) -0.448722 0.143253  -3.132367 0.0029 10 Dbservations 60
R-squared 0.914152 Mean dependent var 7.372923 2 m ;3‘;;},
Adjusted R-squared 0.898700 S.D. dependentvar 0.126643 & Madmem  0.117081
S.E. of regression 0.040308  Akaike info criterion -3.433543 ;:"[‘)"e"“ gg;ﬁ
Sum squared resid 0.081235 Schwarz criterion -3.084486 4 ke :" e —
Log likelihood 113.0063 Hannan-Quinn criter. -3.297008 Kurtosis. 3714334
Durbin-Watson stat 1.971303 2

Jarque-Bera 2891977

inverted ARRools  62-251 62+25i ~3/dB0.be0l044.62.0,06.0.03 004 0105 0,08 016 012

Figure 1.50 Statistical results based on an AR(2) four-piece growth model of Mean_Bank
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Figure 1.51 Scatter graphs of (log(Mean_Bank),Day) with its nearest neighbor fit by time period

Dependent Variable: LOG(MEAN_BANK)
Method: Least Squares
Diate: 12/06/08 Time: 21:11
Sample: 10/08/2008 2/04/2009
Included obsemvations: 62
LOG(MEAN_BANK)=(C{10)+C(11FDAY+C (12 DAYA2+C(1 3" DAYA3+C(14)
*DAY ) D1+{C(20)+C(21)* DAY+C(22) DAY 2)* D2+(C(30)+C(31)* DAY
+C(32)*DAYA2+C(33) DAYAI+C(34P DAY DIHC{40 )+ C(42)* DAY*2
+C(43yDAY*3yD4
Coefficient  Std. Error Statistic Prab.
C{10) 7.273184 0.026987 269.5056 0.0000
c(i1) 0193225 0026699  7.237188  0.0000
c(12) 0.055096  0.007600  7.249808  0.0000
C{13) 0.004589 0.000773 6.063391 0.0000
Ci14) 0.000130 2.56E-05 5.081061 0.0000
C(20) 7.362563  0.026770  275.0267  0.0000
C(21) 0.014683 0.007699 1.907029 0.0628
Ci22) -0.002218 0.000468  -4.740573 0.0000
C(30) 46.35971  27.27787 1699535  0.0960
C(31) -4.792701  3.435079  -1395223  0.1696
C{32) 0.218807 0160933 1.359620 0.1806
C(33) -0.004387 0003325 -1.319543  0.1935
C(34) 3.26E-05 256E-05  1.276490  0.2082
Ci40) B.448153 0361846 23.34736 0.0000
Cl42) -0.001244 0000473 -2628171  0.0116
C(43) 1.62E-05 6.53E-06 2482523  0.0168
R-squared 08957224 Mean dependent var 7.376567
Adjusted R-squared 0.943276 5.D. dependentvar 0.126189
S.E. of regression 0.030054 Akaike info criterion -3.953987
Sum squared resid 0.041550 Schwarz criterion -3.405049
Log likelihood 1385736 Hannan-Quinn criter. -3.738460
Durbin-Watson stat 1.375620
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Figure 1.52 Statistical results based on a four-piece polynomial growth model of Mean_Bank
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should be considered the best of the three growth models, even though it is a standard multiple regres-
sion. In other words, independent variables are the best predictors for log(Mean_Bank).

2. The multiple regression in Figure 1.52 in fact represents the following four polynomial regressions
within the four time periods, namely Period =1, 2, 3 and 4, respectively.

7.273 +0.193%¢ + 0.055"#% 4 0.004689* > + 0.000130*¢*
7.363 4+ 0.015"t — 0.002218" 1>

46.360 — 4.793%¢ + 0.219% 12 — 0.004387" > + 3.3¢ — 05*¢*
8.448 — 0.001%#% + 1.6e — 05*£3

log(Mean_Bank) =
(Mean_Bank)
( )
( )

log
Mean_Bank
log(Mean_Bank

log

1.11.2 Equality Tests by Classifications

The option “Equality Tests by Classifications” provides the statistics for testing a hypothesis on the differ-
ence of the mean, median or variance of single variables between groups of individuals/objects generated by
one or more classification or treatment factors.

Example 1.33 Test for equality of variances

As an illustration, Figure 1.53(a) and (b) presents the statistical results for testing the equality of variances
of the variable B_I (SP for Bank-1), 15 days before and after the first and second break point, respectively,
indicated by the Period=1, 2, and Period =3, 4. Based on these results, the following notes and conclu-
sions are presented.

1. Based on the F-test, it can be concluded that the variances of B_/ have significant differences between
15 days before and after each break point, namely at Day =0 and Day = 40. Therefore, the volatilities
of the B_1s stock prices before and after each break point have significant differences.

2. However, the Siegel-Tukey test should be questionable, since it has such a very small value compared

to the others, specifically in Figure 1.53(b).

Taest for Equality of Variances of B_1
Categorized by values of PERIOD

Date: 12/07/08 Time: 08:32

Sample: 10/08/20028 2/04/2009 IF PERIOD=3
Included observations: 31

Category Statistics

Test for Equality of Variances of B_1
Categorized by values of PERIOD

Date: 12/07/09 Time: 08:36

Sample: 10/08/2008 2/04/2009 IF PERIOD=2
Included observations: 31

Method df Value  Probability Method dr Value  Probability
F-est (14,15) 9379213 0.0001 F-test (14,15) 5.045106 0.0036
Siegel-Tukey 2040246 0.0413 Siegel-Tukey 0126106 0.8524
Bartiatt 1 14.47209 0.0001 Bartlett 1 BATITI6 0.0042
Levens (1,28) 9325066 0.0048 Levena (1,28)  3.843048 0.0596
Brown-Forsythe (1,28) T7.331016 0.0112 Brown-Forsythe (1,29) 3699104 0.0643

Category Statistics

Mean Abs.  Mean Abs. Mean Tukey- Mean Abs.  Mean Abs. Mean Tukey-

PERIOD Count Sid. Dev.  Mean Dill. Median Diff. Siegel Rank PERIOD Count Sid. Dev. Mean Diff._Median Diff. Siegel Rank
1 16 315.2380 2421875 2343750 1275000 3 16 176.8945 126.5625 121.8750 16.32292

2 18 102.9332 85.55556 85.00000 1946667 4 15 78.75520 62.22299 51.66667 15.655566

Al k3] 2461723 166.3978 162.0968 1600000 All 3 2339872 95.43011 87.90323 16.00000

Barllelt weighted slandard devialion: 237.7305

(@)

Bartlett weighted standard deviation: 138.4904

(b)

Figure 1.53 Test for equality of the variances of B_1, 15 days before and after two break points
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Test for Equality of Means of B_1 Test for Equality of Means of B_1
Categorized by values of PERIOD Categorized by values of PERIOD
Date: 12/07/09 Time: 08:39 Date: 12/07/09 Time: 08:38
Sample: 10/08/2008 2/04/2009 IF PERIOD=<3 Sample: 10/08/2008 2/04/2008 |F PERIOD>=2
Included observations: 31 Included observations: 31
Method df Value  Probability Method df Value  Probability
t-test 20 -1.780006 0.0856 Hest 29 7525814 0.0000
Satterthwaite-Welch t-test* 18.35150  -1.828579 0.0838 Satterthwaite-Welch t-test* 21.00718 7.695656 0.0000
Anova F-test (1,29) 3.168421 0.0856 Anova F-test (1,29) 56.63788 0.0000
Welch F-test* (1,18.3515) 3.343701 0.0838 Welch F-test* (1,21.0072) 58.22312 0.0000
*Test allows for unequal cell variances *Test allows for unequal cell variances
Analysis of Variance Analysis of Variance
Source of Variation df SumofSqg. Mean Sq. Source of Variation df  Sum of Sq. Mean Sq.
Between 1 179065.9 179065.9 Between 1 1086292, 1086292,
Within 29 1638958, 56515.80 Within 29 556208.3 19179.60
Total 30 1818024, G0600.81 Total 30 1642500, 54750.00
Category Statistics Category Statistics
Std. Ermr. Std. Err.
PERIOD Count Mean Std. Dev. of Mean PERIOD Count Mean Std. Dev. of Mean
1 16 2631.250 315.2380 78.80950 3 16 3181.250 176.8945 44 22363
2 15 2783.333 102.9332 26.57723 4 15 2806.667 78.75520 20.33450
All K] 2704.839 2461723 4421385 All k)| 3000.000 233.9872 4202534
(@) (b)

Figure 1.54 Test for equality of the means of B_1, 15 days before and after two break points

Example 1.34 Test for equality of means
In addition to the testing of variances presented in Figure 1.53(a) and (b), Figure 1.54(a) and (b) presents the
statistical results for testing the equality of means of B_1I, 15 days before and after the two break points,
respectively. Corresponding to heterogeneity of the variances in a statistical sense, then the Welch F-test
should be used to making the conclusion of the testing hypothesis on the means differences. In this case,
however, the other tests also give exactly the same conclusion, at the significance level of either 5 or 10%.
On the other hand, the cell-mean model is not an appropriate time-series model generally — refer to
Section 4.3.1 in Agung (2009a). So I cannot recommend conducting a test on the mean differences of a
time series between long time periods: this is similarly so for testing equality of medians. We recommend
the reader study and test their growth differences.
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