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Fundamentals of Magnetic
Devices

1.1 Introduction

Many electronic circuits require the use of inductors and transformers [1–60]. These are usually
the largest, heaviest, and most expensive components in a circuit. They are defined by their electro-
magnetic (EM) behavior. The main feature of an inductor is its ability to store magnetic energy in
the form of a magnetic field. The important feature of a transformer is its ability to couple magnetic
fluxes of different windings and transfer AC energy from the input to the output through the magnetic
field. The amount of energy transferred is determined by the operating frequency, flux density, and
temperature. Transformers are used to change the AC voltage and current levels as well as to pro-
vide DC isolation while transmitting AC signals. They can combine energy from many AC sources
by the addition of the magnetic flux and deliver the energy from all the inputs to one or multiple
outputs simultaneously. The magnetic components are very important in power electronics and other
areas of electrical engineering. Power losses in inductors and transformers are due to DC current
flow, AC current flow, and associated skin and proximity effects in windings, as well as due to eddy
currents and hysteresis in magnetic cores. In addition, there are dielectric losses in materials used to
insulate the core and the windings. Failure mechanisms in magnetic components are mostly due to
excessive temperature rise. Therefore, these devices should satisfy both magnetic requirements and
thermal limitations.

In this chapter, fundamental physical phenomena and fundamental physics laws of electromag-
netism, quantities, and units of the magnetic theory are reviewed. Magnetic relationships are given
and an equation for the inductance is derived. The nature is governed by a set of laws. A subset of
these laws are the physics EM laws. The origin of the magnetic field is discussed. It is shown that
moving charges are sources of the magnetic field. Hysteresis and eddy-current losses are studied.
There are two kinds of eddy-current effects: skin effect and proximity effect. Both of these effects
cause nonuniform distribution of the current density in conductors and increase the conductor AC
resistance at high frequencies. A classification of winding and core losses is given.
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2 HIGH-FREQUENCY MAGNETIC COMPONENTS

1.2 Fields

A field is defined as a spatial distribution of a quantity everywhere in a region. There are two categories
of fields: scalar fields and vector fields. A scalar field is a set of scalars assigned at individual points
in space. A scalar quantity has a magnitude only. Examples of scalar fields are time, temperature,
humidity, pressure, mass, sound intensity, altitude of a terrain, energy, power density, electrical charge
density, and electrical potential. The scalar field may be described by a real or a complex function.
The intensity of a scalar field may be represented graphically by different colors or undirected field
lines. A higher density of the field lines indicates a stronger field in the area.

A vector field is a set of vectors assigned at every point in space. A vector quantity has both
magnitude and direction. Examples of vector fields are velocity v, the Earth’s gravitational force field
F, electric current density field J, magnetic field intensity H, and magnetic flux density B. The vector
field may be represented graphically by directed field lines. The density of field lines indicates the
field intensity, and the direction of field lines indicates the direction of the vector at each point. In
general, fields are functions of position and time, for example, ρv(x , y , z , t). The rate of change of a
scalar field with distance is a vector.

1.3 Magnetic Relationships

The magnetic field is characterized by magnetomotive force (MMF) F, magnetic field intensity H,
magnetic flux density B, magnetic flux φ, and magnetic flux linkage λ.

1.3.1 Magnetomotive Force

An inductor with N turns carrying an AC current i produces the MMF, which is also called the
magnetomotance. The MMF is given by

F = Ni (A · turns). (1.1)

Its descriptive unit is ampere-turns (A.t). However, the approved SI unit of the MMF is the ampere
(A), where 1 A = 6.25 × 1018 electrons/s. The MMF is a source in magnetic circuits. The magnetic
flux φ is forced to flow in a magnetic circuit by the MMF F = Ni , driving a magnetic circuit. Every
time another complete turn with the current i is added, the result of the integration increases by the
current i .

The MMF between any two points P1 and P2 produced by a magnetic field H is determined by a
line integral of the magnetic field intensity H present between these two points

F =
∫ P2

P1

H · d l =
∫ P2

P1

H cos θdl , (1.2)

where d l is the incremental vector at a point located on the path l and H · d l = (H cos θ)dl = Hl dl =
H (dl cos θ). The MMF depends only on the endpoints, and it is independent of the path between
points P1 and P2. Any path can be chosen. If the path is broken up into segments parallel and
perpendicular to H , only parallel segments contribute to F. The contributions from the perpendicular
segments are zero.

For a uniform magnetic field and parallel to path l , the MMF is given by

F = Hl . (1.3)

Thus,
F = Hl = Ni . (1.4)

The MMF forces a magnetic flux φ to flow.
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The MMF is analogous to the electromotive force (EMF) V . It is a potential difference between
any two points P1 and P2. field E between any two points P1 and P2 is equal to the line integral of
the electric field E between these two points along any path

V = VP2 − PP2 =
∫ P2

P1

E · d l =
∫ P2

P1

E cos θdl . (1.5)

The result is independent of the integration path. For a uniform electric field E and parallel to path
l , the EMF is

V = El . (1.6)

The EMF forces a current i = V /R to flow. It is the work per unit charge (J/C).

1.3.2 Magnetic Field Intensity

The magnetic field intensity (or magnetic field strength) is defined as the MMF F per unit length

H = F
l

= Ni

l
=
(

N

l

)
i (A/m), (1.7)

where l is the inductor length and N is the number of turns. Magnetic fields are produced by moving
charges. Therefore, magnetic field intensity H is directly proportional to the amount of current i and
the number of turns per unit length N /l . If a conductor conducts current i (which a moving charge),
it produces a magnetic field H . Thus, the source of the magnetic field H is a conductor carrying
a current i . The magnetic field intensity H is a vector field. It is described by a magnitude and a
direction at any given point. The lines of magnetic field H always form closed loops. By Ampère’s
law, the magnetic field produced by a straight conductor carrying current i is given by

H(r) = i

2πr
aφ. (1.8)

The magnetic field intensity H is directly proportional to current i and inversely proportional to the
radial distance from the conductor r . The Earth’s magnetic field intensity is approximately 50 μT.

1.3.3 Magnetic Flux

The amount of the magnetic flux passing through an open surface S is determined by a surface integral
of the magnetic flux density B

φ =
∫ ∫

S
B · dS =

∫ ∫
S

B · ndS (Wb), (1.9)

where n is the unit vector normal to the incremental surface area dS at a given position, dS = ndS is
the incremental surface vector normal to the local surface dS at a given position, and dφ = B · dS =
S · ndS . The magnetic flux is a scalar. The unit of the magnetic flux is Weber.

If the magnetic flux density B is uniform and forms an angle θB with the vector perpendicular to
the surface S , the amount of the magnetic flux passing through the surface S is

φ = B · S = BS cos θB (Wb). (1.10)

If the magnetic flux density B is uniform and perpendicular to the surface S , the angle between
vectors B and dS is θB = 0◦ and the amount of the magnetic flux passing through the surface S is

φ = B · S = BS cos 0◦ = BS (Wb). (1.11)

If the magnetic flux density B is parallel to the surface S , the angle between vectors B and dS is
θB = 90◦ and the amount of the magnetic flux passing through the surface S is

φ = SB cos 90◦ = 0. (1.12)
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For an inductor, the amount of the magnetic flux φ may be increased by increasing the surface
area of a single turn A, the number of turns in the layer Ntl , and the number of layers Nl . Hence,
S = Ntl Nl A = NA, where N = Ntl Nl is the total number of turns.

The direction of a magnetic flux density B is determined by the right-hand rule (RHR). This rule
states that if the fingers of the right hand encircle a coil in the direction of the current i , the thumb
indicates the direction of the magnetic flux density B produced by the current i , or if the fingers of the
right hand encircle a conductor in the direction of the magnetic flux density B , the thumb indicated
the direction of the current i . The magnetic flux lines are always continuous and closed loops.

1.3.4 Magnetic Flux Density

The magnetic flux density, or induction, is the magnetic flux per unit area given by

B = φ

S
(T). (1.13)

The unit of magnetic flux density B is Tesla. The magnetic flux density is a vector field and it
can be represented by magnetic lines. The density of the magnetic lines indicates the magnetic flux
density B , and the direction of the magnetic lines indicates the direction of the magnetic flux density
at a given point. Every magnet has two poles: south and north. Magnetic monopoles do not exist.
Magnetic lines always flow from south to north pole inside the magnet, and from north to south pole
outside the magnet.

The relationship between the magnetic flux density B and the magnetic field intensity H is given by

B = μH = μrμ0H = μNi

lc
= μF

lc
< Bs (T), (1.14)

where the permeability of free space is

μ0 = 4π × 10−7 (H/m), (1.15)

μ = μrμ0 is the permeability, μr = μ/μ0 is the relative permeability (i.e., relative to that of free
space), and lc is the length of the core. Physical constants are given in Appendix A. For free space,
insulators, and nonmagnetic materials, μr = 1. For diamagnetics such as copper, lead, silver, and
gold, μr ≈ 1 − 10−5 ≈ 1. However, for ferromagnetic materials such as iron, cobalt, nickel, and
their alloys, μr > 1 and it can be as high as 100 000. The permeability is the measure of the ability
of a material to conduct magnetic flux φ. It describes how easily a material can be magnetized. For
a large value of μr , a small current i produces a large magnetic flux density B . The magnetic flux φ

takes the path of the highest permeability.
The magnetic flux density field is a vector field. For example, the vector of the magnetic flux

density produced by a straight conductor carrying current i is given by

B(r) = μH(r) = μi

2πr
aφ. (1.16)

For ferromagnetic materials, the relationship between B and H is nonlinear because the relative
permeability μr depends on the magnetic field intensity H . Figure 1.1 shows simplified plots of
the magnetic flux density B as a function of the magnetic field intensity H for air-core inductors
(straight line) and for ferromagnetic core inductors. The straight line describes the air-core inductor
and has a slope μ0 for all values of H . These inductors are linear. The piecewise linear approximation
corresponds to the ferromagnetic core inductors, where Bs is the saturation magnetic flux density and
Hs = Bs/(μrμ0) is the magnetic field intensity corresponding to Bs . At low values of the magnetic
flux density B < Bs , the relative permeability μr is high and the slope of the B –H curve μrμ0 is
also high. For B > Bs , the core saturates and μr = 1, reducing the slope of the B –H curve to μ0.

The total peak magnetic flux density Bpk , which in general consists of both the DC component
BDC and the amplitude of AC component Bm , should be lower than the saturation flux density Bs of
a magnetic core at the highest operating temperature Tmax

Bpk = BDC (max) + Bm(max) ≤ Bs . (1.17)
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Figure 1.1 Simplified plots of magnetic flux density B as a function of magnetic field intensity H for air-core
inductors (straight line) and ferromagnetic core inductors (piecewise linear approximation)

The DC component of the magnetic flux density BDC is caused by the DC component of the inductor
current IL

BDC = μrμ0N IL

lc
. (1.18)

The amplitude of the AC component of the magnetic flux density Bm corresponds to the amplitude
of the AC component of the inductor current Im

Bm = μrμ0N Im

lc
. (1.19)

Hence, the peak value of the magnetic flux density can be written as

Bpk = μrμ0N IL

lc
+ μrμ0N Im

lc
= μrμ0N (IL + Im)

lc
= μrμ0N ILpk

lc
≤ Bs (1.20)

where ILpk = IL + Im . The saturation flux density Bs decreases with temperature. For ferrites, Bs may
decrease by a factor of 2 as the temperature increases from 20 ◦C to 90 ◦C. The amplitude of the
magnetic flux density Bm is limited either by core saturation or by core losses.

1.3.5 Magnetic Flux Linkage

The magnetic flux linkage is the sum of the flux enclosed by each turn of the wire wound around
the core

λ = N
∫ ∫

S
B · dλS =

∫
vdt . (1.21)

For the uniform magnetic flux density, the magnetic flux linkage is the magnetic flux linking N turns
and is described by

λ = N φ = N AcB = Aeff B = N AcμH = μAcN 2i

lc
= N 2

R i = Li (V · s) (1.22)

where R is the core reluctance and Aeff = N Ac is the effective area through which the magnetic
flux φ passes. Equation (1.22) is analogous to Ohm’s law v = Ri and the equation for the capacitor
charge Q = Cv . The unit of the flux linkage is Wb·turn. For sinusoidal waveforms, the relationship
among the amplitudes is

λm = N φm = N AcBm = N AcμHm = μrμ0AcN 2Im

lc
. (1.23)
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The change in the magnetic linkage can be expressed as

�λ =
∫ t2

t1

vdt = λ(t2) − λ(t1). (1.24)

1.4 Magnetic Circuits

1.4.1 Reluctance

The reluctance R is the resistance of the core to the flow of the magnetic flux φ. It opposes the
magnetic flux flow, in the same way as the resistance opposes the electric current flow. An element
of a magnetic circuit can be called a reluctor. The concept of the reluctance is illustrated in Fig. 1.2.
The reluctance of a linear, isotropic, and homogeneous magnetic material is given by

R = 1

P = lc
μAc

= lc
μ0μr Ac

(A · turns/Wb) or (turns/H), (1.25)

where Ac is the cross-sectional area of the core (i.e., the area through which the magnetic flux flows)
and lc is the mean magnetic path length (MPL), which is the mean length of the closed path that the
magnetic flux flows around a magnetic circuit. The reluctance is directly proportional to the length
of the magnetic path lc and is inversely proportional to the cross-sectional area Ac through which the
magnetic flux φ flows. The permeance of a basic magnetic circuit element is

P = 1

R = μAc

lc
= μ0μr Ac

lc
(Wb/A · turns) or (H/turns) . (1.26)

When the number of turns N = 1, L = P. The reluctance is the magnetic resistance because it opposes
the establishment and the flow of a magnetic flux φ in a medium. A poor conductor of the magnetic
flux has a high reluctance and a low permeance. Magnetic Ohm’s law is expressed as

φ = F
R = PF = Ni

R = μAcNi

lc
= μrcμ0AcNi

lc
(Wb). (1.27)

Magnetic flux always takes the path with the highest permeability μ.
In general, the magnetic circuit is the space in which the magnetic flux flows around the coil(s).

Figure 1.3 shows an example of a magnetic circuit. The reluctance in magnetic circuits is analogous to
the resistance R in electric circuits. Likewise, the permeance in magnetic circuits is analogous to the
conductance in electric circuits. Therefore, magnetic circuits described by the equation φ = F/R can
be solved in a similar manner as electric circuits described by Ohm’s law I = V /R = GV = (σA/l)V ,
where φ, F, R, P, B , λ, and μ, correspond to I , V , R, G , J , Q , and σ , respectively. For example,
the reluctances can be connected in series or in parallel. In addition, the reluctance R = lc/μAc is
analogous to the electric resistance R = l/σA and the magnetic flux density B = φ/Ac is analogous
to the current density J = I /A. Table 1.1 lists analogous magnetic and electric quantities.

R

φ

−

(b)

(a)

lc

φ

F

+

−

F

+
μr

Ac

Figure 1.2 Reluctance. (a) Basic magnetic circuit element conducting magnetic flux φ. (b) Equivalent
magnetic circuit
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Figure 1.3 Magnetic circuit. (a) An inductor composed of a core and a winding. (b) Equivalent magnetic circuit

Table 1.1 Analogy between magnetic and
electric quantities

Magnetic quantity Electric quantity

F = Ni V

F = Hl V = El

φ I

H E

B J

R R

P G

λ Q

μ ε

L C

φ = F
R I = V

R

B = φ
A J = I

A

H = F
l = Ni

l E = V
l

R = l
μA R = l

σA

B = μH D = εE

λ = Li Q = Cv

i = dλ
dt v = dQ

dt

v = L di
dt i = C dv

dt

dB = μ(Id l×aR )

4πR2 F = Q1Q2aR
2πεR2

wm = 1
2 B · H we = 1

2 D · E

wm = 1
2 μH 2 we = 1

2 εE 2

Wm = 1
2 iλ We = 1

2 vQ

Wm = 1
2 Li 2 We = 1

2 C v2
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1.4.2 Magnetic KVL

Physical structures, which are made of magnetic devices, such as inductors and transformers, can be
analyzed just like electric circuits. The magnetic law, analogous to Kirchhoff’s voltage law (KVL),
states that the sum of the MMFs

∑n
k=1 Fk and the magnetic potential differences

∑m
k=1 Rk φk around

the closed magnetic loop is zero
n∑

k=1

Fk −
m∑

k=1

Rk φk = 0. (1.28)

For instance, an inductor with a simple core having an air gap as illustrated in Fig. 1.4 is given by

Ni = F = Fc + Fg = φ(Rc + Rg ), (1.29)

where the reluctance of the core is

Rc = lc
μrcμ0Ac

(1.30)

the reluctance of the air gap is

Rg = lg
μ0Ac

(1.31)

and it is assumed that φc = φg = φ. This means that the fringing flux in neglected. If μr � 1, the
magnetic flux is confined to the magnetic material, reducing the leakage flux. The ratio of the air-gap
reluctance to the core reluctance is Rg

Rc
= μrc

lg
lc

. (1.32)

The reluctance of the air gap Rg is much higher than the reluctance of the core Rc if μrc � lc/lg .
The magnetic potential difference between points a and b is

Fab =
∫ b

a
H · d l = Rabφ, (1.33)

where Rab is the reluctance between points a and b.

1.4.3 Magnetic Flux Continuity

The continuity of the magnetic flux law states that the net magnetic flux through any closed surface
is always zero

φ = ©
∫∫

S
BdS = 0 (1.34)

N

φ

Ac

Ig

i

lc

Rg

Rc

φ

F=Ni
+

−

(a) (b)

~

Figure 1.4 Magnetic circuit illustrating the magnetic KVL. (a) An inductor composed of a core with an air
gap and a winding. (b) Equivalent magnetic circuit
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i

R1

R2 R3

φ3
φ3

φ1

φ1

φ2
φ2

F=Ni
+

−

(a)
(b)

~

Figure 1.5 Magnetic circuit illustrating the continuity of the magnetic flux for EE core. (a) An inductor
composed of a core and a winding. (b) Equivalent magnetic circuit

or the net magnetic flux entering and exiting the node is zero
n∑

k=1

φk =
n∑

k=1

Sk Bk = 0. (1.35)

This law is analogous to Kirchhoff’s current law (KCL) introduced by Gauss and can be called
Kirchhoff’s flux law (KFL). Figure 1.5 illustrates the continuity of the magnetic flux law. For example,
when three core legs meet at a node,

φ1 = φ2 + φ3, (1.36)

which can be expressed by
F1

R1
= F2

R2
+ F3

R3
. (1.37)

If all the three legs of the core have windings, then we have

N1i1
R1

= N2i2
R2

+ N3i3
R3

. (1.38)

Usually, most of the magnetic flux is confined inside an inductor, for example, for an inductor with
a toroidal core. The magnetic flux outside an inductor is called the leakage flux.

1.5 Magnetic Laws

1.5.1 Ampère’s Law

Ampère1 discovered the relationship between current and the magnetic field intensity. Ampère’s law
relates the magnetic field intensity H inside a closed loop to the current passing through the loop.
A magnetic field can be produced by a current and a current can be produced by a magnetic field.
Ampère’s law is illustrated in Fig. 1.6. A magnetic field is present around a current-carrying conductor
or conductors. The integral form of Ampère’s circuital law, or simply Ampère’s law, (1826) describes
the relationship between the (conduction, convection, and/or displacement) current and the magnetic
field produced by this current. It states that the closed line integral of the magnetic field intensity H

1André-Marie Ampère (1775–1836) was a French physicist and mathematician, who is the father of electrody-
namics.
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H

Hi1
i2

i3

C

Figure 1.6 Illustration of Ampère’s law

around a closed path (Amperian contour) C (2D or 3D) is equal to the total current ienc enclosed by
that path and passing through the interior of the closed path bounding the open surface S∮

C
H · d l =

∫ ∫
S

J · dS =
N∑

n=1

in = i1 + i2 + . . . + iN = ienc , (1.39)

where d l is the vector length element pointing in the direction of the Amperian path C and J is the
conduction (or drift) and convection current density. The current ienc enclosed by the path C is given
by the surface integral of the normal component J over the open surface S . The surface integral of
the current density J is equal to the current I flowing through the surface S . In other words, the
integrated magnetic field intensity around a closed loop C is equal to the electric current passing
through the loop. The surface integral of J is the current flowing through the open surface S . The
conduction current is caused by the movement of electrons originating from the outermost shells of
atoms. When conduction current flows, the atoms of medium normally do not move. The convection
current is caused by the movement of electrically charged medium.

For example, consider a long, straight, round conductor that carries current I . The line integral
about a circular path of radius r centered on the axis of the round wire is equal to the product of the
circumference and the magnetic field intensity Hφ∮

C
H · d l = 2πrHφ = I , (1.40)

yielding the magnetic field intensity

Hφ = I

2πr
. (1.41)

Thus, the magnetic field decreases in the radial direction away from the conductor.
For an inductor with N turns, Ampère’s law is∮

C
H · d l = Ni . (1.42)

Ampère’s law in the discrete form can be expressed as

n∑
k=1

Hk lk =
m∑

k=1

Nk ik . (1.43)

For example, Ampère’s law for an inductor with an air gap is given by

Hclc + Hg lg = Ni . (1.44)

If the current density J is uniform and perpendicular to the surface S ,

HC = SJ . (1.45)

The current density J in winding conductors of magnetic components used in power electronics is
usually in the range 0.1–10 A/mm2. The displacement current is neglected in (1.39). The generalized
Ampère’s law by adding the displacement current constitutes one of Maxwell’s equations. This is
known as Maxwell’s correction to Ampère’s law.

Ampère’s law is useful when there is a high degree of symmetry in the arrangement of conductors
and it can be easily applied in problems with symmetrical current distribution. For example, the
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magnetic field produced by an infinitely long wire conducting a current I outside the wire is

B = I

2πr
aφ (A/m). (1.46)

Ampère’s law is a special case of Biot–Savart’s law.

Example 1.1

An infinitely long round solid straight wire of radius ro carries sinusoidal current i = Im cos ωt in
steady state at low frequencies (with no skin effect). Determine the waveforms of the magnetic field
intensity H (r , t), magnetic flux density B(r , t), and magnetic flux φ(r , t) inside and outside the wire.

Solution: At low frequencies, the skin effect can be neglected and the current is uniformly distributed
over the cross section of the wire, as shown in Fig. 1.7. To determine the magnetic field intensity
H (r , t) everywhere, two Amperian contours C1 and C2 are required, one inside the conductor for
r ≤ ro and the other outside the conductor for r > ro .

The Magnetic Field Intensity Inside the Wire. The current in the conductor induces a concentric
magnetic field intensity both inside and outside the conductor. The current density inside the conductor
is uniform. The vector of the current density amplitude inside the conductor is assumed to be parallel
to the conductor axis and is given by

Jm = Jmz az . (1.47)

r

r

0 r

Jm

C1

ienc

iC2

ro

ro−ro

0 ro−ro

0 ro−ro

Im(enc)

Im

Hm

r

r

Figure 1.7 Cross section of an infinitely long round straight wire carrying a sinusoidal i = Im cos ωt and
amplitudes of current density Jm , enclosed current Im(enc), and magnetic field intensity Hm as a function of the
radial distance r from the wire center at low frequencies, that is, when the skin effect can be neglected (δ > ro )
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Consider a radial contour C1 inside the conductor. The current flowing through the area enclosed by
the cylindrical shell of radius r at low frequencies is given by

ienc = Im(enc) cos ωt , (1.48)

where Im(enc) is the amplitude of the current enclosed by the shell of radius r . Hence, the amplitude
of the current density at a radius r is

Jm(r) = Im(enc)

πr2
for 0 ≤ r ≤ ro (1.49)

and the amplitude of the current density at the wire surface r = ro is

Jm(ro) = Im

πr2
o
. (1.50)

The current density is uniform at low frequencies (where the skin effect can be neglected), that is,
Jm (r) = Jm(ro), yielding the amplitude of the enclosed current

Im(enc) = Im

(
πr2

πr2
o

)
= Im

(
Ar

Aro

)
= Im

(
r

ro

)2

for 0 ≤ r ≤ ro , (1.51)

where Ar = πr2 and Aro = πr2
o . Figure 1.7 shows a plot of Im(enc) as a function of the radial distance

from the conductor center r . The vector of the magnetic flux density is

H = Hφ = H (r)aφ. (1.52)

From Ampère’s law,

Im(enc) =
∮

C1

H · d l = Hm(r)

∮
C1

dl = 2πrHm(r) for 0 ≤ r ≤ ro , (1.53)

where C1 = 2πr for r ≤ ro . Equating the right-hand sides of (1.51) and (1.53), the amplitude of the
magnetic field intensity inside the wire at low frequencies is obtained

Hm (r) = Im

(
r

ro

)2 1

2πr
= Im

r

2πr2
o

for 0 ≤ r ≤ ro . (1.54)

Figure 1.7 shows a plot of the amplitude of the magnetic field intensity Hm as a function of r . The
amplitude of the magnetic field intensity Hm is zero at the wire center because the enclosed current
is zero. The waveform of the magnetic field inside the wire at low frequencies

H (r , t) = Im
r

2πr2
o

cos ωt for r ≤ ro . (1.55)

Thus, the amplitude of the magnetic field intensity Hm inside the wire at radius r is determined solely
by the amplitude of the current inside the radius r . The maximum amplitude of the magnetic field
intensity occurs on the conductor surface

Hm(max) = Hm(ro) = Im

2πro
. (1.56)

The amplitude of the magnetic flux density inside the wire at low frequencies is

Bm(r) = μ0Hm(r) = μ0Im

(
r

ro

)2 1

2πr
= μ0Im

r

2πr2
o

for 0 ≤ r ≤ ro . (1.57)

The amplitude of the magnetic flux inside the wire at low frequencies is

φm(r) = ABm(r) = μ0Ar Hm(r) = μ0Im
r(πr2)

2πr2
o

= μ0Im
r3

2r2
o

for 0 ≤ r ≤ ro . (1.58)

The waveform of the magnetic flux is

φ(x , t) = φ cos ωt = μ0Im
r3

2r2
o

cos ωt for 0 ≤ r ≤ ro . (1.59)
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The Magnetic Field Intensity Outside the Wire. Consider a radial contour C2 outside the
conductor. The entire current i = Im cos ωt is enclosed by a path of radius r ≥ ro . From Ampère’s
law, the amplitude of the entire current i is

Im =
∮

C2

H · d l = Hm(r)

∮
C2

dl = 2πrHm(r) for r ≥ ro , (1.60)

where C2 = 2πr with r ≥ ro . The amplitude of the near-magnetic field intensity outside the conductor
at any frequency is given by the expression

Hm (r) = Im

2πr
for r ≥ ro (1.61)

and the waveform of this field is

H (r , t) = Im

2πr
cos ωt for r ≥ ro . (1.62)

The amplitude of the magnetic field intensity increases linearly with r inside the wire from 0 to
Hm (ro) = Im/(2πro) at low frequencies. The amplitude of the magnetic field intensity is inversely
proportional to r outside the wire at any frequency.

The waveform of the magnetic flux density is

B(r , t) = μ0H (r , t) = μ0Im

2πr
cos ωt for r ≥ ro . (1.63)

The waveform of the magnetic flux enclosed by a cylinder of radius r > ro is

φ(x , t) = AwB(r , t) = Awμ0H (r , t) = r2
o μ0Im

2r
cos ωt for r ≥ ro . (1.64)

Example 1.2

Toroidal Inductor. Consider an inductor with a toroidal core of inner radius a and outer
radius b. Find the magnetic field inside the core and in the region exterior to the torus core.

Solution: Consider the circle C of radius a ≤ r ≤ b. The magnitude of the magnetic field is constant
on this circle and is tangent to it. Therefore, B · l l = Bdl . From the Ampère’s law, the magnetic field
density in a toroidal core (torus) is∮

C
B · d l = B

∮
C

dl = B(2πr) = μrμ0NI for a ≤ r ≤ b (1.65)

where r is the distance from the torus center to a point inside the torus. Hence,

B = μrμ0NI

2πr
for a ≤ r ≤ b. (1.66)

For an ideal toroid in which the turns are closely spaced, the external magnetic field is zero. For an
Amperian contour with radius r < a , there is no current flowing through the contour surface, and
therefore H = 0 for r < a . For an Amperian contour C with radius r > b, the net current flowing
through its surface is zero because an equal number of current paths cross the contour surface in both
directions, and therefore H = 0 for r > b.

1.5.2 Faraday’s Law

A time-varying current produces a magnetic field, and a time-varying magnetic field can produce
an electric current. In 1820, a Danish scientist Oersted2 showed that a current-carrying conductor

2Hans Christian Oersted (1777–1851) was a Danish physicist and chemist, who discovered that an electric current
produces a magnetic field. This discovery established the connection between electricity and magnetism, leading
to the origination of science of electromagnetism.
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produces a magnetic field, which can affect a compass magnetic needle. He connected electricity
and magnetism. Ampère measured that this magnetic field intensity is linearly related to the current,
which produces it. In 1831, the English experimentalist Michael Faraday3 discovered that a current
can be produced by an alternating magnetic field and that a time-varying magnetic field can induce
a voltage, or an EMF, in an adjacent circuit. This voltage is proportional to the rate of change of
magnetic flux linkage λ, or magnetic flux φ, or current i , producing the magnetic field.

Faraday’s law (1831), also known as Faraday’s law of induction, states that a time-varying mag-
netic flux φ(t) passing through a closed stationary loop, such as an inductor turn, generates a voltage
v(t) in the loop and for a linear inductor is expressed by

v(t) = dλ

dt
= d(N φ)

dt
= N

dφ

dt
= N

d(AB)

dt
= NA

dB

dt
= NAμ

dH

dt
= μAN 2

l

di

dt

= N
d

dt

(F
R

)
= N

d

dt

(
Ni

R

)
= N 2

R
di

dt
= PN 2 di

dt
= L

di

dt
. (1.67)

This voltage, in turn, may produce a current i (t). The voltage v(t) is proportional to the rate of change
of the magnetic linkage dλ/dt , or to the rate of change of the magnetic flux density dB/dt and the
effective area NA through which the flux is passing. The inductance L relates the induced voltage
v(t) to the current i (t). The voltage v(t) across the terminals of an inductor L is proportional to the
time rate of change of the current i (t) in the inductor and the inductance L. If the inductor current is
constant, the voltage across an ideal inductor is zero. The inductor behaves as a short circuit for DC
current. The inductor current cannot change instantaneously. Figure 1.8 shows an equivalent circuit
of an ideal inductor. The inductor is replaced by a dependent voltage source controlled by di/dt .

The voltage between the terminals of a single turn of an inductor is

vT (t) = dφ(t)

dt
. (1.68)

Hence, the total voltage across the inductor consisting of N identical turns is

vL(t) = N vT (t) = N
dφ(t)

dt
= dλ(t)

dt
. (1.69)

Since v = Ldi/dt ,

di = 1

L
vdt (1.70)

yielding the current in an inductor

i (t) =
∫ t

0
idt + i (0) = 1

L

∫ t

0
vdt + i (0) = 1

ωL

∫ ωt

0
vd(ωt) + i (0). (1.71)

For sinusoidal waveforms, the derivative d/dt can be replaced by jω and differential equations may
be replaced by algebraic equations. A phasor is a complex representation of the magnitude, phase,
and space of a sinusoidal waveform. The phasor is not dependent on time. A graphical representation

(a) (b)

i

+

− −

−
L i

+

Lv v
+ di

dt

Figure 1.8 Equivalent circuit of an ideal inductor. (a) Inductor. (b) Equivalent circuit of an inductor in the
form of dependent voltage source controlled by the rate of change of the inductor current di/dt

3Michael Faraday (1791–1867) was an English physicist and chemist, who discovered electromagnetic induction
and invented the method of generating electricity.
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of a phasor is known as a phasor diagram. Faraday’s law in phasor form can be expressed as

VLm = jωλm = jωLILm = ωLILm ej 90◦
. (1.72)

The sinusoidal inductor current legs the sinusoidal inductor voltage by 90◦.
The impedance of a lossless inductive component in terms of phasors of sinusoidal inductor current

ILm and voltage VLm = jωλm is

ZL = Vm

ILm
= jωλm

Im
= jωL, (1.73)

where L = λm/Im . The impedance of lossy inductive components in terms of phasors is

ZL = Vm

ILm
= R + jωL. (1.74)

For nonlinear, time-varying inductors, the relationships are

λ(t) = L(i )i (t) (1.75)

and

v(t) = dλ(t)

dt
= L(i )

di (t)

dt
+ i (t)

dL(i )

dt
= L(i )

di (t)

dt
+ i (t)

dL(i )

di

di (t)

dt

=
[

L(i ) + i (t)
dL(i )

di

]
di (t)

dt
= Leq

di (t)

dt
, (1.76)

where

Leq = L(i ) + i (t)
dL(i )

di
. (1.77)

In summary, a time-varying electric current i (t) produces magnetic fields H (t), φ(t), and λ(t) by
Ampère’s law. In turn, the magnetic field produces a voltage v(t) by Faraday’s law. This process can
be reversed. A voltage v(t) produces a magnetic fields H (t), φ(t), and λ(t), which produced electric
current i (t).

1.5.3 Lenz’s Law

Lenz4 discovered the relationship between the direction of the induced current and the change in
the magnetic flux. Lenz’s law (1834) states that the EMF v(t) = −Ndφ(t)/dt induced by an applied
time-varying magnetic flux φa(t) has such a direction that induces current iE (t) in the closed loop,
which in turn induces a magnetic flux φi (t) that tends to oppose the change in the applied flux
φa(t), as illustrated in Fig. 1.9. If the applied magnetic flux φa(t) increases, the induced current iE (t)

φi (t )

φa (t )

iE

Figure 1.9 Illustration of Lenz’s law generating eddy currents. The applied time-varying magnetic flux φa (t)
induces eddy current iE (t), which in turn generates induced flux φi (t) that opposes changes in the applied flux
φa (t)

4Heinrich Friedrich Emil Lenz (1804–1865) was a Russian physicist of German ethnicity born in Estonia, who
made a contribution to electromagnetism in the form of his law.
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produces an opposing flux φ(t). If the applied magnetic flux φa(t) decreases, the induced current iE (t)
produces an aiding flux φi (t). The induced magnetic flux φi always opposes the inducing (applied)
magnetic flux φa . If φa(t) increases, the induced current produces an opposing flux φi (t). If φa(t)
decreases, the induced current produces an aiding magnetic flux φi (t). The direction of the induced
current iE (t) with respect of the induced magnetic field φi (t) is determined by the RHR.

If a time-varying magnetic field is applied to a conducting loop (e.g., an inductor turn), a current
is induced in such a direction as to oppose the change in the magnetic flux enclosed by the loop.
The induced currents flowing in closed loops are called eddy currents. Eddy currents occur when a
conductor is subjected to time-varying magnetic field(s). In accordance with Lenz’s law, the eddy
currents produce their own magnetic field(s) to oppose the original field.

The effects of eddy currents on winding conductors and magnetic cores are nonuniform current
distribution, increased effective resistance, increased power loss, and reduced internal inductance.
If the resistivity of a conductor was zero (as in a perfect conductor), eddy-current loops would be
generated with such a magnitude and phase to exactly cancel the applied magnetic field. A perfect
conductor would oppose any change in externally applied magnetic field. Circulating eddy currents
would be induced to oppose any buildup of the magnetic field in the conductor. In general, nature
opposes to everything we want to do.

1.5.4 Volt–Second Balance

Faraday’s law is vL = dλ/dt , yielding dλ = vLdt . Hence,

λ(t) =
∫

dλ =
∫

vLdt . (1.78)

For periodic waveforms in steady state,∫ T

0
vL(t)dt = λ(t)

∣∣∣∣
T

0
= λ(T ) − λ(0) = 0. (1.79)

This equation is called a volt–second balance, which states that the total area enclosed by the inductor
voltage waveform vL is zero for steady state. As a result, the area enclosed by the inductor voltage
waveform vL above zero must be equal to the area enclosed by the inductor voltage waveform vL
below zero for steady state. The volt–second balance can be expressed by∫ to

0
vL(t)dt +

∫ T

to

vL(t)dt = 0 (1.80)

which gives ∫ to

0
vL(t)dt = −

∫ T

to

vL(t)dt . (1.81)

This can be written as A+ = A−.

1.5.5 Ohm’s Law

Materials resist the flow of electric charge. The physical property of materials to resist current flow is
known as resistivity. Therefore, a sample of a material resists the flow of electric current. This property
is known as resistance. Ohm5 discovered that the voltage across a resistor is directly proportional
to its current and is constant, called resistance. Microscopic Ohm’s law describes the relationship
between the conduction current density J and the electric field intensity E. The conduction current is
caused by the movement of electrons. Conductors exhibit the presence of many free (conduction or

5Georg Simon Ohm (1787–1854) was a German physicist and mathematician, who discovered the relationship
between voltage and current for a resistor.
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valence) electrons, from the outermost atom shells of a conducting medium. These free electrons are
in random constant motion in different directions in a zigzag fashion due to thermal excitation. The
average electron thermal energy per one degree of freedom is ET 1 = kT/2 and the average thermal
energy of an electron in three dimensions is ET 3 = 3ET 1 = 3kT/2. At the collision, the electron
kinetic energy is equal to the thermal energy

1

2
mev

2
th = 3

2
kT , (1.82)

where k = 10−23 J/K is the Boltzmann’s constant and me = 9.1095 × 10−31 kg is the rest mass of a
free electron. The thermal velocity of electrons between collisions is

vth =
√

3kT

me
≈ 1.12238 × 107 cm/s = 112.238 × 105 m/s = 112.238 km/s. (1.83)

In good conductors, mobile free electrons drift through a lattice of positive ions encountering frequent
collisions with the atomic lattice. If the electric field E in a conductor is zero, the net charge movement
over a large volume (compared with atomic dimensions) is zero, resulting in zero net current. If an
electric field E is applied to a conductor, a Coulomb’s force F is exerted on an electron with charge −q

F = −qE. (1.84)

According to Newton’s second law, the acceleration of electrons between collisions is

a = F

me
= −qE

me
, (1.85)

where me = 9.11 × 10−31 kg is the mass of electron. If the electric field intensity E is constant, then
the average drift velocity of electrons increases linearly with time

vd = at = −qEt

me
. (1.86)

The average drift velocity is directly proportional to the electric field intensity E for low values of E
and saturates at high value of E . Electrons are involved in collisions with thermally vibrating lattice
structure and other electrons. As the electron accelerates due to electric field, the velocity increases.
When the electron collides with an atom, it loses most or all of its energy. Then, the electron begins
to accelerate due to electric field E and gains energy until a new collision. The average position
change xavg of a group of N electrons in time interval �t is called the drift velocity

vd = xavg

�t
= x1 + x2 + x3 + . . . + xN

N �t
= v1 + v2 + v3 + . . . + vN

N
. (1.87)

The drift velocity of electrons vd has the opposite direction to that of the applied electric field E. By
Newton’s law, the average change in the momentum of a free electron is equal to the applied force

F = mevd

τc
, (1.88)

where the mean time between the successive collisions of electrons with atom lattice, called the
relaxation time, is given by

τc = ln
vd

(1.89)

in which ln is length of the mean free path of electrons between collisions. Equating the right-hand
sides of (1.84) and (1.88), we obtain

mevd

τc
= −qE (1.90)

yielding the average drift velocity of electrons

vd = −qτc

me
E = −μn E (1.91)

where the mobility of electrons in a conductor is

μn = qτc

me
= qln

mevd
. (1.92)
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The volume charge density in a conductor is

ρv = −nq , (1.93)

where n is the concentration of free (conduction or valence) electrons in a conductor, which is equal
to the number of conduction electrons per unit volume of a conductor. The resulting flow of electrons
is known as the conduction (or drift) current. The conduction (drift) current density, corresponding
to the motion of charge forced by electric field E , is given by

J = I
A

= ρvvd = −nqvd = −nqμn E = nq2τc

me
E = σE = E

ρ
, (1.94)

where the conductivity of a conductor is

σ = nqμn = nq
qτc

me
= nq2τc

me
= nq2vd

meln
(1.95)

and the resistivity of a conductor is

ρ = 1

σ
= 1

nqμn
= me

nq2τc
= meln

nq2vd
. (1.96)

Hence, the point (or microscopic) form of Ohm’s law (1827) for conducting materials is

E = ρJ = J
σ

. (1.97)

The typical value of mobility of electrons in copper is μn = 0.0032 m2/V·s. At E = 1 V/m, the
average drift velocity of electrons in copper is vd = 0.32 cm/s. The thermal velocity of electrons
between collisions is vth = 1.12 × 107 cm/s. Due to collisions of electrons with atomic lattice and the
resulting loss of energy, the velocity of individual electrons in the direction opposite to the electric
field E is much lower than the thermal velocity. The average drift velocity is much lower than the
thermal velocity by two orders on magnitude. The average time interval between collisions of electrons
is called the relaxation time and its typical value for copper is τc = 3.64 × 10−14 s = 36.4 fs. The
convection current and the displacement current do not obey Ohm’s law, whereas the conduction
current does it.

To illustrate Ohm’s law, consider a straight round conductor of radius ro and resistivity ρ carrying
a DC current I . The current is evenly distributed in the conductor. Thus, the current density is

J = I
Aw

= I

πr2
o

az . (1.98)

According to Ohm’s law, the electric field intensity in the conductor is

E = ρJ = ρ
I

πr2
o

az . (1.99)

1.5.6 Biot–Savart’s Law

Hans Oersted discovered in 1819 that currents produce magnetic fields that form closed loops around
conductors (e.g., wires). Moving charges are sources of the magnetic field. Jean Biot and Félix Savart
arrived in 1820 at a mathematical relationship between the magnetic field H at any point P of
space and the current I that generates H. Current I is a source of magnetic field intensity H. The
Biot–Savart’s law allows us to calculate the differential magnetic field intensity dH produced by a
small current element Id l. Figure 1.10 illustrates the Biot–Savart’s law. The differential form of the
Biot–Savart’s law is given by

dH = I

4π

d l × aR

R2
(1.100)

where d l is the current element equal to a differential length of a conductor carrying electric current
I and points in the direction of the current I , and R = RaR is the distance vector between d l and an
observation point P with field H . The vector dH is perpendicular to both d l and to the unit vector aR
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X

I

dH
P

R
d I aR

Figure 1.10 Magnetic field dH produced by a small current element Id l

directed from d l to P . The magnitude of dH is inversely proportional to R2, where R is the distance
from d l to P . The magnitude of dH is proportional to sin θ , where θ is the angle between the vectors
d l and aR . The Biot–Savart’s law is analogous to Coulomb’s law that relates the electric field E to
an isolated point charge Q , which is a source of radial electric field E = Q/(4πεR2).

The total magnetic field H induced by a current I is given by the integral form of the
Biot–Savart’s law

H = I

4π

∫
l

d l × aR

R2
(A/m). (1.101)

The integral must be taken over the entire current distribution.

1.5.7 Maxwell’s Equations

Maxwell6 assembled the laws of Faraday, Ampère, and Gauss (for both electric and magnetic fields)
into a set of four equations to produce a unified EM theory. Maxwell’s equations (1865), together
with the law of conservation of charge (the continuity equation), form a foundation of a unified and
coherent theory of electricity and magnetism. They couple electric field E, magnetic field H, current
density J, and charge density ρv . These equations provide the qualitative and quantitative description
of static and dynamic EM fields. They can be used to explain and predict electromagnetic phenomena.
In particular, they govern the behavior of EM waves.

Maxwell’s equations in differential (point or microscopic) forms in the time domain at any point
in space and at any time are given by

∇ × H = J + ∂D
∂t

= σE + ε
∂E
∂t

(Ampere’s law), (1.102)

∇ × E = −∂B
∂t

= −μ
∂H
∂t

(Faraday’s law), (1.103)

∇ · D = ρv (Gauss’s law), (1.104)

and
∇ · B = 0 (Gauss’s magnetic law), (1.105)

where JD = ∂D/∂t is the displacement current density. The conductive current density (corresponding
to the motion of charge) J and the displacement current density JD are sources of EM fields H, E,
B = μH, and the volume charge density ρv is a source of the electric fields E and D = εE, where μ is
permeability and ε is the permittivity of a material. Maxwell’s equations include two Gauss’s7 laws.
Gauss’s law states that charge is a source of electric field. In contrast, Gauss’s magnetic law states
that magnetic field is sourceless (divergenceless), that is, there are no magnetic sources or sinks.
This law also indicates that magnetic flux lines close upon themselves. Two Maxwell’s equations

6James Clerk Maxwell (1831–1879) was a Scottish physicist and mathematician, who mathematically unified
Faraday’s, Ampère’s, and Gauss’s laws. “Maxwell’s equations” are foundations of EM fields and waves.
7Karl Fredrich Gauss (1777–1855) was a German mathematician and physicist.
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are partial differential equations because magnetic and electric fields, current, and charge may vary
simultaneously with space and time.

Neglecting the generation and recombination of carrier charges like in semiconductors, the conti-
nuity equation or the law of local conservation of electric charge must be satisfied at all times

∇ · J = −∂ρv

∂t
. (1.106)

This law states that the time rate of change of electric charge ρv is a source of electric current
density field J . This means that the current density is continuous and charge can be neither created
nor destroyed. It can only be transferred. The continuity equation is a point form of KCL known
in circuit theory. The script letters are used to designate instantaneous field quantities, which are
functions of position and time, for example, E(x , y , z , t). Maxwell’s equations are the cornerstone of
electrodynamics. A time-varying magnetic field is always accompanied by an electric field, and a
time-varying electric field is always accompanied by a magnetic field. For example, a radio antenna
generates radiofrequency (RF) waves that consist of both the electric and magnetic fields. The diver-
gence of B equal to zero indicates that magnetic charges do not exist in the nature. It is a magnetic
flux continuity law. Maxwell’s equations also indicate that conductive and/or displacement current is
a source of magnetic field, and charge is a source of electric field.

The divergence of the electric field intensity E at a point is the net outward electric field flow per
unit volume over a closed incremental surface S and is defined as

∇ · E = lim
�V →0

∮
S E · dS

�V
= ρv

ε
. (1.107)

where S is the closed surface, which encloses the volume V , and ε is the permittivity of a medium.
The closed surface integral

∮
S E · dS is the flux of vector E outflowing from the volume V . In the

limit, the volume V shrinks to a point. Electric fields E and D = εE are source fields or sink fields
because the divergence of these fields is not equal to zero (∇ · E 
= 0 and ∇ · D 
= 0).

In general, a curl-free vector field is called irrotational, or a conservative, or a potential field.
Electrostatic fields D and E are irrotational because their curl is equal to zero. If a scalar source
(in the form of a charge) of the field E is present at a point P , then divergence of E is nonzero.
Therefore, the vector field whose divergence is nonzero is called a source field. If ∇ · E > 0, the field
is a source field. If ∇ · E < 0, the field is a sink field. If ∇ · E = 0, the field is sourceless. A positive
charge Q is a source of an electric field E, and a negative charge Q is a sink of an electric field E.

The curl of the magnetic field density at a point is the circulation of B per unit area and is defined as

∇ × B =
[

lim
�S→0

∮
C B · d l

�S

]
max

= �I

�S
, (1.108)

where the area �S of the contour C is oriented so that the circulation is maximum. In the limit as
�S shrinks to zero around a point P , the curl of B is obtained. Magnetic fields H and B = μH are
rotational and sourceless. They are rotational because their curl is not equal to zero (∇ × B 
= 0).
They are sourceless because their divergence is equal to zero (∇ · H = 0). It is worth noting that

∇ × H = J + ∂D
∂t

. (1.109)

The curl of H has a nonzero value whenever current is present.
The generalized Ampère’s law given by (1.102) states that both conductive and displacement

currents induce magnetic field. In other words, a time-varying electric field will give rise to a magnetic
field, even in the absence of a conduction (drift) current flow. Maxwell added the displacement current
to the Ampère’s equation, making (1.109) general.

Gauss’s law given by (1.104) states that the net outflow of the electric flux density at any point in
space is equal to the charge density at that point. The electric flux starts from a charge and ends on
a charge. This means that the electric field is a divergent field or source field. A positive divergence
at a point indicates the presence of a positive charge at that point (i.e., a positive charge is a flux
source). Conversely, the negative divergence at a point indicated the presence of a negative charge
at that point (i.e., a negative charge is a flux sink).
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Equation (1.105) states that the magnetic flux lines always form closed paths, that is, they close on
themselves. This means that the magnetic field is a divergenceless field. This law implies that there
is no isolated magnetic charges. The magnetic field is sourceless.

If J = 0, Maxwell’s equation in (1.102) becomes

∇ × H = ∂D
∂t

= εrε0
∂E
∂t

. (1.110)

This equation states that a time-varying electric field induces a changing magnetic field without electric
conduction and convection currents, and a changing magnetic field induces a changing electric field.
There would be no radiation and propagation of EM waves without the displacement current. In
particular, there would be no wireless communications.

Maxwell’s equations in integral (or macroscopic) forms are as follows:

V = EMF =
∮

C
E · d l = −

∫ ∫
S

∂B
∂t

· dS = −dφ

dt
(Faraday’s law), (1.111)

and ∮
C

H · d l =
∫ ∫

S
J · dS +

∫ ∫
S

∂D
∂t

· dS = ienc + dφE

dt
(Ampere–Maxwell’s law), (1.112)

©
∫∫

S
D · dS =

∫ ∫ ∫
V
ρvdV = Qenc (Gauss’s electric law), (1.113)

©
∫∫

S
B · dS = 0 (Gauss’s magnetic law). (1.114)

The current density J may consist of a conduction (or drift) current Jc = σE caused by the presence
of free electrons and an electric field E in a conducting medium, the diffusion current density Jdiff
caused by the gradient of charge carrier concentration, as well as a convection current density Jconv =
ρvv due to the motion of free-charge distribution (i.e., the movement of electrically charged medium).

Faraday’s law of induction given by (1.111) describes the creation of an electric field by a changing
magnetic flux. The EMF, which is equal to the line integral of the electric field E around any closed
path C , is equal to the rate of change of magnetic flux through any surface area S bounded by that
path. As a result, for instance, the current is induced in a conducting loop placed in a time-varying
magnetic field.

The generalized Ampère’s circuital law given by (1.112) describes how a magnetic field can be
produced by both an electric current and/or a time-varying electric flux φE . It states that the line
integral of magnetic field H around any closed path is the sum of the net current through that path
and the rate of change of electric flux through any surface bounded by that path.

Gauss’s law in the integral form for electric field given by (1.113) states that the total electric flux
through any closed surface S is equal to the net charge Q inside that surface.

Gauss’s law in the integral form for magnetic field given by (1.114) states that the net magnetic
flux through any closed surface is always zero. This means that the number of magnetic field lines that
enter a closed volume is equal to the number of magnetic field lines that leave that volume. Magnetic
field lines are continuous with no starting or end points. There are no magnetic sources or sinks. A
magnetic monopole does not exist. Equation (1.114) also means that there are no magnetic charges.

The phasor technique is a useful mathematical tool for solving problems in linear systems that
involve periodic sinusoidal or periodic nonsinusoidal waveforms in steady state, where the amplitude
Am frequency ω and phase φ are time-invariant. In this case, complex algebra can be used as a
mathematical tool. Periodic nonsinusoidal waveforms, such as a rectangular wave, can be expanded
into a Fourier series of sinusoidal components, which is a superposition of harmonic sinusoids. If the
excitation is a sinusoidal function of time, the steady-state waveforms described in the time domain
can be represented by phasors (complex amplitudes), the trigonometric equations are replaced by
algebraic equations, and linear integro-differential equations become linear algebraic equations with
no sinusoidal functions, which are easy to solve. Differentiation in the time domain is equivalent to
multiplication by jω in the phasor domain, and integration in the time domain is equivalent to division
by jω in the phasor domain. The solutions in the phasor domain can be converted back into the time
domain. The sinusoidal current i (t) = Im cos(ωt + φ) can be represented as i (t) = Re{Im ej (ωt+φ)} =
Re{Im ejφejωt } = Re{Im ejωt }, where the complex amplitude Im = Im ejφ is called a phasor.
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The electric field intensity for one-dimensional case in the time domain is given by

E(x , t) = Em(0)e− x
δ cos

(
ωt − x

δ
+ φo

)
= Re{E(x)ejωt }, (1.115)

where δ is the skin depth of a conductor and φo is the phase of the electric field. The phasor of the
sinusoidal (harmonic) electric field intensity is

E(x) = Em(0)e
− x

δw e−j x
δ ejφo . (1.116)

Similarly, the sinusoidal magnetic field intensity is

H(x , t) = Hm(0)e− x
δ cos

(
ωt − x

δ
+ θo

)
= Re{H(x)ejωt }, (1.117)

where θo is the phase of the magnetic field and the phasor of the magnetic field intensity is

H(x) = Hm(0)e− x
δ e−j x

δ ejθo . (1.118)

Substituting the electric and magnetic field intensities into Maxwell’s equation in the time domain,
we obtain

∇ × Re{E(x)ejωt } = − ∂

∂t
Re{μH(x)ejωt }, (1.119)

which becomes
Re{∇ × E(x)ejωt } = Re{−jωμH(x)ejωt }. (1.120)

Thus, ∂
∂t in Maxwell’s equations in the time domain can be replaced by jω to obtain Maxwell’s

equations for sinusoidal field waveforms in phasor forms

∇ × E = −jωμH = −jωB, (1.121)

∇ × H = J + jωD = J + jωεE = σE + jωεE = (σ + jωε)E, (1.122)

∇ · D = ρv , (1.123)

and
∇ · B = 0. (1.124)

The constitutive equations or material equations for linear and isotropic materials are

B = μH (1.125)

D = εE (1.126)

and
J = σE, (1.127)

where D is the electric flux density.
In general, the complex propagation constant is given by

γ =
√

jωμ(σ + jωε) = ω

√
εμ

2

[√
1 +

( σ

ωε

)2 + 1

] 1
2

+ jω

√
εμ

2

[√
1 +

( σ

ωε

)2 − 1

] 1
2

= α + jβ = 1

δ
+ jβ, (1.128)

where α = Re{γ } is the attenuation constant and β = Im{γ } is the phase constant. The skin depth is

δ = 1

α
= 1

ω
√

εμ

2

[√
1 + ( σ

ωε

)2 + 1

] 1
2

. (1.129)

Figure 1.11 shows a plot of skin depth δ as a function of frequency f for copper. The plot is made
using MATLAB®. The quantities ρ = 1/σ , μ, and ε describe the electrical properties of materials.
The quantities ω, ρ, μ, and ε determine whether a material behaves more like a conductor or more
like a dielectric.
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Figure 1.11 Skin depth δ as a function of frequency f

For good conductors, σ � ωε, that is, σ/(ωε) � 1 or ωερ � 1, the complex propagation constant
simplifies to the form

γ ≈
√

ωμσ

2
+ j

√
ωμσ

2
= (1 + j )

√
ωμσ

2
=
√

jωμσ = α + jβ, (1.130)

where (1 + j )/
√

2 = e45◦ = √
j . The skin depth for good conductors is

δ =
√

2

ωμσ
=
√

2ρ

ωμ
= 1√

πμσ f
=
√

ρ

πμf
. (1.131)

The wavelength for good conductors is

λ = 2π

β
= 2
√

π

μσ f
. (1.132)

The propagation speed or phase velocity for good conductors is

vp = λf = ω

β
=
√

2ω

μσ
. (1.133)

Under the condition of ωερ � 1, the system is magnetoquasistatic. This is the case if and only if
the left-hand side of the inequality is no more than two orders of magnitude less than unity, that is,
ωερ � 1/100.

For copper windings, ρCu = 17.24 n�m at T = 20 ◦C and ε = ε0 = 10−9/(36π) = 8.854 × 10−12

F/m, the maximum frequency for magnetoquasistatic operation is

fmax = 1

2π × 100 × ε0ρCu
= 36π

2π × 100 × 10−9 × 17.24 × 10−9
= 10.44 × 1015

= 10.44 PHz. (1.134)

For σ/(εω) � 1, the conductor becomes a dielectric. The skin depth is given by

δ = 1

ω
√

με
. (1.135)

A summary of Maxwell’s equations is given in Appendix B.
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1.5.8 Maxwell’s Equations for Good Conductors

In general, Maxwell’s equation in phasor form, which is the differential form of Ampère’s equation,
together with Ohm’s law (J = σE) is given by

∇ × H = J + jωD = σE + jωεE = (σ + jωε)E, (1.136)

where σ is the conductivity of a medium. For good conductors, the displacement current is negligible
in comparison with conduction (drift) current. Since conduction current density J = σE dominates the
displacement current density Jd = jωD = jωεE, that is, J � JD, the following inequality is satisfied

σ � ωε, (1.137)

which becomes σ/(ωε) � 1 or ωρε � 1. For copper, J = JD when σ = ωε0 at f = 1/(2πε0ρ) =
1.00441 × 1018 = 1.0441 EHz. Also, J = 100JD when σ ≥ 100ωε for frequencies f ≤ 1016 Hz =
10 PHz.

Since JD = jωD = 0, Maxwell’s equation for good conductors (which is Ampère’s law) becomes

∇ ×H ≈ J = σE. (1.138)

It states that the maximum circulation of H per unit area as the area shrinks to zero (called the curl
of H) is equal to the current density J .

For sinusoidal waveforms, Maxwell’s equation in phasor form for good conductors, which is the
differential (microscopic) form of Faraday’s law, is expressed as

∇ ×E = −jωB = −jωμH. (1.139)

Using Ohm’s law E = J/σ , we obtain

∇ × J
σ

= −jωμH (1.140)

producing another form of Maxwell’s equation

∇ × J = −jωμσH. (1.141)

Assuming that σ and μ are homogeneous, taking the curl on both sides of the above equation and
substituting into Maxwell’s equation,

∇ ×(∇ ×J) = −jωμσ∇ ×H = −jωμσJ. (1.142)

Expanding the left-hand side,
∇(∇ · J) − ∇2J = −jωμσJ, (1.143)

where the law of conservation of charge states that charge can be neither created nor destroyed and its
point (microscopic) form is expressed by ∇ · J = 0. It is a point form of Kirchhoff’s current law. The
conduction (or drift) current density J in good conductors must satisfy the following second-order
partial differential equation

∇2J = jωμσJ = γ 2J, (1.144)

where γ 2 = jωμσ .
For good conductors,

∇ · (∇ × H) = (σ + jωε)(∇ · E) = 0. (1.145)

Hence, Maxwell’s equation for good conductors becomes

∇ · D = ρv = 0. (1.146)

1.5.9 Poynting’s Vector

Poynting8 developed the mathematical description of the magnitude and the direction of EM energy
density transmission. The instantaneous Poynting vector (1883) at a given point describes the EM

8John Henry Poynting (1852–1914) was an English physicist (Maxwell’s student), who described the magnitude
and the direction of EM energy flow.
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power flux surface density of EM wave

S = E × H (W/m2). (1.147)

The Poynting vector represents the density and the direction of power flow of electromagnetic fields at
any point in space, that is, it is the rate at which energy flows through a unit surface area perpendicular
to the direction of wave propagation. The direction of vector S is normal to both E and H. The cross
product E × H is pointing in the direction of power flow, that is, in the direction of wave propagation.
The vector S represents an instantaneous surface power density. Since the unit of E is V/m and the
unit of H is A/m, the unit of S is (V/m) × (A/m) = VA/m2 = W/m2.

For time-harmonic fields, the complex Poynting vector is

Sc = E × H∗ (W/m2). (1.148)

The time-average power density, defined as the power density averaged over one period of the
sinusoidal excitation, is given by the time-average Poynting vector

Sav = 1

2
Re{E × H∗} (W/m2). (1.149)

The amount of time-average power passing through a surface S is

Pav =
∫ ∫

S
Sav · dS =

∫ ∫
S

Sav · ndA = 1

2
Re

{∮
S
(E × H) · dS

}
(W). (1.150)

where dS = an dA, an is the unity vector normal to surface S , and dA is the differential surface. The
surface integral of Sav describes the total power generated or dissipated inside the enclosed surface S .

For a linear, isotropic, and time-invariant medium of volume V enclosed in a closed surface
S , the Poynting theorem relates the following energies: (i) the delivered energy,(ii) the dissipated
energy, (iii) the magnetic stored energy, and (iv) the electric stored energy. This theorem describes
the principle of conservation of energy. The integral form of the Poynting theorem is given by∮

S
(E × H) · dS = −

∫ ∫ ∫
V

J · EdV − ∂

∂t

∫ ∫ ∫
V

(
1

2
B · H + 1

2
D · E

)
dV

= −
∫ ∫ ∫

V
J · EdV − ∂

∂t

∫ ∫ ∫
V

(
1

2
μH 2 + 1

2
εE 2

)
dV . (1.151)

For sinusoidal field waveforms,∮
S
(E × H∗) · dS = −

∫ ∫ ∫
V

[E · J∗ + jω(H∗ · B + E∗ · D)]dV

= −1

2

∫ ∫ ∫
V
ρ|J |2dV − jω

∫ ∫ ∫
V

(
1

2
μH 2 + 1

2
εE 2

)
dV

= −
∫ ∫ ∫

V
pD dV − ∂

d∂

∫ ∫ ∫
V
(wm + we)dV , (1.152)

where the asterisk * in the phasor superscript indicates a complex conjugate quantity, pD = 1
2 ρ|J |2

is the ohmic power loss density (Joule’s law), wm = 1
2 μ|H |2 is the magnetic energy density stored in

the magnetic field, and we = 1
2 ε|E |2 is the electric energy density stored in the electric field. The first

term on the right-hand side of (1.152) represents the ohmic power dissipated as heat in the volume
V (Joule’s law) as a result of the flow of conduction current density J = σE due to the presence of
the electric field E (Ohm’s law). This power exits the volume V through its surface S . The second
and third terms represent the time rate of change of the magnetic and electric energies stored in
the magnetic and electric fields, respectively. The left-hand side of (1.152) describes the total power
leaving the closed surface S . The Poynting theorem describes the principle of conservation of energy.
It states that the total power flow out of a closed surface S at any time instant is equal to the sum
of the ohmic power dissipated within the enclosed volume V and the rates of decrease of the stored
magnetic and electric energies. If there are sources inside the volume V , the dot product J · E has
the minus sign and represents the power density added to the volume V by these sources.
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For steady state, the complex power flowing into a volume V surrounded by a closed surface S is
given by

P = 1

2

∮
S
(E × H∗) · dS = PD + 2jω(Wm − We) (W), (1.153)

where the time-average real power dissipated in the volume V is given by Joule’s law as

PD = 1

2

∫ ∫ ∫
V

E · J∗dV = 1

2

∫ ∫ ∫
V
ρ|J|2dV = 1

2

∫ ∫ ∫
V
σ |E|2dV . (1.154)

If Wm > Wc , the device inside the volume V is inductive. If Wc > Wc , the device inside the volume V
is capacitive. If Wm = Wc , the device inside the volume V operates at self-resonant frequency (SRF).

For harmonic fields, the instantaneous magnetic energy density in an isotropic medium is

wm(t) = 1

2
Re{Bm ejωt } · Re{Hm ejωt } = 1

2
Bm Hm cos2ωt = Bm

2μ
cos2ωt = 1

2
μH 2

m cos2ωt . (1.155)

Hence, the time-average magnetic energy density is

wm(av) = 1

2
Re{H · B∗} = 1

4
Hm Bm = 1

4
μH 2

m = B2
m

4μ
. (1.156)

1.5.10 Joule’s Law

Joule’s law (1841) states that the rate of heat dissipation in a conductor is proportional to the square of
the current through it and the conductor resistance. The power dissipated in a conductor is P = RI 2

and the energy dissipated in a conductor during time interval �t is W = P�t . This law can be
extended to distributed systems.

Let us consider the power dissipated in a conductor caused by the movement of electrons forced by
electric field E. The charge density of free electrons is ρv . The electron charge in a small conductor
volume �V is given by

q = ρv�V . (1.157)

The electric force exerted on the charge q by the electric field E is

F = qE = Eρv�V . (1.158)

The incremental amount of energy (or work) �W done by the electric force F in moving the charge
q by an incremental distance �l is

�W = F · �l = qE · �l = E · �lρv�V . (1.159)

The power used to perform the work �W in time interval �t is given by

�P = �W

�t
= F · �l

�t
= qF · vd = E · (ρvvd )�V = E · J�V = E · E

ρ
�V = ρJ · J�V , (1.160)

where vd = �l/�t is the electron drift velocity. The power loss density describing the time rate at
which energy is converted into heat per unit volume of a conductor is given by

pD = �P

�V
= �W /�t

�V
= E · J = E · E

ρ
= ρJ · J (W/m3). (1.161)

The power loss in the conductor converted into heat is

P =
∫ ∫ ∫

V
pD dV =

∫ ∫ ∫
V

E · JdV =
∫ ∫ ∫

V

E · E
ρ

dV =
∫ ∫ ∫

V
ρJ · JdV (W). (1.162)

For sinusoidal field waveforms, using Ohm’s law, the power dissipated per unit volume is given
by the point Joule’s law

pD = J · E∗ = ρJ · J∗ = ρ|J |2 = E · E∗

ρ
= |E |2

ρ
. (1.163)
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The power dissipated in a conductor of volume V and resistivity ρ as thermal energy (i.e., heat) is
given by the integral form of Joule’s law

PD =
∫ ∫ ∫

V
pD dV =

∫ ∫ ∫
V

J · E∗dV =
∫ ∫ ∫

V
ρJ · J∗dV =

∫ ∫ ∫
V
ρ|J |2dV . (1.164)

For a linear conductor carrying a multiple-harmonic inductor current waveform, the current density
and electric fields can be expanded into Fourier series and the power loss density may be expressed by

pD =
∞∑

n=1

Jn · E∗
n =

∞∑
n=1

ρJn · J∗
n =

∞∑
n=1

ρ|Jn |2 =
∞∑

n=1

En · E∗
n

ρ
=

∞∑
n=1

|En |2
ρ

(1.165)

and the total power loss is

PD =
∞∑

n=1

∫ ∫ ∫
V

pDn dV =
∞∑

n=1

∫ ∫ ∫
V

Jn · E∗
n dV =

∞∑
n=1

∫ ∫ ∫
V
ρJn · J∗

n dV

=
∞∑

n=1

∫ ∫ ∫
V
ρ|Jn |2dV =

∞∑
n=1

∫ ∫ ∫
V

En · E∗
n

ρ
=

∞∑
n=1

∫ ∫ ∫
V

|En |2
ρ

, (1.166)

where Jn and En are the amplitudes of current density and electric field intensity at nth harmonic,
respectively.

The current density in a conductor in the time domain in steady state for one-dimensional case is
described by

Re{J(x)ejωt } = J (x , t) = Jm(0)e
− x

δw cos

(
ωt − x

δw

+ φo

)
, (1.167)

where δw is the skin depth and φo is the initial phase. It is assumed that the current amplitude varies
only in the x -direction. From Ohm’s law,

E (x , t) = ρJ (x , t) = ρJm(0)e− x
δw cos

(
ωt − x

δw

+ φo

)
, (1.168)

where Em(0) = ρJm(0). Assuming that ρ is a real number, the phase shift between J (x , t) and E (x , t)
is zero. The instantaneous power density at a point is given by

p(x , t) = J (x , t)E (x , t) = Jm(0)Em(0)e− 2x
δw cos2

(
ωt − x

δw

+ φo

)

= ρJ 2
m(0)e− 2x

δw cos2
(

ωt − x

δw

+ φo

)

= Jm(0)Em(0)

2
e− 2x

δw + Jm (0)Em(0)

2
e− 2x

δw cos 2

(
ωt − x

δw

+ φo

)

= ρJ 2
m(0)

2
e− 2x

δw + ρJ 2
m(0)

2
e− 2x

δw cos 2

(
ωt − x

δw

+ φo

)

= pD (x) + pD (x) cos 2

(
ωt − x

δw

+ φo

)
, (1.169)

where cos2 z = 1/2 + 1/2 cos 2z . The first term in the above equation represents the time-average real
power density dissipated in a conductor at a point, and the second term represents the AC component
of the instantaneous real power density dissipated in a conductor as heat at a point. The time-average
real power density dissipated in a conductor at a point is

pD (x) = 1

T

∫ T

0
p(x , t)dt = 1

2π

∫ 2π

0
p(x , ωt)d(ωt) = Jm (0)Em(0)

2
e− 2x

δw = ρJ 2
m(0)

2
e− 2x

δw , (1.170)

where T is the period. The total time-average power dissipated as heat in a conductor of volume
V is

PD =
∫ ∫ ∫

V
pD (x)dV = 1

2

∫ ∫ ∫
V

Jm(0)Em(0)e− 2x
δw dxdydz



28 HIGH-FREQUENCY MAGNETIC COMPONENTS

= 1

2

∫ ∫ ∫
V
ρJ 2

m (0)e− 2x
δw dxdydz . (1.171)

When EM fields are sinusoidal, phasors are described in space as follows: H(r) = H(x , y , z ),
E(r) = E(x , y , z ), and J(r) = J(x , y , z ). The instantaneous point (local) power density is

p(r, t) = Re{J(r, t} · Re{E(r, t} = 1

4
[J(r, t) + J∗(r, t)][E(r, t) + E∗(r, t)]

= 1

4
[J(r) · E∗(r) + J(r) · E(r)e2jωt + J∗(r) · E(r) + J∗(r) · E∗(r)e−2jωt ]

= 1

2
Re[J(r) · E∗(r) + J(r) · E(r)e2jωt ]. (1.172)

The time-average real power density dissipated in a conductor at a point r is

pD (r) = 1

T

∫ T

0
p(r, t)dt = 1

2
Re[J(r) · E∗(r)]. (1.173)

The time-average power dissipated as heat in the conductor of volume V is given by

PD =
∫ ∫ ∫

V
pD (r)dV = 1

2
Re
∫ ∫ ∫

V
J(r) · E∗(r)dV

= 1

2

∫ ∫ ∫
V
ρJ(r) · J∗(r)dV = 1

2

∫ ∫ ∫
V
ρ|J(r)|2dV . (1.174)

The current density in phasor form for one-dimensional case is given by

J(x) = Jm (0)e− x
δw e−j x

δw ejφo = Jm (x)ej (φo− x
δw

), (1.175)

where the amplitude is

Jm(x) = Jm(0)e− x
δw . (1.176)

The time-average point power density for sinusoidal waveforms is given by point Joule’s law in
phasor form

PD (x) = 1

2
Re(J · E∗) = 1

2
ρJ · J∗ = 1

2
ρ|J (x)|2 = 1

2
ρJ 2

m(0)e− 2x
δw . (1.177)

For periodic waveforms, the time-average real power dissipated in a conductor of volume V and
resistivity ρ due to conversion of EM energy to thermal energy (heat) is given by Joule’s law in
phasor form

PD = 1

2
Re
∫ ∫ ∫

V
J · E∗dV = 1

2

∫ ∫ ∫
V
ρJ · J∗dV = 1

2

∫ ∫ ∫
V
ρ|J |2dV , (1.178)

where J and E are the amplitudes of the current density and the electric field intensity, respectively.
The time-average power loss density Pv is defined as the total time-average power loss PD per
unit volume

Pv = PD

V
, (1.179)

where V is the volume carrying the current.
Since B = μH, the point (local) magnetic energy density for sinusoidal waveforms is given by

wm (x) = 1

2
B · H∗ = 1

2
μH · H∗ = 1

2
μ|H (x)|2. (1.180)

The maximum magnetic energy stored in inductor L is given by

Wm =
∫

ivdt =
∫

iL
di

dt
dt = L

∫ Im

0
idi = 1

2
LI 2

m = 1

2

N 2

R I 2
m = F2

m

2R

= 1

2

(
μN 2S

l

)(
Bl

μN

)2

= 1

2

∫ ∫ ∫
V
μ|H (x)|2dV , (1.181)
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where V is the volume of the interior of the inductor and v = Ldi/dt . The magnetic energy density
wm is defined as the magnetic energy Wm per unit volume

wm = Wm

V
. (1.182)

The time-average local magnetic energy density is given by

wm (x) = 1

2
B · H∗ = 1

2
μH · H∗ = 1

2
μ|H (x)|2 (J/m3). (1.183)

The total time-average magnetic energy is

Wm = 1

2

∫ ∫ ∫
V

B(x) · H∗(x)dV = 1

2

∫ ∫ ∫
V
μ|H (x)|2dV (J). (1.184)

The time-average magnetic energy is the average energy per unit time over a period of time and is

Wm = 1

4
L|I |2 = 1

4

∫ ∫ ∫
V

B(x) · H∗(x)dV = 1

4

∫ ∫ ∫
V
μ|H (x)|2dV (J). (1.185)

1.6 Eddy Currents

Eddy currents were discovered by Foucault in 1851. Therefore, they are also called Foucault’s currents.
Figure 1.12 illustrates the eddy current iE (t) of density Je(t) induced by a time-varying magnetic field
H (t). Eddy currents circulate in closed paths. In a conductor, the induced magnetic field H (t) may
be caused by the Conductor’s own AC current or by the AC current flowing in adjacent conductors.

In accordance with Faraday’s law, a time-varying magnetic field H (t) = B(t)/μ induces an electric
field E

∇ × E = −∂B
∂t

. (1.186)

According to Ohm’s law, the electric field induces an eddy current

Je = σE = E
ρ

. (1.187)

According to Ampère’s law, eddy currents induce a magnetic field H (t), as shown in Fig. 1.12.
These currents are similar to a current flowing in turns of a multilayer solenoid, and therefore pro-
duce a magnetic field. According to Lenz’s law, the induced magnetic field opposes the applied
magnetic field.

The magnetic field induces an EMF v(t) = dφ/dt = A(dB/dt) = Aμ(dH /dt) in a conducting
material of conductivity σ , which in turn produces eddy currents iE (t). The flow of eddy currents
causes power losses in winding conductors and magnetic cores.

The applied time-varying magnetic field Ha (t) induces the electric field E (t), which induces eddy
currents iE (t), and these currents generate a time-varying magnetic field H (t) that opposes the original

z

y

x

Conductor

H = Hm cos ωt 

Je

Figure 1.12 Eddy current
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applied magnetic field Ha (t), according to Lenz’s law. The direction of the induced eddy currents
iE (t) with respect to the induced magnetic field H (t) is determined by the RHR, as shown in Fig. 1.12.
The opposing magnetic flux can be found using Ampère’s law

∇ × H = Ja + Je , (1.188)

where Ja is the applied current density and Je is the eddy current density. When the applied current
Ja is zero and the magnetic field is generated by adjacent conductors, Ampère’s law becomes

∇ × H = Je . (1.189)

The eddy-current density in a conductor of conductivity σ = 1/ρ can be described by

Je = σE = E
ρ

(1.190)

For sinusoidal waveforms, the phasor of the eddy-current density is given by

Je = −jωσA, (1.191)

where A is the phasor of the magnetic vector potential. Eddy currents can be reduced using selecting
high-resistivity materials (such as ferrites) or using thin plates, called laminations. These currents
dissipate energy as heat in magnetic cores and winding conductors of inductors and transformers.

There are two effects associated with eddy currents: skin effect and proximity effect. The skin
effect current density Js is orthogonal to the proximity effect current density Jp . The winding power
loss due to eddy currents is

P = 1

2σ

∫ ∫ ∫
(Js J ∗

s + JpJ ∗
p )dV . (1.192)

Eddy currents are driven by a voltage induced in a conductor by the magnetic field. According to
Faraday’s law, the voltage induced in a conductor by the magnetic flux φ = AB = AμB is

v(t) = dφ

dt
= d(AB)

dt
= A

dB

dt
= Aμ

dH

dt
. (1.193)

Eddy currents flow in a plane perpendicular to the magnetic field density B. From Ohm’s law, the
rms value of the eddy current in a conductor of resistance R is

I = V

R
. (1.194)

The power loss caused by sinusoidal eddy currents in a conductor of resistance R is

P1 = V 2

R
= A2

R

(
dB

dt

)2

. (1.195)

Let us divide the conductor into two insulated parts so that the surface of one part A2 = A/2.
Hence, the resistance of one-half of the conductor is

R2 = ρl

A2
= 2ρl

A
= 2R. (1.196)

The voltage induced in a conductor by the magnetic flux φ = A2B is

V2 = dφ

dt
= d(A2B)

dt
= A2

dB

dt
= A

2

dB

dt
. (1.197)

The power loss caused by sinusoidal eddy currents in one-half of the conductor of resistance R2 is

P2(1) = V 2
2

R2
= 1

2R

A2

4

(
dB

dt

)2

= A2

8R

(
dB

dt

)2

. (1.198)

The power loss caused by sinusoidal eddy currents in both parts of the conductor is

P2 = 2P2(1) = A2

4R

(
dB

dt

)2

. (1.199)
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Let us divide the conductor into n parts so that An = A/n . Then, the power loss caused by sinusoidal
eddy currents in all n parts of the conductor is

Pn = nA2
n

Rn

(
dB

dt

)2

= n
(

A
n

)2
nR

(
dB

dt

)2

= A2

n2R

(
dB

dt

)2

= P1

n2
. (1.200)

Thus, the eddy-current power loss decreases by a factor of n2 when the area of the conductor
perpendicular to the magnetic flux is divided into n laminations, electrically insulated by the oxide.
Laminations should be parallel to the magnetic field density B. Laminated magnetic cores are used
to reduce eddy-current loss by reducing the magnitude of eddy currents.

Example 1.3

An infinitely long round solid straight wire of radius ro carries sinusoidal current i = Im cos ωt in
steady state at low frequencies (with no skin effect), as described in Example 1.1 and depicted in
Fig. 1.7. Determine the eddy-current power loss, equivalent resistance, and optimum wire diameter.

Solution: The waveform of the induced voltage (EMF) is

V (x , t) = dφ

dt
= −ωμ0Im

r3

2r2
o

sin ωt for 0 ≤ r ≤ ro . (1.201)

Hence, the amplitude of the induced voltage (EMF) inside the wire at low frequencies is

Vm(r) = ωφm(r) = ωμ0Bm(r) = ωμ0AHm(r) = ωμ0Im
r3

2r2
o

for 0 ≤ r ≤ ro . (1.202)

The cylindrical shell of radius r and thickness dr has a cross-sectional area Ash = lwdr and the length
of the current path li = 2πr . Hence, the resistance of the cylindrical shell is

Rdr (r) = ρwli
Ash

= 2πrρw

lwdr
. (1.203)

The time-average power loss in the cylinder is

dPe = V 2
m(r)

2Rdr
=
(

ωμ0Im
r3

2r2
o

)2
lwdr

4πrρw

= ω2μ2
0I 2

m lw
16πρwr4

o
r5dr for 0 ≤ r ≤ ro . (1.204)

The time-average eddy-current power loss inside the entire wire is

Pe =
∫ ro

0
dPe = μ2

0ω
2I 2

m lw
16πρwr4

o

∫ ro

0
r5dr = μ2

0ω
2I 2

m lwr2
o

96πρw

= μ2
0ω

2I 2
m lwd2

384πρw

, (1.205)

where d = 2ro . The eddy-current power loss in terms of the equivalent eddy-current power loss
resistance Re is

Pe = 1

2
ReI 2

m . (1.206)

Thus,
1

2
ReI 2

m = μ2
0ω

2I 2
m lwr2

o

96πρw

= μ2
0ω

2I 2
m lwd2

384πρw

. (1.207)

Hence, the equivalent eddy-current resistance is

Re = μ2
0ω

2lwr2
o

48πρw

= μ2
0ω

2lwd2

192πρw

. (1.208)

The low-frequency resistance is

RwDC = ρwlw
πr2

o
= 4ρwlw

πd2
. (1.209)
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The total resistance of the wire is

Rw = RwDC + Re = ρwlw
πr2

o
+ μ2

0ω
2lwr2

o

48πρw

= 4ρwlw
πd2

+ μ2
0ω

2lwd2

192πρw

= 4ρwlw
πd2

(
1 + μ2

0ω
2d4

768ρ2
w

)

= ρwlw
π

(
1

r2
o

+ π2μ2
0ω

2r2
o

48ρ2
w

)
= 4ρwlw

π

(
1

d2
+ μ2

0ω
2d2

768ρ2
w

)
= 4ρwlw

π

(
1

d2
+ d2

192δ4
w

)
. (1.210)

As the conductor diameter d is increased, the conductor DC resistance RDC increases and the eddy-
current resistance Re decreases. Therefore, there is an optimum conductor diameter at which the total
conductor resistance Rw takes on a minimum value. The derivative of the total wire resistance with
respect to its diameter d is

dRw

dd
= 4ρwlw

π

(
− 2

d3
+ μ2

0ω
2d

384ρ2
w

)
= 4ρwlw

π

(
− 2

d3
+ d

96δ4
w

)
= 0. (1.211)

Hence, the optimum conductor diameter is

dopt

δw

= 4√192 ≈ 3.722. (1.212)

The AC-to-DC resistance ratio is

FR = Rw

RwDC
= 1 + μ2

0ω
2d4

96πρ2
w

= 1 + d4

192δ4
w

. (1.213)

The AC-to-DC resistance ratio at d = dopt is

FRv = 1 + 1 = 2. (1.214)

The minimum total resistance of the conductor is

Rwmin = FRv RwDC = 2RwDC . (1.215)

1.7 Core Saturation

Many inductors are made up using magnetic cores. A magnetic core is a conductor of magnetic field
H . For an inductor with a magnetic core of cross-sectional area Ac and a saturation magnetic flux
density Bs , the magnetic flux at which the magnetic core begins to saturate is

φs = AcBs , (1.216)

resulting in the maximum value of the magnetic flux density

Bpk = φpk

Ac
= φDC (max) + φAC (max)

Ac
< Bs . (1.217)

The saturated magnetic flux density Bs = μ0Hs is nearly constant. Therefore, vL = N AcdB(t)/dt ≈ 0
and the inductor behaves almost like a short circuit. To avoid core saturation, one has to reduce the
maximum value of the magnetic flux φpk in the core or increase the core cross-sectional area Ac .
A nonuniform magnetic flux distribution in ferrite cores creates localized magnetic saturation and
hot spots.

The magnetic flux linkage at which the magnetic core begins to saturate is given by

λs = N φs = N AcBs = LIm(max). (1.218)

Thus,
Nmax AcBpk = LIm(max) (1.219)
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yielding the maximum number of turns

Nmax = LIm(max)

AcBmax
. (1.220)

According to (1.7), the magnetic field intensity H is proportional to F = Ni . Therefore, there is a
maximum amplitude of the inductor current Im(max) at which the core saturates. Figure 1.13 shows
plots of B as functions of H and i . The saturation flux density is

Bs = μHs = μrcμ0N Im(max)

lc
. (1.221)

To avoid core saturation, the ampere-turn limit is given by

Nmax Im(max) = Bs lc
μrcμ0

= Bs AcR = Bs lc
μrcμ0

. (1.222)

To avoid core saturation, one has to reduce the peak inductor current Im(max) or to reduce the number
of turns N to satisfy the condition for all operating conditions

μrcμ0N Im

lc
< Bs . (1.223)

μ0

H

μr μ0

Bs

Bs

−Bs

−Bs

B

Hs

(a)

iIm (max)

(b)

B

Figure 1.13 Magnetic flux density as functions of magnetic field intensity and inductor current. (a) Magnetic
flux density B as a function of magnetic field intensity H . (b) Magnetic flux density B as a function of inductor
current i at a fixed number of turns N
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From Faraday’s law, dλ = vL(t)dt . Hence, the general relationship between the inductor voltage
and the flux linkage is given by

λ(t) =
∫ t

0
vL(t)dt + λ(0) = 1

ω

∫ ωt

0
vL(ωt)d(ωt) + λ(0). (1.224)

For a transformer,

(N1i1 + N2i2 + . . .)max ≤ Bs AcR = Bs lc
μrcμ0

. (1.225)

It is important to avoid both local and global core saturation.

1.7.1 Core Saturation for Sinusoidal Inductor Voltage

Consider an inductor with a magnetic core of saturation flux density Bs . Figure 1.14 shows sinusoidal
waveforms of the inductor voltage vL and the magnetic flux linkage λ. The DC components of these
waveforms are assumed to be zero. The inductor voltage is given by

vL = VLm sin ωt . (1.226)

The magnetic flux linkage is

λ(t) = 1

ω

∫ ωt

0
vL(ωt)d(ωt) + λ(0) = 1

ω

∫ ωt

0
VLm sin ωtd(ωt) + λ(0)

= VLm

ω
(1 − cos ωt) + λ(0) = VLm

ω
− VLm

ω
cos ωt + λ(0). (1.227)

Thus, the peak-to-peak value of the magnetic flux linkage is

�λ = λ(π) − λ(0) = 2VLm

ω
= N φ = N AcBm < N AcBs . (1.228)

The initial value of the flux linkage is

λ(0) = −�λ

2
= −VLm

ω
. (1.229)

The steady-state waveform of the magnetic flux linkage is given by

λ(t) = −VLm

ω
cos ωt = −λm cos ωt , (1.230)

where the amplitude of the flux linkage is

λm = VLm

ω
. (1.231)

ωt

0

vL

λ

0

VLm

2ππ

π 2π ωt
−λm

λm

(a)

(b)

Figure 1.14 Waveforms of the square-wave inductor voltage and the corresponding magnetic flux linkage for
sinusoidal inductor voltage. (a) Waveform of the inductor voltage vL. (b) Waveform of the magnetic flux linkage λ
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Thus, the amplitude of the magnetic flux linkage λm increases as the frequency f decreases. The
minimum frequency fmin occurs when the amplitude of the magnetic flux linkage λm reaches the
saturation value λs

λm = λs = VLm(max)

ωmin
. (1.232)

The lowest frequency at which the inductor can operate without saturating the core is given by

fmin = VLm(max)

2πλs
= VLm(max)

2πN AcBs
=

√
2VLrms(max)

2πN AcBs
= VLrms(max)

Kf N AcBs
= VLrms(max)

4.44N AcBs
, (1.233)

where the waveform factor for a sinusoidal inductor voltage is defined as the ratio of the rms value
to the amplitude of the sinusoidal inductor voltage

Kf = VLrms

VLm
= 2π√

2
= π

√
2 = 4.44. (1.234)

The minimum frequency fmin decreases, when N increases, Ac increases, Bs increases, and VLm(max)

decreases. As the temperature increases, Bs decreases. For ferrite cores, Bs may decrease by a factor
of 2 as T increases from room temperature to 100 ◦C.

Another method to derive the minimum frequency is as follows. Assume that the initial condition
is λ(0) = −λs . The magnetic flux linkage at core saturation is given by

λs = 1

ωmin

∫ π

0
vLd(ωt) + λ(0) = 1

ωmin

∫ π

0
VLm sin ωtd(ωt) − λs = 2VLm

ωmin
− λs , (1.235)

resulting in

λs = �λmax

2
= VLm(max)

ωmin
. (1.236)

Hence, the lowest frequency at which the inductor can operate without saturating the core is given by

fmin = VLm(max)

2πλs
= VLm(max)

2πN AcBs
. (1.237)

The maximum rms value of the sinusoidal voltage across an inductor is

VLrms(max) = ωN AcBs√
2

= 2π fN AcBs√
2

=
√

2π fN AcBs = Kf fN AcBs = 4.44fN AcBs . (1.238)

Example 1.4

A Philips 3F3 ferrite magnetic core material has the saturation flux density Bs = 0.32 T at temperature
T = 20 ◦C. The core is expected to operate up to T = 120 ◦C. The core cross-sectional area is Ac =
80 × 10−6 m2. The number of turns is N = 10. Find the maximum magnetic flux linkage and the
minimum operating frequency for a sinusoidal voltage waveform with amplitude VLm = 10 V.

Solution: The saturation flux density of the ferrite magnetic core material is Bs = 0.16 T at temper-
ature T = 120 ◦C. Hence, the saturation magnetic linkage is

λs = N φs = N AcBs = 10 × 80 × 10−6 × 0.16 = 128 × 10−6 V · s. (1.239)

The minimum frequency without core saturation is

fmin = VLm(max)

2πλs
= 10

2π × 128 × 10−6
= 12.434 kHz. (1.240)
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1.7.2 Core Saturation for Square-Wave Inductor Voltage

If the inductor voltage waveform is a square wave ±V , the magnetic flux linkage is a symmetrical
triangular wave, as shown in Fig. 1.15. For the first half of the cycle,

vL = V for 0 ≤ t ≤ T

2
(1.241)

and

λ(t) =
∫ t

0
vL(t)dt + λ(0) =

∫ t

0
Vdt + λ(0) = Vt + λ(0) for 0 ≤ t ≤ T

2
. (1.242)

The flux linkage at t = T/2 is

λ

(
T

2

)
= VT

2
+ λ(0). (1.243)

For the second half of the cycle,

vL = −V for
T

2
≤ t ≤ T (1.244)

and

λ(t) =
∫ t

T/2
vL(t)dt + λ

(
T

2

)
=
∫ t

T/2
(−V )dt + λ

(
T

2

)

= −V

(
t − T

2

)
+ λ

(
T

2

)
for

T

2
≤ t ≤ T . (1.245)

Hence, the peak-to-peak value of the magnetic flux linkage is

�λ = λ

(
T

2

)
− λ(0) = VT

2
+ λ(0) − λ(0) = VT

2
= V

2f
, (1.246)

−λm = λ(0) = −�λ

2
= −VT

4
= − V

4f
, (1.247)

and

λm = λ

(
T

2

)
= �λ

2
= VT

4
= V

4f
. (1.248)

tt

tTT
2

0

0

λ

−λm

−V

V

λm

vL

Figure 1.15 Waveforms of the square-wave inductor voltage and the corresponding magnetic flux linkage
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The steady-state waveform of the magnetic linkage is

λ(t) = Vt − V

4f
for 0 ≤ t ≤ T

2
(1.249)

and

λ(t) = −V

(
t − T

2

)
+ V

4f
for

T

2
≤ t ≤ T . (1.250)

The rms value of the square-wave inductor voltage is obtained as

Vrms =
√

1

T

∫ T

0
v2

Ldt =
√

1

T

∫ T

0
V 2dt = V . (1.251)

For the core saturation,

λs = �λm

2
= Vmax

4fmin
= N φs = N AcBs , (1.252)

where Vmax = VLrms(max) for the square-wave inductor voltage. The minimum frequency at which the
core can be operated without saturation is given by

fmin = Vmax

4λs
= Vmax

4N AcBs
= Vmax

Kf N AcBs
, (1.253)

where the waveform factor of the square-wave inductor voltage is

Kf = 4. (1.254)

The maximum peak voltage of the square-wave inductor voltage at the operating frequency f is

Vmax = Vrms = 4fN AcBs . (1.255)

In general, the minimum core cross-sectional area is given by

Ac = VLrms

Kf fmin N Bpk
= VLrms

Kf fmin N (BDC + Bm)
, (1.256)

where
Bpk = BDC + Bm ≤ Bs for T ≤ Tmax (1.257)

and Kf is the waveform coefficient of the inductor voltage. The peak value of the flux density Bpk
must be lower than Bs at the maximum operating temperature Tmax to avoid the core saturation. The
amplitude of the AC component of the flux density Bm must be limited to avoid core saturation or to
reduce core loss. As the amplitude of the AC component of the flux density Bm increases, the core
loss also increases.

The saturation flux density Bs limits the maximum amplitude of the magnetic field intensity

Hs = Hm(max) = Bs

μrcμ0
= N ILm(max)

lc
. (1.258)

The maximum amplitude of the current in the winding at which the core saturates is

ISAT = Im(max) = lcBs

μrcμ0N
. (1.259)

As the amplitude of the inductor current ILm increases, the amplitude of the magnetic field Hm also
increases. To avoid core saturation,

N ILm(max) <
Bs lc

μrcμ0
. (1.260)

When a core with an air gap is used, both amplitudes Hm and ILm can be increased to

Hm(max) = Bs

μreμ0
(1.261)

and

ISAT = ILm(max) = lcBs

N μreμ0
, (1.262)

where μre is the effective relative permeability of a gapped core.
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1.7.3 Core Saturation for Rectangular Wave Inductor Voltage

Consider the situation, where the inductor voltage waveform is a rectangular wave whose high level
is VH and low level is −VL, as depicted in Fig. 1.16. The magnetic flux linkage is an asymmetrical
triangular wave, as shown in Fig. 1.16. For the first part of the cycle,

vL = VH for 0 ≤ t ≤ DT (1.263)

and

λ(t) =
∫ t

0
vL(t)dt + λ(0) =

∫ t

0
VH dt + λ(0) = VH t + λ(0) for 0 ≤ t ≤ DT , (1.264)

where D is the duty cycle. The flux linkage at t = DT is given by

λ(DT ) = VH DT + λ(0). (1.265)

For the second part of the cycle,

vL = −VL for DT ≤ t ≤ T (1.266)

and

λ(t) =
∫ t

DT
vL(t)dt + λ(DT ) =

∫ t

DT
(−VL)dt + λ(DT )

= −VL(t − DT ) + λ(DT ) for DT ≤ t ≤ T . (1.267)

Hence, the peak-to-peak value of the magnetic flux linkage is

�λ = λ(DT ) − λ(0) = VH DT + λ(0) − λ(0) = VH DT = DVH

f
. (1.268)

The rms value of the inductor voltage is

VLrms =
√

1

T

∫ T

0
v2

Ldt =
√

1

T

(∫ DT

0
V 2

H dt +
∫ T

DT
V 2

L dt

)
=
√

DV 2
H + (1 − D)V 2

L . (1.269)

0
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−λL

−V−V

λ

−λs

λs
λH

vL

VH

DT T

DT T

t

t

Figure 1.16 Waveforms of the rectangular inductor voltage and the corresponding magnetic flux linkage
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Using the volt–second balance law, we obtain

VH DT = VL(1 − D)T , (1.270)

yielding
VL

VH
= D

1 − D
. (1.271)

Therefore,

VLrms = VH

√
D

1 − D
= VL

√
1 − D

D
. (1.272)

The flux linkage at the beginning of the core saturation is

λs = �λmax

2
= DVH

2fmin
= N φs = N AcBs . (1.273)

Hence, the minimum operating frequency is

fmin = DVH

2N AcBs
= VLrms

N AcBs

√
D(1 − D)

2
= VLrms

Kf N AcBs
, (1.274)

where the waveform coefficient is

Kf = 2√
D(1 − D)

. (1.275)

The minimum cross-sectional area is given by

Ac = VLrms

Kfmax f Bs
. (1.276)

Figure 1.17 shows a plot of Kf as a function of the duty cycle D . The minimum value of Kf occurs at
D = 0.5. Figure 1.18 depicts 1/Kf as a function of D . The core cross-sectional area is proportional
to 1/Kf . The minimum value of the core cross-sectional area occurs at D = 0.5.
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Figure 1.17 Waveform coefficient Kf as a function of duty cycle D
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Figure 1.18 Coefficient 1/Kf as a function of duty cycle D

1.8 Inductance

1.8.1 Definitions of Inductance

An inductor is a two-terminal passive device that is able to store magnetic field and magnetic energy
in this field. A coil is generally formed by winding a wire on a cylindrical former, called a bobbin.
Any conductor has an inductance. The inductance depends on (i) winding geometry, (ii) core and
bobbin geometry, (iii) permeability of the core material, and (iv) frequency. There are several methods
to determine the inductance.

Magnetic Flux Linkage Method
The inductance (or self-inductance) for linear inductors is defined as the ratio of the total magnetic
flux linkage λ to the time-varying (AC) current i producing the flux linkage

L = λ

i
. (1.277)

The inductance of a linear inductor is a proportionality constant in the expression λ = Li . An inductor
is linear if its magnetic field is placed in a linear medium and the geometry of an inductor does
not change.

The total inductance of an inductor is made up of two components: an external inductance Lext
and an internal inductance Lint

L = λext

i
+ λint

i
= Lext + Lint . (1.278)

The external inductance Lext = λext/i is due to the external magnetic energy stored in the mag-
netic field outside the conductor. This inductance is usually independent of frequency. The internal
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Figure 1.19 Magnetic flux linkage λ as a function of current i producing the flux linkage for
linear inductors

inductance Lint = λint/i is due to the magnetic energy stored in the internal magnetic field inside
the conductor. This inductance depends on the frequency because the magnetic field intensity H
distribution inside the conductor is a function of frequency due to skin effect. The internal inductance
usually decreases with frequency.

A single conductor carrying an AC current i is linked by its own magnetic flux. For linear inductors,
the flux linkage λ is proportional to the current i , resulting in λ = Li . The inductance L is the slope
of the λ-i characteristic, as illustrated in Fig. 1.19. This characteristic is analogous to the resistor
characteristic v = Ri or the capacitor characteristic Q = Cv . A circuit that is designed to have a
self-inductance is called an inductor. An inductor has a self-inductance of 1 H if a current of 1 A
produces a flux linkage of 1 V·s (or 1 Wb·turn).

A change in the current flowing through the inductor produces an induced EMF, called an electro-
motance, or voltage

v =
∮

C
E · d l = dλ

dt
= L

di

dt
. (1.279)

An inductor has a self-inductance of 1 H if the change in the inductor current at a rate of 1 A/s
produces a voltage difference between its terminals of 1 V. The inductance L is a function of the
number of turns N , core permeability μrc , core geometry, and frequency f .

The inductance can be defined as

L = λ

i
= N

i

∫ ∫
S

B · dS. (1.280)

The magnetic field produced by a current-carrying conductor links itself. The associated inductance
is called a self-inductance. In some cases, the magnetic flux links only a part of the current and the
inductance is defined as

L = 1

i

∫ ∫
S

ienc

i
dφ. (1.281)

The voltage across the inductance is

vL = dλ

dt
= N

dφ

dt
= N

dφ

diL

diL
dt

= L
diL
dt

. (1.282)

The self-inductance L relates the voltage induced in an inductor vL to the time-varying current iL
flowing through the same inductor.

Reluctance Method
The inductance of an inductor can be determined using the core reluctance R or the core permeance P

L = λ

i
= N φ

i
= N AcB

i
= N AcμH

i
= N AcμNi

lc i
= Acμ

lc
N 2

= N 2

R = PN 2 = μrcμ0AcN 2

lc
. (1.283)

If N = 1, L = P = 1/R.
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Biot–Savart’s Law Method
Using (1.101), the total magnetic field density B induced by a current I is obtained

B = μH = I

4π

∫
l

d l × aR

R2
. (1.284)

The magnetic flux inside the core with a cross-sectional area Ac is

φ = AcB = I Ac

4π

∫
l

d l × aR

R2
. (1.285)

The magnetic flux linkage is

λ = N φ = N AcB = I AcN

4π

∫
l

d l × aR

R2
. (1.286)

Hence, the inductance is

L = λ

I
= AcN

4π

∫
l

d l × aR

R2
. (1.287)

Magnetic Energy Method
The instantaneous magnetic energy stored in a magnetic device is

Wm = 1

2
LI 2

m = 1

2

∫ ∫ ∫
V
(B · H∗)dV , (1.288)

yielding the inductance

L = 2Wm

I 2
m

= 1

I 2
m

∫ ∫ ∫
V
(B · H∗)dV , (1.289)

where Im is the amplitude of the current flowing in the closed path, and Wm is the energy stored in
the magnetic field produced by the current flowing through the inductor

Wm = μ

2

∫ ∫ ∫
V

H 2dV = 1

2μ

∫ ∫ ∫
V

B2dV . (1.290)

For a linear inductor, B = μH and

Wm = 1

2
LI 2

m = 1

2

∫ ∫ ∫
V
μH 2dV = 1

2μ

∫ ∫ ∫
V

B2dV , (1.291)

resulting in

L = 2Wm

I 2
m

= 1

I 2
m

∫ ∫ ∫
V
μH 2dV = 1

μI 2
m

∫ ∫ ∫
V

B2dV . (1.292)

The magnetic energy method to determine the inductance is impractical in many situations because
of the lack of finite volume over which to integrate the magnetic field.

Example 1.5

Internal Self-Inductance of Round Conductor Determine the internal self-inductance of a round solid
conductor of radius ro and length l at low frequencies.

Solution: The cylindrical coordinates (r , ϕ, z ) will be used to solve this problem. Assume that a
sinusoidal current i = Im sin ωt flows through the conductor. From Example 1.1, the magnetic field
intensity inside the conductor with the current amplitude Im at low frequencies is given by

Hm (r) = Im

2πr2
o

r for 0 ≤ r ≤ ro (1.293)
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and the magnetic flux density at low frequencies is

Bm(r) = μHm (r) = μrμ0Im

2πr2
o

r for 0 ≤ r ≤ ro . (1.294)

Note that dy = r tan(dϕ) ≈ rdϕ and dV = (dr)(dy)(dz ) = (dr)(rdϕ)(dz ) = rdrdϕdz . The internal
self-inductance of round solid wire is

Lint = 1

I 2
m

∫ ∫ ∫
V

H · BdV = 1

I 2
m

∫ ∫ ∫
V
μHm (r)2dV = 1

I 2
m

∫ ∫ ∫
V

μI 2
m r2

(2πro)2
dV

= μ

(2πr2
o )2

∫ l

0

∫ 2π

0

∫ ro

0
r2rdrdϕdz = μ

(2πr2
o )2

∫ l

0
dz
∫ 2π

0
dϕ

∫ ro

0
r3dr = μl

8π
. (1.295)

For copper conductors, Lint/l = μ0/(8π) = 4π × 10−7/(8π) = 10−7/2 = 50 nH/m = 0.5 nH/cm. At
high frequencies, the current density is not uniform, the magnetic field density does not increase
linearly inside the conductor and is altered, the energy stored in the wire decreases, and the internal
inductance decreases with frequency due to skin effect, as explained in Chapter 3.

The amplitude of the magnetic field intensity outside the conductor is

Hm (r) = Im

2πr
for r ≥ ro . (1.296)

The external inductance is

Lext = 1

I 2
m

∫ ∫ ∫
V
μH 2

m dV = 1

I 2
m

∫ ∫ ∫
V

μI 2
m

4π2r2
dV = μ

4π2

∫ l

0
dz
∫ 2π

0

∫ r1

rO

dr

r

= μl

2π
(ln r1 − ln ro) = μl

2π
ln

(
r1

ro

)
. (1.297)

As r1 → ∞, Lext → ∞.

Vector Magnetic Potential Method
The inductance can be determined using the vector magnetic potential A

L = 1

I 2
m

∫ ∫ ∫
V

A · JdV . (1.298)

The vector magnetic potential is given by

A (r) = μ

4π

∫ ∫ ∫
V

J(r)
R

dV . (1.299)

Hence, the inductance is given by

L = 1

I 2

∫ ∫ ∫
V

[
μ

4π

∫ ∫ ∫
V

J(r)
R

dV

]
· J(r)dV . (1.300)

Small-Signal Inductance
For nonlinear inductors, λ = f (i ) is a nonlinear function. The small-signal (or incremental) inductance
of a nonlinear inductor is defined as the ratio of the infinitesimal change in the flux linkage dλ to the
infinitesimal change in the current dl producing it at a given operating point Q(IDC , λDC )

L = dλ

di

∣∣∣∣
Q

. (1.301)

Inductors with ferrous cores are nonlinear because the permeability depends on the applied magnetic
field H . Figure 1.20 shows a plot of the magnetic flux linkage λ as a function of current i for nonlinear
inductors. At low values of current, the core is not saturated and the relative permeability is high,
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Figure 1.20 Magnetic flux linkage λ as a function of current i producing the flux linkage for nonlinear
inductors

resulting in a high slope of the λ-i curve and a large inductance L1. When the core saturates, the
relative permeability μrc becomes equal to 1, the slope of the λ-i curve decreases, and the inductance
decreases to a lower value L2.

Example 1.6

An inductor is wound on a CC core (see Fig. 2.9) whose cross-sectional area is 2 cm × 2 cm, lc =
16 cm, core window is 3 cm × 3 cm, and μrc = 100. The inductor has 10 turns. The core has no air
gap. There is a magnetic flux in the core φc and a leakage flux φl in the air around the winding.
Estimate the inductance using the reluctance method.

Solution: The total magnetic flux consists of the magnetic flux inside the core φc and the leakage
magnetic flux φl

φ = φc + φl . (1.302)

The total reluctance R is equal to the parallel combination of the core reluctance Rc and the leakage
reluctance Rl . Hence, the inductance is

L = λ

i
= N φ

i
= N (φc + φl )

i
= N 2

(
1

Rc
+ 1

Rl

)
= N 2

R = N 2
(

μrcμ0Ac

lc
+ μ0Al

ll

)

= μrcμ0AcN 2

lc

[
1 + 1

μrc

(
Al

Ac

)(
lc
ll

)]
= Lc

[
1 + 1

μrc

(
Al

Ac

)(
lc
ll

)]
. (1.303)

Let ll = lc/2 and Al = 4Ac . In this case, the inductance is given by

L = μrcμ0AcN 2

lc

[
1 + 1

μrc

(
Al

Ac

)(
lc
ll

)]

= 100 × 4π × 10−7 × 4 × 10−4 × 102

16 × 10−2

(
1 + 4 × 2

100

)
= 3.1416 × 10−6(1 + 0.08)

= 33.929 μH. (1.304)

The inductance is increased by 8% due to the leakage magnetic flux. As μrc increases, the leakage
flux effect on the inductance is reduced.
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1.8.2 Inductance of Solenoid

A solenoid is made up of insulated wire wound in the shape of a cylinder to obtain N turns. Each
turn acts like a magnetic dipole. A series connection of winding turns is used to increase the magnetic
flux density B . The magnetic field lines are parallel to the solenoid axis. The magnetic field outside
the solenoid is nearly zero. Neglecting the end effects, the amplitude of the magnetic flux density
inside a long solenoid is uniform and it is given by

Bm = μHm = μN Im

lc
. (1.305)

The amplitude of the magnetic flux inside the solenoid is

φm = AcBm = μN Im Ac

lc
= πμN r2Im

lc
. (1.306)

The amplitude of the flux linkage is

λm = N φm = μN 2Im Ac

lc
= πμrcμ0N 2r2Im

lc
(1.307)

where Ac = πr2 is the core cross-sectional area of a round core and r is the mean coil radius. A long,
tightly wound solenoid can be modeled by an equivalent current sheet that carries total current N Im .
The magnetic field for an infinitely long solenoid is uniform throughout the inside of the solenoid.
The inductance of a long solenoid (theoretically, almost infinitely long) with a core and without an
air gap in the core at low frequencies is

L∞ = λm

Im
= μrcμ0AcN 2

lc
= πμrcμ0r2N 2

lc
= N 2

lc/(μrcμ0Ac)
= N 2

R

= μrcμ0AcN 2

Np
= μrcμ0AcN

p
for lc � 2d , (1.308)

where lc = Np is the mean core length and p is the winding pitch, equal to the distance between the
centers of two adjacent conductors, μrc is the relative permeability of the core, and N is the total
number of turns. The inductance L is proportional to the core relative permeability μrc , the square of
the number of turns N 2, and the ratio of the core cross-sectional area to the MPL Ac/lc .

The inductance of intermediate length-to-radius ratio is lower than that of an infinitely long
round solenoid. As the inductor length increases, the magnetic field intensity H = Ni/lc decreases.
Therefore, the inductance and the magnetic energy density wm = 1

2 BH = 1
2 μH 2 also decrease. The

inductance and the magnetic energy density stored in the magnetic field are inversely proportional to
the length of the magnetic field. As r/lc increases, L/L∞ decreases, where L∞ is the inductance of
an infinitely long solenoid. For example, K = L/L∞ = 0.85 for r/lc = 0.2, K = 0.74 for r/lc = 0.4,
K = 0.53 for r/lc = 1, K = 0.2 for r/lc = 5, and K = 0.12 for r/lc = 10. For r/lc up to 2 or 3, a
first-order approximation is

K = L

L∞
≈ 1

1 + 0.9 r
lc

, (1.309)

resulting in L ≈ K L∞ = L∞/(1 + 0.9r/lc). The inductance of a round single-layer solenoid of a finite
length lc with intermediate length-to-resistance ratio can be approximated by Wheeler’s or Nagaoka
formula [44], which is correct to within 1% for r/lc < 1.25 or lc/(2r) > 0.4

L = L∞
1 + 0.9 r

lc

= μrcμ0AcN 2

lc

(
1 + 0.9 r

lc

) = πμrcμ0r2N 2

lc

(
1 + 0.9 r

lc

) = πμrcμ0r2N 2

lc + 0.9r
(H)

= 0.4π2μrcr2N 2

lc + 0.9r
(μH) for

r

lc
< 1.25. (1.310)

Figure 1.21 shows a plot of L/L∞ as a function of r/lc . As the ratio of the external diameter to the
internal diameter decreases, the inductance also decreases.
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Figure 1.21 Plot of L/L∞ as a function of r/lc

The inductance of a multilayer solenoid is given by

L = 0.8μπr2N 2

lc + 0.9r + b
, (1.311)

where b is the thickness of all layers (or coil build) and r is the average radius of the winding.
A more accurate equation for the inductance of a multilayer inductor is

L = μπr2N 2

lc

1

1 + 0.9
(

r
lc

)
+ 0.32

(
b
r

)+ 0.84
(

b
lc

) . (1.312)

The inductance predicted by this equation is within 2% of the exact value.
The inductance of a short solenoid is given by

L = μrN 2
[

ln

(
8r

a

)
− 2

]
(1.313)

where a is the wire radius and r is the outer radius of the solenoid and N is the number of turns.
This equation is valid for N = 1.

Example 1.7

An air-core solenoid has N = 20, lc = 15 cm, and r = 3 cm. Find the inductance.

Solution: The inductance of the solenoid is

L = πμrcμ0r2N 2

lc

(
1 + 0.9 r

lc

) = π × 1 × 4π × 10−7 × (3 × 10−2)2 × 202

15 × 10−2
(

1 + 0.9 × 3×10−2

15×10−2

) = 8.0295 μH. (1.314)

Note that the inductance calculated in this example is about 15% less than the inductance calculated
for a very long inductor because K = 0.8475.
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1.8.3 Inductance of Inductor with Toroidal Core

A toroidal inductor with a rectangular cross section is shown in Fig. 1.22. The dimensions of the
magnetic core are: a is the inner radius, b is the outer radius, and h is the toroid height. The toroid
is symmetrical about its axis. The RHR shows that the magnetic flux φ is mainly circulating in the
ϕ direction. An idealized toroidal inductor can be thought as a finite length solenoid bent around to
close on itself to form a doughnut shape. Assume that the inductor is closely wound coil. Consider
a general contour C of radius r , a ≤ r ≤ b. Applying Ampère’s law,∮

C
H · d l = NI . (1.315)

It can be observed that
dl = rdϕ. (1.316)

Hence, ∮
C

H · d l =
∫ 2π

0
Hrdϕ = Hr

∫ 2π

0
dϕ = 2πrH . (1.317)

Since the path of integration encircles the total current NI , we obtain

2πrH = NI . (1.318)

Hence, the magnetic field intensity inside the toroidal core is

H = NI

2πr
for a ≤ r ≤ b (1.319)

and the magnetic flux density inside the toroidal core is given by

B = μH = μNI

2πr
for a ≤ r ≤ b. (1.320)

Since dS = (dh)(dr), the magnetic flux inside the toroidal core is

φ =
∫ ∫

S
BdS =

∫ b

a

∫ h

0

(
μNI

2πr

)
(dh)(dr) = μNI

2π

∫ h

0
dh
∫ b

a

dr

r
= μNIh

2π

∫ b

a

dr

r

= μNIh

2π
ln

(
b

a

)
. (1.321)

The flux linkage of the toroidal inductor is

λ = N φ = μhN 2I

2π
ln

(
b

a

)
, (1.322)

I

I

b

a drr

h

Figure 1.22 Toroidal inductor
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resulting in the inductance of a toroidal coil

L = λ

I
= μrcμ0hN 2

2π
ln

(
b

a

)
. (1.323)

Alternatively, we may assume that the magnetic flux density within the core is uniform and equal
to the average value of the magnetic flux density

B = φ

Ac
, (1.324)

where Ac = h(b − a) is the cross-sectional area of the core. The magnetic field intensity is

H = B

μ
= φ

μAc
= φ

μh(b − a)
. (1.325)

Using Ampère’s law, ∮
C

H · d l = NI (1.326)

yielding
φlc
μAc

= NI . (1.327)

The mean radius of the core is R = (a + b)/2 and lc = 2πR = π(a + b) is the mean length of the
magnetic flux. The magnetic flux inside the core is

φ = μNI Ac

lc
= μNIh(b − a)

π(b + a)
, (1.328)

which gives the flux linkage

λ = N φ = μIh(b − a)N 2

π(b + a)
, (1.329)

Hence, the inductance is

L = λ

I
= μh(b − a)N 2

π(b + a)
. (1.330)

An empirical equation for an inductor with a toroidal core is

L = 4.6μrcN 2h log

(
OD

ID

)
× 10−13 H, (1.331)

where H is the height of the core in meter, and ID and OD are the inner and outer diameters of the
core in meters.

Example 1.8

An inductor is wound on a toroidal core, which has μrc = 150, h = 1 cm, a = 4 cm, and b = 5 cm.
The inductor has 20 turns. Find the inductance.

Solution: Using (1.322), the inductance is

L = μrcμ0hN 2

2π
ln

(
b

a

)
= 150 × 4π × 10−7 × 10−2 × 202

2π
ln

(
5

4

)
= 26.777 μH. (1.332)

From (1.330),

L = μrcμ0h(b − a)N 2

π(b + a)
= 150 × 2π × 10−7 × 10−2 × (5 − 4) × 10−2202

π(5 + 4) × 10−2

= 26.667 μH. (1.333)
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1.8.4 Inductance of Inductor with Torus Core

The inductance of a torus coil (with a round cross section) can be described by the expression for
the inductance of a long solenoid

L = μrcμ0AcN 2

lc
= μrcμ0AcN 2

2πR
, (1.334)

where R = (a + b)/2 is the mean radius of the core, lc = 2πR = π(a + b), ro = (b − a)/2 is the
radius of the core cross section, and Ac = πr2

o = π(b − a)2/4 is the cross-sectional area of the core.
Hence,

L = μrcμ0N 2(b − a)2

4(a + b)
. (1.335)

An alternative expression for the inductance of an inductor with a torus core is

L = μN 2[R −
√

R2 − r2
o ]. (1.336)

1.8.5 Inductance of Inductor with Pot Core

The geometry of an inductor with a pot core is very complex and the inductance of these inductors
can be determined only approximately. The core cross-sectional area of the pot core is approximately
equal to the cross-sectional area of the center post

Ac = πd2

4
, (1.337)

where d is the diameter of the center post. The average diameter of the mean magnetic path is
given by

Dav = Di + Do

2
, (1.338)

where Di is the inner diameter of the outer core area and Do is the outer diameter of the outer core
area. The mean MPL is given by

lc = Dav + 4h = Di + Do

2
+ 4h , (1.339)

where h is the height of the core halve. The inductance of an inductor with a pot core can be
approximated by

L = μrcμ0AcN 2

lc
= πμrcμ0d2N 2

2(Di + Do) + 16h
. (1.340)

1.8.6 Inductance Factor

Equation (1.308) for the inductance can be written as

L = μrcμ0AcN 2

lc
= ALN 2. (1.341)

The specific inductance of a core, also called the core inductance factor, is defined as the inductance
per single turn

AL = L

N 2
= μrcμ0Ac

lc
= 1

R = P
(

H

turn2

)
. (1.342)

Each core of different materials, shapes, and sizes will have a unique value of AL, some of which
are not easy to predict analytically, especially for complex core shapes. Core manufacturers give the
values of AL in data sheets.
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The specific inductance (or the inductance index) AL is usually specified in Henry per turn, in
millihenry per 1000 turns, or in microhenry per 100 turns for cores without and with air gaps. If the
specific inductance AL is expressed in Henry per turn, the number of turns is given by

N =
√

L(H)

AL
. (1.343)

If the specific inductance AL(1000) is expressed in millihenry per 1000 turns, the inductance is given by

L = AL(1000)N
2

(1000)2
(mH) (1.344)

and the number of turns is

N = 1000

√
L(mH)

AL(1000)

. (1.345)

For most ferrite cores, the specific inductance AL(100) is expressed in μH per 100 turns. In this case,
the inductance is given by

L = AL(100)N
2

(100)2
(μH). (1.346)

To compute the required number of turns N for a desired inductance L in microhenries, the following
formula can be used for ferrite cores

N = 100

√
L(μH)

AL(100)

. (1.347)

Common values of AL(100) are 16, 25, 40, 63, 100, 250, 400, and so on.
Air-core inductors are linear devices because the relationship B = μ0H is linear. In general, induc-

tors with magnetic cores are nonlinear devices as the B –H relationship is nonlinear. However, for
B < Bs , inductors can be modeled as linear devices.

Example 1.9

The relative permeability of the Ferroxcube ferrite magnetic core material is μrc = 1800. The rect-
angular toroidal core made up of this material has the inner diameter d = 13.1 mm, the external
diameter D = 23.7 mm, and the height h = 7.5 mm. Find the specific inductance of this core. What
is the inductance of the inductor with this core if the number of turns is N = 10?

Solution: The MPL of a toroidal core is

lc = π
d + D

2
= π

13.1 + 23.7

2
= 57.805 mm (1.348)

and the cross-sectional area of the core is

Ac = h
(D − d)

2
= 7.5 × 10−3 × (23.7 − 13.1) × 10−3

2
= 39.75 × 10−6 m2. (1.349)

Hence, the specific inductance of the core is

AL = μrcμ0Ac

lc
= 1800 × 4π × 10−7 × 39.75 × 10−6

57.805 × 10−3
= 1.5554 μH/turn . (1.350)

The inductance at N = 10 is

L = N 2AL = 102 × 1.5554 × 10−6 = 155.54 μH. (1.351)
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1.9 Air Gap in Magnetic Core

1.9.1 Inductance

Gapped core inductors and transformers are useful in a variety of applications, particularly those
in which core saturation has to be avoided. The introduction of an air gap into the core of an
inductor permits much higher levels of magnetic flux density at the expense of considerably reduced
inductance. The overall reluctance of the gapped core R can be controlled by an air gap length lg .
Therefore, magnetic flux φ, magnetic flux density B , and inductance L can also be controlled by
the length of the air gap lg . In addition, gapped cores exhibit enhanced thermal stability and more
predictable effective permeability, the overall reluctance, and the inductance.

Air gaps can be bulk or distributed. In a gapped core, a small section of the magnetic flux path is
replaced by a nonmagnetic medium, such as air or nylon. It is often filled with a spacer. The air-gap
length lg is usually twice the spacer thickness. Some cores have prefabricated air gaps. Standard
values of the air-gap length lg are 0.5, 0.6, 0.7, . . . , 5 mm. The same magnetic flux flows in the core
and in the gap. Adding an air gap in a core is equivalent to adding a large gap reluctance in series
with the core reluctance, that is, a series reluctor. As a result, the magnitude of the magnetic flux φm
at a fixed value of N Im is reduced. This effect is analogous to adding a series resistor in an electric
circuit to reduce the magnitude of the current at a fixed source voltage.

Figure 1.23a illustrates an inductor whose core has an air gap. An equivalent magnetic circuit of
an inductor with an air gap is shown in Fig. 1.23b. The reluctance of the air gap is

Rg = lg
μ0Ac

, (1.352)

the reluctance of the core is

Rc = lc − lg
μrcμ0Ac

≈ lc
μrcμ0Ac

, (1.353)

and the overall reluctance of the core with the air gap is

R = Rc + Rg = lc
μrcμ0Ac

+ lg
μ0Ac

= lg + lc/μrc

μ0Ac
= lc

μrcμ0Ac

(
1 + μrc lg

lc

)
= FgRc , (1.354)

where the air gap factor is

Fg = R
Rc

= Rc + Rg

Rc
= 1 + Rg

Rc
= 1 + μrc lg

lc
. (1.355)

μr

lg

φ

i

(b)

F=Ni
φ
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Rg

Rc

N

∼

Figure 1.23 Inductor with an air gap. (a) Inductor. (b) Magnetic circuit of an inductor with an air gap
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The inductance of a coil with a magnetic core having an air gap at low frequencies is expressed as

L = N 2

R = N 2

Rg + Rc
= N 2

Rg

1

1 + Rc/Rg
= N 2

lg
μ0Ac

+ lc
μrcμ0Ac

= μrcμ0AcN 2

lc + μrc lg
= μ0AcN 2

lg + lc
μrc

= μ0AcN 2

lg

(
1 + lc

lg μrc

) = N 2

Rg

1

1 + lc
lg μrc

= μrcμ0AcN 2

lc

(
1 + μrc lg

lc

) = μreμ0AcN 2

lc
= μrcμ0AcN 2

lcFg
, (1.356)

where the effective relative permeability of a core with an air gap is

μre = μrc

1 + μrc lg
lc

= μrc

Fg
. (1.357)

For μrc lg/lc � 1,

μre ≈ lc
lg

(1.358)

and

L ≈ N 2

Rg
= μ0AcN 2

lg
. (1.359)

Thus, the inductance with high-permeability cores is dominated by the air gap.
The air gap causes a considerable decrease in the effective relative permeability. However, it

produces a more stable effective permeability and reluctance, resulting in a more predictable and
stable inductance. The relative permittivity depends on the temperature. As the temperature increases,
the relative permeability increases to reach a maximum value and then decreases to 1. In addition, the
relative permeability has a large tolerance, typically μrc = μrc(nom) ± 25%. For example, inductors
used in resonant circuits should be predictable and stable. Usually, at least 95% of the inductance
comes from the air gap for high-permeability cores. The length of the air gap is given by

lg = μ0AcN 2

L
− lc

μrc
. (1.360)

The number of turns of an inductor whose core has an air gap is given by

N =

√√√√L
(

lg + lc
μrc

)
μ0Ac

. (1.361)

For high-permeability cores, lg � lc/μrc , Rg � Rc ,

R ≈ Rg , (1.362)

and

L ≈ μ0AcN 2

lg
= N 2

Rg
. (1.363)

Therefore, the inductance of an inductor with a gapped core is inversely proportional to the air-gap
length lg and is almost independent of the core relative permeability μrc . The number of turns is

N ≈
√

Llg
μ0Ac

for lg � lc
μrc

. (1.364)

The core permeability varies with temperature and flux level. Inductors that carry DC currents and
have DC magnetic flux require long air gaps to avoid saturation.

In some applications, the fringing effect of magnetic flux is reduced by multiple air gaps of length
lg1, lg2, lg3,. . . , lgn In this case, the total air-gap length is equal to sum of all air gaps

lg = lg1 + lg2 + lg3 + .... + lgn , (1.365)
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resulting in the effective relative permeability

μre = μrc

1 + μrc (lg1+lg2+...+lgn )

lc

(1.366)

and the inductance of the inductor with the distributed air gap in the core

L = μrcμ0AcN 2

lc

[
1 + μrc (lg1+lg2+...+lgn )

lc

] = μ0AcN 2

lg1 + lg2 + . . . + lgn + lc
μrc

. (1.367)

1.9.2 Magnetic Field in Air Gap

Using Ampere’s law, the MMF of the inductor with an air gap can be written as

F =
∫

lc

H · d l +
∫

lg

H · d l = Ni = Hclc + Hg lg = Bclc
μrcμ0

+ Bg lg
μ0

= φc lc
Acμrcμ0

+ φg lg
Aaμ0

= Rcφc + Rgφg ≈ (Rc + Rg )φc . (1.368)

The magnetic flux is

φ = F
R = F

Rg + Rc
= Ni

Rg + Rc
. (1.369)

The air gap reduces the amount of magnetic flux because it increases the overall reluctance. If
Rg � Rc ,

φ ≈ F
Rg

= Ni

Rg
. (1.370)

Neglecting the fringing flux, Ag = Ac , λg = λc , and Bg = Bc . Hence,

Ni = Bc

(
lc

μrcμ0
+ lg

μ0

)
= Bc

μ0

(
lc
μrc

+ lg

)
. (1.371)

The magnetic flux density in the core with an air gap is given by

Bc = Bg = μ0Ni

lg + lc
μrc

. (1.372)

The ratio of the magnetic flux density in the ungapped core to the magnetic flux density in the gapped
core is

Bc(ungapped)

Bc(gapped)

= lc
lg + lc

μrc

≈ lc
lg

. (1.373)

The maximum flux density in the core with an air gap, which is caused by the DC component
of the inductor current IL and the amplitude of the AC component of the inductor current Im , is
expressed by

Bc(pk) = BDC + Bm = μ0N (IL + Im)

lg + lc
μrc

≤ Bs for T ≤ Tmax . (1.374)

The magnetic flux density and the magnetic field intensity in the core are

Bc = φc

Ac
(1.375)

and
Hc = Bc

μrcμ0
. (1.376)

Assuming a uniform magnetic flux density in the air gap and neglecting the fringing flux, magnetic
flux, magnetic flux density, and magnetic field intensity in the air gap are

φg = φc = AcBc = Ag Bg , (1.377)

Bg = Ac

Ag
Bc ≈ Bc , (1.378)



54 HIGH-FREQUENCY MAGNETIC COMPONENTS

and

Hg = Bg

μ0
= Bc

μ0
= μrcμ0Hc

μ0
= μrcHc . (1.379)

The maximum MMF is

Fmax = Nmax ILmax = φ(Rg + Rc) = Bpk Ac(Rg + Rc) ≈ Bpk AcRg = Bpk lg
μ0

, (1.380)

where Rg = lg/(μ0Ac). To avoid core saturation, the maximum number of turns is given by

Nmax = Bpk lg
μ0ILmax

. (1.381)

As the air-gap length lg increases, N ILmmax can be increased and the core losses can be decreased.
However, the number of turns N must be increased to achieve a specified inductance L. The increased
number of turns increases the winding loss. In addition, the leakage inductance increases and the air
gap radiates a larger amount of electromagnetic interference (EMI).

The behavior of an inductor with an air gap is similar to an amplifier with negative feedback

Af = A

1 + βA
= μrc

1 + lg
lc

μrc

. (1.382)

Thus, μrc is analogous to A and lg/lc is analogous to β.
Power losses associated with the air gap consist of winding loss, core loss, and hardware loss (e.g.,

power loss in clamps or bolts). The magnetic field around the core gap can be strong and create
localized losses in the winding close to the gap.

Example 1.10

A PQ4220 Magnetics core has μrc = 2500, lc = 4.63 cm, and Ac = 1.19 cm2. The inductor wound
on this core has N = 10 turns. The required inductance should be L = 55.6 μH. Find the length of
the air gap lg .

Solution: The length of the air gap in the core is

lg = μ0AcN 2

L
− lc

μrc
= 4π × 10−7 × 1.19 × 10−4 × 102

55.6 × 10−6
− 4.63 × 10−2

2500

= (0.2689564 − 0.01852) × 10−3 = 0.2504 mm. (1.383)

1.10 Fringing Flux

1.10.1 Fringing Flux Factor

A fringing flux is present around the air gap whenever the core is excited, as shown in Fig. 1.24.
It induces currents in the winding conductors and other conductors, which may cause intense local
heating in the vicinity of the gap. Figure 1.25 depicts the fringing flux in an inductor with an EE core
and an air gap. The magnetic flux lines bulge outward because the magnetic lines repel each other
when passing through a nonmagnetic material. As a result, the cross-sectional area of the magnetic
field and the effective length are increased and the flux density is decreased. Typically, 10% is added
to the air gap cross-sectional area. This effect is called the fringing flux effect. The percentage of the
fringing flux in the total magnetic flux increases as the air-gap length lg increases. As the gap length
lg is increased, the radius of the magnetic flux in the gap also increases. A rule of thumb is that foil
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Figure 1.24 Fringing magnetic flux around the periphery of an air gap
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Fringing
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Figure 1.25 Fringing magnetic flux in an inductor with gapped pot core
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∼

Figure 1.26 Magnetic equivalent circuit of an inductor with an air gap and a fringing magnetic flux

windings should be spaced at least two gap lengths away from the gap to prevent induction of eddy
currents in the winding and to prevent overheating. The fringing flux is larger in inductors with a
low-permeability core than that in high-permeability core. Figure 1.26 shows a magnetic equivalent
circuit for the inductor with an air gap and a fringing flux. The fringing reluctance is shunting the
gap reluctance, reducing the equivalent reluctance and slightly increasing the inductance. Thus, the
number of turns N required for obtaining a desired inductance should be decreased or the air-gap
length lg should be increased. The effect of the fringing flux on the inductance and the number of
turns can be investigated using the concept of the reluctance of the space conducting the fringing
magnetic flux. Figure 1.27 shows the magnetic flux distribution in an air-gapped core inductor. The
effective cross-sectional area of the gap with fringing flux Ageff is obtained by adding the gap length
to each of the linear dimensions of the core in the gap area. For a rectangular core, wf = lg and
Ageff = (a + lw)(b + lg ).
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Figure 1.27 Magnetic flux distribution in an inductor with an air gap and a fringing magnetic flux. (a) Flux
distribution. (b) Cross-sectional area of the core Ac and effective cross-sectional area of the fringing flux Af

Due to the continuity of the magnetic flux, the magnetic flux in the core φc is equal to the sum of
the magnetic flux in the air gap φg and the fringing flux φf

φc = φg + φf . (1.384)

The permeance of the core is

Pc = 1

Rc
= μrcμ0Ac

lc
. (1.385)

The permeance of the air gap is

Pg = 1

Rg
= μ0Ac

lg
. (1.386)

The permeance of the fringing volume is

Pf = 1

Rf
= μ0Af

lf
, (1.387)

where Af is the fringing flux cross-sectional area and lf is the mean MPL of the fringing flux.
Assuming that Ag = Ac , the total reluctance is given by

R = Rc + Rg ||Rf = Rc + RgRf

Rg + Rf
= lc

μrcμ0Ac
+

lg
μ0Ag

× lf
μ0Af

lg
μ0Ag

+ lf
μ0Af

= lc
μrcμ0Ac

+ 1

μ0(Ag/lg + Af /lf )
= lc

μrcμ0Ac
+ lg

μ0Ac

(
1 + Af /lf

Ac/lg

) = Rc + Rg

Ff

= lc
μrcμ0Ac

(
1 + μrcAc

lc

lg lf
lf Ag + lg Af

)
= lc

μrcμ0Ac

⎛
⎝1 + μrc lg

lc

1

1 + lg Af
lf Ag

⎞
⎠ , (1.388)
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where the fringing factor is defined as

Ff = Rg

Rg ||Rf
= 1 + Rg

Rf
= P

Pg
= Pg + Pf

Pg
= 1 + Pf

Pg
= 1 + Af lg

Aclf
= 1 + Af /lf

Ac/lg
> 1. (1.389)

Hence, the inductance of an inductor with an air gap and a fringing flux is given by

Lf = N 2

R = N 2

Rc + Rg
Ff

>
N 2

Rc + Rg
. (1.390)

For high-permeability cores, the core reluctance Rc can be neglected. The total permeance of the
air gap and the fringing area is

P = Pg + Pf = μ0Ac

lg
+ μ0Af

lf
= μ0Ac

lg

(
1 + Af lg

Aclf

)
= μ0AcFf

lg
= Ff Pg . (1.391)

Thus, R ≈ Rg/Ff .
Neglecting the permeance of the core, the inductance of the inductor with an air gap and the

fringing flux is

Lf = PN 2 = μ0AcN 2

lg
+ μ0Af N 2

lf
= μ0AcN 2

lg

(
1 + Af lg

Aclf

)
= μ0AcN 2Ff

lg
= Ff L. (1.392)

Thus, the fringing effect increases the inductance. The number of turns required for obtaining a
desired inductance for the inductor with high-permeability core is

N =
√

L

P =
√

LR =
√

Llg
μ0AcFf

. (1.393)

The total reluctance of the inductor is

R = Rc + Rg ||Rf = Rc + RgRf

Rg + Rf
= lc

μrcμ0Ac
+ lg

μ0AcFf

= lg
μ0Ac

(
lc

μrc lg
+ 1

Ff

)
= Rg

(
lc

μrc lg
+ 1

Ff

)
= Rg

Ff
for

lc
lg

� μrc . (1.394)

The number of turns required for obtaining a desired inductance is

N =
√

L

P =
√

LR =
√√√√ Llg

μ0Ac

(
lc

μrc lg
+ 1

Ff

)
. (1.395)

If the air gap is enclosed by the winding, the fringing flux is reduced, lowering the value of Ff .
However, the inductor losses increase as much as five times. If a winding is in the vicinity of the air
gap, the fringing flux penetrates the winding conductor in the transverse direction, causing air-gap
loss. To reduce this loss, the copper winding should be moved away from the air gap vicinity by a
distance that is equal to two to three times the air-gap length lg . This prevents the fringing flux of the
gap from affecting the current within the winding conductor. The distance of the winding from the
core can be increased by increasing the thickness of the bobbin. A reasonable thickness of the bobbin
is 2–4 mm. Short distributed air gaps reduce the fringing flux and the power losses significantly. This
is because the radial component of the magnetic flux density is reduced. Cores with a large relative
permeability require long air gaps, which increase the fringing flux.

1.10.2 Effect of Fringing Flux on Inductance for Round
Air Gap

The effect of the fringing flux on the inductance and the number of turns required to obtain a required
inductance can be taken into account using the concept of the mean cross-sectional area of the fringing
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flux Af and the mean MPL lf of the fringing magnetic flux φf . Consider a round core with a single
air gap. The ratio of the mean width of the cross-sectional area of the fringing flux to the air-gap
length is defined as

α = wf

lg
. (1.396)

The cross-sectional area of a round air gap with diameter Dc is

Ag = π

4
D2

c . (1.397)

The cross-sectional area of the fringing flux for a round air gap is

Af = π

4
(Dc + 2αlg )2 − π

4
D2

c = παlg (Dc + αlg ). (1.398)

The ratio of the cross-sectional areas is

Af

Ag
= 4αlg (Dc + αlg )

D2
c

. (1.399)

The ratio of the mean MPL of the fringing flux to the air-gap length is defined as

β = lf
lg

. (1.400)

The fringing flux factor for a round air gap is

Ff = 1 + Af

Ag

1
lf
lg

= 1 + Af

Ag

1

β
= 1 + 4αlg (Dc + αlg )

βD2
c

. (1.401)

In practice, it is difficult to determine the factors α and β. A good choice is α = 1 and β = 2. The
inductance with the fringing effect is

Lf = LFf = L

[
1 + 4αlg (Dc + αlg )

βD2
c

]
. (1.402)

Example 1.11

An inductor with an air gap has a round gap with Dc = 10 mm and lg = 1 mm. Find Ff and Nf /N .

Solution: Assume α = 1 and β = 2. The fringing factor is

Ff = Lf

L
= 1 + 4αlg (Dc + αlg )

βD2
c

= 1 + 4 × 1 × 1 × (10 + 1 × 1)

2 × 102
= 1.22. (1.403)

The ratio of the turns is
Nf

N
= 1√

Ff

= 1√
1.22

= 0.9054. (1.404)

1.10.3 Effect of Fringing Flux on Inductance for Rectangular
Air Gap

Consider a core with a single rectangular air gap. The ratio of the mean width of the cross-sectional
area of the fringing flux to the air-gap length is defined as

α = wf

lg
(1.405)
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where wf is the mean width of the fringing flux. The rectangular air gap has dimensions a and b.
The cross-sectional area of the air gap is

Ag = ab. (1.406)

The cross-sectional area of the fringing flux is

Af = (a + 2αlg )(b + 2αlg ) − ab = 2αlg (a + b) + 4α2l2
g = 2αlg (a + b + 2αlg ), (1.407)

resulting in the ratio of the cross-sectional areas

Af

Ag
= 2αlg (a + b + 2αlg )

ab
(1.408)

The ratio of the mean MPL of the fringing flux to the air-gap length is defined as

β = lf
lg

(1.409)

where lf is the mean length of the fringing flux. The fringing flux factor for a rectangular air gap is

Ff = 1 + Af

Ag

1
lf
lg

= 1 + Af

Ag

1

β
= 1 + 2αlg (a + b + 2αlg )

βab
. (1.410)

In practice, it is difficult to know the factors α and β. Reasonable values are α = 1 and β = 2. The
inductance with the fringing flux is

Lf = LFf = L

[
1 + 2αlg (a + b + 2αlg )

βab

]
. (1.411)

Assuming that α = 1, the effective cross-sectional area of the fringing flux is

Af = (a + 2wf )(b + 2wf ) − Ac = 2(a + b)wf + 4w2
f . (1.412)

Hence, the fringing flux factor is

Ff = 1 +
(

lg
Ac

)(
wf

lf

)
[2(a + b) + 4wf ] ≈ 1 + 2(a + b)

(
lg
Ac

)(
wf

lf

)
. (1.413)

Note that Ff is directly proportional to lg . The inductance is

Lf = Ff L = μ0AcN 2

lg

[
1 + 2(a + b)

(
lg
Ac

)]
= μ0AcN 2

lg
+ 2(a + b)μ0N 2

wf

lf
. (1.414)

The first term describes the inductance L without fringing flux. The second term is independent of lg
and constitutes a constant excess inductance. The empirical value is wf /lf = 1.1322.

Example 1.12

An inductor with a single rectangular air gap has a = 10 mm, b = 20 mm, and lg = 1 mm. Find Ff
and Nf /N .

Solution: Assume that α = 1 and β = 2. The fringing flux factor is

Ff = Lf

L
= 1 + 2αlg (a + b + 2αlg )

βab
= 1 + 2 × 1 × (10 + 20 + 2 × 1 × 1)

2 × 10 × 20
= 1.16. (1.415)

The ratio of the turns is
Nf

N
= 1√

Ff

= 1√
1.16

= 0.9285. (1.416)
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1.10.4 Method of Effective Air Gap Cross-Sectional Area

Another method of deriving Ff uses an effective area of the air gap and is as follows. The cross-
sectional area of the round core is

Ac = πD2
c

4
(1.417)

and the effective cross-sectional area of the air gap is

Ae = π(Dc + lg )2

4
. (1.418)

Assuming that lg/lf = 1, we get Ff for a round air gap

Ff = Lf

L
= Ae

Ac
=
(

1 + lg
Dc

)2

. (1.419)

For the rectangular cross section of the air gap,

Ff = Lf

L
= Ae

Ac
= (a + lg )(b + lg )

ab
. (1.420)

1.10.5 Method of Effective Length of Air Gap

The permeance of the air gap with the physical gap length lg and the gap cross-sectional area
Ac + Af is

Pg = μ0(Ac + Af )

lg
, (1.421)

where Af is the effective cross-sectional area of the fringing flux. The permeance of the air gap with
the effective gap length leff and the air gap flux area equal to the core cross-sectional area Ac is

Pg = μ0Ac

leff
. (1.422)

The two permeances are equal, which results in

μ0(Ac + Af )

lg
= μ0Ac

leff
. (1.423)

The effective air-gap length for a rectangular gap is given by

leff = lg
Ac

Ac + Af
= Ac

lg
(a + lg )(b + lg )

= Ac

lg

ab
(

1 + lg
a

) (
1 + lg

b

)

= lg(
1 + lg

a

) (
1 + lg

b

) = lg
Ff

(1.424)

where

Ff =
(

1 + lg
a

)(
1 + lg

b

)
. (1.425)

1.10.6 Patridge’s Fringing Factor

The fringing flux factor given in Refs [6, 7, 13] is described by

Ff = 1 + alg
Ng

√
Ac

ln

(
2w

lg

)
≈ 1 + lg

Ng

√
Ac

ln

(
2w

lg

)
= 1 + w

Ng

√
Ac

(
lg
w

)
ln

2(
lg
w

) , (1.426)
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Figure 1.28 Fringing flux factor Ff as a function lg/w at Ac = 1 cm2 and w = 2 cm

where lg is the total gap length, Ng is the number of air gaps in the magnetic path, w is the width
of the core window, a = 0.85–0.95 for round cores, and a = 1–1.1 for rectangular cores. The typ-
ical values of the fringing flux factor Ff are in the range 1.1–1.4. The fringing flux reduces the
total reluctance of the magnetic path R, and therefore it increases the inductance L. Figure 1.28
shows a plot of the fringing flux factor Ff as a function of lg/w at Ng = 1, Ac = 1 cm2, and
w = 2 cm.

The inductance is increased due to the fringing effect and is given by

Lf = Ff L =
[

1 + alg√
Ac

ln

(
2w

lg

)]
L =

[
1 + alg√

Ac

ln

(
2w

lg

)]
μrcμ0AcN 2

lc(1 + μrc lg )

= μ0AcN 2Ff

lg + lc
μrc

. (1.427)

Therefore, the number of turns N to obtain a required inductance L of an inductor with an air gap
and the fringing effect should be reduced to

Nf =

√√√√Lf

(
lg + lc

μrc

)
μ0AcFf

= N√
Ff

. (1.428)

Fringing flux generates eddy currents, which cause hot spots in both the core and the winding,
resulting in power losses. The winding, banding, and clips should be kept away from the fringing
flux to reduce power losses. If a long single air gap is used, a high-fringing magnetic field is induced.
Many short air gaps (a distributed air gap) along the magnetic path reduce the fringing flux and the
winding loss as compared to the winding loss due to a long single air gap. It is important that there
is a sufficient distance between air gaps. The distance between adjacent air gaps should be greater
than four times the length of one air gap. Otherwise, the fringing fluxes from the adjacent air gaps
will overlap and the air gaps will be shunted by the fringing reluctance.
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1.10.7 Distribution of Fringing Magnetic Field

Assume that the skin effect in the core is negligible. For a core with a rectangular cross section, the
magnitudes of the components of the fringing magnetic field are [54]

Hx (x , y) = H (0, 0)

2π
ln

[
x2 + (y − lg/2)2

x2 + (y + lg/2)2

]
(1.429)

and

Hy (x , y) = −H (0, 0)

π

[
arctan

(
xlg

x2 + y2 − l2
g /4

)
+ mπ

]
, (1.430)

where H (0, 0) = 0.9NI /lg is the magnetic field at the center edge of the air gap, m = 0 for x2 + y2 ≥
l2
g /4, and m = 1 for x2 + y2 < l2

g /4. The magnitude of the total fringing magnetic field is

H (x , y) =
√

H 2
x (x , y) + H 2

y (x , y). (1.431)

1.11 Inductance of Strip Transmission Line

Consider a strip transmission line, where d is the distance between the conductors, l is the length of
the strip, and w is the width of the strip. The magnetic field intensity between conducting parallel
plates is

H = I

w
(1.432)

resulting in the flux linkage

λ =
∫ ∫

S
B · dS =

∫ l

0

∫ d

0

μI

w
dxdz = μIld

w
. (1.433)

Hence, the inductance of the strip transmission line is given by

L = λ

I
= μdl

w
. (1.434)

1.12 Inductance of Coaxial Cable

An axial current I flows in the inner conductor of radius a and returns in the outer conductor of radius
b, inducing a circumferential magnetic field in the inner conductor, outer conductor, and between
the conductors. Assume a uniform current distribution in both the conductors. The magnetic field
between the conductors is

Hφ = Ir

2πr
for a ≤ r ≤ b. (1.435)

The magnetic flux between radii a and b is

φext =
∫ ∫

S
B · dS =

∫ lw

0
dz
∫ b

a
μ

(
μI

2πr

)
dr = μlwI

2π
ln

(
b

a

)
. (1.436)

The external inductance of a coaxial cable due to the magnetic energy stored in the magnetic field
between the inner and outer conductors is given by

Lext = φext

I
= 1

I

∫ ∫
S

B · dS = μlw
2π

ln

(
b

a

)
, (1.437)

where a is the radius of the inner conductor, b is the radius of the outer conductor, and lw is the
cable length.
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Consider the internal inductance due to the magnetic field inside the inner conductor. The current
Ir enclosed by a circle of radius r is

Ir =
( r

a

)2
I . (1.438)

The magnetic field in the inner conductor is

Hφ(r) = Ir

2πa2
for r < a. (1.439)

The instantaneous magnetic energy stored in the magnetic field in the inner conductor is

Wm(t) = 1

2
Lint(i )I

2 = 1

2

∫ ∫ ∫
V
μH 2dV = 1

2

∫ lw

0
dz
∫ a

0
μ

(
Ir

2πa2

)2

2πrdr = μlwI 2

16π
. (1.440)

Hence, the internal inductance of the inner conductor is

Lint(i ) = μlw
8π

. (1.441)

The magnetic field in the outer conductor is

Hφ(r) = I

2π(c2 − b2)

(
c2

r
− r

)
for b ≤ r ≤ c (1.442)

where c is the outer radius of the outer conductor. The instantaneous magnetic energy stored in the
magnetic field in the outer conductor is

1

2
Lint(o)I

2 = 1

2

∫ ∫ ∫
V
μH 2dV = 1

2

∫ lw

0
dz
∫ a

0

μI

2π(c2 − b2)

(
c2

r
− r

)2

2πrdr (1.443)

Hence, the internal inductance of the outer conductor is

Lint(o) = μlw
2π

[
c4 ln (c/b)

(c2 − b2)2
+ b2 − 3c2

4(c2 − b2)

]
. (1.444)

The total inductance of the coaxial transmission line is

L = Lext + Lint = Lext + Lint(i ) + Lint(o) = μlw
2π

ln

(
b

a

)
+ μlw

8π

+ μlw
2π

[
c4 ln (c/b)

(c2 − b2)2
+ b2 − 3c2

4(c2 − b2)

]
. (1.445)

1.13 Inductance of Two-Wire Transmission Line

The magnetic flux is given by

φ = −μI

4π
ln

[
(x −

√
(d/2)2 − a2)2 + y2

(x +
√

(d/2)2 + a2)2 + y2

]
. (1.446)

The magnetic flux difference between its value at x = d/2 − a and x = −d/2 + a is

�φ = −μI

π
ln

∣∣∣∣∣d/2 − a −
√

(d/2)2 − a2

d/2 − a +
√

(d/2)2 − a2

∣∣∣∣∣ . (1.447)

The internal inductance of a two-wire transmission line for a round conductor of radius a , distance
between the conductor centers d , and length lw is

L = �φ

I
= μlw

π
cosh−1

(
d

2a

)
= μlw

π
ln

⎡
⎣ d

2a
+
√(

d

2a

)2

− 1

⎤
⎦

≈ μlw
π

ln

(
d

a

)
for

(
d

2a

)2

� 1, (1.448)

where cosh−1x ≈ ln (2x) for x � 1.
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1.14 Magnetic Energy and Magnetic Energy Density

1.14.1 Magnetic Energy Density

The instantaneous magnetic energy density is

wm (t) = 1

2
B · H. (1.449)

For an isotropic medium, B = μH and the instantaneous magnetic energy density becomes

wm (t) = 1

2
μH · H = 1

2
μH 2 = 1

2
B · B

μ
= 1

2

B2

μ
. (1.450)

For harmonic fields, the instantaneous magnetic energy density is

wm(t) = 1

2
Re{Bejωt } · Re{Hejωt }. (1.451)

The time-average magnetic energy density for harmonic fields is

wm(AV ) = 1

4
Re{H · B∗}. (1.452)

For an isotropic medium,

wm(AV ) = 1

4
μ|H |2. (1.453)

The instantaneous magnetic energy is

wm (t) = 1

2
λ(t)i (t) = 1

2
N φ(t)i (t) = 1

2
NAB(t)i (t) = 1

2
NAμH (t)i (t) = 1

2
Li 2. (1.454)

1.14.2 Magnetic Energy Stored in Inductors
with Ungapped Core

Consider first the magnetic energy stored in inductors with ungapped cores. The instantaneous reactive
power of an inductor is

p(t) = iL(t)vL(t) = iL

(
L

diL
dt

)
= LiL

diL
dt

. (1.455)

Power is the time rate of change of energy P = W /�t . The instantaneous magnetic energy stored in
the magnetic field of an inductor without an air gap is given by

Wm (t) =
∫ t

0
p(t)dt =

∫ t

0
iL(t)vL(t)dt =

∫ t

0
iLL

diL
dt

dt = L
∫ iL

0
iLdiL = 1

2
Li 2

L (t)

= 1

2
λ(t)iL(t) = λ2(t)

2L
= 1

2

N 2

R i 2
L (t) = N 2φ2(t)

2L
= 1

2
Rφ2(t)

= 1

2

N 2

lc
μrcμ0Ac

(
lcH (t)

N

)2

= 1

2
μrcμ0H 2(t)Aclc = B2(t)lcAc

2μrcμ0
= B2(t)Vc

2μrcμ0
(J), (1.456)

where Vc = lcAc is the core volume, vL = LdiL/dt , iL = λ/L, L = N 2/R, and H = B/μ. The mag-
netic energy is proportional to the core volume Vc and the magnetic flux density B , and it is inversely
proportional to the core relative permeability μrc .

The maximum energy stored in an inductor with a core without an air gap is given by

Wc(max) =
B2

pk lcAc

2μrcμ0
=

B2
pk Vc

2μrcμ0
. (1.457)
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The maximum energy that can be stored in an inductor is limited by the core saturation flux density
Bs , the temperature rise caused by core losses, the core volume Vc , and the core relative permeability
μrc . At Bpk = Bs ,

Wc(sat) = B2
s lcAc

2μrcμ0
= B2

s Vc

2μrcμ0
. (1.458)

The instantaneous magnetic energy density stored in an inductor with ungapped core is

wm(t) = Wm(t)

Vc
= B2(t)

2μrcμ0
= 1

2
μrcμ0H 2(t) = 1

2
μH 2(t)

(
J

m3

)
. (1.459)

1.14.3 Magnetic Energy Stored in Inductors with
Gapped Core

For an inductor with a gapped core, the magnetic energy stored in the gap is

Wg (t) = B2(t)lg Ag

2μ0
= B2(t)Vg

2μ0
≈ B2(t)lg Ac

2μ0
, (1.460)

where Vg = lg Ag ≈ lg Ac is the air-gap volume and Ag ≈ Ac . The instantaneous magnetic energy
stored in the core is

Wc(t) = B2(t)lcAc

2μrcμ0
= B2(t)Vc

2μrcμ0
(1.461)

where the core volume is Vc = lcAc . The total energy stored in an inductor with an air gap Wm(t) is
equal to the sum of the energy stored in the gap Wg (t) and the energy stored in the core Wc(t)

Wm(t) = Wg (t) + Wc(t) = B2(t)Ac

2μ0

(
lg + lc

μrc

)
. (1.462)

The maximum magnetic energy stored in the core is

Wc(max) =
B2

pk lcAc

2μrcμ0
=

B2
pk Vc

2μrcμ0
. (1.463)

For high-permeability cores with lg � lc/μrc , almost all the inductor energy is stored in the air gap

Wm(t) ≈ Wg (t) = B2(t)lg Ag

2μ0
≈ B2(t)Vg

2μ0
. (1.464)

The maximum magnetic energy that is stored in the air gap is

Wg(max) =
B2

pk lg Ac

2μ0
=

B2
pk Vg

2μ0
. (1.465)

At Bpk = Bs ,

Wg(sat) = B2
s lg Ac

2μ0
= B2

s Vg

2μ0
. (1.466)

The total maximum energy that can be stored in an inductor with a gapped core is

Wm(max) = Wg(max) + Wc(max) = B2
s Ac

2μ0

(
lg + lc

μrc

)
. (1.467)

Hence, the length of the air gap required to obtain a specified maximum magnetic energy Wm(max) is

lg = 2μ0Wm(max)

AcB2
s

− lc
μrc

. (1.468)

The ratio of the two energies is
Wg(max)

Wc(max)

= lg
lc

μrc . (1.469)
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The instantaneous magnetic energy density stored in the air gap is

wg (t) = Wg (t)

Vg
= B2(t)

2μ0
= 1

2
μ0H 2

g (t) (J/m3) (1.470)

and in the core is

wc(t) = Wc(t)

Vc
= B2(t)

2μrcμ0
= 1

2
μrcμ0H 2

c (t) (J/m3). (1.471)

Example 1.13

An infinitely long round solid straight conductor of radius ro conducts sinusoidal current i (t) =
Im cos ωt in steady state at low frequencies (with no skin effect). Determine the amplitudes of the
magnetic energy density and the total magnetic energy stored inside and outside the conductor.

Solution: From Example 1.1, the amplitude of the magnetic field density inside the conductor is
given by

Hm (r) = Im r

2πr2
o

for 0 ≤ r ≤ ro . (1.472)

The waveform of the magnetic field intensity is

H (r , t) = Im r

2πr2
o

cos ωt for 0 ≤ r ≤ ro . (1.473)

Thus, the amplitude of the magnetic energy intensity inside the conductor is

wm(r) = 1

2
μH 2

m (r) = μI 2
m r2

8π2r4
o

= μI 2
m

8π2r2
o

(
r

ro

)2

for 0 ≤ r ≤ ro . (1.474)

The maximum magnetic energy density at a given radius r is

wm(max)(r) = μI 2
m r2

4π2r4
o
. (1.475)

Hence, the waveform of the magnetic energy density inside the conductor is

wm (r , t) = 1

2
μH 2(r , t) = μI 2

m r2

8π2r4
o

cos2 ωt for 0 ≤ r ≤ ro . (1.476)

The small volume of a cylindrical shell of radius r , thickness dr , and length lw is

dV = (2πr)(dr)(lw) = 2π lwrdr . (1.477)

Assuming that μ is uniform for the entire conductor, the amplitude of the magnetic energy stored in
the magnetic field inside the conductor is given by

Wm(max) =
∫ ∫ ∫

V
wm (r)dV = 1

2

∫ ∫ ∫
V
μH 2

m (r)dV = μlwI 2
m

4πr4
o

∫ ro

0
r3dr = μlwI 2

m

16π
(1.478)

or using the internal inductance Lint = μlw/(8π)

Wm(max) = 1

2
Lint I

2
m = 1

2

(
μlw
8π

)
I 2
m = μlwI 2

m

16π
. (1.479)

From Example 1.1, the amplitude of the magnetic field intensity outside the conductor is

Hm (r) = Im

2πr
for r ≥ ro . (1.480)

The waveform of the magnetic field intensity outside the conductor is

H (r , t) = Im

2πr
cos ωt for r ≥ ro . (1.481)
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Figure 1.29 Normalized magnetic energy density wm (r)/[μI 2
m/(4π2r2

o )] stored inside and outside a long,
round, solid conductor conducting a sinusoidal current at low frequencies (with no skin effect)

Therefore, the amplitude of the magnetic energy outside the conductor is

wm(max)(r) = 1

2
μH 2

m (r) = μI 2
m

8π2r2
= μI 2

m

8π2r2
o

1(
r
ro

)2 for r ≥ ro . (1.482)

Hence, the waveform of the magnetic energy density inside the conductor is

wm(r , t) = 1

2
μH 2

m (r , t) = μI 2
m

8π2r2
cos2 ωt for r ≥ ro . (1.483)

Assuming that μ is uniform for the entire area outside the conductor, the magnetic energy stored in
the magnetic field outside the conductor is given by

Wm =
∫ ∫ ∫

V
wm (r)dV = 1

2

∫ ∫ ∫
V
μH 2

m (r)dV = μlwI 2
m

8π

∫ ∞

ro

dr

r
= μlwI 2

m

8π
ln r

∣∣∣∣
∞

ro

= ∞.

(1.484)
Figure 1.29 shows the normalized magnetic energy density wm (r)/[μI 2

m/(4π2r2
o )] inside and outside

a long, solid round conductor carrying a sinusoidal current at low frequencies. The reason for the
infinite magnetic energy is that the model of the conductor is too ideal, which does not take into
account the return path of the current. The presence of this path changes the magnetic field distribution
and the stored magnetic energy.

Example 1.14

A Ferroxcube ferrite magnetic core 528T500-4C4 has Ac = 1.17 cm2, lc = 8.49 cm, and μrc = 125.
(a) Determine the maximum magnetic energy that can be stored in the inductor core. (b) Determine
the maximum magnetic energy that can be stored in the air gap lg = 0.5 mm. (c) Find the ratio of
the maximum magnetic energies.
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Solution: The saturation flux density Bs for ferrite cores is Bs = 0.3 T at room temperature T = 20 ◦C.
At T = 100 ◦C, the saturation flux density Bs for ferrite cores decreases by a factor of 2. Thus,

Bs = 0.3

2
= 0.15 T. (1.485)

The maximum magnetic energy that can be stored in the magnetic core is

Wc(max) = B2
s lcAc

2μrcμ0
= 0.152 × 8.49 × 10−2 × 1.17 × 10−4

2 × 125 × 4π × 10−7
= 0.711 mJ. (1.486)

The maximum magnetic energy that can be stored in the air gap is

Wg(max) = B2
s lg Ac

2μ0
= 0.152 × 0.5 × 10−3 × 1.17 × 10−4

2 × 4π × 10−7
= 0.5237 mJ. (1.487)

Hence,
Wg(max)

Wc(max)

= 0.5237

0.711
= 0.7366. (1.488)
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Figure 1.30 Model of an inductor
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Figure 1.31 Plots of the susceptances BC = ωC , BL = −1/(ωL), and B = ωC − 1/(ωL) as functions of
frequency for an inductor
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1.15 Self-Resonant Frequency

Figure 1.30 shows an equivalent model of an inductor, where L is the inductance, Rw is the winding
resistance, Rcs = Rh + Re , Rh is the core hysteresis equivalent series resistance (ESR), Re is the core
eddy-current series resistance, and C is the self-capacitance. The distributed capacitance between the
winding turns acts like a shunt capacitance, conducting a high-frequency current. This capacitance
is called a stray capacitance or a self-capacitance C [33, 34]. It depends on the winding geometry,
the proximity of turns, core, and shield, and the permittivity of the dielectric insulator, in which the
winding wire is coated. The core should be insulated to increase the distance between the turns and
the core, and therefore reduce the capacitance between the winding and the core. The inductance
and the self-capacitance form a parallel resonant circuit, which has the first (fundamental or parallel)
SRF

fr = 1

2π
√

LC
. (1.489)

Figure 1.31 shows the plots of the susceptances BC = ωC , BL = −1/(ωL), and B = BC + BL =
ωC − 1/(ωL) as functions of frequency for inductance L = 1 μH and C = 1 nF. At the SRF fr ,
the total susceptance of an inductor is zero. Below the SRF fr , the inductor reactance is inductive.
Above the SRF fr , the inductor reactance is capacitive. Therefore, the operating frequency range of
an inductor is usually from DC to 0.9fr .

1.16 Quality Factor of Inductors

A winding represents a series combination of an inductance and a frequency-dependent resistance.
The quality factor of an inductor with a magnetic core at a given frequency f is defined as

QLo = Reactance at f

Total resistance at f
= XL

rL
= ωL

rL
= ωL

Rw + Rcs

= 1
Rw
ωL + Rcs

ωL

= 1
1

ωL/Rw
+ 1

ωL/Rcs

= 1
1

QLRw
+ 1

QLRcs

= QLRwQLRcs

QLRw + QLRcs
, (1.490)

where rL = Rw + Rcs is the ESR of an inductor at frequency f , Rw is the winding resistance, and Rcs
is the core series resistance, the quality factor of an inductor due to the winding resistance is

QLRw = ωL

Rw

, (1.491)

and the quality factor of an inductor due to the core series resistance is

QLRcs = ωL

Rcs
. (1.492)

The quality factor of an air-core inductor is defined as

QLo = QLRw = ωL

Rw

. (1.493)

1.17 Classification of Power Losses in Magnetic
Components

Figure 1.32 shows a classification of power losses in magnetic components. These losses can be
categorized into winding (or copper) losses PRw and core losses PC . The winding losses can be
divided into the DC loss and the AC loss.

PRw = PwDC + PwAC . (1.494)
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Figure 1.32 Classification of power losses in magnetic components

In turn, core losses can be divided into hysteresis loss PH and eddy-current loss PE

PC = PH + PE . (1.495)

Hence, the total inductor power loss PL is given by

PL = PRw + PC = PRw + PH + PE = PwDC + PwAC + PH + PE . (1.496)

There are two kinds of eddy-current winding losses: the skin-effect loss and the proximity-effect loss.
Both these effects cause current crowding. Eddy-current losses are magnetically induced losses. The
winding power losses are increased at high frequencies by eddy currents induced in conductors by
magnetic fields. Consider a case where a sinusoidal current is applied to an inductor

iL(t) = ILm sin ωt . (1.497)

At a high frequency, the inductor winding carries the applied current iL(t) and the eddy current
iec(t) = Iecm sin ωt . The applied current density is uniform and therefore the winding resistance
presented to the applied current is equal to the DC winding resistance RwDC . Hence, the power loss
due to the applied current is

PwDC = 1

2
RwDC I 2

Lm . (1.498)

The eddy current density is not uniform and therefore the winding resistance presented to the eddy
current Rwec is higher than the DC winding resistance presented to the applied sinusoidal current
RwDC . The total AC winding resistance Rw is given by

Rw = RwDC + Rwec = RwDC

(
1 + Rwec

RwDC

)
= RwDC + αRwDC = RwDC (1 + α) = FRRwDC ,

(1.499)
where the ratio of the eddy current winding resistance to the DC winding resistance is

α = Rwec

RwDC
(1.500)

and the ratio of the AC-to-DC winding resistance is

FR = Rw

RwDC
= RwDC + Rwec

RwDC
= 1 + Rwec

RwDC
= 1 + α. (1.501)

The total winding power loss is equal to the power loss due to the conduction of the applied current
PwDC of uniform density and the power losses due to the conduction of the eddy current Pwec of
nonuniform density

PwAC = Pw = PwDC + Pwec = 1

2
RwI 2

Lm = I 2
Lm

2
(RwDC + Rwec) = I 2

Lm

2
RwDC + I 2

Lm

2
αRwDC

= I 2
Lm

2
RwDC + I 2

ecm

2
RwDC . (1.502)
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Figure 1.33 Noninductive coil. (a) Bifilar winding. (b) Magnetic flux cancellation

Hence, the amplitude of the eddy current is

Iecm = √
αILm = √FR − 1 ILm = √

α ILm . (1.503)

1.18 Noninductive Coils

In some applications, it is desired to have a noninductive coil. Precision resistors are usually non-
inductive. For example, current probes require noninductive resistors. A noninductive coil is usually
made using closely spaced, parallel windings, called the bifilar winding, as illustrated in Fig. 1.33a.
Therefore, every coil turn has an adjacent turn, which carries current in the opposite direction. The
magnetic fields generated by the adjacent turns cancel each other, as shown in Fig. 1.33b. As a result,
the coil does not store magnetic flux and presents no self-inductance.

1.19 Summary

Magnetic Laws
• A field is a spatial distribution of a scalar or vector quantity.

• Field lines may be used for visualization of the behavior of a field.

• A field for which the line integral around the closed path is zero is conservative. A field is
conservative or irrotational if ∇ × B = 0.

• The sources of magnetic fields H and B are moving charges, that is, the electric current i .

• The source of electric fields E and D is the electric charge Q .

• The divergence represents the rate of change of a flow.

• The curl represents the rotation of a flow.

• The MMF F = Ni is a source magnetic flux in a magnetic circuit.

• Magnetic fields can be categorized as self, proximity, mutual, and fringing magnetic fields.

• The instantaneous magnetic field vector is a function of position and time.

• The phasor of magnetic field vector is a function of position only.

• A time-varying current in an inductor produces a changing magnetic flux, which induces a voltage
between the terminals of an inductor.

• The RHR states that if the fingers of the right hand are placed around the coil in the direction of
the current, the magnetic flux produced by the current is in the direction of the thumb.
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• Ampère’s law describes the relationship between the (conduction, convection, or displacement)
current and the magnetic field intensity produced by this current.

• Both conductive and displacement currents induce the magnetic field.

• Ampère’s law states that the line integral of magnetic field intensity H around a closed contour C
is equal to the current enclosed by the contour.

• Faraday’s law states that an AC voltage is induced in a coil, which contains a time-varying magnetic
flux, regardless of the source of the magnetic flux.

• According to Faraday’s law, the voltage (EMF) induced in closed circuit is equal to the time rate
of change of the magnetic flux linkage v = −dλ/dt = −Ndφ/dt .

• In the inductor, the induced voltage is proportional to the number of turns N and the time rate of
change of the magnetic flux dφ/dt .

• A magnetostatic magnetic field produces no current flow; however, a time-varying magnetic field
produces an induced voltage (EMF) in a closed circuit.

• Ohm’s law describes the relationship between the conduction (or drift) current density Jcond and
the electric field intensity E , that is, Jcond = σE.

• Convection current and displacement current do not obey Ohm’s law.

• A curl-free vector field is called a irrotational or a conservative field.

• The Biot–Savart’s law allows us to calculate the magnetic field intensity produced by a small
current element at some point in space. This law states that the differential field intensity dH
produced by the differential current element Id l at a point P is proportional to the product Idl and
sin of the angle θ between the element and the line connecting P and the element and inversely
proportional to the square of the distance R between P and the element.

• According to Lenz’s law, the direction of the EMF is such that the current forced by the EMF
induces a magnetic field that opposes the change in the applied magnetic field. The induced currents
never support and always oppose the changes by which they are induced.

• Power is defined as the time rate of change of energy.

• The Poynting vector represents the direction and the magnitude of the surface power flow density
of electromagnetic fields at any point in space, that is, the rate of energy transfer per unit area.
This vector is equal to the cross product of the electric and magnetic fields S = E × H.

• The Poynting theorem states that the rate of decrease in the energy stored in electric and magnetic
fields in volume V , less the energy dissipated as heat, is equal to the power leaving the closed
surface S bounding the volume V .

• The magnetic flux density B outside a very long current-carrying wire is inversely proportional to
the distance from the axis of the wire.

• Joule’s law states that the total power loss in a volume V is

PD =
∫ ∫ ∫

V
J · EdV . (1.504)

Reluctance
• The reluctance is directly proportional to the length of the core mean magnetic path lc and inversely

proportional to the relative permeability μrc and the core cross-sectional area Ac through which
the magnetic flux φ flows.
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• The magnetic flux always takes the path with the highest permeability μ because the lowest
reluctance occurs at the highest permeability.

• The magnetic flux always flows through the lowest reluctance.

Inductance
• The inductor sinusoidal current legs the inductor sinusoidal voltage by 90◦.

• The inductance (or self-inductance) of a wire-wound inductor depends on its geometry and is
proportional to the square of the number of turns N .

• The inductance is proportional to the ratio of the core cross-sectional area to the MPL Ac/lc .

• The inductance of an inductor with a ferromagnetic core is μrc times higher than that of an air-core
inductor.

• An inductor has a maximum value of the ampere-turn product (F = N Im)max limited by the core
saturation flux density Bs .

• The self-inductance can be categorized as an internal inductance and the external inductance.

• The internal inductance is related to the magnetic field inside a conductor itself.

• The external inductance is related to the magnetic field outside a conductor.

• The winding turns should be evenly spaced to achieve consistent inductance and reduce leakage
inductance.

Core Saturation
• At the core saturation, the magnetic flux density B approaches its maximum value known as the

saturation flux density Bs . For B > Bs , μr = 1.

• Core saturation can be avoided by reducing the peak value of the magnetic flux φ in the core or
by increasing core cross-sectional area Ac so that φ/Ac < Bs .

• It is difficult to avoid core saturation during transient circuit operation when the transient inductor
current is large.

Air Gap
• An air gap is used to prevent core saturation and to make the inductance almost independent of

μrc , yielding good inductance repeatability.

• Most of the MMF F = Ni is dropped across the air gap.

• The air gap contains nearly all of the magnetic field energy for high-permeability cores.

• Typically, 95% of inductance comes from the gap for inductors with high-permeability cores.

• An air gap in the core increases the energy storage capability of an inductor or a transformer.

• The core relative permeability μrc varies considerably with temperature and current. In contrast,
the effective relative permeability is less dependent on the temperature and current. Therefore, it
is desirable to maintain Rc � Rg to achieve a predictable and stable inductance.

• The effective relative permeability of the core is proportional to the ratio lc/lg .

• The inductance of an inductor with an air gap is lower than the inductance of an inductor without
an air gap.
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Fringing Effect
• Whenever the core is excited, the fringing flux is present around the air gap, reducing the reluctance,

increasing the inductance, and causing power losses.

• Fringing flux represents a larger percentage of the total flux for larger gaps.

• Fringing flux and inductor losses can be reduced by dividing a large air gap into several shorter
air gaps.

• The fringing flux reduces the total reluctance R and increases the inductance L. Therefore, the
number of turns should be reduced if the exact value of the inductance is required.

• The fringing field decreases substantially within one gap length distance lg from the edge of the
core.

Power Losses
• Power losses in inductors and transformers consist of winding and core losses.

• Eddy currents are induced in conductors by time-varying magnetic fields.

• Core losses consist of hysteresis loss and eddy-current loss.

• A distributed air gap along the magnetic path reduces the winding loss as compared to the winding
loss due to a single gap. This is because the radial component of the magnetic flux is reduced.

• The impact of the radial component of the magnetic flux can be reduced by increasing the distance
between the winding and the core. This distance can be increased by increasing the thickness of
the bobbin.

• The winding should be moved away from the air gap by a distance, which is equal to twice the
air-gap length 2lg .

Shielding
• A shield can be used to reduce EM emission by inductors and transformers.

• The thickness of the shield foils should be low compared to the skin depth.

• As the distance between the shield and the inductor decreases, the inductance also decreases.

Self-Resonant Frequency
• The SRF of an inductor is the resonant frequency of the resonant circuit formed by the inductance

and the stray capacitance.

• The inductor impedance is capacitive above the SRF f > fr .
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1.21 Review Questions

1.1. What is the MMF?
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1.2. What is the magnetic flux?

1.3. What is the magnetic field intensity?

1.4. What is the magnetic flux density?

1.5. What is the magnetic linkage?

1.6. Define relative permeability.

1.7. What is the reluctance of a core?

1.8. What is the magnetic circuit? Give an example.

1.9. Can magnetic field exist in a good conductor?

1.10. State Ampère’s circuital law.

1.11. State Faraday’s law.

1.12. State Lenz’s law.

1.13. What is Joule’s law?

1.14. What is the point (microscopic) form of Ohm’s law?

1.15. Write Maxwell’s equations in differential and integral forms.

1.16. Write Maxwell’s equations for good conductors.

1.17. State Poynting’s law.

1.18. Write Biot–Savart’s law.

1.19. Derive Joule’s law.

1.20. Define power.

1.21. What is core saturation?

1.22. Define an inductance of a linear inductor.

1.23. Define an inductance of a nonlinear inductor.

1.24. What is the core inductance factor?

1.25. How is the inductance of a coil related to its number of turns?

1.26. What is the effect of an air gap on the inductance?

1.27. What is the fringing factor?

1.28. What is the effect of an air gap on core saturation?

1.29. Where is the magnetic energy stored in an inductor with an air gap?

1.30. Is the magnetic field intensity in the air gap higher or lower than that in the core?

1.31. Is the magnetic flux density in the air gap higher or lower than that in the core?

1.32. What is the volt–second balance?

1.33. Give expressions for magnetic energy in terms of H and B .

1.34. What are the mechanisms of power losses in magnetic components?

1.35. What are winding losses?

1.36. What is hysteresis loss?

1.37. What is eddy-current loss?
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1.38. What are the effects of eddy currents on winding conductors and magnetic cores?

1.39. What is the SRF?

1.40. What is the difference between fringing flux and leakage flux?

1.41. The line integral of the magnetic field intensity H over a closed contour is zero. What is the
net current flowing through the surface enclosed by the contour?

1.22 Problems

1.1. A current flows in the inner conductor of a long coaxial cable and returns through the outer con-
ductor. What is the magnetic field intensity in the region outside the coaxial cable? Explain why.

1.2. Sketch the shape of the magnetic field around a current-carrying conductor and show how the
direction of the field is related to the direction of the current in the conductor.

1.3. A toroidal inductor has the number of turns N = 20, the inner radius a = 1 cm, the outer
radius b = 2 cm, and the height h = 1 cm. The core relative permeability is μrc = 100. Find
the inductance.

1.4. An inductor has N = 300 turns, B = 0.5 T , and carries a current I of 0.1 A. The length lc =
15 cm and cross-sectional area Ac = 4 cm2. Find the magnetic flux intensity, magnetic flux,
and flux linkage.

1.5. An inductor has μrc = 800, N = 700, φ = 4 × 10−4 Wb, lw = 22 cm, and Ac = 4 × 10−4 m2.
Find the current I .

1.6. An inductor has L = 100 μH, lc = 2.5 cm, and Ac = 2 cm2. Find the number of turns N .

(a) For μrc = 1.

(b) For μrc = 25.

(c) For μrc = 25 and lg = 3 mm.

(d) For μrc = 2500 and lg = 3 mm.

1.7. A core has AL = 30 μH/100 turns. Find N to make an inductor of 1 μH.

1.8. A toroidal core has N = 500, μrc = 200, Ac = 4 cm2, r = 2 cm, Im = 1cA, f = 10 MHz,
ρw = ρCu = 1.724 × 10−6 �·cm, and ρc = 105 �·m. Find L, AL, R, Hm , Bm , φm , and λm .

1.9. A toroidal core of μrc = 3000 has a mean radius R = 80 mm and a circular cross section with
radius b = 25 mm. The core has an air gap lg = 3 mm and a current I flows in a 500-turn
winding to produce a magnetic flux of 10−4 Wb. Neglect the leakage flux.

(a) Determine the reluctance of the air gap, the reluctance of the core, and the total reluctance
of the core with air gap.

(b) Find Bg and Hg in the air gap and Bc and Hc in the core.

(c) Find the required current I .

1.10. An inductor has N = 100, Ac = 1 cm2, Bs = 0.3 T , vL = 10 cos ωt (V). Find λ(t) and fmin .

1.11. Derive an expression for the internal and external inductances of a two-wire transmission
line consisting of two parallel conducting wires of radius a that carry currents I in opposite
directions. The axis-to-axis distance between the two wires is d � a .

1.12. The number of turns of a 100-μH inductor is doubled, while maintaining its cross-sectional
area, length, and core material. What is the new inductance?
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Figure 1.34 An inductor with an EE core and an air gap

1.13. An inductor with an EE magnetic core has an air gap in the center leg of length lg = 1 mm
and μrc = 3000, as shown in Fig. 1.34. The height of the mean magnetic path is h = 10 cm.
The width of the mean magnetic path at the core base is w = 16 cm. The cross-sectional area
of all the legs is Ac = 4 cm2. The winding is placed on the center leg. The number of turns is
N = 100. The inductor current is iL = Im sin ωt = 2 sin 2π60t (A).

(a) Draw the magnetic circuit and its single-loop equivalent circuit.

(b) Find the reluctance of each leg, the reluctance of the air gap, and the total reluctance of
the core with the air gap.

(c) Find the amplitude of the magnetic flux in each leg and the air gap.

(d) Find the amplitude of the magnetic flux density in each leg and the air gap.

(e) Find the amplitude of the magnetic field intensity in each leg and the air gap.

(f) Determine the inductance.

1.14. An inductor with an air-gapped CC cut core shown in Fig. 1.35 has μrc = 105, N = 66,
lc = 17 cm, and the length of the air gap on each side of the CC core is 0.5 mm. The cross
section of all legs is a rectangular with dimensions a = 1.28 cm and b = 0.98 cm. Neglect the
fringing effect of the magnetic flux.

(a) Determine the reluctance of the core, the reluctance of the gap, and the total reluctance.

(b) Find the ratio of the gap reluctance to the core reluctance.

(c) Determine the inductance.

a

b

F = Ni N

i

Figure 1.35 Inductor with a CC cut core
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1.15. Consider the inductor described in Problem 1.14, neglecting the fringing flux. The inductor
current is i = Im sin ωt = 0.5 sin ωt (A).

(a) Find the magnetic flux densities in the core and the gaps.

(b) Sketch the magnetic flux densities in the core and the gaps.

(c) Find the magnetic field intensities in the core and the gaps.

(d) Sketch the magnetic field intensities in the core and the gaps.

(e) Find the maximum magnetic energies stored in the core and both gaps.

(f) Find the maximum magnetic energy densities stored in the core and both gaps.

1.16. An air-gapped inductor with a CC supermalloy cut core shown in Fig. 1.35 has a = 12.8 mm,
b = 9.8 mm, μrc = 105, and N = 66. The air-gap length on each side is 0.5 mm. Find Ff , L,
and Lf .

1.17. An inductor with an air-gapped CC cut core shown in Fig. 1.35 has μrc = 105, Bs = 1.5 T,
N = 66, lc = 17 cm, and the length of the air gap on each side of the CC core is 0.5 mm. The
cross section of all legs is rectangular with dimensions a = 1.28 cm and b = 0.98 cm. The
inductor current is sinusoidal. Neglect the fringing effect of the magnetic flux.

(a) Determine the maximum amplitude of magnetic flux density in the core and in the gaps for
operation just below core saturation.

(b) Determine the maximum amplitude of magnetic field intensity in the core and in the gaps
for operation just below the core saturation.

(c) Determine the amplitudes of magnetic energy densities stored in the core and the air gaps.

(d) Determine the amplitudes of magnetic energies stored in the core and the air gaps.

(e) Determine the maximum amplitude of the inductor current just below the core saturation.

1.18. An inductor has the inductance L = 100 μH, ESR rL = 1.5 �, and self-capacitance C = 10 pF.

(a) Find the quality factor of the inductor at f = 1 MHz.

(b) Find the SRF of the inductor.


