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Introduction

1.1 History of the Force Analogy Method

The force analogy method (FAM) is an analytical tool for solving structural analysis problems
with material nonlinearity. It uses the concept of “inelastic displacement”, or more commonly
known as the “residual displacement” in the formulation, where the nonlinear stiffness force
due to material nonlinearity is represented by a change in displacement instead of a change
in stiffness. The original concept of FAM was first introduced by Lin (1968), where the pro-
posed method was actually applied to stress and strain in continuum mechanics with the ine-
lastic behavior defined by plastic strain. Unfortunately, this concept only found limited
acceptance because it was developed at approximately the same time as researchers were focus-
ing their attention on studying the deformation of solids using numerical simulation methods,
such as the finite element method with the inelastic behavior defined by changing stiffness.
Although the finite element method is a powerful tool and widely used, the procedure of
the step-by-step numerical integration is unavoidable, time consuming, cumbersome, and
costly for practical design in 1980s and even today.
Recognizing that nonlinear finite element method of analysis is a time-consuming process,

many structural engineers are constantly seeking a simplified dynamic analysis approach for
analyzing nonlinear multi-degree-of-freedom (MDOF) systems to carry out their structural
designs. One simplified approach is to represent the nonlinear MDOF system as an elastic sys-
tem, in which structural response can be estimated by response spectra analysis of using the
convenient and efficient modal superposition method. Newmark (1970) proposed a well-
known method of extending the elastic response spectra analysis to engineering design of non-
linear systems through the use of inelastic response spectra. However, the method is strictly
valid for single-degree-of-freedom (SDOF) systems and thus is inadequate for the analysis
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of nonlinearMDOF systems due to the changing stiffness matrix. The changing stiffness matrix
in the equations of motion for the nonlinear MDOF system is the drawback of this method,
since the nonlinearity effect is coupled in each and every mode. Thus, significant effort was
spent towards extending the modal superposition method in elastic analysis to inelastic anal-
ysis. One effort similar to the FAM, where the restoring force term of nonlinear MDOF systems
was expressed by the sum of the elastic restoring force and additional external force, was
presented by Villaverde (1988, 1996). After moving the additional external force term to
the right-hand side of the equation of motion, the left-hand side of the equation is interpreted
as an equivalent linear system. A different approximate modal decomposition method for the
equation of motion was subsequently presented by Georgoussis (2008). While the above works
emphasized the development of simplified analysis methods, only simple system models and
load–deformation relationships, such as those shown in Figure 1.1, were selected to explore the
physical significance of the external force term. The relationship between the external force
term and inelastic behavior of structural members were ignored at that time.
The same problem was encountered by Wong (1996) during his study on the structural con-

trol of nonlinear structures. Since the theory of state space dynamic analysis, as a computing
platform for performing structural control calculation, was only applicable to elastic systems, it
was an obvious barrier when apply the structural control technique in nonlinear structures.
Thus, a method of analyzing the inelastic response of the building by recovering the forces from
the states of the building was introduced. Subsequently, Wong and Yang (1999) formally pub-
lished the first application of the FAM for civil structures where the method was formulated in
force–deformation space for inelastic dynamic analysis. The fundamental concept of the FAM
is that each inelastic deformation in the structure is formulated as a degree of freedom such that
the initial stiffness matrix is computed only once at the beginning and can be used throughout
the inelastic analysis. Coupling the FAM with the state space formulation for dynamic analysis
provides an accurate, efficient, and stable solution algorithm such that it can be used to analyze
structures with various material properties, not only for elastic–plastic property but also for
both hardening and softening properties. In addition, the external force term was interpreted
as the force analogy, which causes inelastic deformation of structural members at certain loca-
tions in the structure. The inelastic deformation includes nonlinear extension of the braces in a
braced frame, plastic rotation of the beams and columns in a moment resisting frame, or yield-
ing of the base isolators in a base isolation system. Since then, Zhao and Wong (2006) further
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Figure 1.1 SDOF system and restoring force model.
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developed the FAM by incorporating the geometric nonlinear effect and presented a compre-
hensive nonlinear approach for inelastic framed structures, including geometric nonlinearity
and material nonlinearity. The approach uses finite element formulation to derive the elemental
stiffness matrices, particularly to derive the geometric stiffness matrix in a general form.
However, the geometric stiffness matrix used in the nonlinear formulation was not exact,
and further improvement by Wong (2012, 2013) was recently conducted and will be presented
in Chapter 7.
Although Wong and Yang (1999) pointed out that all material properties can be used in the

FAM and they have no influence on the algorithm stability, only nonlinear response of a steel
moment-resistant frame with simple bilinear moment versus plastic rotation relationship was
mentioned in the study. In fact, structural members often exhibit complex cyclic inelastic
behavior (i.e. buckling of braces, strength degradation of reinforced concrete members, as
shown in Figure 1.2) when they undergo excessive dynamic loadings, and some well-known
models have been proposed and developed. It is clear that updating element local stiffness
matrices, re-assembling them and performing static condensation to derive system global tan-
gent stiffness matrix is not necessary in the FAM. However, existing material models cannot be
applied in the FAM directly because they often reveal a highly nonlinear relation of the external
force and total deformation rather than plastic deformation. Since the global behavior of non-
linear structures is closely associated with the relationship between the internal force and plastic
deformation, some investigations were carried out to extend the application of the FAM for
structural members with different material behaviors.
Chao and Loh (2007) used three different plastic mechanisms to simulate the reinforced con-

crete beam-column elements in the FAM. The load versus deformation comparison shows that
the proposed algorithm gives results very similar to experimental data. Additionally,
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Figure 1.2 Complex cyclic behaviors of structural members.
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the P-Delta effect also has been considered in this study. Li et al. (2013a) implemented an exist-
ing brace physical theory model for use in the FAM. In the procedure, the physical theory
model developed by Dicleli and Calik (2008) is chosen for implementation in the FAM,
because it is a relatively simple and efficient model that has been shown to provide reasonable
accuracy. Two sliding plastic mechanisms, which simulate axial displacements produced by
transverse brace displacement and the so-called growth effect, are used to represent the inelastic
brace behavior. The resulting model is shown to provide good agreement with experimental
data. Moreover, this brace model is implemented in a frame where inelastic response occurs
in both the frame and braces to demonstrate the value of the brace model and the potential
for simulating complex inelastic dynamic behavior of concentric braced frames with the
FAM. The model is validated against prior experimental results to be an accurate, efficient,
and stable algorithm for conducting dynamic analysis when coupled with the state space
formulation.
In addition, Li and Zhang (2013b) developed a framework for the seismic damage anal-

ysis of reinforced concrete frame structures considering the stiffness degradation based on
the FAM. A damage hinge model, which is located at the ends of columns and beams, is
proposed for modeling damage behavior due to concrete cracking. As a damage effect is
implemented by introducing the damage indices as internal variables, the real-time struc-
tural performance and damage level can be evaluated during the computation process.
The damage hinge, together with the plastic hinge arising from structural materials, forms
a complete inelastic mechanism including stiffness degradation behavior for reinforced con-
crete frame structures. Since only initial stiffness is used throughout the dynamic compu-
tation analysis, the usage of the state space formulation, as an outstanding advantage of the
FAM, is retained and makes the real-time damage analysis more accurate, efficient, and
stable. As for the reinforced concrete shear wall member, a procedure for modeling the
hysteretic response of reinforced concrete shear wall members based on the existing models
in the FAM was established and will be discussed in Chapter 6. An reinforced concrete
(RC) flexural member model, where the strength deterioration and stiffness degradation
effect due to increasing loading cycles, and the pinching behavior that mainly roots in
the crack opening and closing during loading reversals are considered, was established
and incorporated in the FAM. The methodology will be presented in Chapter 4 together
with several examples.

1.2 Applications of the Force Analogy Method

Because the FAMhas two outstanding benefits in terms of computation efficiency and stability,
it has the advantage over other analysis tools for the following applications:

1.2.1 Structural Vibration Control

Since the concept of structural vibration control in civil engineering was proposed by J.T.P Yao
in 1972, it has made considerable progress in the development of theoretical and experimental
researches. A number of structural control techniques and strategies have been developed and
applied in practices, specifically in seismic regions. The structural vibration control began in
the mechanical engineering in the early 20th century and the majority of control theories,
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includes the linear quadratic regulator, modal control, smart control, H2 control, H∞ control,
etc., and algorithms were applied to elastic systems and have been matured. These control algo-
rithms together with dynamic analysis procedure run together for determining controlling force
of actuators, as shown in Figure 1.3. However, structural members in civil engineering build-
ings will always experience inelastic deformation when the buildings are subjected to excessive
loadings. This causes significant problems, such as time delay, incompatible program, etc., dur-
ing the combination of inelastic computation procedures and control algorithms.
The emergence of the FAM provides a way to solve this type of problem because the

left-hand side of the equation of motion of nonlinear systems retains the linear properties
of corresponding elastic system. Thus, many problems, which are relatively difficult to
answer while applying traditional control algorithms to inelastic systems, have been solved
to some degrees using the FAM. Wong and Yang (2003) and Wong (2005) proposed inelastic
structural control algorithms, which compensates for the time delay that happens in practical
control systems, through incorporating the FAM with the predictive instantaneous optimal
control algorithm and the predictive instantaneous optimal control algorithm, respectively.
Moreover, since the earthquake ground velocity is not at high frequency as compared with
the ground acceleration, it can be predicted at certain time steps beforehand in the real-time
domain with higher accuracy. Thus, Pang and Wong (2006) proposed a simple control
algorithm expressed using the input ground velocity, namely the Predictive Instantaneous
Optimal Control algorithm.
To capture the damaging effects during earthquake ground motions, the FAM is used

to characterize structures responding in the inelastic domain. Li and Li (2011a) developed
an approach based on the FAM to analyze the dynamic response of structure with energy-
dissipation devices. The proposed algorithm is applicable to a variety of energy-dissipation
devices by turning them to the equivalent force applied at the joints of the frame. Wong
(2008) and Wong and Johnson (2009) presented studies on the use of tuned mass dampers
as a passive energy-dissipation device to investigate the benefits of using such devices in
reducing the inelastic structural responses. In addition, Wong (2011a) presented a simple
numerical algorithm based on the combination of the state space method and FAM to
calculate the inelastic dynamic analysis of structures with nonlinear fluid viscous dampers.
Finally, Li et al. (2011b) proposed a control algorithm for inelastic structures through
combining the market-based control strategy and force analogy method. The framework of
this work will be discussed in Chapter 9.

Sensor Dynamic analysis—FAM

Control algorithmActuatorStructureEnvironmental load

Figure 1.3 The framework for the combination of FAM and control algorithm.
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1.2.2 Modal Dynamic Analysis Method

Since each term on the left-hand side of the equation of motion for nonlinear MDOF systems is
feasible for modal decomposition like elastic systems, it suggests that the FAM is probably a
goodbaseline for applying themodal dynamic analysismethod to solve nonlinearMDOFsystem
problems.Wong (2011b) extended themodal superposition to the nonlinear domain by using the
FAM to addressmaterial nonlinearity. In addition, because linearmodal superposition has found
great acceptance in performance-based seismic engineering, geometric nonlinearity is incorpo-
rated into the analysis using stability functions. Through the combination of FAM, stability func-
tions, the state spacemethod, andmodal superposition, numerical simulations are performed and
results are demonstrated to be both accurate and efficient. Moreover, a simple analysis tool for
capturing the effect of rigid-endoffsets in framed structures under earthquake excitation has been
incorporated into the abovenonlinearmodal analysismethodologybyWong (2012).Author also
demonstrated that the equation of motion for nonlinear MDOF systems in the FAM can be
uncoupled, but two other governing equations in the FAM relating the internal force, such as
the moment and force of structural members are not decomposable. However, uncoupled modal
SDOF system responses can be determined by incorporating the FAMwith the modal pushover
analysis method such that themodal superpositionmethod is suitable for the solution of the non-
linearMDOF system. Although the procedure presented is still an approximationmethod due to
the modal pushover analysis method application, its value and potential for the maximum dis-
placement estimation of the nonlinear MDOF system based on the FAM were validated. The
procedure will be discussed in Chapter 8 along with examples.

1.2.3 Other Design and Analysis Areas

Wong and Yang (2002) derived the plastic energy dissipation of structures based on the FAM
and used the energy as the response parameter in evaluating the performance of the structure,
andWong andWang (2003) extended the energy-balance equation to include control energy as
an addition form of energy dissipation to resist earthquake inputs. In these studies, the FAM
was modified and extended to analyze real moment-resisting frames with zero rotational mass
moment of inertia using the method of static condensation. The static condensation method in
the FAM will be discussed in Chapter 2 for static analysis and Chapter 3 for dynamic analysis.
Wang and Wong (2007) introduced the FAM for the first time into the field of stochastic

dynamic analysis for inelastic structures. This stochastic FAMmaintains the advantage of high
efficiency in the numerical computation of the FAM in dynamic analysis. According to the
stochastic FAM, the variance covariance functions of inelastic dynamic responses, such as dis-
placement, velocity, inelastic displacement of the entire moment-resisting framed structures,
and plastic rotation at individual plastic hinge location, can be produced for structures subjected
to random excitation.

1.3 Background of the Force Analogy Method

The first step in learning the force analogy method for solving nonlinear structure pro-
blems is to understand the matrix method of structural analysis. Because understanding
each term in the stiffness matrix (i.e. 12EI/L3, 6EI/L2, 4EI/L, and 2EI/L) is so important

6 Theory of Nonlinear Structural Analysis



to the presentations in the subsequent chapters, it is appropriate and worthwhile to
derive the elastic stiffness matrix for bending in this section for the completeness
of the book.
Consider a beam of length L with uniform elastic modulus E and moment of inertia I that is

subjected to loadings at the two ends. Due to the loadings, the deformation at the two ends (i.e.
translations and rotations) of the beam can be related to the amount of shear and moments at the
two ends through a stiffness matrix expressed in the following form:

V1

m1

V2

m2

2
664

3
775=

k11 k12 k13 k14
k21 k22 k23 k24
k31 k32 k33 k34
k41 k42 k43 k44

2
664

3
775

v1
θ1
v2
θ2

2
664

3
775 ð1:1Þ

where V is the shear,m is the moment, v is the transverse displacement, and θ is the rotation. The
subscript ‘1’ represents the quantities at the 1-end, and the subscript ‘2’ represents the quantities
at the 2-end. Finally, k represents the entries in the stiffness matrix. To determine the stiffness
matrix, four cases of a beam deflection are separated as shown in Figure 1.4 using the unit dis-
placement method. Here, V1i, m1i, V2i, and m2i represent the fixed-end shears and moments of
the beam, and i = 1,…, 4 represents the four cases of unit displacement patterns of beam
deflection.
Using the classical Bernoulli–Euler beam theory with “plane sections remain plane”, where

the moment is proportional to the curvature, the governing equilibrium equation describing the
deflection of the beam member can be written as

EIv00ð Þ00 = 0 ð1:2Þ

By assuming EI is constant along the member, the solution to the fourth-order ordinary differ-
ential equation is:

v=Ax3 +Bx2 +Cx+D ð1:3Þ

θ=1

V12m12 V22

m22
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Figure 1.4 Displacement patterns and the corresponding fixed-end forces.
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and the corresponding, rotation, moment, and shear equations become:

θ xð Þ= v0 = 3Ax2 + 2Bx+C ð1:4aÞ
m xð Þ=EIv00 =EI 6Ax + 2Bð Þ ð1:4bÞ
V xð Þ =EIv000 =EI 6Að Þ ð1:4cÞ

In order to solve for the constants in Eq. (1.3), the following four cases of boundary
conditions are considered.

Case 1: Imposing the boundary conditions v(0) = 1, v0(0) = 0, v(L) = 0, and v0(L) = 0 gives

v 0ð Þ= 1 : D = 1 ð1:5aÞ
v0 0ð Þ= 0 : C = 0 ð1:5bÞ
v Lð Þ= 0 : AL3 +BL2 +CL +D = 0 ð1:5cÞ
v0 Lð Þ= 0 : 3AL2 + 2BL+C = 0 ð1:5dÞ

Solving simultaneously for the constants in Eq. (1.5) gives

A= 2=L3, B= −3=L2, C = 0, D= 1 ð1:6Þ

Now substituting the constants in Eq. (1.6) into the shear equation in Eq. (1.4c)
and the moment equation in Eq. (1.4b) evaluated at appropriate end points gives the
fixed-end forces as labeled in Figure 1.4 (Case 1) as:

V11 =EIv
000 0ð Þ =EI 6Að Þ = 12EI=L3 ð1:7aÞ

m11 = −EIv00 0ð Þ = −EI 2Bð Þ= 6EI=L2 ð1:7bÞ
V21 = −EIv000 Lð Þ = −EI 6Að Þ= −12EI=L3 ð1:7cÞ
m21 =EIv

00 Lð Þ=EI 6AL + 2Bð Þ = 6EI=L2 ð1:7dÞ

In matrix form, this is given as

V11

m11

V21

m21

2
664

3
775=

12EI=L3 × × ×
6EI=L2 × × ×

−12EI=L3 × × ×
6EI=L2 × × ×

2
664

3
775

1
0
0
0

2
664

3
775 ð1:8Þ

Note that the minus signs in front of the calculations for m1i and V2i are used because of the
differences in sign convention between the classical beam theory and the theory for stiffness
method of structural analysis.
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Case 2: Imposing the boundary conditions v(0) = 0, v0(0) = 1, v(L) = 0, and v0(L) = 0 gives

v 0ð Þ = 0 : D= 0 ð1:9aÞ

v0 0ð Þ= 1 : C = 1 ð1:9bÞ
v Lð Þ = 0 : AL3 +BL2 +CL= 0 ð1:9cÞ
v0 Lð Þ = 0 : 3AL2 + 2BL +C = 0 ð1:9dÞ

Solving simultaneously for the constants in Eq. (1.9) gives

A= 1=L2, B= −2=L, C = 1, D = 0 ð1:10Þ

Now substituting the constants in Eq. (1.10) into the shear equation in Eq. (1.4c) and the
moment equation in Eq. (1.4b) evaluated at appropriate end points gives the fixed-end forces
as labeled in Figure 1.4 (Case 2) as:

V12 =EIv
000 0ð Þ=EI 6Að Þ = 6EI=L2 ð1:11aÞ

m12 = −EIv00 0ð Þ = −EI 2Bð Þ= 4EI=L ð1:11bÞ
V22 = −EIv000 Lð Þ= −EI 6Að Þ= −6EI=L2 ð1:11cÞ
m22 =EIv

00 Lð Þ=EI 6AL+ 2Bð Þ= 2EI=L ð1:11dÞ

In matrix form, this is given as

V12

m12

V22

m22

2
664

3
775=

× 6EI=L2 × ×
× 4EI=L × ×
× −6EI=L2 × ×
× 2EI=L × ×

2
664

3
775

0
1
0
0

2
664

3
775 ð1:12Þ

Case 3: Imposing the boundary conditions v(0) = 0, v0(0) = 0, v(L) = 1, and v0(L) = 0 gives

v 0ð Þ= 0 : D = 0 ð1:13aÞ
v0 0ð Þ = 0 : C = 0 ð1:13bÞ
v Lð Þ= 1 : AL3 +BL2 +CL = 1 ð1:13cÞ
v0 Lð Þ= 0 : 3AL2 + 2BL+C = 0 ð1:13dÞ

Solving simultaneously for the constants in Eq. (1.13) gives

A= −2=L3, B= 3=L2, C = 0, D= 1 ð1:14Þ
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Now substituting the constants in Eq. (1.14) into the shear equation in Eq. (1.4c) and the
moment equation in Eq. (1.4b) evaluated at appropriate end points gives the fixed-end forces
as labeled in Figure 1.4 (Case 3) as:

V13 =EIv
000 0ð Þ=EI 6Að Þ = −12EI=L3 ð1:15aÞ

m13 = −EIv00 0ð Þ= −EI 2Bð Þ = −6EI=L2 ð1:15bÞ

V23 = −EIv000 Lð Þ= −EI 6Að Þ= 12EI=L3 ð1:15cÞ

m23 =EIv
00 Lð Þ=EI 6AL + 2Bð Þ = −6EI=L2 ð1:15dÞ

In matrix form, this is given as

V13

m13

V23

m23

2
664

3
775=

× × −12EI=L3 ×
× × −6EI=L2 ×
× × 12EI=L3 ×
× × −6EI=L2 ×

2
664

3
775

0
0
1
0

2
664

3
775 ð1:16Þ

Case 4: Finally, imposing the boundary conditions v(0) = 0, v0(0) = 0, v(L) = 0, and
v0(L) = 1 gives

v 0ð Þ = 0 : D= 0 ð1:17aÞ

v0 0ð Þ = 0 : C = 0 ð1:17bÞ
v Lð Þ = 0 : AL3 +BL2 +CL= 0 ð1:17cÞ

v0 Lð Þ = 1 : 3AL2 + 2BL+C = 1 ð1:17dÞ

Solving simultaneously for the constants in Eq. (1.17) gives

A= 1=L2, B= −1=L, C = 1, D = 0 ð1:18Þ

Now substituting the constants in Eq. (1.18) into the shear equation in Eq. (1.4c) and the
moment equation in Eq. (1.4b) evaluated at appropriate end points gives the fixed-end forces
as labeled in Figure 1.4 (Case 4) as:

V14 =EIv
000 0ð Þ=EI 6Að Þ= 6EI=L2 ð1:19aÞ

m14 = −EIv00 0ð Þ = −EI 2Bð Þ= 2EI=L ð1:19bÞ
V24 = −EIv000 Lð Þ = −EI 6Að Þ= −6EI=L2 ð1:19cÞ
m24 =EIv

00 Lð Þ=EI 6AL+ 2Bð Þ= 4EI=L ð1:19dÞ
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In matrix form, this is given as

V14

m14

V24

m24

2
66664

3
77775
=

× × × 6EI=L2

× × × 2EI=L

× × × −6EI=L2

× × × 4EI=L

2
66664

3
77775

0

0

0

1

2
66664

3
77775

ð1:20Þ

In summary, based on the construction of the stiffness matrix using above four cases as
shown in Eqs. (1.8), (1.12), (1.16), and (1.20), the stiffness equation of the ith beam member
becomes:

V1

m1

V2

M2

2
6664

3
7775 =

12EI=L3 6EI=L2 −12EI=L3 6EI=L2

6EI=L2 4EI=L −6EI=L2 2EI=L

−12EI=L3 −6EI=L2 12EI=L3 −6EI=L2

6EI=L2 2EI=L −6EI=L2 4EI=L

2
6664

3
7775

v1
θ1
v2
θ2

2
6664

3
7775 ð1:21Þ

From Eq. (1.21), it can be seen that:

• The stiffness relating the transverse displacement at one end of the beam with end shears is
12EI/L3.

• The stiffness relating the transverse displacement at one end of the beamwith endmoments is
6EI/L2.

• The stiffness relating the rotation at one end of the beam with end shears is 6EI/L2.
• The stiffness relating the rotation at one end of the beam with end moment at the same end is
4EI/L.

• The stiffness relating the rotation at one end of the beamwith end moment at the opposite end
is 2EI/L.

Example 1.1 One-Story One-Bay Frame
Consider a one-story one-bay frame as shown in Figure 1.5(a). Assume the members are axially
rigid, this results in a three degrees of freedom system, one floor translation and two joint rota-
tions, as labeled in Figure 1.5(a) as v1, θ2, and θ3. Also assume that the beam and the two col-
umns are of the same length L and elastic modulus E, but the moment of inertias of each
member are as labeled in the figure. The global stiffness matrix relates v1, θ2, and θ3 at the
degrees of freedom with the corresponding applied forces, i.e.

F1

m2

m3

2
64

3
75=

K11 K12 K13

K21 K22 K23

K31 K32 K33

2
64

3
75

v1

θ2
θ3

2
64

3
75 ð1:22Þ

where F1, m2, and m3 are the global applied force and moments at the degrees of freedom as
shown in Figure 1.5(b).
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The objective here is to construct the global stiffness matrix in Eq. (1.22). Three displace-
ment patterns are used to construct this stiffness matrix as follows:

Case 1: Imposing the boundary conditions v1 = 1, θ2 = 0, and θ3 = 0
Figure 1.6 shows the displacement pattern and the corresponding applied forces required to
induce such displacement pattern. These applied forces give the first column of the stiffness
matrix as

F1

m2

m3

2
4

3
5=

12EI1=L3 + 12EI2=L3 × ×
6EI1=L2 × ×
6EI2=L2 × ×

2
4

3
5

1
0
0

2
4

3
5 ð1:23Þ

Case 2: Imposing the boundary conditions v1 = 0, θ2 = 1, and θ3 = 0
Figure 1.7 shows the displacement pattern and the corresponding applied forces required to
induce such displacement pattern. These applied forces give the second column of the stiffness
matrix as

F1

m2

m3

2
4

3
5=

× 6EI1=L2 ×
× 4EI1=L+ 4EI3=L ×
× 2EI3=L ×

2
4

3
5

0
1
0

2
4

3
5 ð1:24Þ

Case 3: Imposing the boundary conditions v1 = 0, θ2 = 0, and θ3 = 1
Figure 1.8 shows the displacement pattern and the corresponding applied forces required to
induce such displacement pattern. These applied forces give the third column of the stiffness
matrix as

F1

m2

m3

2
4

3
5=

× × 6EI2=L2

× × 2EI3=L
× × 4EI2=L+ 4EI3=L

2
4

3
5

0
0
1

2
4

3
5 ð1:25Þ

3

1 2

E, I3, L 

v1

θ3

E, I1, L E, I2, L

θ2

(a)
F1 m3

m2

(b)

Column

Column

Beam

Figure 1.5 One-story one-bay moment-resisting frame: (a) Three degrees of freedom system;
(b) Applied forces at the degrees of freedom.
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Based on Eqs. (1.23), (1.24), and (1.25), the global stiffness matrix is therefore con-
structed as:

K =
12EI1=L3 + 12EI2=L3 6EI1=L2 6EI2=L2

6EI1=L2 4EI1=L+ 4EI3=L 2EI3=L
6EI2=L2 2EI3=L 4EI2=L+ 4EI3=L

2
4

3
5
 v1
 θ2
 θ3

ð1:26Þ

12EI1
L3

12EI2
L3

6EI1
L2

6EI2
L23

1 2

v1=1 v1=1

Figure 1.6 Displacement pattern using unit displacement at v1.

θ2=1

6EI1
L2

4EI1
L

4EI3
L

2EI3
L3

1 2

Figure 1.7 Displacement pattern using unit displacement at θ2.
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Figure 1.8 Displacement pattern using unit displacement at θ3.
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Note that the global stiffness matrixK in Eq. (1.26) is symmetric – an important property that is
observed throughout this book.
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