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1
Introduction

Optimization theories and approaches have been extensively applied to power system
planning and operation problems. This is a rather traditional and ongoing research
area [1]. With the complication of power systems, the deregulation of the power
industry, and the development of smart grids, many new problems have emerged and
new methods have been developed. Many optimization theories and approaches have
acquired industrial application and introduced technical and economic benefits. The
mathematical optimizationmethods applied in power systems include linear program-
ming, nonlinear programming, mixed integer programming, dynamic programming,
artificial intelligence, stochastic programming, etc. This book focuses on the advanced
theories and approaches from the perspective of large-scale complex systems, rather
than the traditional ones. However, to begin with the fundamentals, wewill first review
the basic optimization applications in power system planning and operation.
The aims of this chapter are as follows:

1. To present a broad review of mathematical optimization applications to power
system planning and operation, which is the foundation for the theories and
approaches presented in the subsequent chapters.

2. To explain the basic concepts to those interested in the optimization field, but unfa-
miliar with power system problems and terminology. It is hoped that this chapter
may motivate some people to become involved in the challenging power field.

3. To summarize the results of traditional power system research, to allow the reader
to understand the differences among them and the more advanced approaches pre-
sented in books, and to encourage new development and further research.

To give the reader a unified mathematical description of different power system
optimization problems, the generalized notation used in this book, such as x and u
for variables, and f , h, and g for functions, and their power system meanings are
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2 Power System Optimization – Large-scale Complex Systems Approaches

explained. Vectors (lower-case) sometimes and matrices (upper-case) usually are in
bold face; and matrix transposition is indicated by a superscript T, such as AT.
The problems discussed include generation, transmission, and distribution expan-

sion planning, optimal operation problems such as hydrothermal unit commitment
and dispatch, optimal load flow and volt-ampere reactive (VAR) optimization, and
optimization models of electricity markets based on theories of microeconomics.
Numerous important works have appeared on these topics in books and journals all

over the world. It is an impossible task to discuss all of them. Since the objective of this
chapter is to introduce the basic concepts and methods of power system optimization,
we will lay the emphasis of our discussion on research reported by IEEE papers in
IEEE Transactions on Power Systems and Technical Meetings.

1.1 Power System Optimal Planning

Power system expansion planning is traditionally decomposed into load forecast-
ing, generation planning, and transmission planning. Load forecasting is the basis
for power system planning, which provides the basic data for calculation of electric
power and energy balance. Although generation planning and transmission planning
are essentially indivisible, these two issues have to be decomposed and solved sep-
arately and further coordinated due to their different focuses and the difficulty in
solving them as a whole.
Traditional power system planning is based on scheme comparison, which selects

the recommended scheme from a few of the viable options with some technical and
economic criteria. However, because this approach is empirical, the final result is not
necessarily optimal. With the fast development of power technologies, the rapidly
growing demand for electricity, and the increasingly diversified energy resources
used in power generation, the generation mix becomes increasingly complicated. On
the other hand, large-scale interconnected systems across different areas have been
formed gradually. All these factors have brought difficulties to the economic and
technical assessment of power system planning schemes, and traditional planning
approaches are difficult to adapt to these challenges. Fortunately, the development
of computer science, systems engineering, operational research, and other research
areas has provided new means for the optimization of power system planning. Theory
and practice in power system optimal planning have made considerable progress in
recent years. A number of commercial planning software packages have emerged
and their benefits have been affirmed in the power industry.
The objective of power system planning is to determine what schemes are the most

beneficial from the overall and long-term perspective. This requires us to choose the
best planning scheme from all possible choices. The application of power system
optimal planning theories and methods not only can have more accurate and com-
prehensive technical and economic evaluation, but also can evaluate the impacts of
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various uncertainties by sensitivity analysis, so that the planning results are produced
with a higher referential value.

1.1.1 Generation Expansion Planning

The objective of generation expansion planning is to choose the least expensive expan-
sion scheme (type, number, capacity, and location of generating units), in terms of
investment and operation costs, that satisfies certain constraints. The key constraints
are electric power and energy balance, which means that the total power and energy
produced by all the generating units can meet the requirement of demand. Other tech-
nical constraints, such as limitation of resources, also need to be met. Generally,
generation expansion is carried out over a planning horizon of many years, which
turns into a dynamic optimization problem.
Several key issues should be analyzed quantitatively in generation expansion plan-

ning, such as: annual investment flow and operating cost, quantity of primary energy
resources used in generation, reliability of electric power supply, etc. The investment
cost of building a particular plant in a given year is independent of the other decisions
in a given scheme. However, the operating cost is much more complicated, and is
related to the generation mix, system load, generating unit outages, transmission net-
work losses, availability and cost of energy from neighboring systems, fuel costs, etc.
Some influencing factors are intrinsically random, such as generating unit outages.
The fact that units must be added in discrete sizes presents a further complication.
Considering all these conditions, the mathematical model of generation expansion
planning is large-scale, nonlinear, discrete, and stochastic, which is a very difficult
problem to solve.
Generation expansion planning has long been of interest to researchers, and many

sophisticated and effective techniques have been developed. The approaches differ
in the questions they are intended to answer, the model details, and the optimization
methods.
The early work often used linear programming models [2, 3]. The objective func-

tions takes the following form:

J = ctx + dtu

where x denotes the capacities of different types of generating units installed in each
year and u specifies the energy produced by each power plant (or plant type). A number
of different load levels are considered here. The investment cost c and the operating
cost d should be calculated with the method of technological economics. The load
levels related to d and u are obtained by dividing estimates of the load duration curves
into a number of discrete segments (Figure 1.1). The variables u and x are related
through linear constraints so that a plant cannot produce power exceeding its installed
capacity. Other constraints limit the capacity of certain types of units and require total
capacity to exceed expected load. This formulation is a high-dimensional optimization
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Hours
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Figure 1.1 Typical load duration curve.

problem. Decomposition techniques such as Dantzig–Wolfe decomposition may be
needed to solve it.
A dynamic programming basedmodel of generation planning has been presented by

Booth [4, 5]. The method can handle integer variables and nonlinear constraints. The
random variables are treated with a probabilistic approach. As a significant innova-
tion, the expected outage rates for various units are considered by modification of the
load duration curve. The problem is formulated as: choose 𝑣(t) (capacity additions in
year t) to minimize

J = E

{
T∑
t=1

f (t, x(t), 𝑣(t),…)

}
(1.1)

where
x(t + 1) = x(t) + 𝑣(t)

The function f (⋅) is related to probabilistic load models, fuel models, etc. A variety of
technical and economic constraints are considered.
The problem is decomposed into a series of forward dynamic programming prob-

lems. A pretreatment is employed to dynamically reduce the dimensionality of the
problem. However, the computational burden is still heavy.
A more advanced generation planning model JASP has been proposed by Chen

[6], which decomposes the generation planning problem into a high-level power plant
investment decision problem and a low-level operation planning problem and solves
them by a decomposition–coordinationmethod. Lagrangian relaxation is used to solve
the power plant investment decision problem, and a probabilistic production simula-
tion based on the equivalent energy function method is used to solve the operation
planning problem. Simulation results show that JASP can not only overcome the
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“curse of dimensionality” but also find an economical and technically sound gen-
eration planning scheme.

1.1.2 Transmission Expansion Planning

Transmission expansion planning is an important part of power system planning,
whose task is to determine the optimal power grid structure according to the load
growth and generation planning schemes during the planning horizon to meet the
requirements of economic and reliable power delivery. In general, transmission plan-
ning should answer the following points:

• where to build a new transmission line,
• when to build a new transmission line, and
• what type of transmission lines to build.

Transmission expansion planning is closely related to generation planning. It is
based on generation planning, and in turn has some impact on the latter. In generation
planning, the influence of geographical distribution of power plants and transmis-
sion costs are generally not considered or just considered cursorily, and it is possible
that the original generation planning scheme should be modified during transmis-
sion planning. Therefore, generation planning and transmission planning should be
decomposed and further coordinated so that the whole power system planning can be
optimal.
The basic principle of transmission planning is to minimize the power grid invest-

ment and operating costs under the premise of ensuring safe and reliable electric power
delivery to the load center. Comparedwith generation planning, transmission planning
is more complex. First, the transmission planning should consider the specific net-
work topologies, and each line in the rights of way must be treated as an independent
decision variable. Thus the dimension of transmission planning decision variables is
higher than that of generation planning. Second, transmission planning should sat-
isfy very complex constraints. Some constraints are related to nonlinear equations,
and even related to differential equations. Third, many factors that are either random
or difficult to predict are extremely important, such as future load growth in various
areas. Therefore, it is difficult to establish a perfect transmission model and even more
difficult to solve it.
Transmission planning has two kinds of formulations: static and dynamic. Static

transmission planning is concerned only with the planning scheme in a future target
year, and it is not necessary to consider the planning scheme transition, which is also
known as a level-year plan. Because static transmission planning does not answer
the question when to build new transmission lines, it is not necessary to consider the
time value of capital. With a longer planning period, the planning horizon needs to
be divided into several level years and the scheme transition between the level years
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needs to considered. In this case, we must determine when and where to build new
transmission lines. This kind of planning is called long-term or dynamic transmission
planning.
An early static formulationwas presented in Puntel [7], which attempts to design the

optimal network structure for a specified future time. The present network, available
rights of way, costs, and future loads and generation levels are assumed known.
The problem is to choose x, the susceptance installed in the rights of way, to mini-

mize

J = ctx +
M∑
k=1

dk(Pk∕Pck
)2n (1.2)

The first term ctx is the investment cost of transmission capacity; the second term is
the overload penalty on each of theM transmission lines or transformers. The load Pk
on element k is a nonlinear function of x, the given load and generation conditions,
even when the network model is linear. There are also inequality constraints on each
element of x.
Optimization is performed by first computing a gradient vector 𝜕J∕𝜕x through use of

an adjoint network. A band around this gradient in the portion of the x space bounded
by the limits of additions in each right of way is searched for integer solutions. A cost
J is computed for each such x found. The x that minimizes J is the starting point for
the next iteration and for the computation of the next 𝜕J∕𝜕x. The search ends when
no improving solution is found.
Once the network has been designed, a sensitivity analysis is performed to deter-

mine which contingencies would be the most critical. Each serious outage is tested
individually and a composite 𝜕J∕𝜕x is computed by summing the gradient of all tests.
As in the normal situation, this gradient guides the addition of new lines. The process
terminates when as many as possible overloads caused by the contingencies have been
eliminated by appropriate network additions.
Garver [8] considered the static optimization problem of designing a network to

meet a specific load. The problem is formulated as a power-flow problem. Linear pro-
gramming is used to find the most direct route from generation to loads: all rights of
way can transmit power, but those without transmission lines are penalized to encour-
age flow through the existing network. A line is added to the right of way with the
biggest overload and then a new linear flow is computed. The process terminates when
all overloads have been eliminated. The estimated flows on the final network are fairly
close to those computed by a standard load flow.
The linear program minimizes an approximation to cost of new facilities, as the

penalty term of an overload can be related to the cost of constructing a line in that
right of way.
An improved genetic algorithm (GA) approach to optimal multi-stage (dynamic)

transmission network planning is presented in a more recent work [9]. The multi-stage
planning of a transmission system has to consider not only how to form the network
schemes of every stage but also how to coordinate the network schemes of every stage.
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Because of the combinatorial nature of the transmission network planning, it has not
been well solved by conventional optimization techniques. In the proposed improved
GA approach, a fitness function that includes investment and an overload constraint is
constructed. The overload is checked by DC load flow. A concise codification model
called “redundant binary-coded technique” is proposed. Using this technique, the
crossover operation can be executed inside the gene so that the re-combinatorial and
search functions of the crossover operator are well utilized. The simulated annealing
selector is used to adjust the fitness function in the evolution process. Some improve-
ments are employed to speed up the convergence of the algorithm, such as keeping
excellent seeds, mutation in pairs, etc. Based on the proposed model, a computational
program has been developed. Three case studies are applied to demonstrate the use-
fulness and effectiveness of the suggested multi-stage transmission network planning
model.
All of these approaches are suboptimal and involve important approximations and

simplifying assumptions. The static approaches can handle larger networks, but at
the cost of ignoring growth dynamics. The dynamic approaches often suffer from the
“curse of dimensionality”.

1.1.3 Distribution System Planning

The current development of power systems puts increasing emphasis on distribution
systems, which are the lower-voltage networks supplying power from the high-voltage
transmission systems to the loads. Distribution system planning has different consid-
erations along with transmission planning, and several special concepts and factors
need to be addressed.
Distribution systems tend to be less geographically extensive than transmission sys-

tems. However, the network structures are oftenmore complicated and consist of more
branches and nodes. On the other hand, the operation of distribution systems may be
easier than transmission systems and stability constraints are often not included. Reli-
ability and power quality are usually the main concerns of users and should be taken
into consideration in distribution system planning.
The objective of distribution system planning is to determine the optimal construc-

tion scheme under the premise of meeting load growth and securing a reliable supply
of electricity based on the results of load forecasting during the planning horizon and
existing network status, so that the investment and operating costs of the distribu-
tion system are minimal. Distribution system planning also has static (one-stage) and
dynamic (multi-stage) formulations. In dynamic distribution system planning, the cor-
relations of decision variables among different stages in the planning horizon should
be taken into account. The mathematical models are often discrete, nonconvex, non-
linear, and large-scale, and various optimization techniques have been employed.
The early work [10] treats the maximum flow-through capability of the network

as the sum of the component capacities and does not explicitly consider whether this
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capability is actually exploited. This simplification makes the constraints much easier
to handle. The planning scheme obtained with this simplification may be optimal for a
problemwith complex constraints, or it may be used as a bound or goal in optimization
subjected to realistic network constraints. Adams and Laughton [10] emphasized the
security aspect of the problem by determining which of the possible expansion states
at each time period of a planning horizon are feasible, in the sense that they do not
produce overloads of circuits or high-voltage transformers. The overall costs (capital
and losses) are minimized by determining the proper sequence of states of planning
time periods, and dynamic programming is used in optimization.
In a more recent work [11], a GA approach is applied to the optimal multi-stage

planning of distribution networks. The objectives for distribution system planning
are related to providing the designs and associated implementation plans necessary
for an orderly expansion of facilities, minimizing new facility installation costs and
operation costs, as well as achieving an acceptable level of reliability. Complex oper-
ational constraints such as voltage drop and line thermal limits are considered. GA
allows the representation of nonlinearities that are hard to include in mathematical
programming methods, and produces multiple solutions that enhance the opportunity
for multi-criteria decision-making.
Currently, deregulation in the power system industry and the invention of

new-generation technologies have led to innovations in distribution system plan-
ning [12]. Distributed generation (DG), with many attractive economical and
technical features, in medium- and low-voltage parts of the grid, is one of the alter-
natives to reinforce distribution systems. In Naderi et al. [12], a dynamic distribution
system planning model was proposed that considers DG integration into a network
as an option to meet the load growth in the planning horizon. An optimal power
flow (OPF) is proposed to minimize capital costs for network upgrading, operation
and maintenance costs, and the cost of losses for handling the load growth in the
planning horizon. A year-dependent decision variable is attached to each investment
alternative and results in a dynamic planning scheme, which reduces total planning
costs by determining the best timing schedule for investment in network upgrading.
A modified genetic algorithm is used to find the optimal topology solution.

1.2 Power System Optimal Operation

1.2.1 Unit Commitment and Hydrothermal Scheduling

Power system optimal operation is a very complex system optimization problem,
which is hard to solve as a whole and so is often decomposed into a series of
subproblems dealt with separately [13]. For short-term generation scheduling, it is
often decomposed into unit commitment, hydrothermal scheduling, power exchange
planning, and fuel planning, etc. The purpose of unit commitment and hydrothermal
scheduling is to determine which units should be on-line and their generation levels
in a power system during a given scheduling horizon (usually a day or a week).
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The objective is to minimize total operational costs during the scheduling horizon
while satisfying the constraints of power system security and power quality. Unit
commitment is a very basic optimal operation problem, whose benefit is generally
greater than that of economic dispatch.
Wood [14] describes the basic mathematical models and solution methods of unit

commitment and economic dispatch. Unit commitment is a high-dimensional, non-
convex, discrete, and nonlinear optimization problem, and it is difficult to find the
theoretically optimal solution. However, because it can bring significant economic
benefits, various methods have been extensively studied to solve this problem, such
as the heuristic, priority list, dynamic programming, integer programming and mixed
integer programming, branch-and-bound method, and Lagrangian relaxation method.
Artificial intelligence has also be introduced, such as expert systems, artificial neural
networks, simulated annealing, genetic algorithms, etc. Sheble and Fahd [15] survey
the solution methods and related references of unit commitment.
The primary energy sources used for electric power generation can be broadly clas-

sified as renewable and nonrenewable resources. Fossil fuels such as coal, natural
gas, oil, and nuclear fuel are nonrenewable resources, which are used for electricity
generation in thermal power plants. Themost widely used renewable resource for elec-
tricity generation is hydro power. Nowadays there are fast developments with other
renewable sources such as wind power, solar energy, marine energy, and biomass.
In a thermal plant, electric power is generated as a result of mechanical rotational

energy produced by either steam turbines or combustion turbines. From an economic
operational point of view, our concern is the relation of fuel cost to the active power
generation of the unit, which is an efficiency type model. The fuel cost is equal to the
fuel quantity consumed multiplied by the fuel price. The heat rates are often used to
express generation efficiency, which include the average heat rate (dividing the fuel
quantity by the generation quantity) and incremental heat rate (differentiating the fuel
quantity with respect to the generation quantity). The fuel cost curve is often modeled
as a quadratic function, and the values of coefficients can be obtained by statistical
estimation from experimental data of heat rates. The treatment so far has been static:
for the unit commitment problem, dynamics must also be considered. For example,
thermal units are shut down and started up at various instants. There are costs related
to these operations and time constraints that do not allow plants to be switched in and
out frequently (minutes or a few hours).
In a hydro plant, turbines convert the water potential energy into kinetic energy,

which in turn is converted into electricity by generators. Hydroelectric installations
are classified into two types: conventional and pumped storage. The conversion type
is further classified into two classes: storage and run-of-river. The water system mod-
eling problem basically involves a water balance equation at each reservoir, which
relates the inflow of water to the reservoir, the water volume in the reservoir, and
the rate of usage and spillage. The inflow could be from natural sources (rain, snow,
unregulated rivers), or from a reservoir system in which upstream reservoirs release
water. In this last case, the dynamics of the reservoir system are important. On the rate
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of usage and spillage, the question of whether only one plant or a series of cascading
plants will use the water must be considered. There are also pumped-storage plants
where water is pumped into a higher-level reservoir at time periods when energy from
efficient plants can be used for this purpose, and water is discharged through a hydro
plant to generate energy at peak periods of consumption where the more efficient
plants are at their maximum output.
The most important constraint of unit commitment and hydrothermal scheduling is

power balance condition, which is that the sum of the electric power generated by all
units must equal the system load plus network loss at every scheduling period. Other
constraints include reserve requirements for the system as a whole and for certain
specified areas. There are minimum up-time and down-time constraints for each unit.
Constraints on hydro energy and power should also be respected.
The solution methods can be classified into heuristic methods, mathematical opti-

mization, artificial intelligence, etc. The earliest ones are heuristic methods such as
local optimization and priority list, which are empirical without a strict theoretical
foundation, but are often useful in practice. Mathematical optimization methods are
those with a strict mathematical basis, among which the most successful ones are
dynamic programming and mixed integer programming.
Dynamic programming (DP) is a mathematical method to solve the multi-stage

decision optimization. In the enumeration of various possible combinations of states,
this method cleverly abandoned solutions that need not be considered. In the UC prob-
lem, the entire scheduling horizon is divided into several periods, and each period is a
stage of dynamic programming. The states of each stage are all the possible combina-
tions of the unit ON/OFF states. From the initial stage, the cumulative cost (including
the fuel cost of generation and start-up cost) to reach each stage is calculated forward,
and then, from the state with the smallest cumulative cost in the final stage, a back-
tracking procedure is carried out, by sequentially recording the state with the total
cumulative cost in each stage, and then the optimal UC scheme can be obtained. The
problem of dynamic programming is that the computational burden will increase dra-
matically with the number of units and scheduling periods, which results in the “curse
of dimensionality”. To overcome this difficulty, different skills are used to limit the
number of states. Dynamic programming has been widely used in unit commitment
and hydrothermal scheduling, and has been incorporated into some practical schedul-
ing/dispatch software packages.
Mixed integer programming (MIP) includes both integer and noninteger variables,

and it can be further divided into linear and nonlinear mixed integer programming
according to the type of other variables except for the integer variables. MIP is a
very difficult problem, and the commonly used methods include branch-and-bound,
Benders’ decomposition, generalized Benders’ decomposition methods, and so on.
In the branch-and-bound method, a branch-and-bound tree is formed and the root
node is a relaxation of the original problem. For example, the integer variables are
replaced with continuous variables in a certain interval. Its child nodes are also a series
of relaxation of the original problem, which can be obtained by fixing the values of
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some integer variables at the root node. The relaxed problems corresponding to the
child nodes have disjoint solution spaces, and the union of these solution spaces is
just the solution space of the root node. Each child node is further decomposed into
a series of subproblems, and this process is repeated until the leaf nodes of the tree.
Because the solution space of a node of the tree is the relaxation of the solution spaces
of all its descendant nodes, in a minimization problem, the lower bound of its solution
must therefore be the lower bound of the solutions of all its descendant nodes. The key
to the branch-and-bound method is that, in the process of calculation, if the solution
(or its lower bound) of a node is bigger than a known feasible solution of the original
optimization problem, its descendant nodes need no longer be considered. This allows
unnecessary calculations to be eliminated.
Benders’ decomposition method solves problems in the following form:

max
x,y

{cTx + f (y) ∣ Ax + F(y) ≤ b, x ∈ Rp, y ∈ S ⊆ Rq} (1.3)

where Rp and Rq are respectively p- and q-dimensional Euclidean spaces; S is any sub-
set of Rq; A is an m × p matrix; f (y) is a scalar function and F(y) is an m-component
vector function, which are defined on S; and b and c are constant vectors defined on Rm

and Rp. Benders’ decomposition method decomposes the problem into two subprob-
lems: one is a programming problem defined on S (which may be linear, nonlinear or
discrete, etc.), and the other is a linear programming problem defined on Rp. The two
subproblems are solved through a multi-step iterative procedure.
MIP solves the mathematical models of unit commitment/hydrothermal scheduling

directly, without adding too many restrictions or assumptions. MIP is the mainstream
solution method of scheduling problems in the electric power industry.
Power systems are typical large-scale systems, and the optimization and control

theories of large-scale systems can be applied. The decomposition and coordination
approach of large-scale systems started from Dantzig and Wolfe’s decomposition
for linear programming [16], and the Lagrangian relaxation (LR) method has been
employed in unit commitment. LR is a class of optimization algorithms for solving
complex integer and combinatorial optimization problems, which is based on the fol-
lowing ideas. Many difficult integer programming problems are composed of a series
of subproblems interrelated by some constraints, which are relatively easy to resolve.
Based on this characteristic, the Lagrangian problem is formed by adding a penalty
term to the objective function, which equals the sum of products of constraint viola-
tion amounts and their respective dual variables. The Lagrangian problem is relatively
easy to solve, and for the minimization problem, its optimal value is the lower bound
of the optimal value of the primary objective function. The Lagrangian relaxation
method will be discussed in detail in Chapter 2.
In the Lagrangian relaxation method for unit commitment, all constraints are

divided into two categories: one category includes the systemwide constraints,
such as the load balance constraints and spinning reserve constraints; the other
category includes the individual unit constraints, such as the generator output power
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limit constraints, the minimum up-time and minimum down-time constraints, ramp
rate constraints, spinning reserve constraints, etc. The systemwide constraints can
be written as the penalty term of the objective function, and then the Lagrangian
function can be formed. The Lagrangian function can be decomposed into a series
of individual unit subproblems, which are generally solved using the dynamic
programming method, and the dual problem is often solved by the subgradient
method. Application of Lagrangian relaxation in unit commitment began in the 1970s
and there is a great deal of literature.
Unit commitment and hydrothermal scheduling based on Lagrangian relaxation

have been studied systematically [17–19]. In Guan et al. [17], dynamic programming
is used to optimize the subproblems and optimization of multipliers is carried out with
an adaptive step-size subgradient algorithm. The advantages of the proposed approach
include that the generator power outputs do not need to be discretized, and there is
a systematic approach to handle ramp rate constraints, as well as an effective initial-
ization procedure. The method is further extended to the hydrothermal scheduling
problem in Yan et al. [18], where the thermal and hydro power plants are coordinated
through Lagrange multipliers, and the hydro power plant subproblems are solved with
the priority list method. In Guan et al. [19], where the dynamic characteristics of a
pumped-storage power station have been considered, the scheduling problem in the
whole horizon is solved by dynamic programming on the basis of optimization of
single-period operation.
Lagrangian relaxation is a kind of integer and combinatorial optimization algorithm

with amature theoretical foundation and is particularly suitable for solving large-scale
system optimization problems. It has the following advantages in unit commitment
and hydrothermal scheduling: with the increase of unit number, the computational
burden increases almost linearly, which means the dimensional obstacle can be over-
come; and the method is very flexible, which means not only that it can successfully
solve the unit commitment problem, but also that it can be extended to hydrothermal
scheduling problems. However, the algorithm also has some disadvantages: owing to
the nonconvexity of the objective function, a duality gap exists and some special mea-
sures should be adopted to construct the feasible solution of the primal problem on
the basis of the optimal dual solution; and the iterative process of the algorithm may
oscillate.
With the development of computer science and artificial intelligence, many new

methods have appeared, the most successful of which are the genetic algorithm, sim-
ulated annealing, tabu search, expert systems, and so on.

1.2.2 Economic Dispatch

The objective of economic dispatch is to minimize the fuel cost of thermal power
plants, assuming that hydro generation has been given. The unit commitment scheme
of thermal units is also supposed known. Many power systems today are operated
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under economic dispatch with calculations made every few minutes. Under normal
circumstances, control signals are sent to generating units to adjust their power out-
put in accordance with optimization results. In interconnected systems, optimization
results are further adjusted by a load frequency control (automatic generation control,
AGC) process, which aims at keeping deviation of frequency and total power inter-
change with neighboring utilities within preset values. The objective function is the
sum of thermal fuel costs as a function of generation power output P. The most basic
constraint is the power balance equation. Inequality constraints place limits on P. The
mathematical formulation is thus as follows:

min f (x)

subject to
h(x) = 0

x̃ ≤ x ≤ x
(1.4)

where
x = (x1,… , xn)T

The solution of this problem is found by observing the Kuhn–Tucker optimality con-
ditions:

𝜕f (x)
𝜕x

+ 𝜆
𝜕h(x)
𝜕x

= 0

h(x) = 0

x within limits

(1.5)

More recent work deals with more complicated formulations. A particular interest
of researchers is to introduce power flow equations directly as equality constraints or
as implicit functions. In [20], nodal voltages are used as the state variables of the sys-
tem. As all other variables can be expressed in terms of nodal voltages, the constraints
can be set up based on them for real and reactive generation, voltagemagnitudes, flows
in transmission lines, etc. Then the economic dispatch problem becomes

min f (x) (1.6)

subject to
h(x) = 0 (k equations, k < n)
g(x) ≥ 0 (m inequalities)

(1.7)

where
x = (x1,… , xn)T

In this formulation, it is necessary that all network equations appear directly as
equality constraints or as a part of g(x) in order for the formulation to be complete.
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This is the standard nonlinear programming problem. In [20], it is solved by various
penalty function methods of constrained optimization.
With the continuing search for alternatives to conventional energy sources, it is

necessary to include wind energy conversion system (WECS) generators in the eco-
nomic dispatch problem. The uncertain nature of the wind speed is represented by the
Weibull distribution in Hetzer et al. [21]. In addition to the classic economic dispatch
factors, factors to account for both overestimation and underestimation of available
wind power are also included. The optimization problem can be numerically solved
by Lagrangian relaxation, evolution algorithms, simulated annealing (SA), etc. The
solution of the economic dispatch problem via the model presented is dependent on
the values of many coefficients, such as the scale factor in the Weibull distribution
function, the reserve cost for overestimating the wind energy, and the penalty cost for
underestimating the wind energy. The level of wind power scheduled from a particu-
lar WECS is strongly dependent on the values of the reserve and penalty cost factors
associated with the WECS. If the reserve cost coefficient is increased, the scheduled
amount of wind power will be reduced, because it becomes more costly to overesti-
mate the amount of wind power available. Conversely, if the penalty cost coefficient is
increased, it becomes more costly to underestimate the amount of wind power avail-
able, and the system operator has an incentive to increase the scheduled amount of
wind power. Economic dispatch considering uncertainty in renewable generation is
still an open topic to be further investigated.

1.2.3 Optimal Load Flow

The most rigorous steady-state electric power system network model is provided by
the load flow equations, which refers to the problem of solving the network equations.
Generally, two groups of data are given for each node: P, Q for load nodes, and P,
V for generator nodes, according to the physical quantities that can be easily con-
trolled at those loads. There is a generation node that is treated differently and given
by V , 𝜎. The value of 𝜎 is set to zero as a reference for the load flow equations and
P is left to balance the power of the whole network. This node is called a slack node.
Mathematically, the load flow problem can be described as the following n equations:

h(x) = 0, x = (x1,… , xn)T. (1.8)

The x or voltage variables are called the state variables of the system. Once they are
known, all other electric quantities, such as reactive generation, slack-bus generation,
and power flows in transmission lines, can be directly calculated.
Given a set of loads, different load flow solutions can be obtained by varying other

input data. An optimal load flow problem is one that incorporates this exact model in
the formulation, which refers to an operating state or load flow solution where some
power system quantity is optimized, subject to constraints on the problem variables
and on some functions of these variables. Optimal load flow has received more and
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more attention from power system planning, operation and control areas since the
1960s. At present, the application of advanced control equipment has brought new
motivation to optimal load flow research. Furthermore, as the power industry moves
into a more competitive and commercial environment, optimal load flow becomes
even more important.
Optimal load flow is similar to economic dispatch in form. However, economic

dispatch uses formulations of far lower dimension and sophistication. Some relevant
variables such as generator voltage magnitudes are not included in optimization. As
a result, constraints imposed by considerations of system security are not easily han-
dled by procedures using power balance or other traditional models. The advantages
of optimal load flow lie not so much in higher accuracy – more important is its abil-
ity to include security constraints in the formulation. A number of problems can be
defined by different choices of decision variables, objective functions, and constraints.
Some of these problems will be described below together with the techniques used to
solve them.
In the approach of Dommel and Tinney [22], two sets of variables are defined:

the state variables of the load flow problem, the x variables; and the load flow data
control variables, the u variables. The network equations relate the x and u variables.
Other load flow quantities that remain fixed, such as power demand at load buses,
can be expressed as functions of x and included equality constraints. All inequality
constraints not directly on control variables u are called “functional constraints” and
are used to penalize the cost function. The problem can be formulated as follows:

min f (x, u) (x = (x1,… , xn)T) (1.9)

subject to
h1(x) = 0 (k equalities, k < n)
g(x, u) ≥ 0 (m functional inequalities)
ũ ≤ u ≤ u (n − k control variables)

h2(x, u) = 0 (n − k network equations)

(1.10)

An F(x, u) function is defined by penalizing f (x, u)with violated functional inequal-
ity constraints; n equations b(x, u) can be defined by joining the k equality constraints
h1(x) = 0 and the n − k network equations h2(x, u) = 0. The Kuhn–Tucker optimality
conditions are as follows:

h(x, u) = 0

𝜕F
𝜕x

+
(
𝜆t
𝜕h
𝜕x

)t

= 0 or
(
𝜕h
𝜕x

)t

𝜆 = −𝜕F
𝜕x

𝜕F
𝜕u

+
(
𝜆t
𝜕h
𝜕u

)t

= 0 or ∇uF = 0 (reduced gradient)

(1.11)

Choosing the feasible values for u, the first set of equations is solved for x. This
is the load flow problem. If Newton’s method is used with triangular factorization
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techniques to solve the load flow, the calculation of 𝜆 involves a repeat solution with
the triangularized Jacobian 𝜕h∕𝜕x, using the second set of equations. The third group
defines the reduced gradient of F with respect to only u variables. This gradient can
be used to calculate corrections for u variables

Δu = 𝛼∇uF (1.12)

According to the Kuhn–Tucker optimality conditions, violations of inequality con-
straints on u variables due to the above correction Δu should be prevented by setting
u to its limit. At this point, a new iteration is performed, and this process is continued
until ∇uF = 0 for all off-limit u variables.
In a power system, there are strong couplings between real power flows and volt-

age angles or reactive power flows and voltage magnitudes. However, the P, 𝛿 and
Q, V variable sets are weakly coupled. Billinton and Sachdeva [23] discussed these
coupling effects and suggest a decomposition technique for solving the economic dis-
patch. The proposed approach decomposes the complete problem into two halves, i.e.
the optimum voltage evaluation, and the real power optimization with optimally deter-
mined voltages. Both problems are solved by the Fletcher–Powell technique. This
decomposition approach is still used as reference for optimal load flow of large-scale
power systems.

1.3 Power System Reactive Power Optimization

Reactive power optimization is a kind of large-scale nonlinear optimization problem
with multi-variable, multi-restriction, and multi-extreme mathematical characteris-
tics. It has been a hot issue in global electrical fields for years. A great deal of deep
research has been carried out and there are thousands of publications on reactive power
optimization models and algorithms for power grids with different characteristics.
In the power system planning stage, reactive power optimization means optimal

reactive power planning (ORPP). That is an off-line problem concentrating on the
optimal allocation of reactive power compensation devices in order to enhance the
controllability of power systems. In the power system operation stage, reactive power
optimization means optimal reactive power dispatch (ORPD) or optimal reactive
power control (ORPC). That is an on-line problem concentrating on the optimal
regulation of reactive power and voltage control devices in order to improve the
economy and safety of power system operation. On-line problems have very high
requirements on the effect of optimization and the calculation speed of solution.
The ORPD problem can be described as an objective function and a set of constraint

conditions. The characteristics of the ORPD problem are listed as follows:

1. Multi-objective
2. Number of constraint conditions of various types
3. Nonlinear objective function and constraint conditions
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4. Uncertainty of load and operation mode
5. Discrete control variables that cannot be regulated frequently
6. Nonconvexity and multi-extreme
7. Objective function is hard to describe using formula including control variables
8. Solution space lacks connectivity

ORPD encounters two major problems in engineering applications:

1. The discrete control devices cannot be regulated frequently under the change of
operation state of power systems at different times, which leads to the time cou-
pling characteristic of ORPD.

2. The control of different regional power networks influences each other when adopt-
ing a hierarchical and zoning control strategy, which leads to the space coupling
characteristic of ORPD.

The scale of power systems is expanding constantly, which results in higher require-
ments on a reactive power optimization algorithm. Some characteristics of an algo-
rithm, such aswhether it can converge to the optimization solution reliably and rapidly,
and whether it can detect and solve infeasible problems, become more and more
important. Because the feasible and infeasible subspaces of the ORPD solution space
of complicated power networks interlace with each other, solving the ORPD problem
becomes very difficult.
The interior point method is one of the most applied mathematical methods for

the reactive power optimization problem. It is fast and has good convergence, and its
calculation time is insensitive to the scale of the problem. However, how to probe and
deal with the infeasible solution in the solution process is one of the obstacles of the
interior point method. In addition, solving a high-order correction equation is still a
bottleneck in the calculation for the interior point method.
Artificial intelligence algorithms, such as genetic algorithm, particle swarm

optimization algorithm, and so on, make searching the global optimal solution in
large-scale space possible because of their characteristics of organization, adaptation,
self-learning, and parallelism. However, acquiring the theoretical optimal solution
usually consumes an amount of computing memory and needs an unacceptably
long time to calculate. It is hard for the artificial intelligence algorithms to meet
the engineering requirements of real-time voltage and reactive power control of
large-scale power systems.
Since optimal reactive power dispatch of large-scale power systems involves very

complicated characteristics, such as having multiple objectives, multiple variables,
multiple constraints, discreteness, and real-time responsiveness, the present algo-
rithms cannot balance the opposing demands of optimization and computational
efficiency. Therefore, in engineering applications, it comes down to the inevitable
choice of voltage and reactive power control to reduce the dimensionality of the
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high-dimensional ORPD problem. There are two methods to reduce the dimension-
ality, i.e. (1) hierarchical and zoning space decoupling for ORPD of complicated
power systems, and (2) time decoupling for reactive power optimization in each time
interval. However, the ORPD problem couples in space and time in nature. On the
one hand, the results of volt/VAR control of each regional power network interact
because of the electricity connection of through tie lines or transformers. On the other
hand, the regulating times of volt/VAR control devices are easily too frequent when
the aim of reactive power optimization is to seek the minimum network power loss
at each profile independently. Therefore, the modeling research of space decoupling
and time decoupling for reactive power optimization should be enhanced.
A problem that has received some attention is the optimal control of reactive sources

by minimizing reactive generation while observing voltage and network constraints.
Nonlinear programming has been used to solve this problem [24, 25].

1.4 Optimization in Electricity Markets

A market is a basic mechanism to realize the optimal allocation of resources. Thus
optimization techniques are naturally adopted in various electricity market research
topics. Herewe focus only onmicroeconomics-related topics. A general marketmodel
has been introduced byWeber and Overbye [26, 27]. Themarket primarily includes an
independent system operator (ISO), a generation company (GenCo), and a consumer,
all of which have their own optimization models. The basic models are introduced as
follows.

1.4.1 Strategic Participants’ Bids

A strategic participant may be a GenCo or a consumer – in other words, the strategic
participant controls the strategic bid of a GenCo or consumer to maximize its own
profit. The bids generally take one of the two formats shown in Figure 1.2. Most
of the literature on market equilibrium analysis uses the continuous bidding format
because of the restriction of solution algorithms. However, the block bidding format
is often employed in the real electricity market due to the technical features of the
power industry.
Suppose there are I GenCos in the market and each GenCo has a strictly convex

quadratic generation cost function as

Ci(PGi) =
1
2
aiP

2
Gi + biPGi

(PGi ≤ PGi ≤ PGi; ai > 0; i = 1, 2,… , I)
(1.13)

where PGi is the generation output; ai and bi are coefficients; PGi and PGi are respec-
tively the lower and upper limits of PGi; and I is the number of GenCos. Hence, its
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Figure 1.2 Block bidding and continuous bidding curves.

marginal cost can be calculated as

dCi(PGi)
dPGi

= aiPGi + bi (1.14)

The bids are supposed to be linear functions in the case of the continuous bidding
format, so the GenCos are assumed to construct their bids in the form of a linear
supply function (LSF) as

P̃Gi = (pi − b̃i)∕ãi (ai > 0) (1.15)

where P̃Gi is the submitted quantity, pi is the bid price for GenCo i, and ãi and b̃i are
the coefficients (strategic variables) of the LSF. If we suppose that GenCo i chooses ãi
and b̃i, subject to the condition that the two variables have a fixed linear relationship, a
strategic parameter kGi can be used to vary the bid from the true marginal cost function
as

P̃Gi = (pi∕kGi − bi)∕ai (kGi > 0) (1.16)

Hence, the strategic parameters of all the GenCos form the GenCos’ strategic vector
kGi, in which kGi is one element.
On the other hand, suppose there are J consumers in the market and the true

marginal benefit for each consumer bid is also defined as a linear function as

PDj = (pj − 𝛽j)∕𝛼j
(PDj ≤ PDj ≤ PDj; 𝛼j > 0; j = 1, 2,… , J)

(1.17)

where PDj is the quantity demanded; pj is the locational marginal price (LMP); 𝛼j and
𝛽j are coefficients; PDj and PDj are respectively the lower and upper limits of PDj; and
J is the number of customers.
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The benefit can be calculated as

Bj(PDj) = ∫ pj dPDj = 0.5𝛼jP
2
Dj + 𝛽jPDj (1.18)

Also the strategic variable kDj can similarly be used to construct its bid as follows:

P̃Dj = (pj∕kDj − 𝛽j)∕𝛼j (kDj > 0) (1.19)

Thus, the consumer’s strategic vector kDi can be composed of all the consumers’
strategic variables.
Based on (1.16) and (1.19), the participants determine the strategic vectors and sub-

mit the strategic bids to the ISO.

1.4.2 Market Clearing Model

After receiving the bids from all participants, the ISO uses a security-constrained eco-
nomic dispatch to determine the supplies, the demands, and the LMPs, based on the
DC-based optimal power flow. In the market clearing process, the bids are treated as
the true costs and benefits for participants, so the optimization problem to maximize
a quasi-social welfare, subject to the transmission and generation constraints, can be
formulated as follows:

max Γ(KG,KD) =
J∑
j=1

KDjBj −
I∑

i=1
KGiCi (1.20)

s.t. H𝜽 = PG − PD (1.21)

Fl ≤ Fl ≤ Fl (l = 1, 2,… ,L) (1.22)

PGi ≤ PGi ≤ PGi (1.23)

(i = 1, 2,… , I)

where KG is the GenCo strategic vector, with kG as an element; KD is the consumer
strategic vector, with kD as an element; Bj is the benefit vector for consumer j, with
Bj as an element; Ci is the cost vector for GenCo i, with Ci as an element; H is the
susceptance matrix; 𝜽 is the vector of bus voltage angles; PG is the vector of bus
generation outputs; PD is the vector of bus demands; Fl is the power flow on line l; Fl

and Fl are the lower and upper flow limits on line l; and L is the number of lines in the
system. In a perfectly competitive market, there are no strategic behaviors of GenCos
or consumers, and all kG and kD are equal to 1.
In (1.20), the first equality constraint is the DC power flow equation, the second

inequality constraint is the transmission constraint, and the third one is the generation
constraint for each GenCo.
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For the continuous bidding case, gradient-based approaches such as the interior
point method are applicable, and the Lagrange multiplier of the relative power flow
constraints in (1.20) are LMPs.

1.4.3 Market Equilibrium Problem

Each rational participant maximizes its profits by choosing and adjusting its strategies
based on the market state variation. Therefore, the optimization problem for each par-
ticipant t (t represents GenCo i or consumer j) could be formulated as the following
two-level mathematical program:

max Rt(kGi,kDj) =
I∑

i=1
(𝜆GiP′

Gi − Ci(P′
Gi)) +

J∑
j=1

(Bj(P′
Dj) − 𝜆DjP

′
Dj) (1.24)

s.t. kGi ≤ kGi ≤ kGi (1.25)

kDj ≤ kDj ≤ kDj (1.26)

where 𝜆Gi and 𝜆Dj are LMPs of the GenCo and consumer, respectively, which should
be solved through (1.20); P′

Gi is the awarded generation for GenCo; P
′
Dj is the quantity

demanded by the consumer; kGi and kGi are the lower and upper limits of the genera-
tion strategic variable; and kDj and kDj are the lower and upper limits of the consumer
strategic variable.
In a perfectly competitive market, the market equilibrium is called Walrasian equi-

librium [28]. However, this is only an ideal case. In reality, the strategic behaviors
of market participants should be considered. The participant’s profit is dependent not
only on its own strategy, but also on the strategies of its opponents. Then this situation
should be explainedwith game theory. Themarket equilibrium is the point fromwhich
each player does not have any incentive to deviate unilaterally (Nash equilibrium), i.e.

Rt(k∗Gi,k
∗
Dj ∣ k

∗
−Gi,k

∗
−Dj) ≥ Rt(k′Gi,k

′
Dj ∣ k

∗
−Gi,k

∗
−Dj) (1.27)

where k∗Gi and k
∗
Dj are strategic vectors of participants in the equilibria; k

∗
−Gi and k

∗
−Dj

are strategic vectors of the opponents of participants in the equilibria; and k′Gi and k
′
Dj

are arbitrary strategic vectors of participants.
The left-hand side of (1.27) is the profit of participant t in the equilibria and the

right-hand side means the profit in the case that participant t chooses an arbitrary
strategic vector with its opponents holding the equilibrium strategies.


