
WHAT’S IN THIS CHAPTER?

➤ Understanding heterogeneous computing architectures

➤ Recognizing the paradigm shift of parallel programming

➤ Grasping the basic elements of GPU programming

➤ Knowing the differences between CPU and GPU programming

CODE DOWNLOAD The wrox.com code downloads for this chapter are found
at www.wrox.com/go/procudac on the Download Code tab. The code is in the
Chapter 1 download and individually named according to the names throughout
the chapter.

The high-performance computing (HPC) landscape is always changing as new technologies g
and processes become commonplace, and the defi nition of HPC changes accordingly. In gen-
eral, it pertains to the use of multiple processors or computers to accomplish a complex task
concurrently with high throughput and effi ciency. It is common to consider HPC as not only
a computing architecture but also as a set of elements, including hardware systems, software
tools, programming platforms, and parallel programming paradigms.

Over the last decade, high-performance computing has evolved signifi cantly, particularly
because of the emergence of GPU-CPU heterogeneous architectures, which have led to a fun-
damental paradigm shift in parallel programming. This chapter begins your understanding of
heterogeneous parallel programming.

1
CO

PYRIG
HTED

 M
ATERIA

L

2 ❘ CHAPTER 1 HETEROGENEOUS PARALLEL COMPUTING WITH CUDA

PARALLEL COMPUTING

During the past several decades, there has been ever-increasing interest in parallel computation. The
primary goal of parallel computing is to improve the speed of computation.

From a pure calculation perspective, parallel computing can be defi ned as a form of computation in g
which many calculations are carried out simultaneously, operating on the principle that large prob-
lems can often be divided into smaller ones, which are then solved concurrently.

From the programmer’s perspective, a natural question is how to map the concurrent calculations
onto computers. Suppose you have multiple computing resources. Parallel computing can then be
defi ned as the simultaneous use of multiple computing resources (cores or computers) to perform the
concurrent calculations. A large problem is broken down into smaller ones, and each smaller one is
then solved concurrently on different computing resources. The software and hardware aspects of
parallel computing are closely intertwined together. In fact, parallel computing usually involves two
distinct areas of computing technologies:

➤ Computer architecture (hardware aspect)

➤ Parallel programming (software aspect)

Computer architecture focuses on supporting parallelism at an architectural level, while parallel
programming focuses on solving a problem concurrently by fully using the computational power g
of the computer architecture. In order to achieve parallel execution in software, the hardware must
provide a platform that supports concurrent execution of multiple processes or multiple threads.

Most modern processors implement the Harvard architecture, as shown in Figure 1-1, which is com-
prised of three main components:

➤ Memory (instruction memory and data memory)

➤ Central processing unit (control unit and arithmetic logic unit)

➤ Input/Output interfaces

CPU

Arithmetic
Logic Unit

Control UnitInstruction
Memory Data Memory

Input/Output

FIGURE 1-1

Parallel Computing ❘ 3

The key component in high-performance computing is the central processing unit (CPU), usuallyt
called the core. In the early days of the computer, there was only one core on a chip. This architec-
ture is referred to as a uniprocessor. Nowadays, the trend in chip design is to integrate multiple cores rr
onto a single processor, usually termed multicore, to support parallelism at the architecture level.
Therefore, programming can be viewed as the process of mapping the computation of a problem to
available cores such that parallel execution is obtained.

When implementing a sequential algorithm, you may not need to understand the details of the com-
puter architecture to write a correct program. However, when implementing algorithms for multi-
core machines, it is much more important for programmers to be aware of the characteristics of the
underlying computer architecture. Writing both correct and effi cient parallel programs requires a
fundamental knowledge of multicore architectures.

The following sections cover some basic concepts of parallel computing and how these concepts
relate to CUDA programming.

Sequential and Parallel Programming
When solving a problem with a computer program, it is natural to divide the problem into a discrete
series of calculations; each calculation performs a specifi ed task, as shown in Figure 1-2. Such a pro-
gram is called a sequential program.

The problem is divided into small pieces of calculations.

execution order

FIGURE 1-2

There are two ways to classify the relationship between two pieces of computation: Some are
related by a precedence restraint and therefore must be calculated sequentially; others have no such
restraints and can be calculated concurrently. Any program containing tasks that are performed
concurrently is a parallel program. As shown in Figure 1-3, a parallel program may, and most likely
will, have some sequential parts.

From the eye of a programmer, a program consists of two basic ingredients: instruction and data.
When a computational problem is broken down into many small pieces of computation, each piece
is called a task. In a task, individual instructions consume inputs, apply a function, and produce
outputs. A data dependency occurs when an instruction consumes data produced by a preceding
instruction. Therefore, you can classify the relationship between any two tasks as either dependent,
if one consumes the output of another, or independent.

Analyzing data dependencies is a fundamental skill in implementing parallel algorithms because
dependencies are one of the primary inhibitors to parallelism, and understanding them is necessary

4 ❘ CHAPTER 1 HETEROGENEOUS PARALLEL COMPUTING WITH CUDA

to obtain application speedup in the modern programming world. In most cases, multiple indepen-
dent chains of dependent tasks offer the best opportunity for parallelization.

execution order

Sequential execution

Parallel execution

FIGURE 1-3

Parallelism
Nowadays, parallelism is becoming ubiquitous, and parallel programming is becoming mainstream
in the programming world. Parallelism at multiple levels is the driving force of architecture design.
There are two fundamental types of parallelism in applications:

➤ Task parallelism

➤ Data parallelism

Task parallelism arises when there are many tasks or functions that can be operated independently
and largely in parallel. Task parallelism focuses on distributing functions across multiple cores.

Data parallelism arises when there are many data items that can be operated on at the same time.
Data parallelism focuses on distributing the data across multiple cores.

CUDA programming is especially well-suited to address problems that can be expressed as data-
parallel computations. The major focus of this book is how to solve a data-parallel problem with
CUDA programming. Many applications that process large data sets can use a data-parallel model
to speed up the computations. Data-parallel processing maps data elements to parallel threads.

The fi rst step in designing a data parallel program is to partition data across threads, with each
thread working on a portion of the data. In general, there are two approaches to partitioning
data: block partitioning and cyclic partitioning. In block partitioning, many consecutive elements
of data are chunked together. Each chunk is assigned to a single thread in any order, and threads
generally process only one chunk at a time. In cyclic partitioning, fewer data elements are chun-
ked together. Neighboring threads receive neighboring chunks, and each thread can handle more
than one chunk. Selecting a new chunk for a thread to process implies jumping ahead as many
chunks as there are threads.

Parallel Computing ❘ 5

Figure 1-4 shows two simple examples of 1D data partitioning. In the block partition, each thread
takes only one portion of the data to process, and in the cyclic partition, each thread takes more
than one portion of the data to process. Figure 1-5 shows three simple examples of 2D data par-
titioning: block partitioning along the y dimension, block partitioning on both dimensions, and
cyclic partitioning along the x dimension. The remaining patterns — block partitioning along the x
dimension, cyclic partitioning on both dimensions, and cyclic partitioning along the y dimension —
are left as an exercise.

Usually, data is stored one-dimensionally. Even when a logical multi-dimensional view of data is
used, it still maps to one-dimensional physical storage. Determining how to distribute data among
threads is closely related to both how that data is stored physically, as well as how the execution
of each thread is ordered. The way you organize threads has a signifi cant effect on the program’s
performance.

Block partition: each thread takes one data block

Cyclic partition: each thread takes two data blocks

FIGURE 1-4

Block partition on
one dimension

Block partition on
both dimensions

Cyclic partition on
one dimension

DATA PARTITIONS

There are two basic approaches to partitioning data:

➤ Block: Each thread takes one portion of the data, usually an equal portion of
the data.

➤ Cyclic: Each thread takes more than one portion of the data.

The performance of a program is usually sensitive to the block size. Determining
an optimal partition for both block and cyclic partitioning is closely related to the
computer architecture. You will learn more about this through the examples in this
book.

6 ❘ CHAPTER 1 HETEROGENEOUS PARALLEL COMPUTING WITH CUDA

Computer Architecture
There are several different ways to classify computer architectures. One widely used classifi cation
scheme is Flynn’s Taxonomy, which classifi es architectures into four different types according to
how instructions and data fl ow through cores (see Figure 1-6), including:

➤ Single Instruction Single Data (SISD)

➤ Single Instruction Multiple Data (SIMD)

➤ Multiple Instruction Single Data (MISD)

➤ Multiple Instruction Multiple Data (MIMD)

Single Instruction Multiple Data
(SIMD)

Single Instruction Single Data
(SISD)

Multiple Instruction Single Data
(MISD)

Instruction

D
at

a

Multiple Instruction Multiple Data
(MIMD)

FIGURE 1-6

Single Instruction Single Data refers to the traditional computer: a serial architecture. There is only
one core in the computer. At any time only one instruction stream is executed, and operations are
performed on one data stream.

Single Instruction Multiple Data refers to a type of parallel architecture. There are multiple cores in
the computer. All cores execute the same instruction stream at any time, each operating on different
data streams. Vector computers are typically characterized as SIMD, and most modern computers
employ a SIMD architecture. Perhaps the biggest advantage of SIMD is that, while writing code on
the CPU, programmers can continue to think sequentially yet achieve parallel speed-up from paral-
lel data operations because the compiler takes care of the details.

Multiple Instruction Single Data refers to an uncommon architecture, where each core operates on
the same data stream via separate instruction streams.

Multiple Instruction Multiple Data refers to a type of parallel architecture in which multiple cores
operate on multiple data streams, each executing independent instructions. Many MIMD architec-
tures also include SIMD execution sub-components.

At the architectural level, many advances have been made to achieve the following objectives:

➤ Decrease latency

➤ Increase bandwidth

➤ Increase throughput

Parallel Computing ❘ 7

Latency is the time it takes for an operation to start and complete, and is commonly expressed in
microseconds. Bandwidth is the amount of data that can be processed per unit of time, commonly
expressed as megabytes/sec or gigabytes/sec. Throughput is the amount of operations that can be t
processed per unit of time, commonly expressed as gfl ops (which stands for billion fl oating-point
operations per second), especially in fi elds of scientifi c computation that make heavy use of fl oating-
point calculations. Latency measures the time to complete an operation, while throughput measures
the number of operations processed in a given time unit.

Computer architectures can also be subdivided by their memory organization, which is generally
classifi ed into the following two types:

➤ Multi-node with distributed memory

➤ Multiprocessor with shared memory

In a multi-node system, large scale computational engines are constructed from many processors
connected by a network. Each processor has its own local memory, and processors can communi-
cate the contents of their local memory over the network. Figure 1-7 shows a typical multi-node sys-
tem with distributed memory. These systems are often referred to as clusters.

Processor

Cache Cache

Memory Memory

Interconnection Network

Memory

Cache

Processor Processor......

......

......

FIGURE 1-7

Multiprocessor architectures typically range in size from dual-processor to dozens or hundreds
of processors. These processors are either physically connected to the same memory (as shown in
Figure 1-8), or share a low-latency link (such as PCI-Express or PCIe). Although sharing memory
implies a shared address space, it does not necessarily mean there is a single physical memory. Such
multiprocessors include both single-chip systems with multiple cores, known as multicore, and com-
puters consisting of multiple chips, each of which might have a multicore design. Multicore architec-
tures have displaced single-core architectures permanently.

The term many-core is usually used to describe multicore architectures with an especially high num-
ber of cores (tens or hundreds). Recently, computer architectures have been transitioning from multi-
core to many-core.

8 ❘ CHAPTER 1 HETEROGENEOUS PARALLEL COMPUTING WITH CUDA

Processor Processor

Cache Cache

Bus

Cache

Processor

Shared Memory

......

......

FIGURE 1-8

GPUs represent a many-core architecture, and have virtually every type of parallelism described
previously: multithreading, MIMD, SIMD, and instruction-level parallelism. NVIDIA coined the
phrase Single Instruction, Multiple Thread (SIMT) for this type of architecture.

GPUs and CPUs do not share a common ancestor. Historically, GPUs are graphics accelerators.
Only recently have GPUs evolved to be powerful, general-purpose, fully programmable, task and
data parallel processors, ideally suited to tackle massively parallel computing problems.

GPU CORE VERSUS CPU CORE

Even though many-core and multicore are used to label GPU and CPU architec-
tures, a GPU core is quite different than a CPU core.

A CPU core, relatively heavy-weight, is designed for very complex control logic,
seeking to optimize the execution of sequential programs.

A GPU core, relatively light-weight, is optimized for data-parallel tasks with sim-
pler control logic, focusing on the throughput of parallel programs.

HETEROGENEOUS COMPUTING

In the earliest days, computers contained only central processing units (CPUs) designed to run gen-
eral programming tasks. Since the last decade, mainstream computers in the high-performance com-
puting community have been switching to include other processing elements. The most prevalent is
the GPU, originally designed to perform specialized graphics computations in parallel. Over time,
GPUs have become more powerful and more generalized, enabling them to be applied to general-
purpose parallel computing tasks with excellent performance and high power effi ciency.

Typically, CPUs and GPUs are discrete processing components connected by the PCI-Express bus
within a single compute node. In this type of architecture, GPUs are referred to as discrete devices.

Heterogeneous Computing ❘ 9

The switch from homogeneous systems to heterogeneous systems is a milestone in the history of
high-performance computing. Homogeneous computing uses one or more processor of the same g
architecture to execute an application. Heterogeneous computing instead uses a suite of processorg
architectures to execute an application, applying tasks to architectures to which they are well-suited,
yielding performance improvement as a result.

Although heterogeneous systems provide signifi cant advantages compared to traditional high-
performance computing systems, effective use of such systems is currently limited by the increased
application design complexity. While parallel programming has received much recent attention, the
inclusion of heterogeneous resources adds complexity.

If you are new to parallel programming, then you can benefi t from the performance improvements
and advanced software tools now available on heterogeneous architectures. If you are already a
good parallel programmer, adapting to parallel programming on heterogeneous architectures is
straightforward.

Heterogeneous Architecture
A typical heterogeneous compute node nowadays consists of two multicore CPU sockets and two or
more many-core GPUs. A GPU is currently not a standalone platform but a co-processor to a CPU.
Therefore, GPUs must operate in conjunction with a CPU-based host through a PCI-Express bus, as
shown in Figure 1-9. That is why, in GPU computing terms, the CPU is called the host and the GPUt
is called the device.

Control

Cache

DRAM DRAM

CPU GPU

PCle Bus

ALU

ALU ALU

ALU

FIGURE 1-9

A heterogeneous application consists of two parts:

➤ Host code

➤ Device code

Host code runs on CPUs and device code runs on GPUs. An application executing on a heteroge-
neous platform is typically initialized by the CPU. The CPU code is responsible for managing the
environment, code, and data for the device before loading compute-intensive tasks on the device.

With computational intensive applications, program sections often exhibit a rich amount of data
parallelism. GPUs are used to accelerate the execution of this portion of data parallelism. When a

10 ❘ CHAPTER 1 HETEROGENEOUS PARALLEL COMPUTING WITH CUDA

hardware component that is physically separate from the CPU is used to accelerate computationally
intensive sections of an application, it is referred to as a hardware accelerator. GPUs are arguably rr
the most common example of a hardware accelerator.

NVIDIA’s GPU computing platform is enabled on the following product families:

➤ Tegra

➤ GeForce

➤ Quadro

➤ Tesla

The Tegra product family is designed for mobile and embedded devices such as tablets and phones,
GeForce for consumer graphics, Quadro for professional visualization, and Tesla for datacenter par-
allel computing. Fermi, the GPU accelerator in the Tesla product family, has recently gained wide-
spread use as a computing accelerator for high-performance computing applications. Fermi, released
by NVIDIA in 2010, is the world’s fi rst complete GPU computing architecture. Fermi GPU accel-
erators have already redefi ned and accelerated high-performance computing capabilities in many
areas, such as seismic processing, biochemistry simulations, weather and climate modeling, signal
processing, computational fi nance, computer-aided engineering, computational fl uid dynamics, and
data analysis. Kepler, the current generation of GPU computing architecture after Fermi, released in
the fall of 2012, offers much higher processing power than the prior GPU generation and provides
new methods to optimize and increase parallel workload execution on the GPU, expecting to fur-
ther revolutionize high-performance computing. The Tegra K1 contains a Kepler GPU and provides
everything you need to unlock the power of the GPU for embedded applications.

There are two important features that describe GPU capability:

➤ Number of CUDA cores

➤ Memory size

Accordingly, there are two different metrics for describing GPU performance:

➤ Peak computational performance

➤ Memory bandwidth

Peak computational performance is a measure of computational capability, usually defi ned as how
many single-precision or double-precision fl oating point calculations can be processed per second.
Peak performance is usually expressed in gflops (billion fl oating-point operations per second) or
tflops (trillion fl oating-point calculations per second). Memory bandwidth is a measure of the
ratio at which data can be read from or stored to memory. Memory bandwidth is usually expressed
in gigabytes per second, GB/s. Table 1-1 provides a brief summary of Fermi and Kepler architectural
and performance features.

Heterogeneous Computing ❘ 11

TABLE 1-1: Fermi and Kepler

(TESLA C2050)

KEPLER

(TESLA K10)

CUDA Cores 448 2 x 1536

Memory 6 GB 8 GB

Peak Performance* 1.03 Tfl ops 4.58 Tfl ops

Memory Bandwidth 144 GB/s 320 GB/s

* Peak single-precision fl oating point performance

Most examples in this book can be run on both Fermi and Kepler GPUs. Some examples require
special architectural features only included with Kepler GPUs.

COMPUTE CAPABILITIES

NVIDIA uses a special term, compute capability, to describe hardware versions
of GPU accelerators that belong to the entire Tesla product family. The version of
Tesla products is given in Table 1-2.

Devices with the same major revision number are of the same core architecture.

➤ Kepler class architecture is major version number 3.

➤ Fermi class architecture is major version number 2.

➤ Tesla class architecture is major version number 1.

The fi rst class of GPUs delivered by NVIDIA contains the same Tesla name as the
entire family of Tesla GPU accelerators.

All examples in this book require compute capability above 2.

TABLE 1-2: Compute Capabilities of Tesla GPU Computing Products

GPU COMPUTE CAPABILITY

Tesla K40 3.5

Tesla K20 3.5

Tesla K10 3.0

Tesla C2070 2.0

Tesla C1060 1.3

12 ❘ CHAPTER 1 HETEROGENEOUS PARALLEL COMPUTING WITH CUDA

Paradigm of Heterogeneous Computing
GPU computing is not meant to replace CPU computing. Each approach has advantages for
certain kinds of programs. CPU computing is good for control-intensive tasks, and GPU computing
is good for data-parallel computation-intensive tasks. When CPUs are complemented by GPUs, it
makes for a powerful combination. The CPU is optimized for dynamic workloads marked by short
sequences of computational operations and unpredictable control fl ow; and GPUs aim at the other
end of the spectrum: workloads that are dominated by computational tasks with simple control
fl ow. As shown in Figure 1-10, there are two dimensions that differentiate the scope of applications
for CPU and GPU:

➤ Parallelism level

➤ Data size

If a problem has a small data size, sophisticated control logic, and/or low-level parallelism, the CPU
is a good choice because of its ability to handle complex logic and instruction-level parallelism. If
the problem at hand instead processes a huge amount of data and exhibits massive data parallelism,
the GPU is the right choice because it has a large number of programmable cores, can support mas-
sive multi-threading, and has a larger peak bandwidth compared to the CPU.

Data size from small to large

CPU
Sequential Computing

GPU
Parallel Computing

P
ar

al
le

lis
m

 f
ro

m
 lo

w
 t

o
 h

ig
h Graphics

FIGURE 1-10

CPU + GPU heterogeneous parallel computing architectures evolved because the CPU and GPU
have complementary attributes that enable applications to perform best using both types of proces-
sors. Therefore, for optimal performance you may need to use both CPU and GPU for your appli-
cation, executing the sequential parts or task parallel parts on the CPU and intensive data parallel
parts on the GPU, as shown in Figure 1-11.

Heterogeneous Computing ❘ 13

GPU

Application Code

CPU
Compute intensive portion

Sequential portion

FIGURE 1-11

Writing code this way ensures that the characteristics of the GPU and CPU complement each other,
leading to full utilization of the computational power of the combined CPU + GPU system. To sup-
port joint CPU + GPU execution of an application, NVIDIA designed a programming model called
CUDA. This new programming model is the focus for the rest of this book.

CPU THREAD VERSUS GPU THREAD

Threads on a CPU are generally heavyweight entities. The operating system must
swap threads on and off CPU execution channels to provide multithreading capa-
bility. Context switches are slow and expensive.

Threads on GPUs are extremely lightweight. In a typical system, thousands of
threads are queued up for work. If the GPU must wait on one group of threads, it
simply begins executing work on another.

CPU cores are designed to minimize latency for one or two threads at a time,
whereas GPU cores are designed to handle a large number of concurrent, light-
weight threads in order to maximize throughput.

Today, a CPU with four quad core processors can run only 16 threads concurrently,
or 32 if the CPUs support hyper-threading.

Modern NVIDIA GPUs can support up to 1,536 active threads concurrently per
multiprocessor. On GPUs with 16 multiprocessors, this leads to more than 24,000
concurrently active threads.

14 ❘ CHAPTER 1 HETEROGENEOUS PARALLEL COMPUTING WITH CUDA

CUDA: A Platform for Heterogeneous Computing
CUDA is a general-purpose parallel computing platform and programming model that leverages
the parallel compute engine in NVIDIA GPUs to solve many complex computational problems in a
more effi cient way. Using CUDA, you can access the GPU for computation, as has been traditionally
done on the CPU.

The CUDA platform is accessible through CUDA-accelerated libraries, compiler directives, applica-
tion programming interfaces, and extensions to industry-standard programming languages, includ-
ing C, C++, Fortran, and Python (as illustrated by Figure 1-12). This book focuses on CUDA C
programming.

GPU Computing Applications

Programming Languages

Libraries and Middleware

CUFFT
CUBLAS
CURAND

CUSPARSE

C Fortran Python DirectCompute
Directives

(e.g. OpenACC)
C++

CULA
MAGMA

Thrust
NPP

PhysX
OptiX

iray
MATLAB

Mathematica

VSIPL
SVM

OpenCurrent

FIGURE 1-12

CUDA C is an extension of standard ANSI C with a handful of language extensions to enable het-
erogeneous programming, and also straightforward APIs to manage devices, memory, and other
tasks. CUDA is also a scalable programming model that enables programs to transparently scale
their parallelism to GPUs with varying numbers of cores, while maintaining a shallow learning
curve for programmers familiar with the C programming language.

CUDA provides two API levels for managing the GPU device and organizing threads, as shown in
Figure 1-13.

➤ CUDA Driver API

➤ CUDA Runtime API

The driver API is a low-level API and is relatively hard to program, but it provides more control I
over how the GPU device is used. The runtime API is a higher-level API implemented on top of theI

Heterogeneous Computing ❘ 15

driver API. Each function of the runtime API is broken down into more basic operations issued to
the driver API.

CPU
Applications

CUDA Libraries

CUDA Runtime

CUDA Driver

GPU

FIGURE 1-13

RUNTIME API VERSUS DRIVER API

There is no noticeable performance difference between the runtime and driver
APIs. How your kernels use memory and how you organize your threads on the
device have a much more pronounced effect.

These two APIs are mutually exclusive. You must use one or the other, but it is not
possible to mix function calls from both. All examples throughout this book use
the runtime API.

A CUDA program consists of a mixture of the following two parts:

➤ The host code runs on CPU.

➤ The device code runs on GPU.

NVIDIA’s CUDA nvcc compiler separates the device code from the host code during the compila-
tion process. As shown in Figure 1-14, the host code is standard C code and is further compiled
with C compilers. The device code is written using CUDA C extended with keywords for labeling
data-parallel functions, called kernels. The device code is further compiled by nvcc. During the
link stage, CUDA runtime libraries are added for kernel procedure calls and explicit GPU device
manipulation.

16 ❘ CHAPTER 1 HETEROGENEOUS PARALLEL COMPUTING WITH CUDA

CUDA Libraries

CUDA Compiler

CPU Host Code

C Compiler

CPU

CUDA Assembly
for Computing (PTX)

CUDA Driver
& Runtime

Debugger
Profiler

GPU

Integrated CPU+GPU Code

The CUDA nvcc compiler is based on the widely used LLVM open source compiler infrastructure.
You can create or extend programming languages with support for GPU acceleration using the
CUDA Compiler SDK, as shown in Figure 1-15.

CUDA
C, C++, Fortran

New Language
Support

LLVM Compiler
For CUDA

NVIDIA
GPUs

New Processor
Support

×86
CPUs

FIGURE 1-15

The CUDA platform is also a foundation that supports a diverse parallel computing ecosystem, as
shown in Figure 1-16. Today, the CUDA ecosystem is growing rapidly as more and more companies
provide world-class tools, services, and solutions. If you want to build your applications on GPUs,
the easiest way to harness the performance of GPUs is with the CUDA Toolkit (https://
developer.nvidia.com/cuda-toolkit), which provides a comprehensive development environ-
ment for C and C++ developers. The CUDA Toolkit includes a compiler, math libraries, and tools
for debugging and optimizing the performance of your applications. You will also fi nd code samples,
programming guides, user manuals, API references, and other documentation to help you get started.

Hello World from GPU ❘ 17

C
om

pi
le

r T
ool Chain Program

m
ing

Libraries

Languages

Developer
 T

oo
ls

Platform

FIGURE 1-16

HELLO WORLD FROM GPU

The best way to learn a new programming language is by writing programs using the new language.
In this section, you are going to write your fi rst kernel code running on the GPU. The fi rst program
is the same for all languages: Print the string “Hello World.”

If this is your fi rst time working with CUDA, you may want to check that the CUDA compiler is
installed properly with the following command on a Linux system:

$ which nvcc

A typical response would be:

/usr/local/cuda/bin/nvcc

You also need to check if a GPU accelerator card is attached in your machine. You can do so with
the following command on a Linux system:

$ ls -l /dev/nv*

A typical response would be:

crw-rw-rw- 1 root root 195, 0 Jul 3 13:44 /dev/nvidia0
crw-rw-rw- 1 root root 195, 1 Jul 3 13:44 /dev/nvidia1
crw-rw-rw- 1 root root 195, 255 Jul 3 13:44 /dev/nvidiactl
crw-rw---- 1 root root 10, 144 Jul 3 13:39 /dev/nvram

18 ❘ CHAPTER 1 HETEROGENEOUS PARALLEL COMPUTING WITH CUDA

In this example, you have two GPU cards installed (your confi guration may be different, and may
show more or fewer devices). Now you are ready to write your fi rst CUDA C code. To write a
CUDA C program, you need to:

1. Create a source code fi le with the special fi le name extension of .cu.

2. Compile the program using the CUDA nvcc compiler.

3. Run the executable fi le from the command line, which contains the kernel code executable on
the GPU.

As a starting point, write a C program to print out “Hello World” as follows:

#include <stdio.h>
int main(void)
{
 printf(“Hello World from CPU!\n”);
}

Save the code into the fi le hello.cu and then compile it with nvcc. The CUDA nvcc compiler has
similar semantics to gcc and other compilers.

$ nvcc hello.cu -o hello

If you run the executable fi le hello, it will print:

Hello World from CPU!

Next, write a kernel function, named helloFromGPU, to print the string of “Hello World from
GPU!” as follows:

__global__ void helloFromGPU(void)
{
 printf(“Hello World from GPU!\n”);
}

The qualifi er __global__ tells the compiler that the function will be called from the CPU and exe-
cuted on the GPU. Launch the kernel function with the following code:

 helloFromGPU <<<1,10>>>();

Triple angle brackets mark a call from the host thread to the code on the device side. A kernel is
executed by an array of threads and all threads run the same code. The parameters within the triple
angle brackets are the execution confi guration, which specifi es how many threads will execute the
kernel. In this example, you will run 10 GPU threads. Putting all of these things together, you have
the program shown in Listing 1-1:

LISTING 1-1: Hello World from GPU (hello.cu)

#include <stdio.h>

__global__ void helloFromGPU (void)
{
 printf(“Hello World from GPU!\n”);

Hello World from GPU ❘ 19

}

int main(void)
{
 // hello from cpu
 printf(“Hello World from CPU!\n”);

 helloFromGPU <<<1, 10>>>();
 cudaDeviceReset();
 return 0;

}

The function cudaDeviceReset() will explicitly destroy and clean up all resources associated with
the current device in the current process. Compile the code with the switch -arch sm_20 on the
nvcc command line as follows:

$ nvcc -arch sm_20 hello.cu -o hello

The switch -arch sm_20 causes the compiler to generate device code for the Fermi architecture.
Run the executable fi le and it will print 10 strings of “Hello World from GPU!” as follows, from
each thread.

$./hello
Hello World from CPU!
Hello World from GPU!
Hello World from GPU!
Hello World from GPU!
Hello World from GPU!
Hello World from GPU!
Hello World from GPU!
Hello World from GPU!
Hello World from GPU!
Hello World from GPU!
Hello World from GPU!

CUDA PROGRAM STRUCTURE

A typical CUDA program structure consists of fi ve main steps:

1. Allocate GPU memories.

2. Copy data from CPU memory to GPU memory.

3. Invoke the CUDA kernel to perform program-specifi c computation.

4. Copy data back from GPU memory to CPU memory.

5. Destroy GPU memories.

In the simple program hello.cu, you only see the third step: Invoke the kernel. For
the remainder of this book, examples will demonstrate each step in the CUDA pro-
gram structure.

20 ❘ CHAPTER 1 HETEROGENEOUS PARALLEL COMPUTING WITH CUDA

IS CUDA C PROGRAMMING DIFFICULT?

The main difference between CPU programming and GPU programming is the level of programmer
exposure to GPU architectural features. Thinking in parallel and having a basic understanding of
GPU architecture enables you to write parallel programs that scale to hundreds of cores as easily as
you write a sequential program.

If you want to write effi cient code as a parallel programmer, you need a basic knowledge of CPU
architectures. For example, locality is a very important concept in parallel programming. Locality
refers to the reuse of data so as to reduce memory access latency. There are two basic types of refer-
ence locality. Temporal locality refers to the reuse of data and/or resources within relatively small
time durations. Spatial locality refers to the use of data elements within relatively close storage loca-
tions. Modern CPU architectures use large caches to optimize for applications with good spatial and
temporal locality. It is the programmer’s responsibility to design their algorithm to effi ciently use
CPU cache. Programmers must handle low-level cache optimizations, but have no introspection into
how threads are being scheduled on the underlying architecture because the CPU does not expose
that information.

CUDA exposes you to the concepts of both memory hierarchy and thread hierarchy, extending your
ability to control thread execution and scheduling to a greater degree, using:

➤ Memory hierarchy structure

➤ Thread hierarchy structure

For example, a special memory, called shared memory, is exposed by the CUDA programming
model. Shared memory can be thought of as a software-managed cache, which provides great speed-
up by conserving bandwidth to main memory. With shared memory, you can control the locality of
your code directly.

When writing a parallel program in ANSI C, you need to explicitly organize your threads with
either pthreads or OpenMP, two well-known techniques to support parallel programing on most P
processor architectures and operating systems. When writing a program in CUDA C, you actu-
ally just write a piece of serial code to be called by only one thread. The GPU takes this kernel
and makes it parallel by launching thousands of threads, all performing that same computation.
The CUDA programming model provides you with a way to organize your threads hierarchi-
cally. Manipulating this organization directly affects the order in which threads are executed on
the GPU. Because CUDA C is an extension of C, it is often straightforward to port C programs to
CUDA C. Conceptually, peeling off the loops of your code yields the kernel code for a CUDA C
implementation.

CUDA abstracts away the hardware details and does not require applications to be mapped to tradi-
tional graphics APIs. At its core are three key abstractions: a hierarchy of thread groups, a hierarchy

Summary ❘ 21

of memory groups, and barrier synchronization, which are exposed to you as a minimal set of
language extensions. With each release of CUDA, NVIDIA is simplifying parallel programming.
Though some still consider CUDA concepts to be low-level, raising the abstraction level any higher
would damage your ability to control the interaction between your application and the platform.
Without that ability, the performance of your application is beyond your control no matter what
knowledge you have of the underlying architecture.

Therefore, the challenge to you is to learn the basics of GPU architecture and master the CUDA
development tools and environment.

CUDA DEVELOPMENT ENVIRONMENT

NVIDIA provides a comprehensive development environment for C and C++ devel-
opers to build GPU-accelerated applications, including:

➤ NVIDIA Nsight™ integrated development environment

➤ CUDA-GDB command line debugger

➤ Visual and command line profi ler for performance analysis

➤ CUDA-MEMCHECK memory analyzer

➤ GPU device management tools

After you become familiar with these tools, programming with CUDA C is
straightforward and rewarding.

SUMMARY

As both computer architectures and parallel programming models have evolved, the design of each
has intertwined to produce modern heterogeneous systems. The CUDA platform helps improve per-
formance and programmer productivity on heterogeneous architectures.

CPU + GPU systems have become mainstream in the high-performance computing world. This
change has led to a fundamental shift in the parallel programming paradigm: The data-parallel work-
load is executed on the GPU, while the serial and task-parallel workload is executed on the CPU.

Fermi and Kepler GPU accelerators, as complete GPU computing architectures, have already rede-
fi ned the high-performance computing capabilities in many areas. After reading and understanding
the concepts in this book, you will discover that writing CUDA programs that scale to hundreds or
thousands of cores in a heterogeneous system is as easy as writing sequential programs.

22 ❘ CHAPTER 1 HETEROGENEOUS PARALLEL COMPUTING WITH CUDA

CHAPTER 1 EXERCISES

1. Refer to Figure 1-5 and illustrate the following patterns of data partition:
▪ Block partition along the x dimension for 2D datax
▪ Cyclic partition along the y dimension for 2D datay
▪ Cyclic partition along the z dimension for 3D data

2. Remove the cudaDeviceReset function from hello.cu, then compile and run it to see what
would happen.

3. Replace the function cudaDeviceReset in hello.cu with cudaDeviceSynchronize, then
compile and run it to see what happens.

4. Refer to the section “Hello World from GPU.” Remove the device architecture fl ag from the
compiler command line and compile it as follows to see what happens.

$ nvcc hello.cu -o hello

5. Refer to the CUDA online document (http://docs.nvidia.com/cuda/index.html). Based
on the section “CUDA Compiler Driver NVCC,” what fi le suffi xes does nvcc support
compilation on?

6. Each thread that executes the kernel is given a unique thread ID that is accessible within the
kernel through the built-in threadIdx.x variable. Modify the kernel function inx hello.cu with
the thread index to let the output be:
$./hello
Hello World from CPU!
Hello World from GPU thread 5!

