
c01.indd 1 2/02/2015 3:42 PM

 WHAT YOU WILL LEARN IN THIS CHAPTER:

➤ The key steps in a programming process

➤ The different types of programming errors

➤ The key principles of software testing

➤ The different types of software maintenance

➤ The key principles of structured programming

 WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

 The wrox.com code downloads for this chapter are found at www.wrox.com/go/
beginningjavaprogramming on the Download Code tab. The code is in the Chapter 1
download and individually named according to the names throughout the chapter.

 Developing good and correct software is a very important challenge in today’s business
environment. Given the ubiquity and pervasiveness of software programs into our daily
lives, the impact of faulty software is now bigger than ever. Software errors have caused
fl ight crashes, rocket launch errors, and power blackouts, to name a few examples. Hence,
it is important to design high-quality, error-free software programs. This chapter covers the
fundamental concepts of programming. First, it elaborates on the programming process. The
next section provides a sneak preview of object-oriented programming. This is followed by a
short discussion on programming errors. The basic principles of software testing and software
maintenance are also discussed. The chapter concludes by giving some recommendations
relating to structured programming. You will revisit many of these ideas in future chapters,
with a more hands-on approach.

 1
CO

PYRIG
HTED

 M
ATERIA

L

2 ❘ CHAPTER 1 A GENERAL INTRODUCTION TO PROGRAMMING

c01.indd 2 2/02/2015 3:42 PM c

THE PROGRAMMING PROCESS

 A program (also referred to as an application) is a set of instructions targeted to solve a particular
problem that can be unambiguously understood by a computer. To this end, the computer will
translate the program to the language it understands, which is machine language consisting
of 0s and 1s. Computers execute a program literally as it was programmed, nothing more and
nothing less. Programming is the activity of writing or coding a program in a particular pro-
gramming language. This is a language that has strict grammar and syntax rules, symbols, and
special keywords. People who write programs are commonly referred to as programmers or
application developers. The term software then refers to a set of programs within a particular
business context.

 An example of a programming exercise is a program that calculates the body mass index (BMI) of
a person. The BMI is calculated by dividing a person’s weight in kilograms by the square of his or
her height in meters. A person is con-
sidered overweight if his or her BMI
is over 25. A BMI calculator program
then requires the weight and height as
inputs and calculates the associated
BMI as the output. This is illustrated in
Figure 1-1 . This BMI example is used
to demonstrate the steps in the software
development cycle.

 Programs are typically written using a
step-by-step approach, as follows:

1. Requirements gathering and analysis

2. Program design

3. Program coding

4. Translation to machine language

5. Testing and debugging

6. Deployment

7. Maintenance

 Because our environment is continuously evolving,
software, too, is often continually reviewed and
adapted. Therefore, these steps are often represented
as a cycle, as shown in Figure 1- 2 , rather than as a
ladder.

 The fi rst step is to make sure you understand the problem
in suffi cient detail. This means analyzing the problem
statement carefully so you fully grasp all the require-
ments that need to be fulfi lled by the software program.
This may involve Q&A sessions, interviews, and surveys

 FIGURE 1-1

Inputs

Height

PROGRAM BMI

Weight

Output

 FIGURE 1-2

Requirements

Maintenance

Deployment

Testing Translation

Coding

Design

M

The Programming Process ❘ 3

c01.indd 3 2/02/2015 3:42 PM

with business experts who have the necessary subject matter expertise. Even if you are programming
for yourself, taking the time upfront to consider all the demands you want your program to meet will
limit the amount of changes required later in the process. At the end of this step, it is important to know
what the input to the program will receive and what output it should give. In the BMI example, you will
need to know whether the height will be measured in meters or feet and the weight in kilos or pounds.
You would also want to determine whether the output should be just the BMI results or also a message
stating whether or not the person is overweight.

 Once you have a thorough understanding of the business problem, you can start thinking about
ways to solve it using a computer program. In other words, which processing steps should take
place on the input(s) in order to give the desired output(s)? The procedure needed to solve the
problem is also often referred to as the algorithm . When working out an algorithm, common sense
and creativity both play an important role. A fi rst useful step in designing an algorithm is plan-
ning the application logic using pseudo-code or fl owcharts. Pseudo-code is a type of structured
English but without strict grammar rules. It is a user-friendly way of representing application
logic in a sequential, readable format. It allows the problem statement to be broken into manage-
able pieces in order to reduce its complexity. Following is an example of pseudo-code for the BMI
case. A fl owchart represents the application in a diagram, whereby the boxes show the activities
and the arrows the sequences between them. Table 1-1 presents an overview of the most important
fl owchart construction concepts. Figure 1-3 then gives an example of a fl owchart for the BMI case.
Both pseudo-code and fl owcharts can be used concurrently to facilitate the programming exercise.
A key advantage of fl owcharts when compared to pseudo-code is that they are visual and thus
easier to interpret.

 ask user: height
 ask user: weight
 if height = 0 or weight = 0:
 error: "Incorrect input values"
 return to beginning (ask height and weight)
 end if
 x = weight / (height * height)
 message: "Your BMI is ",x

 Table 1-1 is an overview of the most important fl owchart modeling concepts.

 TABLE 1-1: Key Flowchart Modeling Concepts

FLOWCHART SYMBOL MEANING

A terminator shows the start and stopping points of
the program.

An arrow shows the direction of the process fl ow.

A rectangle represents a process step or activity.

continues

4 ❘ CHAPTER 1 A GENERAL INTRODUCTION TO PROGRAMMING

c01.indd 4 2/02/2015 3:42 PM c

FLOWCHART SYMBOL MEANING

A diamond indicates a decision point in the process.

This symbol represents a document or report.

This rhombus represents data used as inputs/outputs
to/from a process.

This cylinder represents a database.

TABLE 1-1: (continued)

 A next step is to code the program in a particular programming language. The choice of the lan-
guage will depend on the programming paradigm and the platform adopted (such as hardware,
operating system, or network).

 Once the source code of the program has been written, it will be given to a translator to translate it
to machine language (0s and 1s) so that it can be executed and solve the business problem.

 FIGURE 1-3

Start
Ask user height

and weight

Display error
message

Yes

No

weight = 0

or
height = 0

Compute
BMI

Display
BMI

Stop

 During application development, it is important that every program is intensively tested to avoid any
errors. Often, in programming, errors are called bugs . Various types of errors exist and an entire
chapter is devoted to this topic. Programming tools frequently have debugging facilities built in to

M

Object-Oriented Programming: A Sneak Preview ❘ 5

c01.indd 5 2/02/2015 3:42 PM

easily track bugs down and correct them. It is possible to debug your program without the use of
such tools, but in either case, you should follow a structured and systematic review to be sure you’ve
identifi ed any bugs before your program is deployed.

 Once a program has been thoroughly tested, it can be deployed. This means that the program will
be brought into production and actively used to solve the business problem. Remember, users of
your software don’t usually understand as much about programming as you. Try to keep them in
mind throughout the process to make this deployment step as seamless as possible.

 Finally, programs should be maintained on an ongoing basis. There are many reasons for regular
maintenance, namely correcting newly discovered bugs, accommodating changing user needs, pre-
venting erroneous user input, or adding new features to existing programs.

 It is important to note that programming is not a strict, sequential, step-by-step process. Quite to
the contrary, it often occurs as an iterative process, whereby the original business problem is refi ned
or even reformulated during the coding process.

 OBJECT-ORIENTED PROGRAMMING: A SNEAK PREVIEW

 In object-oriented (OO) programming, an application consists of a series of objects that ask services
from each other. Each object is an instance of a class that contains a blueprint description of all the
object’s characteristics. Contrary to procedural programming, an object bundles both its data (which
determines its state) and its procedures (which determines its behavior) in a coherent way. An example
of this could be a student object having data elements such as ID, name, date of birth, email address,
and so on, and procedures such as registerForCourse , isPassed, and so on. A key difference
between OO and procedural programming is that OO uses local data stored in objects, whereas pro-
cedural programming uses global shared data that the various procedures can access directly. This has
substantial implications from a maintenance viewpoint. Imagine that you want to change a particular
data element (rename it or remove it). In a procedural programming environment, you would have
to look up all procedures that make use of the data element and adapt them accordingly. For huge
programs, this can be a very tedious maintenance exercise. When you’re using an OO programming
paradigm, you only need to change the data element in the object’s defi nition and the other objects can
keep on interacting with it like they did before, minimizing the maintenance.

 OO programming is the most popular programming paradigm currently in use. Some examples of
object-oriented programming languages are Eiffel, Smalltalk, C++, and Java.

 The following code example demonstrates how to implement the BMI example in Java. Contrary to
the procedural programming example, it can be clearly seen that the data (weight, height, and
BMI) is bundled together with the procedures (BMICalculator, calculate, and isOverweight)
into one coherent class defi nition.

 public class BMICalculator {
 private double weight, height, BMI;

 public BMICalculator(double weight, double height){
 this.weight = weight;
 this.height = height;
 }

6 ❘ CHAPTER 1 A GENERAL INTRODUCTION TO PROGRAMMING

c01.indd 6 2/02/2015 3:42 PM c

 public void calculate(){
 BMI = weight / (height*height);
 }

 public boolean isOverweight(){
 return (BMI > 25);
 }
}

PROGRAMMING ERRORS

 A programming error is also referred to as a bug , and the procedure for removing programming g
errors is called debugging . Debugging usually has the following three steps:g

1. Detect that there is an error.

2. Locate the error. This can be quite time consuming for big programs.

3. Solve the error.

 Different types of programming errors exist and are explored in the following sections.

Syntax/Compilation Errors
 A syntax or compilation error refers to a grammatical mistake in the program. Examples are a
punctuation error or misspelling of a keyword. These types of errors are typically caught by the
compiler or interpreter, which will generate an error message. Consider the following Java example:

 public void calculate(){
 BMI = weight / (height*height),
 }

 The statement that calculates the BMI should end with a semicolon (;) instead of a comma (,),
according to the Java syntax rules. Hence, a syntax error will be generated and displayed. Syntax
errors are usually easy to detect and solve.

Runtime Errors
 A runtime error is an error that occurs during the execution of the program. Consider the following
piece of Java code to calculate the BMI:

 public void calculate(){
 BMI = weight / (height*height);
 }

 If the user enters a value of 0 for height, a division by zero occurs. This creates a runtime error
and will likely crash during execution. Another example of a runtime error is an infi nite loop into
which the program enters at execution. During the design of the program, it is important to think
about possible runtime errors that might occur due to bad user input, which is where the majority
of bugs will originate. These errors should be anticipated as much as possible using appropriate
error-handling routines, as we will discuss later.

M

Principles of Software Testing ❘ 7

c01.indd 7 2/02/2015 3:42 PM

 Logic/Semantic Errors
 Logic or semantic errors are the hardest to detect since the program will give an output and not
generate an error. However, the output that is given is incorrect due to a formula being incorrectly
programmed. Consider the BMI example again:

 public void calculate(){
 BMI = (weight*weight) / height;
 }

 This routine is clearly erroneous since it calculates the BMI as (weight*weight)/height instead of
weight/(height*height). These errors cannot be detected by compilers or interpreters.

 PRINCIPLES OF SOFTWARE TESTING

 In order to avoid software errors (and their impact), a program should be thoroughly tested for
any remaining errors before it is brought into production. The main purpose of testing is verifi ca-
tion and validation of the software build. Verifi cation aims at answering the question as to whether
the system was built correctly, whereas validation tries to determine whether the right system was
built. The quicker an error is found during development, the cheaper it is to correct it. As illustrated
in Figure 1-4 , the cost of testing typically increases exponentially, whereas the cost of missed bugs
decreases exponentially with the amount of testing conducted. The optimum testing resources can
then be found where both curves intersect.

 FIGURE 1-4

Cost of missed
bugs Cost of testing

Optimum

Undertesting Overtesting

Amount of testing

 A fi rst basic way of testing is to desk-check the program by using paper and pencil. The manual
calculations and output can then be contrasted with the program calculations and output. It is
especially important to consider extreme cases and see how the program behaves. Of course, this
only works for small-scale programs; more sophisticated procedures might be needed for bigger
programs.

8 ❘ CHAPTER 1 A GENERAL INTRODUCTION TO PROGRAMMING

c01.indd 8 2/02/2015 3:42 PM c

 Static testing procedures test the program not by executing it, but by inspecting and reviewing the
code and performing detailed walk-throughs. It is aimed at verifi cation. On the other hand, dynamic
testing procedures test the program by executing it with carefully selected test cases. It is thus more
related to validation. The test cases can be chosen according to a white box or black box strategy.
In white box testing, they are selected by thorough inspection of the source code of the program;
for example, by making sure all the branches in an if-then-else selection are covered, boundary
conditions for loops are verifi ed, and so on. One popular approach is to intentionally inject faults
in the source code, which then need to be tracked down in a follow-up step. Black box testing con-
siders the program as a black box and does not inspect its internal source code. One example is a
procedure that tries to test all possible input parameter combinations. It is especially important to
also test what happens when impossible values are entered (such as a negative value for weight and
height, value of 0 for height, missing value for gender, and so on). Obviously, this becomes compu-
tationally infeasible in case many inputs are present and intelligent sampling procedures could be
adopted to test as many useful input combinations as possible.

 Software development typically has two phases of testing. Alpha testing is done internally by the g
application developers before the software is brought to the market. In beta testing, the software is
given to a selected target audience and errors are reported back to the development team.

SOFTWARE MAINTENANCE

 Software is always dynamically evolving, even after delivery. Maintenance is the activity of adjusting
the program after it has been taken into production. This is done to boost its performance, solve any
remaining errors, and/or accommodate new user requirements. Maintenance typically consumes a large
part of the overall software development costs (up to 70% or more according to some estimates). This
can be partly explained by the fact that much of the software people work with today is relatively old
(legacy software) and has been maintained on an ongoing basis. This section covers the four main types
of maintenance. They are categorized according to their intended goals.

Adaptive Maintenance
 Adaptive software maintenance refers to modifying a program to accommodate changes in the envi-
ronment (both hardware and software). An example of this is a new Windows release with new fea-
tures added (which can also be used by the program) and old features removed (which can no longer
be used by the program).

Perfective Maintenance
 This refers to enhancing a program to support new or changed user requirements. Consider again
the BMI example. When the user wants to be able to enter height in feet units and weight in pound
units, this is a perfective maintenance operation.

Corrective Maintenance
 Corrective maintenance aims at fi nding errors during runtime and fi xing them. A further distinction
can be made here between emergency fi xes (which need to be solved as quickly as possible due to
their critical relevance) and routine debugging (which is less urgent).

M

Principles of Structured Programming ❘ 9

c01.indd 9 2/02/2015 3:42 PM

 Preventive Maintenance
 Preventive maintenance aims at increasing software maintainability in order to prevent future
errors. A popular example here was the Y2K problem, where companies massively anticipated date
calculation errors in their software programs at the end of the previous century. Another example
concerns the transition of many countries from their own independent currency toward the Euro.
One important activity to facilitate preventive maintenance is documentation. This means that
the application is extended with various comments that are not executed by the compiler, but that
indicate the meaning of the various data elements, procedures, and operations in order to facilitate
future maintenance.

 Among the four types of maintenance, perfective maintenance typically takes the main share of all
maintenance efforts (it can even be more than 50%), followed by adaptive, corrective, and preven-
tive maintenance.

 The major causes of maintenance problems are unstructured code, lack of documentation, excessive
user demand for changes, lack of user training and understanding, and high user turnover. Many
organizations have standard procedures for maintenance, which typically start with the formal fi l-
ing of a change request specifying the modifi cations needed to the software. Depending on the sever-
ity of the request and the change management strategy adopted by the organization, these change
requests can be grouped and dealt with at fi xed time stamps, or treated immediately.

 PRINCIPLES OF STRUCTURED PROGRAMMING

 To fi nish this introductory chapter, this section discusses some of the basic principles of structured
programming.

 A fi rst important concept is stepwise refi nement . Programs should be designed using a top-down t
strategy where the problem statement is subdivided into smaller, more manageable subproblems.
These subproblems can be further broken down into smaller subproblems until each piece becomes
easy to solve. This strategy should decrease the program development time and its maintenance
cost.

Documentation is another important concept. It provides invaluable clarifi cation for complex pro-
gramming statements, which will again facilitate future maintenance operations. Every program-
ming language offers facilities to include documentation lines that are ignored by the compiler or
interpreter but can be easily read and understood by programmers.

 Also of key importance is to assign meaningful names to programming concepts such as variables.
Instead of naming a variable i or j without any explicit interpretation, it is much better to use stu-
dent or course , which immediately indicate their meanings.

 By incorporating these principles into your programs, you will improve your own work and at the
same time make it possible for others (or even yourself—it’s not always easy to remember what you
meant by varX months later) to update and continue using your software. After all, the goal is to
create something useful that people will want to keep using.

 That being said, let’s immerse ourselves further into the wonderful world of Java programming and
continue with the next chapter!

