
I Goal-Directed
Design

CH 1 A Design Process for Digital Products

CH 2 Understanding the Problem: Design Research

CH 3 Modeling Users: Personas and Goals

CH 4 Setting the Vision: Scenarios and
Requirements

CH 5 Designing the Product: Framework and
Design Refinement

CH 6 Creative Teamwork

CO
PYRIG

HTED
 M

ATERIA
L

CH 1

A DeSiGn PRoCeSS FoR
DiGiTAl PRoDUCTS
This book has a simple premise: If we design and develop digital products in such a way
that the people who use them can easily achieve their goals, they will be satisfied, effec-
tive, and happy. They will gladly pay for our products—and recommend that others do
the same. Assuming that we can do so in a cost-effective manner, this will translate into
business success.

On the surface, this premise seems obvious: Make people happy, and your products will
be a success. Why, then, are so many digital products so difficult and unpleasant to use?
Why aren’t we all happy and successful when we use them? Why, despite the steady
march of faster, cheaper, and more accessible technology, are we still so often frustrated?

The answer, in short, is the absence of design as a fundamental and equal part of the
product planning and development process.

Design, according to industrial designer Victor Papanek, is the conscious and intuitive
effort to impose meaningful order. We propose a somewhat more detailed definition of
human-oriented design activities:

 • Understanding the desires, needs, motivations, and contexts of people using products

 • Understanding business, technical, and domain opportunities, requirements, and
constraints

4 Part I: Goal-Directed Design

 • Using this knowledge as a foundation for plans to create products whose form, content,
and behavior are useful, usable, and desirable, as well as economically viable and
technically feasible

This definition is useful for many design disciplines, although the precise focus on form,
content, and behavior varies depending on what is being designed. For example, an
informational website may require particular attention to content, whereas the design
of a simple TV remote control may be concerned primarily with form. As discussed in the
Introduction, interactive digital products are uniquely imbued with complex behavior.

When performed using the appropriate methods, design can, and does, provide the
missing human connection in technological products. But most current approaches to
the design of digital products don’t work as advertised.

The Consequences of Poor
Product Behavior
In the nearly 20 years since the publication of the first edition of About Face, software
and interactive digital products have greatly improved. Many companies have begun
to focus on serving people’s needs with their products and are spending the time and
money needed to support the design process. However, many more still fail to do so—at
their peril. As long as businesses continue to focus solely on technology and market data
while shortchanging design, they will continue to create the kind of products we’ve all
grown to despise.

The following sections describe a few of the consequences of creating products that lack
appropriate design and thus ignore users’ needs and desires. How many of your digital
products exhibit some of these characteristics?

Digital products are rude
Digital products often blame users for making mistakes that are not their fault, or should
not be. Error messages like the one shown in Figure 1-1 pop up like weeds, announcing
that the user has failed yet again. These messages also demand that the user acknowl-
edge his failure by confirming it: OK.

Digital products and software frequently interrogate users, peppering them with a
string of terse questions that they are neither inclined nor prepared to answer: “Where
did you hide that file?” Patronizing questions like “Are you sure?” and “Did you really
want to delete that file, or did you have some other reason for pressing the Delete key?”
are equally irritating and demeaning.

5CH 1. A Design Process for Digital Products

Figure 1-1: Thanks for sharing. Why didn’t the application notify the library? Why did it want to notify
the library? Why is it telling us? And what are we OKing, anyway? It is not OK that the application failed!

Our software-enabled products also fail to act with a basic level of decency. They forget
information we tell them and don’t do a very good job of anticipating our needs. Even
the iPhone—generally the baseline for good user experience on a digital device—doesn’t
anticipate that someone might not want to be pestered with a random phone call when
he is in the middle of a business meeting that is sitting right there in the iPhone’s own
calendar. Why can’t it quietly put a call that isn’t from a family member into voicemail?

Digital products require people to think like computers
Digital products regularly assume that people are technology literate. For example, in
Microsoft Word, if a user wants to rename a document she is editing, she must know that
she must either close the document or use the “Save As…” menu command (and remem-
ber to delete the file with the old name). These behaviors are inconsistent with how a nor-
mal person thinks about renaming something; rather, they require that a person change
her thinking to be more like the way a computer works.

Digital products are also often obscure, hiding meaning, intentions, and actions from
users. Applications often express themselves in incomprehensible jargon that cannot be
fathomed by normal users (“What is your SSID?”) and are sometimes incomprehensible
even to experts (“Please specify IRQ.”).

Digital products have sloppy habits
If a 10-year-old boy behaved like some software apps or devices, he’d be sent to his room
without supper. These products forget to shut the refrigerator door, leave their shoes in
the middle of the floor, and can’t remember what you told them only five minutes ear-
lier. For example, if you save a Microsoft Word document, print it, and then try to close it,
the application again asks you if you want to save it! Evidently the act of printing caused
the application to think the document had changed, even though it did not. Sorry, Mom, I
didn’t hear you.

Software often requires us to step out of the main flow of tasks to perform functions that
shouldn’t require separate interfaces and extra navigation to access. Dangerous com-
mands, however, are often presented right up front where users can accidentally trigger
them. Dropbox, for example, sandwiches Delete between Download and Rename on its

6 Part I: Goal-Directed Design

context menus, practically inviting people to lose the work they’ve uploaded to the cloud
for safekeeping.

Furthermore, the appearance of software—especially business and technical applica-
tions—can be complex and confusing, making navigation and comprehension unneces-
sarily difficult.

Digital products require humans to do the heavy lifting
Computers and their silicon-enabled brethren are purported to be labor-saving devices.
But every time we go out into the field to watch real people doing their jobs with the
assistance of technology, we are struck by how much work they are forced to do simply
to manage the proper operation of software. This work can be anything from manually
copying (or, worse, retyping) values from one window into another, to attempting (often
futilely) to paste data between applications that otherwise don’t speak to each other, to
the ubiquitous clicking and pushing and pulling of windows and widgets around the
screen to access hidden functionality that people use every day to do their job.

The evidence is everywhere that digital products have a lot of explaining to do when it
comes to their poor behavior.

Why Digital Products Fail
Most digital products emerge from the development process like a sci-fi monster emerg-
ing from a bubbling tank. Instead of planning and executing with a focus on satisfying
the needs of the people who use their products, companies end up creating solutions
that—while technically advanced—are difficult to use and control. Like mad scientists,
they fail because they have not imbued their creations with sufficient humanity.

Why is this? What is it about the technology industry as a whole that makes it so inept at
designing the interactive parts of digital products? What is so broken about the current
process of creating software-enabled products that it results in such a mess?

There are four main reasons why this is the case:

 • Misplaced priorities on the part of both product management and development teams

 • Ignorance about real users of the product and what their baseline needs are for success

 • Conflicts of interest when development teams are charged with both designing and
building the user experience

 • Lack of a design process that permits knowledge about user needs to be gathered,
analyzed, and used to drive the development of the end experience

7CH 1. A Design Process for Digital Products

Misplaced priorities
Digital products come into the world subject to the push and pull of two often-oppos-
ing camps—marketers and developers. While marketers are adept at understanding and
quantifying a marketplace opportunity, and at introducing and positioning a product
within that market, their input into the product design process is often limited to lists of
requirements. These requirements often have little to do with what users actually need
or desire and have more to do with chasing the competition, managing IT resources with
to-do lists, and making guesses based on market surveys—what people say they’ll buy.
(Contrary to what you might suspect, few users can clearly articulate their needs. When
asked direct questions about the products they use, most tend to focus on low-level tasks
or workarounds to product flaws. And, what they think they’ll buy doesn’t tell you much
about how—or if—they will use it.)

Unfortunately, reducing an interactive product to a list of a hundred features doesn’t lend
itself to the kind of graceful orchestration that is required to make complex technology
useful. Adding “easy to use” as a checklist item does nothing to improve the situation.

Developers, on the other hand, often have no shortage of input into the product’s final
form and behavior. Because they are in charge of construction, they decide exactly what
gets built. And they too have a different set of imperatives than the product’s eventual
audience. Good developers are focused on solving challenging technical problems, fol-
lowing good engineering practices, and meeting deadlines. They often are given incom-
plete, myopic, confusing, and sometimes contradictory instructions and are forced to
make significant decisions about the user experience with little time or knowledge of
how people will actually use their creations.

Thus, the people who are most often responsible for creating our digital products rarely
take into account the users’ goals, needs, or motivations. At the same time, they tend to
be highly reactive to market trends and technical constraints. This can’t help but result
in products that lack a coherent user experience. We’ll soon see why goals are so import-
ant in addressing this issue.

The results of poor product vision are, unfortunately, digital products that irritate rather
than please, reduce rather than increase productivity, and fail to meet user needs. Fig-
ure 1-2 shows the evolution of the development process and where, if at all, design has his-
torically fit in. Most of digital product development is stuck in the first, second, or third
step of this evolution, where design either plays no real role or becomes a surface-level
patch on shoddy interactions—“lipstick on the pig,” as one of our clients called it. The
core activities in the design process, as we will soon discuss, should precede coding and
testing to ensure that products truly meet users’ needs.

8 Part I: Goal-Directed Design

Initiate Design Build Test Ship

Initiate

Mandate Specs

Feasibility,
Feedback

Code Product

Bug
ReportUsers

User
Input

Build Test “Look & Feel” Ship

Initiate Build/Test Ship

Build/Test Ship

Developers

Managers Developers

Managers Developers QA Designers

Managers Designers Developers QA

Figure 1-2: The evolution of the software development process. The first diagram depicts the early
days of the software industry, when smart developers dreamed up products and then built and tested
them. Inevitably, professional managers were brought in to help facilitate the process by translat-
ing market opportunities into product requirements. As depicted in the third diagram, the industry
matured, and testing became a discipline in its own right. With the popularization of the graphical
user interface (GUI), graphic designers were brought in to create icons and other visual elements.
The final diagram shows the Goal-Directed approach to software development, where decisions about
a product’s capabilities, form, and behavior are made before the expensive and challenging construc-
tion phase.

ignorance about real users
It’s an unfortunate truth that the digital technology industry doesn’t have a good under-
standing of what it takes to make users happy. In fact, most technology products get
built without much understanding of users. We might know what market segment our
users are in, how much money they make, how they like to spend their weekends, and
what sorts of cars they buy. We might even have a vague idea of what kind of jobs they
have and some of the major tasks they regularly perform. But does any of this tell us
how to make them happy? Does it tell us how they will actually use the product we’re

9CH 1. A Design Process for Digital Products

building? Does it tell us why they are doing whatever it is they might need our product
for, why they might want to choose our product over our competitors, or how we can
make sure they do? No, it does not.

However, we should not give up hope. It is possible to understand our users well enough
to make excellent products they will love. We’ll see how to address the issue of under-
standing users and their behaviors with products in Chapters 2 and 3.

Conflicts of interest
A third problem affects the ability of vendors and manufacturers to make users happy.
The world of digital product development has an important conflict of interest: The peo-
ple who build the products—developers—are often also the people who design them.
They are are also, quite understandably, the people who usually have the final say on
what does and doesn’t get built. Thus, developers often are required to choose between
ease of coding and ease of use. Because developers’ performance is typically judged by
their ability to code efficiently and meet incredibly tight deadlines, it isn’t difficult to
figure out what direction most software-enabled products take. Just as we would never
permit the prosecutor in a legal trial to also adjudicate the case, we should make sure
that the people designing a product are not the same people building it. Even with appro-
priate skills and the best intentions, it simply isn’t possible for a developer (or anyone, for
that matter) to advocate effectively for the user, the business, and the technology all at
the same time.

We’ll see how to address the issue of building design teams and fitting them into the
planning and development process in Chapter 6.

lack of a design process
The last reason the digital product industry isn’t cranking out successful, well- designed
products is that it has no reliable process for doing so. Or, to be more accurate, it doesn’t
have a complete process for doing so. Engineering departments follow—or should follow—
rigorous engineering methods that ensure the feasibility and quality of the technology.
Similarly, marketing, sales, and other business units follow their own well-established
methods for ensuring the commercial viability of new products. What’s left out is a
repeatable, predictable, and analytical process for ensuring desirability: transforming
an understanding of users into products that meet their professional, personal, and emo-
tional needs.

In the worst case, decisions about what a digital product will do and how it will commu-
nicate with users are simply a by-product of its construction. Developers, deep in their
thoughts of algorithms and code, end up “designing” product behaviors in the same way

10 Part I: Goal-Directed Design

that miners end up “designing” a landscape filled with cavernous pits and piles of rub-
ble. In unenlightened development organizations, the digital product interaction design
process alternates between the accidental and the nonexistent.

Sometimes organizations do adopt a design process, but it isn’t quite up to the task.
Many companies embrace the notion that integrating customers (or their theoretical
proxies, domain experts) directly into the development process can solve human inter-
face design problems. Although this has the salutary effect of sharing the responsibil-
ity for design with the user, it ignores a serious methodological flaw: confusing domain
knowledge with design knowledge.

Customers, although they might be able to articulate the problems with an interaction,
often cannot visualize the solutions to those problems. Design is a specialized skill, just
like software development. Developers would never ask users to help them code; design
problems should be treated no differently. In addition, customers who purchase a prod-
uct may not be the same people who use it from day to day, a subtle but important distinc-
tion. Finally, experts in a domain may not be able to easily place themselves in the shoes
of less-expert users when defining tasks and flows. Interestingly, the two professions
that seem to most frequently confuse domain knowledge with design knowledge when
building information systems—law and medicine—have notoriously difficult-to-use
products. Coincidence? Probably not.

Of course, designers should indeed get feedback on their proposed solutions, both from
users and the product team. But hearing about the problems is much more useful to
designers—and better for the product—than taking proposed solutions from users at
face value. In interpreting feedback, the following analogy is useful: Imagine a patient
who visits his doctor with acute stomach pain. “Doctor,” he says, “it really hurts. I think
it’s my appendix. You’ve got to take it out as soon as possible.” A responsible physician
wouldn’t perform surgery based solely on a patient request, even an earnest one. The
patient can describe the symptoms, but it takes the doctor’s professional knowledge to
make the correct diagnosis and prescribe the treatment.

Planning and Designing Product Behavior
The planning of complex digital products, especially ones that interact directly with
humans, requires a significant upfront effort by professional designers, just as the planning
of complex physical structures that interact with humans requires a significant upfront
effort by professional architects. In the case of architects, that planning involves under-
standing how the humans occupying the structure live and work, and designing spaces to
support and facilitate those behaviors. In the case of digital products, the planning involves
understanding how the humans using the product live and work, and designing product
behavior and form that support and facilitate the human behaviors. Architecture is an old,

11CH 1. A Design Process for Digital Products

well-established field. The design of product and system behavior—interaction design—
is quite new, and only in recent years has it begun to come of age as a discipline. And this
new design has fundamentally changed how products succeed in the marketplace.

In the early days of industrial manufacturing, engineering and marketing processes
alone were sufficient to produce desirable products: It didn’t take much more than good
engineering and reasonable pricing to produce a hammer, diesel engine, or tube of
toothpaste that people would readily purchase. As time progressed, manufacturers of
consumer products realized that they needed to differentiate their products from func-
tionally identical products made by competitors, so design was introduced as a means
to increase user desire for a product. Graphic designers were employed to create more
effective packaging and advertising, and industrial designers were engaged to create
more comfortable, useful, and exciting forms.

The conscious inclusion of design heralded the ascendance of the modern triad of prod-
uct development concerns identified by Larry Keeley of the Doblin Group: capability,
viability, and desirability (see Figure 1-3). If any of these three foundations is weak, a
product is unlikely to stand the test of time.

Now enter the general-purpose computer, the first machine capable of almost limitless
behavior via software programming. The interesting thing about this complex behavior,
or interactivity, is that it completely alters the nature of the products it touches. Interac-
tivity is compelling to humans—so compelling that the other aspects of an interactive
product become marginal. Who pays attention to the black PC tower that sits under your
desk? It is the screen, keyboard, and mouse to which users pay attention. With touch-
screen devices like the iPad and its brethren, the only apparent hardware is the inter-
active surface. Yet the behaviors of software and other digital products, which should
receive the majority of design attention, all too frequently receive no attention.

The traditions of design that corporations have relied on to provide the critical pillar of
desirability for products don’t provide much guidance in the world of interactivity. Design
of behavior is a different kind of problem that requires greater knowledge of context, not
just rules of visual composition and brand. It requires an understanding of the user’s
relationship with the product from before purchase to end of life. Most important is the
understanding of how the user wants to use the product, in what ways, and to what ends.

Interaction design isn’t merely a matter of aesthetic choice; rather, it is based on an under-
standing of users and cognitive principles. This is good news, because it makes the design
of behavior quite amenable to a repeatable process of analysis and synthesis. It doesn’t
mean that the design of behavior can be automated, any more than the design of form or
content can be automated, but it does mean that a systematic approach is possible. Rules
of form and aesthetics mustn’t be discarded, of course. They must work in harmony with
the larger concern of achieving user goals via appropriately designed behaviors.

12 Part I: Goal-Directed Design

Microsoft is one of the best run
businesses ever, but it has not
been able to create highly
desirable products. This provides
an opening for competition.

Apple has emphasized
desirability but has made many
business blunders. Nevertheless,
it is sustained by the loyalty
created by its attention to user
experience.

Novell emphasized technology
and gave little attention to
desirability. This made it
vulnerable to competition.

Apple Novell

You can apply this to companies that have struggled to find the balance:

Microsoft

What do people need? What can we build?

What will sustain a business?

User model
• motivations
• behaviors
• attitudes and aptitudes

Business model
• funding model
• income / expense

 projections, etc.

Technology model
• core technologies
• technology components
• build vs. buy

User effectiveness and
customer adoption

Sustainable business Project delivery

Product design
• design schedule
• form and behavior spec

Technology plan
• engineering schedule
• engineering spec

Business plan
• marketing plan
• launch plan
• distribution plan

Overall product success

Designers Management

A successful
product is desirable,
viable, and buildable.

 Capability

 D

es
ira

bi
lit

y

 Viability

Technologists

Figure 1-3: Building successful digital products. Three major processes need to be followed in
tandem to create successful technology products. This book addresses the first and foremost
issue: how to create a product people will desire.

13CH 1. A Design Process for Digital Products

This book presents a set of methods to address this new kind of behavior-oriented design,
providing a complete process for understanding users’ goals, needs, and motivations:
Goal-Directed Design. To understand the process of Goal-Directed Design, we first
need to understand the nature of user goals, the mental models from which they arise,
and how they are the key to designing appropriate interactive behavior.

Recognizing User Goals
So what are user goals? How can we identify them? How do we know that they are real
goals, rather than tasks users are forced to perform by poorly designed tools or business
processes? Are they the same for all users? Do they change over time? We’ll try to answer
those questions in the remainder of this chapter.

Users’ goals are often quite different from what we might guess them to be. For exam-
ple, we might think that an accounting clerk’s goal is to process invoices efficiently. This
is probably not true. Efficient invoice processing is more likely the goal of the clerk’s
employer. The clerk probably concentrates on goals like appearing competent at his job
and keeping himself engaged with his work while performing routine and repetitive
tasks—although he may not verbally (or even consciously) acknowledge this.

Regardless of the work we do and the tasks we must accomplish, most of us share these
simple, personal goals. Even if we have higher aspirations, they are still more personal
than work-related: winning a promotion, learning more about our field, or setting a good
example for others, for instance.

Products designed and built to achieve business goals alone will eventually fail; users’
personal goals need to be addressed. When the design meets the user’s personal goals,
business goals are achieved far more effectively, for reasons we’ll explore in more detail
in later chapters.

If you examine most commercially available software, websites, and digital products,
you will find that their user interfaces fail to meet user goals with alarming frequency.
They routinely:

 • Make users feel stupid.

 • Cause users to make big mistakes.

 • Require too much effort to operate effectively.

 • Don’t provide an engaging or enjoyable experience.

14 Part I: Goal-Directed Design

Most of the same software is equally poor at achieving its business purpose. Invoices
don’t get processed all that well. Customers don’t get serviced on time. Decisions don’t
get properly supported. This is no coincidence.

The companies that develop these products have the wrong priorities. Most focus far too
narrowly on implementation issues, which distract them from users’ needs.

Even when businesses become sensitive to their users, they are often powerless to
change their products. The conventional development process assumes that the user
interface should be addressed after coding begins—sometimes even after it ends. But
just as you cannot effectively design a building after construction begins, you cannot
easily make an application serve users’ goals as soon as a significant and inflexible code
base is in place.

Finally, when companies do focus on the users, they tend to pay too much attention to
the tasks users engage in and not enough attention to their goals in performing those
tasks. Software can be technologically superb and perform each business task with dili-
gence, yet still be a critical and commercial failure. We can’t ignore technology or tasks,
but they play only a part in a larger schema that includes designing to meet user goals.

Goals versus tasks and activities
Goals are not the same as tasks or activities. A goal is an expectation of an end condition,
whereas both activities and tasks are intermediate steps (at different levels of organiza-
tion) that help someone to reach a goal or set of goals.

Donald Norman1 describes a hierarchy in which activities are composed of tasks, which
in turn are composed of actions, which are themselves composed of operations. Using
this scheme, Norman advocates Activity-Centered Design (ACD), which focuses first and
foremost on understanding activities. He claims humans adapt to the tools at hand and
that understanding the activities people perform with a set of tools can more favorably
influence the design of those tools. The foundation of Norman’s thinking comes from
Activity Theory, a Soviet-era Russian theory of psychology that emphasizes understand-
ing who people are by understanding how they interact with the world. In recent years
this theory has been adapted to the study of human-computer interaction, most notably
by Bonnie Nardi.2

Norman concludes, correctly, that the traditional task-based focus of digital product
design has yielded inadequate results. Many developers and usability professionals still
approach interface design by asking what the tasks are. Although this may get the job
done, it won’t produce much more than an incremental improvement: It won’t provide
a solution that differentiates your product in the market, and very often it won’t really
satisfy the user.

15CH 1. A Design Process for Digital Products

While Norman’s ACD takes some important steps in the right direction by highlighting
the importance of the user’s context, we do not believe it goes quite far enough. A method
like ACD can be very useful in properly breaking down the “what” of user behaviors, but
it really doesn’t address the first question any designer should ask: Why is a user per-
forming an activity, task, action, or operation in the first place? Goals motivate people
to perform activities; understanding goals allows you to understand your users’ expec-
tations and aspirations, which in turn can help you decide which activities are truly rel-
evant to your design. Task and activity analysis is useful at the detail level, but only after
user goals have been analyzed. Asking, “What are the user’s goals?” lets you understand
the meaning of activities to your users and thus create more appropriate and satisfactory
designs.

If you’re still unsure about the difference between goals and activities or tasks, there is
an easy way to tell the difference between them. Since goals are driven by human motiva-
tions, they change very slowly—if at all—over time. Activities and tasks are much more
transient, because they are based almost entirely on whatever technology is at hand.
For example, when someone travels from St. Louis to San Francisco, his goals are likely
to include traveling quickly, comfortably, and safely. In 1850, a settler wishing to travel
quickly and comfortably would have made the journey in a covered wagon; in the inter-
est of safety, he would have brought along his trusty rifle. Today, a businessman traveling
from St. Louis to San Francisco makes the journey in a jet and, in the interest of safety,
he is required to leave his firearms at home. The goals of the settler and businessman
remain unchanged, but their activities and tasks have changed so completely with the
changes in technology that they are, in some respects, in direct opposition.

Design based solely on understanding activities or tasks runs the risk of trapping the
design in a model imposed by an outmoded technology, or using a model that meets a
corporation’s goals without meeting the users’ goals. Looking through the lens of goals
allows you to leverage available technology to eliminate irrelevant tasks and to dramat-
ically streamline activities. Understanding users’ goals can help designers eliminate the
tasks and activities that better technology renders unnecessary for humans to perform.

Designing to meet goals in context
Many designers assume that making user interfaces and product interactions easier to
learn should always be a design target. Ease of learning is an important guideline, but
in reality, the design target really depends on the context—who the users are, what they
are doing, and their goals. You simply can’t create good design by following rules discon-
nected from the goals and needs of the users of your product.

Consider an automated call-distribution system. The people who use this product are
paid based on how many calls they handle. Their most important concern is not ease of
learning, but the efficiency with which they can route calls, and the rapidity with which

16 Part I: Goal-Directed Design

those calls can be completed. Ease of learning is also important, however, because it
affects employees’ happiness and, ultimately, turnover rate, so both ease and throughput
should be considered in the design. But there is no doubt that throughput is the domi-
nant demand placed on the system by the users, so, if necessary, ease of learning should
take a backseat. An application that walks the user through the call-routing process step
by step each time merely frustrates him after he’s learned the ropes.

On the other hand, if the product in question is a kiosk in a corporate lobby helping visi-
tors find their way around, ease of use for first-time users is clearly a major goal.

A general guideline of interaction design that seems to apply particularly well to pro-
ductivity tools is that good design makes users more effective. This guideline takes into
account the universal human goal of not looking stupid, along with more particular goals
of business throughput and ease of use that are relevant in most business situations.

It is up to you as a designer to determine how you can make the users of your product
more effective. Software that enables users to perform their tasks without addressing
their goals rarely helps them be truly effective. If the task is to enter 5,000 names and
addresses into a database, a smoothly functioning data-entry application won’t sat-
isfy the user nearly as much as an automated system that extracts the names from the
invoicing system.

Although it is the user’s job to focus on her tasks, the designer’s job is to look beyond
the task to identify who the most important users are, and then to determine what their
goals might be and why.

implementation Models and
Mental Models
The computer industry still makes use of the term computer literacy. Pundits talk about
how some people have it and some don’t, how those who have it will succeed in the infor-
mation economy, and how those who lack it will inevitably fall between the socioeco-
nomic cracks. Computer literacy, however, is really a euphemism for forcing human
beings to stretch their thinking to understand the inner workings of application logic,
rather than having software-enabled products stretch to meet people’s usual ways of
thinking.

Let’s explore what’s really going on when people try to use digital products, and what the
role of design is in translating coded functions into an understandable and pleasurable
experience for users.

17CH 1. A Design Process for Digital Products

implementation models
Any machine has a mechanism for accomplishing its purpose. A motion picture projec-
tor, for example, uses a complicated sequence of intricately moving parts to create its
illusion. It shines a very bright light through a translucent, miniature image for a fraction
of a second. It then blocks the light for a split second while it moves another miniature
image into place. Then it unblocks the light again for another moment. It repeats this
process with a new image 24 times per second. Software-enabled products don’t have
mechanisms in the sense of moving parts; these are replaced with algorithms and mod-
ules of code that communicate with each other. The representation of how a machine
or application actually works has been called the system model by Donald Norman and
others; we prefer the term implementation model because it describes the details of how
an application is implemented in code.

It is much easier to design software that reflects its implementation model. From the
developer’s perspective, it’s perfectly logical to provide a button for every function, a field
for every data input, a page for every transaction step, and a dialog box for every code
module. But while this adequately reflects the infrastructure of engineering efforts, it
does little to provide coherent mechanisms for a user to achieve his goals. In the end,
what is produced alienates and confuses the user, rather like the ubiquitous external
ductwork in the dystopian setting of Terry Gilliam’s movie Brazil (which is full of won-
derful tongue-in-cheek examples of miserable interfaces).

Mental models
From the moviegoer’s point of view, it is easy to forget the nuance of sprocket holes and
light interrupters while watching an absorbing drama. Many moviegoers, in fact, have
little idea how the projector works, or how this differs from the way a television works.
The viewer imagines that the projector merely throws a picture that moves onto the big
screen. This is his mental model, or conceptual model.

People don’t need to know all the details of how a complex mechanism actually works
in order to use it, so they create a cognitive shorthand for explaining it. This explana-
tion is powerful enough to cover their interactions with it but doesn’t necessarily reflect
its actual inner mechanics. For example, many people imagine that, when they plug in
their vacuum cleaner and blender, the electricity flows like water from the wall into the
appliances through the little black tube of the electrical cord. This mental model is per-
fectly adequate for using household appliances. The fact that the implementation model
of household electricity involves nothing resembling a fluid traveling through a tube and
that there is a reversal of electrical potential 120 times per second is irrelevant to the
user, although the power company needs to know the details.

18 Part I: Goal-Directed Design

In the digital world, however, the differences between a user’s mental model and the
implementation model are often quite distinct. We tend to ignore the fact that our cell
phone doesn’t work like a landline phone; instead, it is actually a radio transceiver that
might swap connections between a half-dozen different cellular base antennas in the
course of a two-minute call. Knowing this doesn’t help us understand how to use the
phone.

The discrepancy between implementation and mental models is particularly stark in
the case of software applications, where the complexity of implementation can make it
nearly impossible for the user to see the mechanistic connections between his actions
and the application’s reactions. When we use a computer to digitally edit sound or create
video special effects like morphing, we are bereft of analogy to the mechanical world, so
our mental models are necessarily different from the implementation model. Even if the
connections were visible, they would remain inscrutable to most people.

Striving toward perfection: represented models
Software (and any digital product that relies on software) has a behavioral face it shows
to the world that is created by the developer or designer. This representation is not nec-
essarily an accurate description of what is really going on inside the computer, although
unfortunately, it frequently is. This ability to represent the computer’s functioning inde-
pendent of its true actions is far more pronounced in software than in any other medium.
It allows a clever designer to hide some of the more unsavory facts of how the software
really gets the job done. This disconnection between what is implemented and what
is offered as explanation gives rise to a third model in the digital world, the designer’s
 represented model—how the designer chooses to represent an application’s functioning
to the user. Donald Norman calls this the designer’s model.

In the world of software, an application’s represented model can (and often should) be
quite different from an application’s actual processing structure. For example, an oper-
ating system can make a network file server look as though it were a local disk. The
model does not represent the fact that the physical disk drive may be miles away. This
concept of the represented model has no widespread counterpart in the mechanical
world. Figure 1-4 shows the relationship between the three models.

The closer the represented model comes to the user’s mental model, the easier he will
find the application to use and understand. Generally, offering a represented model that
follows the implementation model too closely significantly reduces the user’s ability to
learn and use the application. This occurs because the user’s mental model of his tasks
usually differs from the software’s implementation model.

19CH 1. A Design Process for Digital Products

worse better

re�ects user’s visionre�ects technology
Represented ModelsImplementation Model Mental Model

Figure 1-4: A comparison of the implementation model, mental model, and represented
model. The way engineers must build software is often a given, dictated by various techni-
cal and business constraints. The model for how the software actually works is called the
 implementation model. The way users perceive the jobs they need to do and how the appli-
cation helps them do so is their mental model of interaction with the software. It is based on
their own ideas of how they do their jobs and how computers might work. The way designers
choose to represent the working of the application to the user is called the represented model.
Unlike the other two models, it is an aspect of software over which designers have great con-
trol. One of the designer’s most important goals should be to make the represented model
match a user’s mental model as closely as possible. Therefore, it is critical that designers
understand in detail how their target users think about the work they do with the software.

We tend to form mental models that are simpler than reality. So, if we create represented
models that are simpler than the implementation model, we help the user achieve better
understanding. In software, we imagine that a spreadsheet scrolls new cells into view
when we click the scrollbar. Nothing of the sort actually happens. There is no sheet of cells
out there, but a tightly packed data structure of values, with various pointers between
them, from which the application synthesizes a new image to display in real time.

One of the most significant ways in which computers can assist human beings is present-
ing complex data and operations in a simple, easily understandable form. As a result,
user interfaces that are consistent with users’ mental models are vastly superior to those
that are merely reflections of the implementation model.

User interfaces should be based on user mental models rather than
 implementation models.

In Adobe Photoshop Express on the iPad, users can adjust a set of ten different visual
filters, including noise, contrast, exposure, and tint. Instead of offering numeric fields or
many banks of controls for entering filter values—the implementation model—the inter-
face instead shows a set of thumbnail images of the edited photo, each with a different
filter applied (see Figure 1-5). A user can tap the image that best represents the desired
result, and can tweak it with a single large slider. The interface more closely follows his

20 Part I: Goal-Directed Design

mental model, because the user—likely an amateur photographer—is thinking in terms
of how his photo looks, not in terms of abstract numbers.

Figure 1-5: Adobe Photoshop Express for iPad has a great example of software design to match user
mental models. The interface shows a set of thumbnail images of the photo being edited. A user can
tap the thumbnail that best represents the desired setting, which can then be tweaked using the sin-
gle large slider below the photo. The interface follows mental models of photographers who are after
a particular look, not a set of abstract numeric values.

If the represented model for software closely follows users’ mental models, it eliminates
needless complexity from the user interface by providing a cognitive framework that
makes it evident to the user how his goals and needs can be met.

Goal-directed interactions reflect user mental models.

So, now we know that a missing link prevents the majority of digital products from being
truly successful. A design process translates the implementation of features into intu-
itive and desirable product behaviors that match how people think about performing

21CH 1. A Design Process for Digital Products

tasks toward achieving their goals. But how do we actually do it? How do we know what
our users’ goals are and what mental models they have of their activities and tasks?

The Goal-Directed Design process, which we describe in the remainder of this chapter
and in the remainder of Part I, provides a structure for determining the answers to these
questions—a structure by which solutions based on this information can be systemati-
cally achieved.

An overview of Goal-Directed Design
Most technology-focused companies don’t have an adequate process for product design,
if they have a process at all. But even the more enlightened organizations—those that
can boast of an established process—come up against some critical issues that result
from traditional ways of approaching the problems of research and design.

In recent years, the business community has come to recognize that user research is
necessary to create good products, but the proper nature of that research is still in
question in many organizations. Quantitative market research and market segmenta-
tion are quite useful for selling products but fall short of providing critical information
about how people actually use products—especially products with complex behaviors.
(See Chapter 2 for a more in-depth discussion of this topic.) A second problem occurs
after the results have been analyzed: Most traditional methods don’t provide a means
of translating research results into design solutions. A hundred pages of user survey data
don’t easily translate into a set of product requirements. They say even less about how
those requirements should be expressed in terms of a meaningful and appropriate inter-
face structure. Design remains a black box: “A miracle happens here…” This gap between
research results and the ultimate design solution is the result of a process that doesn’t
connect the dots from user to final product. We’ll soon see how to address this problem
with Goal-Directed methods.

Bridging the gap
As we have briefly discussed, the role of design in the development process needs to
change. We need to start thinking about design in new ways and start thinking differ-
ently about how product decisions are made.

Design as product definition
Design has, unfortunately, become a limiting term in the technology industry. For many
developers and managers, the word stands for what happens in the third process dia-
gram shown in Figure 1-2: a visual facelift of the implementation model. But design, when

22 Part I: Goal-Directed Design

properly deployed (as in the fourth process diagram shown in Figure 1-2), both identi-
fies user requirements and defines a detailed plan for the behavior and appearance of
products. In other words, design provides true product definition, based on user goals,
business needs, and technology constraints.

Designers as researchers
If design is to become product definition, designers need to take on a broader role than
that assumed in traditional practice, particularly when the object in question is com-
plex, interactive systems.

One of the problems with the current development process is that roles in the process are
overspecialized: Researchers perform research, and designers perform design (see Fig-
ure 1-6). The results of user and market research are analyzed by the usability and market
researchers and then thrown over the transom to designers or developers. What is missing
in this model is a systematic means of translating and synthesizing the research into design
solutions. One of the ways to address this problem is for designers to learn to be researchers.

Design of Form
performed by

graphic/GUI and
industrial designers

Market Research
performed by

market analysts and
ethnographers ?

Figure 1-6: A problematic design process. Traditionally, research and design have
been separated, with each activity handled by specialists. Research has, until
recently, referred primarily to market research, and design is too often limited
to visual design or skin-deep industrial design. More recently, user research has
expanded to include qualitative, ethnographic data. Yet, without including design-
ers in the research process, the connection between research data and design
solutions remains tenuous at best.

There is a compelling reason to involve designers in the research process. One of the
most powerful tools designers offer is empathy: the ability to feel what others are feeling.
The direct and extensive exposure to users that proper user research entails immerses
designers in the users’ world and gets them thinking about users long before they pro-
pose solutions. One of the most dangerous practices in product development is isolating
designers from the users, because doing so eliminates empathic knowledge.

Additionally, it is often difficult for pure researchers to know what user information
is really important from a design perspective. Involving designers directly in research
addresses both issues.

23CH 1. A Design Process for Digital Products

In the authors’ practice, designers are trained in the research techniques described in
Chapter 2 and perform their research without further support or collaboration. This is a
satisfactory solution, provided that your team has the time and resources to train your
designers fully in these techniques. If not, a cross-disciplinary team of designers and
dedicated user researchers is appropriate.

Although research practiced by designers takes us part of the way to Goal-Directed
Design solutions, a translation gap still exists between research results and design
details. The puzzle is missing several pieces, as we will discuss next.

Between research and blueprint: Models, requirements,
and frameworks
Few design methods in common use today incorporate a means of effectively and sys-
tematically translating the knowledge gathered during research into a detailed design
specification. Part of the reason for this has already been identified: Designers have his-
torically been out of the research loop and have had to rely on third-person accounts of
user behaviors and desires.

The other reason, however, is that few methods capture user behaviors in a manner that
appropriately directs the definition of a product. Rather than providing information
about user goals, most methods provide information at the task level. This type of infor-
mation is useful for defining layout, work flow, and translation of functions into inter-
face controls. But it’s less useful for defining the basic framework of what a product is,
what it does, and how it should meet the user’s broad needs.

Instead, we need an explicit, systematic process to bridge the gap between research and
design for defining user models, establishing design requirements, and translating those
into a high-level interaction framework (see Figure 1-7). Goal-Directed Design seeks to
bridge the gap that currently exists in the digital product development process—the
gap between user research and design—through a combination of new techniques and
known methods brought together in more effective ways.

Modeling
of users and
use context

Refinement
of behaviors,
form, and
content

Support
development
needs

Requirements
definition of user,
business, and
technical needs

Framework
definition of
design structure
and flow

Research
users and
the domain

Figure 1-7: The Goal-Directed Design process

24 Part I: Goal-Directed Design

A process overview
Goal-Directed Design combines techniques of ethnography, stakeholder interviews,
market research, detailed user models, scenario-based design, and a core set of inter-
action principles and patterns. It provides solutions that meet users’ needs and goals
while also addressing business/organizational and technical imperatives. This process
can be roughly divided into six phases: Research, Modeling, Requirements Definition,
Framework Definition, Refinement, and Support (see Figure 1-7). These phases follow the
five component activities of interaction design identified by Gillian Crampton Smith and
Philip Tabor—understanding, abstracting, structuring, representing, and detailing—
with a greater emphasis on modeling user behaviors and defining system behaviors.

The remainder of this chapter provides a high-level view of the six phases of Goal-
Directed Design, and Chapters 2 through 6 provide a more detailed discussion of the
methods involved in each of these phases. Figure 1-8 shows a more detailed diagram of
the process, including key collaboration points and design concerns.

Research
The Research phase employs ethnographic field study techniques (observation and
contextual interviews) to provide qualitative data about potential and/or actual users
of the product. It also includes competitive product audits as well as reviews of mar-
ket research, technology white papers, and brand strategy. It also includes one-on-one
interviews with stakeholders, developers, subject matter experts (SMEs), and technology
experts as suits the particular domain.

One of the principal outcomes of field observation and user interviews is an emergent set
of behavior patterns—identifiable behaviors that help categorize modes of use of a poten-
tial or existing product. These patterns suggest goals and motivations (specific and gen-
eral desired outcomes of using the product). In business and technical domains, these
behavior patterns tend to map into professional roles; for consumer products, they tend
to correspond to lifestyle choices. Behavior patterns and the goals associated with them
drive the creation of personas in the Modeling phase. Market research helps select and
filter valid personas that fit business models. Stakeholder interviews, literature reviews,
and product audits deepen the designers’ understanding of the domain and elucidate
business goals, brand attributes, and technical constraints that the design must support.

Chapter 2 provides a more detailed discussion of Goal-Directed research techniques.

25CH 1. A Design Process for Digital Products

R
eq

ui
re

m
en

ts
D

efi
ni

ti
on

R
es

ea
rc

h Scope
Define project goals
and schedule

Objectives, timelines, financial
constraints, process, milestones

Meetings
Capabilities and
Scoping

Stakeholder
Interviews
Understand product
vision and constraints

Product vision, risks, constraints,
opportunities, logistics, users

Interviews
Stakeholders
and Users

User interviews
& observations
Understand user
needs and behavior

Users, potential users, behaviors,
attitudes, aptitudes, motivations,
environments, tools, challenges

Check-in
Preliminary
Research findings

Other Models
Represent domain factors
beyond individual users
and customers

Workflows among multiple
people, environments, artifacts

Context Scenarios
Tell stories about
ideal user
experiences

How the product fits into the
persona’s life and environment,
and how it helps them achieve
their goals

Check-in
Scenarios and
Requirements

Framework
Design overall
structure of user
experience

Object relationships, conceptual
groupings, navigation sequencing,
principles and patterns, flow,
sketches, storyboards

Detailed design
Refine and specify
details

Appearance, idioms, interface,
widgets, behavior, information,
visualization, brand, experience,
language, storyboards

Check-ins
Design
Refinement

Elements
Define manifestations
of information
and functionality

Information, functions,
mechanisms, actions, domain
object models

Check-ins
Design
Framework

Requirements
Describe necessary
capabilities of the
product

Functional and data needs, user
mental models, design imperatives,
product vision, business
requirements, technology

Key Path and
Validation Scenarios
Describe how the
persona interacts with
the product

How the design fits into an ideal
sequence of user behaviors, and
accommodates a variety of likely
conditions

Personas
User and customer
archetypes

Patterns in user and customer
behaviors, attitudes, aptitudes,
goals, environments,
tools, challenges

Check-in
Personas

Audit
Review existing work
and product

Business and marketing plans,
branding strategy, market research,
product portfolio plans,
competitors, relevant technologies

M
od

el
in

g
D

es
ig

n
Fr

am
ew

or
k

D
es

ig
n

R
efi

ne
m

en
t

Design modification
Accommodate new
constraints and timeline

Maintaining conceptual
integrity of the design under
changing technology constraints

Collaborative
Design

Revision
Form and
Behavior
Specification

D
es

ig
n

S
up

po
rt

Initiate Build Test Ship

Document
User and
Domain
Analysis

Document
Statement
of Work

Presentation
User and Domain
Analysis

Presentation
Design Vision

Document
Form and
Behavior
Specification

ConcernsActivity

Goal-Directed Design
Deliverable

Design

Stakeholder
Collaboration

Figure 1-8: A more detailed look at the Goal-Directed Design process

26 Part I: Goal-Directed Design

Modeling
During the Modeling phase, behavior and work flow patterns discovered by analyzing
the field research and interviews are synthesized into domain and user models. Domain
models can include information flow and work flow diagrams. User models, or personas,
are detailed, composite user archetypes that represent distinct groupings of behaviors,
attitudes, aptitudes, goals, and motivations observed and identified during the Research
phase.

Personas are the main characters in a narrative, scenario-based approach to design.
This approach iteratively generates design concepts in the Framework Definition phase.
It provides feedback that enforces design coherence and appropriateness in the Refine-
ment phase. It also is a powerful communication tool that helps developers and man-
agers understand design rationale and prioritize features based on user needs. In the
Modeling phase, designers employ a variety of methodological tools to synthesize, differ-
entiate, and prioritize personas, exploring different types of goals and mapping personas
across ranges of behavior to ensure that no gaps or duplications exist.

Specific design targets are chosen from the cast of personas through a process of com-
paring goals and assigning priorities based on how broadly each persona’s goals encom-
pass the goals of other personas. A process of designating persona types determines how
much influence each persona has on the design’s eventual form and behavior.

A detailed discussion of persona and goal development can be found in Chapter 3.

Requirements Definition
Design methods employed by teams during the Requirements Definition phase provide
the much-needed connection between user and other models and design’s framework.
This phase employs scenario-based design methods with the important innovation of
focusing the scenarios not on user tasks in the abstract, but first and foremost on meet-
ing the goals and needs of specific user personas. Personas help us understand which
tasks are truly important and why, leading to an interface that minimizes necessary
tasks (effort) while maximizing return. Personas become the main characters of these
scenarios, and the designers explore the design space via a form of role playing.

For each interface/primary persona, the process of design in the Requirements Defini-
tion phase involves analyzing persona data and functional needs (expressed in terms
of objects, actions, and contexts), prioritized and informed by persona goals, behaviors,
and interactions with other personas in various contexts.

This analysis is accomplished through an iteratively refined context scenario. It starts
with a “day in the life” of the persona using the product, describing high-level product

27CH 1. A Design Process for Digital Products

touch points, and thereafter successively defining detail at ever-deepening levels. In addi-
tion to these scenario-driven requirements, designers consider the personas’ skills and
physical capabilities as well as issues related to the usage environment. Business goals,
desired brand attributes, and technical constraints are also considered and balanced
with persona goals and needs. The output of this process is a requirements definition that
balances user, business, and technical requirements of the design to follow.

Chapter 4 covers the process of establishing requirements through the use of scenarios.

Framework Definition
In the Framework Definition phase, designers create the overall product concept, defin-
ing the basic frameworks for the product’s behavior, visual design, and, if applicable,
physical form. Interaction design teams synthesize an interaction framework by employ-
ing two other critical methodological tools in conjunction with context scenarios. The
first is a set of general interaction design principles that provide guidance in determining
appropriate system behavior in a variety of contexts. Part II of this book is devoted to
high-level interaction design principles appropriate to the Framework Definition phase.

The second critical methodological tool is a set of interaction design patterns that encode
general solutions (with variations dependent on context) to classes of previously ana-
lyzed problems. These patterns bear close resemblance to the concept of architectural
design patterns first developed by Christopher Alexander3 and more recently brought
to the programming field by Erich Gamma and others.4 Interaction design patterns are
hierarchically organized and continuously evolve as new contexts arise. Rather than sti-
fling designer creativity, they often provide needed leverage to approach difficult prob-
lems with proven design knowledge.

After data and functional needs are described at this high level, they are translated into
design elements according to interaction principles and then organized, using patterns
and principles, into design sketches and behavior descriptions. The output of this pro-
cess is an interaction framework definition, a stable design concept that provides the log-
ical and hi-level formal structure for the detail to come. Successive iterations of more
narrowly focused scenarios provide this detail in the Refinement phase. The approach
is often a balance of top-down (pattern-oriented) design and bottom-up (principle-
oriented) design.

When the product takes physical form, interaction designers and industrial designers
begin by collaborating closely on various input methods and approximate form factors
the product might take, using scenarios to consider the pros and cons of each. As this is
narrowed to a couple of options that seem promising, industrial designers begin produc-
ing early physical prototypes to ensure that the overall interaction concept will work. It’s

28 Part I: Goal-Directed Design

critical at this early stage that industrial designers not create concepts independent of
the product’s behavior.

When working to design a service, we will collaborate with service designers to draft a
service map and a blueprint that coordinates touchpoints and experiences across chan-
nels, both “backstage” with the service providers and “frontstage” experiences from the
users’ point of view.

As soon as an interaction framework begins to emerge, visual interface designers pro-
duce several options for a visual framework, which is sometimes also called a visual
language strategy. They use brand attributes as well as an understanding of the overall
interface structure to develop options for typography, color palettes, and visual style.

Refinement
The Refinement phase proceeds similarly to the Framework Definition phase, but with
increasing focus on detail and implementation. Interaction designers focus on task
coherence, using key path scenarios (walkthroughs) and validation scenarios focused
on storyboarding paths through the interface in great detail. Visual designers define a
system of type styles and sizes, icons, and other visual elements that provide a compel-
ling experience with clear affordances and visual hierarchy. Industrial designers, when
appropriate, finalize materials and work closely with engineers on assembly schemes
and other technical issues. The culmination of the Refinement phase is the detailed doc-
umentation of the design—a form and behavior specification or blueprint, delivered in
either paper or interactive media form as the context dictates.

Chapter 5 discusses in more detail the use of personas, scenarios, principles, and pat-
terns in the Framework Definition and Refinement phases.

Development support
Even a very well-conceived and validated design solution can’t possibly anticipate every
development challenge and technical question. In our practice, we’ve learned that it’s
important to be available to answer developers’ questions as they arise during the con-
struction process. It is often the case that as the development team prioritizes their work
and makes trade-offs to meet deadlines, the design must be adjusted, requiring scaled-
down design solutions. If the interaction design team is not available to create these
solutions, developers are forced to do this under time pressure, which has the potential
to gravely compromise the integrity of the product’s design.

Chapter 6 discusses how interaction design activities and processes can be integrated
with the larger product team.

29CH 1. A Design Process for Digital Products

Goals, not features, are the key to product success
Developers and marketers often use the language of features and functions to discuss
products. But reducing a product’s definition to a list of features and functions ignores
the real opportunity—orchestrating technological capability to serve human needs and
goals. Too often the features of our products are a patchwork of nifty technological inno-
vations structured around a marketing requirements document or organization of the
development team, with too little attention paid to the overall user experience.

The successful interaction designer must maintain her focus on users’ goals amid the
pressures and chaos of the product-development cycle. Although we discuss many other
techniques and tools of interaction in this book, we always return to users’ goals. They
are the bedrock upon which interaction design should be practiced.

The Goal-Directed process, with its clear rationale for design decisions, makes collab-
oration with developers and businesspeople easier. It also ensures that the design in
question isn’t guesswork, the whim of a creative mind, or just a reflection of the team
members’ personal preferences.

Interaction design is not guesswork.

Goal-Directed Design is a powerful tool for answering the most important questions
that crop up during the definition and design of a digital product:

 • Who are my users?

 • What are my users trying to accomplish?

 • How do my users think about what they’re trying to accomplish?

 • What kind of experiences do my users find appealing and rewarding?

 • How should my product behave?

 • What form should my product take?

 • How will users interact with my product?

 • How can my product’s functions be most effectively organized?

 • How will my product introduce itself to first-time users?

 • How can my product put an understandable, appealing, and controllable face on
technology?

 • How can my product deal with problems that users encounter?

30 Part I: Goal-Directed Design

 • How will my product help infrequent and inexperienced users understand how to
accomplish their goals?

 • How can my product provide sufficient depth and power for expert users?

The remainder of this book is dedicated to answering these questions. We share tools
tested by years of experience with hundreds of products that can help you identify key
users of your products, understand them and their goals, and translate this understand-
ing into effective and appealing design solutions.

Notes

1. Norman, 2005

2. Nardi, 1996

3. Alexander, 1979

4. Gamma, et al, 1994

		2016-06-08T14:05:47-0400
	Certified PDF 2 Signature

