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Introduction

1.1 Motivational Illustrations

Consider the following scenarios:

Scenario A

You are a plant operator, and a gas analyser reading triggers an alarm for a low level of a vital
reaction component, but from experience you know that this gas analyser is prone to error.
The difficulty is, however, that if the vital reaction component is truly scarce, its scarcity could
cause plugging and corrosion downstream that could cost over $120 million in plant downtime
and repairs, but if the reagent is not low, shutting down the plant would result in $30 million
in downtime. Now, imagine that you have a diagnosis system that has recorded several events
like this in the past, using information from both upstream and downstream, is able to generate
a list of possible causes of this alarm reading, and displays the probability of each scenario.
The diagnosis system indicates that the most possible cause is a scenario that happened three
years ago, when the vital reagent concentration truly dropped, and by quickly taking action to
bypass the downstream section of the plant a $120-million incident was successfully avoided.
Finally, imagine that you are the manager of this plant and discover that after implementing
this diagnosis system, the incidents of unscheduled downtime are reduced by 60% and that
incidents of false alarms are reduced by 80%.

Scenario B

You are the head of a maintenance team of another section of the plant with over 40 controllers
and 30 actuators. Oscillation has been detected in this plant, where any of these controllers
or actuators could be the cause. Because these oscillations can push the system into risky
operating regions, caution must be exercised to keep the plant in a safer region, but at the
cost of poorer product quality. Now, imagine you have a diagnosis tool that has data recorded
from previous incidents, their troubleshooting solutions, and the probabilities of each incident.
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4 Process Control System Fault Diagnosis

With this tool, we see that the most probable cause (at 45%) was fixed by replacing the stem
packing on Valve 23, and that the second most probable cause (at 22%) was a tank level con-
troller that in the past was sometimes overtuned by poor application of tuning software. By
looking at records, you find out that a young engineer recently used tuning software to re-tune
the level controller. Because of this information, and because changing the valve packing costs
more, you re-tune the controller during scheduled maintenance, and at startup find that the
oscillations are gone and you can now safely move the system to a point that produces better
product quality. Now that the problem has been solved, you update the diagnosis tool with
the historical data to improve the tool’s future diagnostic performance. Now imagine, that as
the head engineer of this plant, you find out that 30% of the most experienced people on your
maintenance team are retiring this year, but because the diagnostic system has documented a
large amount of their experience, new operators are better equipped to figure out where the
problems in the system truly are.

Overview

These stories paint a picture of why there has been so much research interest in fault and
control loop diagnosis systems in the process control community. The strong demand for better
safety practices, decreased downtime, and fewer costly incidents (coupled with the increasing
availability of computational power) all fuel this active area of research. Traditionally, a major
area of interest has been in detection algorithms (or monitors as they will be called in this
book) that focus on the behaviour of the system component. The end goal of implementing a
monitor is to create an alarm that would sound if the target behaviour is observed. As more and
more alarms are developed, it becomes increasingly probable that a single problem source will
set off a large number of alarms, resulting in an alarm flood. Such scenarios in industry have
caused many managers to develop alarm management protocols within their organizations.
Scenarios such as those presented in scenarios A and B can be realized and in some instances
have already been realized by research emphasizing the best use of information obtained from
monitors and historical troubleshooting results.

1.2 Previous Work

1.2.1 Diagnosis Techniques

The principal objective in this book is to diagnose the operational mode of the process, where
the mode consists of the operational state of all components within the process. For example,
if a system comprises a controller, a sensor and a valve, the mode would contain information
about the controller (e.g. well tuned or poorly tuned), the sensor (e.g. biased or unbiased) and
the valve (e.g. normal or sticky). As such, the main problem presented in this book falls within
the scope of fault detection and diagnosis.
Fault detection and diagnosis has a vast (and often times overwhelming) amount of literature

devoted to it for two important reasons:

1. The problem of fault detection and diagnosis is a legitimately difficult problem due to the
sheer size and complexity of most practical systems.
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2. There is great demand for fault detection and diagnosis as it is estimated that poor fault
management has cost the United States alone more than $20 billion annually as of 2003
(Nimmo 2003).

In a three-part publication, Venkatasubramanian et al. (2003b) review the major contributions
to this area and classify them under the following broad families: quantitative model-driven
approaches (Venkatasubramanian et al. 2003b), qualitative model-driven approaches
(Venkatasubramanian et al. 2003a), and process data-driven approaches (Venkatasubramanian
et al. 2003c). Each type of approach has been shown to have certain challenges. Quantitative
model-driven approaches require very accurate models that cover a wide array of operating
conditions; such models can be very difficult to obtain. Qualitative model-driven approaches
require attention to detail when developing heuristics, or else one runs the risk of a spurious
result. Process data-driven approaches have been shown to be quite powerful in terms of
detection, but most techniques tend to yield results that make fault isolation difficult to
perform. In this book, particular interest is taken in the quantitative model-driven and the
process data-driven approaches.

Quantitative Model-driven Approaches

Quantitative model-driven approaches focus on constructing the models of a process and using
these models to diagnose different problems within a process (Lerner 2002) (Romessis and
Mathioudakis 2006). These techniques bear some resemblance to some of the monitoring tech-
niques described in Section 1.2.2 applied to specific elements in a control loop. Many different
types of model-driven techniques exist, and have been broken down according to Frank (1990)
as follows:

1. The parity space approach looks at analytical redundancy in equations that govern the
system (Desai and Ray 1981).

2. The dedicated observer and innovations approach filters residual errors from the Parity
Space Approach using an observer (Jones 1973).

3. The Fault Detection Filter Approach augments the State Space models with fault-related
variables (Clark et al. 1975; Willsky 1976)

4. The Parameter Identification Approach is traditionally performed offline (Frank 1990).
Here, modeling techniques are used to estimate the model parameters, and the parameters
themselves are used to indicate faults.

A popular subclass of these techniques is deterministic fault diagnosis methods. One popular
method in this subclass is the parity space approach (Desai and Ray 1981), which set up parity
equations having analytical redundancy to look at error directions that could correspond to
faults. Another popularmethod is the observer-based approach (Garcia and Frank 1997), which
uses an observer to compare differences in the predicted and observed states.
Stochastic techniques, in contrast to deterministic techniques, use fault-related parameters

as augmented states; these methods enjoy the advantage of being less sensitive to process
noise (Hagenblad et al. 2004), being able to determine the size and precise cause of the fault,
but are very difficult to implement in large-scale systems and often require some excitement
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(Frank 1996). Including physical fault parameters in the state often requires a nonlinear form
of the Kalman filter (such as the extended Kalman filer (EKF), unscented Kalman filter (UKF)
or particle filter) because these fault-related parameters often have nonlinear relationships with
respect to the states. Such techniques were pioneered by Isermann (Isermann and Freyermuth
1991), (Isermann 1993) with other important contributions coming from Rault et al. (1984).
The motivation for including fault parameters in the state is the stochastic Kalman filter’s
ability to estimate state distributions. By including fault parameters in the state, fault parameter
distributions are automatically estimated in parallel with the state. Examples of this technique
include that of Gonzalez et al. (2012), which made use of continuous augmented bias states,
while Lerner et al. (2000) made use of discrete augmented fault states.

Process Data-driven Approaches

Apopular class of techniques for process monitoring are data-drivenmodelingmethods, where
one of the more popular techniques is principal component analysis (PCA) (Ge and Song
2010). These techniques create black-box models assuming that the data can be explained
using a linear combination of independent Gaussian latent variables (Tipping and Bishop
1998); a transformation method is used to calculate values of these independent Gaussian vari-
ables, and abnormal operation is detected by performing a significance test. The relationship
between abnormal latent variables and the real system variables is then used to help the user
determine what the possible causes of abnormality could be. There have also been modifica-
tions of the PCA model to include multiple Gaussian models (Ge and Song 2010; Tipping and
Bishop 1999) where the best local model is used to calculate the underlying latent variables
used for testing.
All PCAmodels assume that the underlying variables are Gaussian, butmore recent methods

(Lee et al. 2006) do away with this assumption by first using independent components analysis
(ICA) to calculate values of independent latent variables (which are not assumed to be Gaus-
sian under ICA) and then using a kernel density estimation to evaluate the probability density
of that value. Low probability densities indicate that the process is behaving abnormally. Even
more recent work (Gonzalez et al. 2015) uses Bayesian networks instead of PCA/ICA to break
down the system into manageable pieces; this allows the user to define variables of interest for
monitoring and determine the causal structures used to help narrow down causes. Abnormality
is detected if key process variables take on improbable values or if groups of key process vari-
ables take on improbable patterns. Results from this approach are generally easier to interpret
than PCA/ICA-based methods.

Bayesian Data-driven Approaches

This book focuses on using the Bayeisan data-driven approach, which is distinct from other
fault detection and diagnosis methods, mainly for the reason that the Bayesian approach is a
higher-level diagnosis method (Pernestal 2007; Qi 2011). This type of approach is not meant
to compete with previously mentioned fault detection and diagnosis methods; instead, the
Bayesian approach provides a unifying framework to simultaneously use many of these meth-
ods at once. As such, it can take input from many different fault detection and diagnosis
techniques in order to make a final decision. In this book, other diagnosis methods and even
instruments themselves are treated as input sources and are referred to asmonitors; this term is
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chosen mainly because previous work (Qi 2011) focused heavily on using input from control
loop monitoring techniques (described in Section 1.2.2).
For Bayesian diagnosis, data from monitors must be collected for every scenario that one

would wish to diagnose. In this book, such scenarios are referred to as operational modes.
When new monitor information arrives, the new information is compared to historical data in
order to determinewhich historical mode best fits the new information. The Bayesian diagnosis
technique ranks each of the modes based on posterior probability, which is calculated using
Bayes’ theorem (Bayes 1764/1958):

p(M |E) =
p(E|M)p(M)

p(E)

P (E) =
∑

i

p(E|mi)p(mi)

where

• p(M |E) is the posterior probability, or probability of the mode M given evidence E
• p(E|M) is the likelihood of the evidence E given the historical mode M
• p(M) is the prior probability of the historical mode M
• p(E) is the probability of the evidence E (which is a normalizing constant).

In the Bayesian diagnosis technique, the historical data and mode classifications are used to
construct the likelihood p(E|M), and prior probabilities of modes are assigned to p(M) using
expert knowledge.While collecting data for historical modes may be a challenge, the Bayesian
method at least allows us to collect data in a way that is not necessarily representative of the
true mode occurrence rate. For example, if mode 1 occurs 90% of the time, then representative
sampling would require that 90% of the data come from mode 1. Bayesian methods (which
use prior probabilities to cover mode representation) allow us to collect an arbitrary amount
of data for each mode, giving us a lot more flexibility in data collection than other methods.

1.2.2 Monitoring Techniques

Much of this work focuses on monitoring and diagnosing control-loops (a schematic for a
typical control loop is given in Figure 1.1); for this area of research, there exists abundant

Controller Valve

Sensor

Process+−

Figure 1.1 Typical control loop
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Table 1.1 List of monitors for each system

Simulated Bench-scale Industrial-scale

Control performance Sensor bias Raw sensor readings
Valve stiction Process operation
Process model

literature on assessing the performance of the entire loop as well as diagnosing problemswithin
the loop’s core components. These methods (defined as monitors in this book) can be directly
used to create alarms or notification statuses which alert operators and engineers about risky
or inefficient operation.
Monitors tend to focus on one or more of the main components in a control system: for

example, the controller, the actuator (often a valve), the process and the sensor. The following
monitors will be considered in this book as examples but the diagnosis approach as proposed
in this book can be applied to other monitors as well.

• Control performance monitors are intended to monitor the performance of the controller,
but are often affected by other parts of the control loop.

• Sensor bias monitors focus on sensor performance.
• Valve stiction monitors focus on valve performance, but can sometimes be affected by
other sources of oscillation.

• Process model monitors evaluate the correctness of the process model, which has utility
in diagnosing controller performance and process performance. Deviation from the model
can indicate a change in the system operation, and perhaps even a fault. In addition, because
control tuning is performed with a model in mind, changes in the model may indicate that
the current controller configuration is not suitable for current operation.

• Process operation monitors tend to fall under the category of fault detection, and aim to
diagnose abnormalities and faults within a process.

The methods in this book are tested on three particular testbed systems: a simulated system,
a bench scale system and an industrial scale system. Each type of monitor has been used in
at least one of the testbed systems; a summary of monitors for each system is presented in
Table 1.1. The simulated system makes use of three monitors (control performance monitors,
valve stiction monitors and process model monitors) while the bench scale system makes
use of the two remaining monitor types (a process operation monitor and two sensor bias
monitors). The industrial-scale system uses no monitors, but instead directly uses data from
the various sensors within the facility.

Control Performance Monitoring

Control performance assessment is concerned with the analysis of available control loop per-
formance against certain benchmarks, while control performancemonitoring is concernedwith
monitoring control performance change with respect to certain references. Due to their similar-
ity, the two terminologies have often been used interchangeably and it is commonly accepted
that they can represent each other. Research in this areas was pioneered byHarris et al. 1999 for
proposing the minimum variance control (MVC) benchmark. Huang et al. (1995) developed a



�

� �

�

Introduction 9

filtering and correlation (FCOR) algorithm to estimate the MVC benchmark that can be easily
extended to multivariate systems. A state space framework for the MVC benchmark was pro-
posed by McNabb and Qin (2005). The MVC index was extended to multivariate systems
by Harris et al. (1996) and Huang et al. (1997); the latter tackled MIMO MVC benchmark by
introducing the unitary interactor matrix. The MVC benchmark provides a readily computable
and physically significant bound on control performance.
The theoretical variance lower bound of MVC may not be achievable for most practical

controllers. More realistic performance indices are needed. Ko and Edgar (1998) discussed a
PID benchmark. An approach was presented by Qin (1998), stating that MVC can be achiev-
able for a PID controller when the process time delay is either small or large, but not medium.
Huang and Shah (1999) proposed the linear quadratic Gaussian (LQG) regulator benchmark as
an alternative to the MVC benchmark, based on the process model. Model-based approaches
also exist for benchmarking model predictive control (MPC) systems (see Shah et al. (2001)
and Gao et al. (2003)).
The benchmarks discussed above mainly focus on stochastic performance. However, these

benchmarks can also be related to deterministic performances, such as overshoot, decay ratio,
settling time, etc. Ko and Edgar (2000) modified the MVC index to include setpoint varia-
tions in the inner loop of cascade control. The influence of setpoint changes on the MVC
index was discussed by Seppala et al. (2002), who proposed a method to decompose the con-
trol error into two components: one that resulted from setpoint changes, and another from a
setpoint detrended signal. Thornhill et al. (2003) examined the reasons why performance dur-
ing setpoint change differs from the performance during operation at a constant setpoint. The
extension of the MVC index to the varying setpoint case has also been discussed by McNabb
and Qin (2005).
Some other methods have also been proposed for control performance assessment. Kendra

andCinar (1997) applied frequency analysis to evaluate control performance. An r statistic was
introduced by Venkataramanan et al. (1997) that detects deviations from setpoint, regardless
of the output noise. Li et al. (2003) proposed a relative performance monitor, which compares
the performance of a control loop to that of a reference model.
A number of commercial control performance assessment software packages are available

on the market, such as the Intune software tools by Control Soft, LoopScout by Honeywell
Hi-Spec Solutions, Performance Surveyor by DuPont, etc. (Jelali 2006). Various successful
industrial applications have also been reported (Hoo et al. 2003; Jelali 2006).
In this book, the FCOR algorithm (Huang et al. 1995) is used to calculate the MVC bench-

mark and serves as the control performance monitor for the simulated system.

Valve Stiction Monitors

The undesirable behaviour of control valves is the biggest single contributor to poor control
loop performance (Jelali and Huang 2009). According to Jelali and Huang (2009), 20–30%
of control loop oscillations are induced by valve nonlinearities, including stiction, deadband,
hysteresis, etc. Among these problems, stiction is the most common one in the process industry
(Kano et al. 2004). Oscillation in control loops increases the variability of process variables,
which in turn affects product quality, increases energy consumption, and accelerates equipment
wear. Detecting valve stiction in a timely manner will bring significant economic benefits, and
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thus there is a strong incentive for valve stiction detection research. A comprehensive review
and comparison of valve stiction detection methods can be found in Jelali and Huang (2009).
Singhal and Salsbury (2005) proposed a stiction detection methodology by calculating

the ratio of the areas before and after the oscillation peaks of the PV signal. A method for
diagnosing valve stiction was developed based on observations of control loop signal patterns
by Yamashita (2006). The method determines typical patterns from valve input and valve
output/process variables in the control loop, and thus does not allow detection of stiction
which shows up in different patterns. Scali and Ghelardoni (2008) improved the work of
Yamashita (2006) to allow different possible stiction patterns to be considered. Choudhury
et al. (2007) proposed a controller gain change method, which is based on the change in
the oscillation frequency due to changes in the controller gain to detect valve stiction. Yu
and Qin (2008) showed that this method can fail to detect the presence of the sticky valve in
interacting multi-input multi-output systems. A strategy based on the magnitude of relative
change in oscillation frequency due to changes in controller gain is proposed to overcome the
limitations of the existing method.
Despite the various work regarding stiction detection, valve stiction quantification remains

a challenging problem. Choudhury et al. (2008) proposed a method to quantify stiction using
the ellipse fitting method. The PV vs. OP plot is fitted to an ellipse and the amount of stiction is
estimated as the maximum length of the ellipse in the OP direction. Chitralekha et al. (2010)
treated the problem of estimating the valve position as an unknown input estimation prob-
lem. The unknown input is estimated by means of an input estimator based on the Kalman
filter. Jelali (2008) presented a global optimization based method to quantify valve stiction.
A similar method was also proposed by Srinivasan et al. (2005). The approach is based on
identification of a Hammerstein model consisting of a sticky valve and a linear process. The
stiction parameters and the model parameters are estimated simultaneously with a global grid
search optimization method. Jelali and Huang (2009) presented a closed-loop stiction quan-
tification approach using routine operating data. A suitable model structure of valve stiction is
chosen prior to conducting valve stiction detection and quantification. Given the stiction model
structure, a feasible search domain of stiction model parameters is defined, and a constrained
optimization problem is solved in order to determine the stiction model parameters.
The aforementioned stiction qualification methods all assume that the process is linear. Nal-

lasivama et al. (2010) proposed a method to qualify the stiction for closed-loop nonlinear
systems. The key idea used in the approach is based on the identification of extra information
available in process output, PV, compared to the controller output, OP. Stiction phenomenon
leads to many harmonic components compared to the Fourier transform of the Volterra system,
which allows stiction detection in nonlinear loops.
In this book, a simple stiction monitoring algorithm is used for the simulated system based

on fitting the valve’s input–output relationship to an ellipse (Choudhury et al. 2008). If stiction
is absent, the data should be easily fitted by an ellipse. However, if the fit is poor, it is likely
that stiction is present.

Model–plant Mismatch Monitors

A large volume of work has been published for open-loop model validation. However, the
literature has been relatively sparse on studies concerned with on-line model validation using
closed-loop data.
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Huang (2001) developed a method for the analysis of detection algorithms in the frequency
domain under closed-loop conditions. The divergence algorithm is extended to the model vali-
dation for the general Box–Jenkins model under closed-loop conditions through the frequency
domain approach. Based on the two-model divergence method, Jiang et al. (2009) developed
two closed-loop model validation algorithms, which are only sensitive to plant model changes.
Of the two algorithms, one is sensitive to changes in both plant and disturbance dynamics,
while the other is only sensitive to changes in plant dynamics, regardless of changes in distur-
bance dynamics and additive process faults, such as sensor bias.
Badwe et al. (2009) proposed a model mismatch detection method based on the analysis

of partial correlations between the model residuals and the manipulated variables. The more
significant this correlation is, the higher is the possibility that there exists model mismatch.
Badwe et al. (2010) further extended their earlier work by analysing the impact of model
mismatch on the control performance.
Selvanathan and Tangirala (2010) introduced a plant-model ratio (PMR) as a measure to

quantify the model–plant mismatch in the frequency domain. The PMR provides a mapping
between its signatures and changes in process models, and thus the changes in model gain,
time constant and time delay can be identified. Although it is claimed that the PMR can be esti-
mated from closed-loop operating data, a significant underlying assumption is that the setpoint
contains at least a pulse change. This assumption, however, can be restrictive in practice.
In this book the output error (OE) model method is used for model error monitoring. This

algorithm focuses on multi-input, single-output (MISO) systems, even though the simulated
process is a MIMO (multiple input, multiple-output) system; however, a MIMO system can
be easily constructed using several MISO systems.

Bias Monitors

Sensor bias can also be a problem in control loops, as sensors are the main reference for control
action. A common method for detecting sensor bias in process industries is the use of data
reconciliation and gross error detection (Mah and Tamhane 1982). Most data-reconciliation
and gross error detection methods have been proposed for offline implementation (Ozyurt and
Pike 2004); recently, Qin and Li. (2001) and Gonzalez et al. (2012) developed on-line versions.
In this book, bias monitors for the bench-scale process focus on the flowmeter output versus

pump speed. This type of monitor is effective for positive-displacement pumps such as those
found in the bench-scale process.

Process Operation Monitors

Process operation monitoring is a broad area of research, mainly because of the large variety
of processes that can be monitored and the large number of operation phenomena that can be
targeted (such as faults/breakdowns, abnormal/suboptimal operation and violation of operating
limits). Literature in this area falls under fault detection and diagnosis literature, which is
reviewed in Section 1.2.1.
In this book, for the bench-scale system, a quantitative model-driven technique is used

based on the Kalman filter; here, the state is augmented in order to include two fault-related
parameters (representing leaks). Under ideal conditions, the parameters have values of zero
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(no leak), but as leaks are introduced, the parameter values change to values significantly
greater than 0.

1.3 Book Outline

This book is broken down into twomajor parts, Fundamentals and Application, and each of the
major contributions is generally represented in both parts. The fundamentals section focuses
on theoretical development and justification of the proposed techniques, while the application
section focuses on succinctly conveying all information required to apply these techniques.
Since both parts are meant to be stand-alone, there may be some slight overlap between them,
namely the parts in the fundamentals section that are directly relevant to applications.
A number of techniques exist in this book that many readers may not be familiar with,

namely Bayesian diagnosis, Dempster–Shafer theory, kernel density estimation and bootstrap-
ping. A tutorial is provided which covers fundamental aspects of all four of these techniques.

1.3.1 Problem Overview and Illustrative Example

The main objective of this work is to diagnose the process operating mode (which contains
information about the state of each process component of interest, such as sticky valves, biased
sensors, inaccurate process models etc.). Before diagnosing modes, we collect historical data
from monitors for each mode; this historical data is used to diagnose the mode when new
evidence becomes available online. Because it is assumed that corresponding modes are avail-
able with the historical data, this book takes a supervised learning approach when applying
historical data.
In order to easily illustrate the challenges associated with Bayesian diagnosis, we start from

a toy problem where the modes consist of two different coins, one with a bias toward heads
(probability of heads = 0.6) and one that is fair (probability of heads = 0.5). The probability
estimates are obtained through historical data of coin flips. For the diagnosis problem, a coin
is randomly selected and we wish to use evidence of coin flipping to determine which coin
was selected. The evidence is provided by two people flipping the same coin once.

1.3.2 Overview of Proposed Work

This book aims to address various challenging issues with respect to Bayesian diagnosis. A
visual map of these solutions is given in Figure 1.2, where shaded boxes indicate problems,
and white boxes indicate solutions proposed by this book; dotted lines indicate a combination
of multiple solutions.

Autodependent Modes

For industrial processes, mode changes tend to be quite rare, which means that the mode at
time t is highly dependent on the mode at time t − 1. Taking this type of dependency into
account can significantly increase the precision of the diagnosis results, as consecutive pieces
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ProblemLegend:
Proposed
solutions

Generalized
Dempster-Shafer

theory

Second order
Bayesian method

Dynamic second
 order

Bayesian method

Hidden
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autodependent

modes

Autodependent
modes

Autodependent
evidence

Continuous
autodependent
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Continuous
incomplete
evidence

Incomplete
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Sparse
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Sparse
modes

Sparse
data

EM algorithm
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estimation

Kernel density
regression

Kernel density
conditioning

Discrete
conditioning

Bootstrapping
for evidence

Bootstrapping
for modes and

evidence

Component
space method

Ambiguous
modes

Figure 1.2 Overview of proposed solutions

of evidence contain more information than individual pieces. This type of dependency has
been addressed in Qi and Huang (2010b).
Returning to our coin-flipping example, consider the case where after each pair of flips there

is a probability of the coin being switched. If that probability is low, the ‘mode’ has a strong
time-wise autodependence. This means that consecutive pieces of evidence contain even more
information about the mode than single pieces of evidence themselves.



�

� �

�

14 Process Control System Fault Diagnosis

Autodependent Evidence

Monitor readings often use data from previous time steps in order to calculate a result. If
monitor readings are not sampled slowly enough, the evidence will be autodependent. Taking
the autodependence of evidence into account was addressed in Qi and Huang (2011a).
Autodependent evidence can also be applied to our coin-flipping example. If the second

coin flipper obtained heads at t − 1, and the first coin flipper at time t placed the coin on his
thumb heads-side-up (with tails being similarly treated) then results would exhibit time-wise
dependence.

Incomplete Discrete Evidence

It is not uncommon in process industries that historical records are unavailable during certain
time intervals. Since sensors are also used for monitoring, the corresponding monitor will also
be unavailable, rendering a data point incomplete (as some elements are missing). Simply
discarding incomplete data points will result in a loss of information so Qi and Huang (2010a)
proposed using Bayesian methods to recover the useful information from these incomplete
data points.
Using our coin-flipping example, consider the case where the evidence from the two people

flipping coins is dependent. For example, after the first person flips a coin, whatever side faces
up will be placed face up on the second person’s thumb. Now the historical data contains the
results of both people flipping coins. In some circumstances, the result from one of the two flips
will be missing. Because the coin flips are dependent, Qi and Huang (2010a) adopt Bayesian
methods to use the information present to make up for the missing information.

Ambiguous Modes from a Bayesian Perspective

Qi and Huang (2010a) addressed the issue where some elements of historical evidence records
are missing, causing the evidence to be incomplete. However, just as evidence requires input
frommultiplemonitors, themode requires information frommultiple components. If any infor-
mation about the components is missing, a number of different modes will be possible, causing
the mode to be ambiguous.
For example, if some of the historical data from coin-flipping exercises contained no infor-

mation on which coin was flipped (biased or fair) then either coin could have produced the
results (heads or tails) and the corresponding mode (or coin in this case) is ambiguous. Since
the conditioning variable is unknown, the probability cannot be calculated in a straightforward
manner.

Ambiguous Modes from a Dempster–Shafer Perspective

Demspter–Shafer theory (Dempster 1968; Shafer 1976) has been deemed by many to be a
generalization of Bayesian diagnosis that is able to handle ambiguity. However, it is shown in
this book that Dempster–Shafer theory does not adequately formulate the problem of ambigu-
ous modes in the historical data when likelihoods p(E|M) are used. Some modifications are
required in order to properly fit the data-driven diagnosis problem into a Dempster–Shafer
framework.
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Using Continuous Evidence

Previously, it was assumed that information used by the diagnosis method was discrete (our
coin-flipping exercise yields discrete evidence). In reality, however, most monitors yield an
output that is continuous (e.g. a monitor that monitors changes in compressor pressure). In
order to reduce the amount of information lost through discretizing continuous values, this
book proposes the use of kernel density estimation (as proposed in Gonzalez and Huang
(2014)) to make use of the continuous data directly.
Continuous evidence can also suffer from missing data, but because kernel density estima-

tion is non-parametric, the expectation-maximization (EM) algorithm is not directly appli-
cable. The most common method used to deal with missing evidence in a kernel density
estimation framework is kernel density regression (a method used to calculate the expected
value of the missing data). The completed data is then included in the data set used for kernel
density estimation. Due to the simplicity of this solution, the problem of missing continuous
evidence is included in the continuous evidence chapter.

Sparse Evidence given a Mode

If a process has a large number of components, the number of possible modes will be very
large. In such cases, it is quite possible for data from a particular mode to be quite sparse. Qi
and Huang (2011b) recommended the use of bootstrapping as a method to generate additional
data and get a better representation of the monitor distribution.
For the coin-flipping example, consider the case where one of the coins (such as the biased

one) does not have a large amount of historical data. Bootstrapping is a method that was sug-
gested in Qi and Huang (2011b) to resolve this issue by simulating more coin flips by randomly
drawing from previous results recorded in the historical samples.

Sparse or Missing Modes in the Data

As the number of components in a system increases, the possible modes will increase expo-
nentially. For systems with a large number of components, it is likely that data for a significant
number of modes will be missing entirely.
For example, in our coin-flipping exercise, even thoughwe only have two coins (e.g. modes),

we might not have any historical data from one of the coins. This book will present techniques
on what one can do if certain modes of interest are absent from the historical data.

Dynamic Application of Continuous Evidence and Ambiguous Modes

When accounting for ambiguous modes, the solution for addressing mode autodependence
will be affected. Similarly, when accounting for continuous evidence, the solution for autode-
pendent evidence will be affected. In Part One, which deals with fundamentals, the solution to
autodependent modes is addressed in Chapter 6, which discusses ambiguous modes. Likewise,
the solution to autodependent evidence is addressed in Chapter 8. However, in Part Two, which
deals with application, the solutions to both autodependent modes and evidence are dealt with
in one chapter (Chapter 18).
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