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1.1 INTRO DUCTION

The main purpose of a small molecule compound collection that is sometimes considered to 
constitute the crown jewels of a drug discovery organization is to supply the discovery 
pipeline with hit‐to‐lead compounds for today’s and the future’s portfolio of drug discovery 
programs and to provide tool compounds for the investigation of biological targets and path-
ways [1–7]. Independent of the followed discovery strategy relying on diversity or hypothesis‐
based screening, the automated access to high‐quality compounds constitutes a key asset [8]. 
Accordingly, all major organizations, including the National Institutes of Health (NIH) and 
the European Union Innovative Medicines Initiative (EU IMI), have initiated over the 
last years dedicated compound collection enhancement projects [9]. In alignment with 
the  general paradigm shift observed in drug discovery, going from quantity to quality, 
the fundamental principle aims to select both—at the chemical and the biological level—the 
best possible molecular starting points for lead discovery and development in the early drug 
discovery phases in order to reduce attrition at later preclinical and clinical stages.

To be successful on the long‐term perspective, such design strategy addresses the 
known target space and tries to expand into nonprecedented areas of chemical and 
biological spaces using diversity principles [5, 6]. Directing the molecular properties 
toward the lead‐like space is expected to improve overall success rates. The application of 
absorption, distribution, metabolism, excretion, and toxicity (ADMET) property models 
and rules of thumb aims to reduce the attrition risk and can be front‐loaded into the design 
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14� STRATEGIES FOR COMPOUND LIBRARY ENHANCEMENT

of the collection. On the other hand, a screening collection should allow for serendipitous 
discovery going in hand with diversity designs.

Drug discovery compound collections have evolved during recent history. Up to the 
early 1990s when drug discovery was mainly conduced in phenotypic in vivo screening of 
corporate medicinal chemistry compounds, the collections were limited to a few thousands 
of compounds that were carefully generated within the individual therapeutic programs. 
With the advances of molecular and cell biology and the advent of high‐throughput chem-
istry and screening, the drug discovery world changed and compound collections were 
grown in the last 15 years to pass in a number of organizations beyond the one million 
number. Today, screening collections integrate design‐focused and diversity‐based 
compound sets from the synthetic and natural paradigms generated via corporate medicinal 
chemistry and combinatorial compound synthesis and external compound acquisition or 
merger projects [1–3]. The compound collections serve diverse screening paradigms, 
ranging from target‐based to phenotypic‐based screening, from biochemical to cell‐based 
screening, and from focused hypothesis‐based to diversity‐based screening, opening a wide 
diversity of strategic choices for the future enhancement of the compound collection.

Herein, we review chemical, biological, and informatics elements for the development 
of strategies for compound library enhancement. The interdisciplinary nature of the library 
design activity is emphasized.

1.2  CHEMICAL SPACE FOR DRUG DISCOVERY

The chemical space is the ensemble of all possible molecules and comprises physically 
documented molecules available in the corporate and public databases as well as yet 
unknown, virtual molecules [10]. To delineate how many and which molecules populate 
unknown chemical space in total, Jean‐Louis Reymond’s group at the University of Berne 
performed a systematic computational enumeration and assembled the so‐called chemical 
universe database—Figure 1.1 [10]. GDB‐11 lists 26.4 million molecules of up to 11 
atoms of C, N, O, and F, GDB‐13 lists 977 million molecules up to 13 atoms of C, N, O, 
Cl, and S, and GDB‐17 lists 166 billion molecules up to 17 atoms of C, N, O, S, and 
halogens [13]. The number of molecules enumerated in GDB increases exponentially 
with the number of atoms such that the database will become impracticably large as 
molecular size increases. For instance, extrapolation from the numbers in GDB‐17 
suggests that there would be approximately 1024 molecules up to 30 nonhydrogen atoms—
typically, drug‐sized molecules include up to 35 nonhydrogen atoms with molecular 
weight (MW) < 500 Da.

Within a drug discovery context, these astronomic numbers have to be placed in relation 
to the number of physically available chemicals and the actual number of around 1200 
approved drugs satisfying stringent efficacy and safety criteria [14]. The Elsevier Medicinal 
Chemistry and Chemical Abstracts Service (CAS) Registry databases, which are up‐to‐
date representatives of molecules described in the chemical literature, list, respectively, 5.5 
and 74 million compounds [15, 16]. The eMolecules and ChemNavigator iResearch 
libraries, which are industry references for off‐the‐shelf compound acquisition, list, respec-
tively, five and six million unique commercially available compounds [17, 18]. The screen-
ing collections of the major pharmaceutical companies include typically one to two million 
proprietary and nonproprietary compounds [7]. Given the practically infinite possibilities, 
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Figure 1.1  Example of visualization of chemical space via principal component analysis (PCA) 
[10–12]. Color‐coded molecular quantum number (MQN) maps of the chemical space of PubChem 
compounds up to 60 heavy atoms and a subset of GDB‐13 compounds in the (PC1, PC2) plane (total: 
66,647,914 molecules). (a) Occupancy map color coded by the number of molecules per pixel. (b–d) 
Descriptor value maps color coded by the average descriptor value in each pixel. Saturation to gray 
is used to show standard deviation. (e) Category map for blue, fragments (rule of 3 (vide infra), 32.5 
million compounds); green, lead‐like (Teague’s NOT rule of 3 (vide infra), 2.7 million compounds) 
(note: in total 12.2 million structures follow Teague’s lead‐likeness criteria); and cyan, Lipinski (rule 
of 5 (vide infra) NOT leads or rule of 3, 31.4 million compounds); and red, not matching any rule 
(1.6 million compounds). Color coding according to the majority category in each pixel except for 
leads (green), which were given priority to make them visible. Reprinted with permission from 
Ref. 10. © 2014, Pan Stanford Publishing. (See insert for color representation of the figure.)
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the optimal size of a screening collection is frequently debated [19]. One estimate of the 
theoretically optimal size of a screening collection could be based on the size of the finite 
number of protein domains existing in the protein universe [5]. This number was recently 
estimated to be 1,500 domains and would translate to 15,000,000 compounds if one would 
design 10–20 chemotypes each of 500–1000 compounds to target each domain. A similar 
number can be reached if one would design 10–20 chemotypes each of 500–1000 for the 
estimated 600–1500 disease relevant druggable protein targets [20].

Tools to visualize, navigate, and select within the chemical space are essential 
chemoinformatic objectives for the design of the screening collection [21–23]. For every 
newly added compound, novelty needs to be checked at the individual compound and 
scaffold level. There are a number of commercial and proprietary informatics solutions 
that allow to store and search by chemical substructure and similarity chemical spaces in 
a robust and interactive fast manner. In 2001, Oprea and Gottfries pioneered the chemical 
global positioning system (ChemGPS) method to visualize chemical space [24]. The 
ChemGPS drug space map coordinates are t‐scores extracted via PCA from 72 descrip-
tors that evaluate a total set of 423 reference structures. Global ChemGPS scores describe 
well the latent structures extracted with PCA for a set of 8599 monocarboxylates, a set of 
45 heteroaromatic compounds, and for 87 alpha‐amino acids. ChemGPS positions novel 
structures in drug space via PCA‐score prediction, providing a unique mapping and 
prediction device for the drug‐like chemical space. ChemGPS scores are comparable 
across a large number of chemicals and do not change as new structures are predicted, 
making this tool a well‐suited reference system for comparing multiple libraries and for 
keeping track of previously explored regions of the chemical space. The method was later 
on expanded to the chemical space for natural products and resulted in the ChemGPS‐NP 
visualization and prediction system, which is publicly available on the web ChemGPS‐
NP(Web) (http://chemgps.bmc.uu.se) [25, 26]. ChemGPS‐NP(Web) can assist in compound 
selection and prioritization, property description and interpretation, cluster analysis 
and neighborhood mapping, as well as comparison and characterization of large compound 
data sets. Schuffenhauer et al. introduced scaffold tree to analyze the scaffold diversity of 
natural products [27]. The method is a hierarchical classification of chemical scaffolds 
that form the leaf nodes in the hierarchy trees. By an iterative removal of rings, scaffolds 
forming the higher levels in the hierarchy tree are obtained. Prioritization rules ensure 
that less characteristic, peripheral rings are removed first. All scaffolds in the hierarchy 
tree are well‐defined chemical entities making the classification chemically intuitive. 
The  scaffold tree classification procedure handles robustly synthetic structures and 
natural products. In the design of new screening collections, the scaffold tree method is 
invaluable. Integrated with a chemically aware visualization tool like Tibco Spotfire, it 
allows the immediate assessment of the abundance of a given chemical scaffold within 
the existing collection and the candidate collection to integrate [28]. Within a collabora-
tion between the Max Planck Institute for Molecular Physiology and Novartis, the method 
was integrated in a structural classification of natural products (SCONP) to chart the 
known chemical space explored by nature [29]. SCONP arranges the scaffolds of the 
natural products in a treelike fashion and provides a viable analysis‐ and hypothesis‐
generating tool for the design of natural product‐derived compound collections. The 
Waldmann group developed the method further into Scaffold Hunter, an interactive 
computer‐based tool for navigation in chemical space that fosters intuitive recognition of 
complex structural relationships associated with bioactivity [30, 31]. The program reads 
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compound structures and bioactivity data, generates compound scaffolds, correlates them 
in a hierarchical treelike arrangement, and annotates them with bioactivity.

In a need to enable navigation and selection with chemical space, researchers at 
Janssen presented library enhancement through the wisdom of crowds [32]. Compounds 
of interest are clustered together with the in‐house collection using a fingerprint‐based 
clustering algorithm that emphasizes common substructures and works with large data 
sets. Clusters populated exclusively by external compounds are identified as “diversity 
holes,” and representative members of these clusters are presented to the global corporate 
medicinal chemistry community, who are asked to specify which ones they like, dislike, 
or are indifferent by using a simple point‐and‐click interface. The resulting votes are then 
used to rank the clusters from the most to the least desirable and to prioritize which ones 
should be targeted for acquisition.

Hypothesis‐based selection in chemical space is supported by different types of 
virtual screening technologies depending on the size of the considered physical or virtual 
compound libraries. ChemNavigator offers, for instance, a comprehensive set of virtual 
screening services called 3DPL™ to select from their iResearch Library [18]. Researchers 
at Boehringer Ingelheim run virtual screening in a huge collection of virtual combinatorial 
libraries that led recently to the identification of two new structural classes of GPR119 
agonists [33, 34]. Their virtual library called Boehringer Ingelheim Comprehensive 
Library of Accessible Innovative Molecules (BICLAIM) is based on combinatorial 
reactions and stored in a feature trees (FTrees) fragment space. The virtual chemical 
space contains about 1,600 scaffolds and 30,000 reagents encoding about 5 × 1011 theoret-
ically chemically accessible molecules. The chemical universe database GDB‐17 of 166.4 
billion molecules can be virtually screened using a hashed fingerprint derived from the 
42 integer MQN molecular descriptors [12]. An MQN‐searchable 50 million subset of 
GDB‐17 is publicly available at http://www.gdb.unibe.ch.

1.3 MOL ECULAR PROPERTIES FOR DRUG DISCOVERY

Given that the size of the chemical space is virtually infinite, the art of library design lies 
in parts in the selection of the appropriate molecular property spaces. Medicinal compu-
tational chemists developed over the last decade a number of statistical analyses and 
ADMET models that are easily applicable upfront compound synthesis and are intended 
to reduce attrition at various stages [35–39]. The simplest models include substructure 
filters for potentially problematic chemical functionalities. The rapid elimination of swill 
(REOS) filters published by Vertex flag false positives in screening due to assay interfer-
ence and reactivity or compounds with poor ADMET properties [40]. The pan‐assay 
interference compounds (PAINS) filters identify frequent hitter in HTS [41, 42]. The 
analysis of Thorne et al. on typical screening technology‐related assay artifacts provides 
a further guide to eliminate undesirable compound classes [43]. Among the molecular 
properties that are essential to small molecules are the water solubility and membrane 
permeability that form the basis of the two‐dimensional biopharmaceutics classification 
system for drug developability [44]. The two properties are dependent in the sense that for 
specific oral dosing regime, a minimum equilibrium solubility level is required given the 
compound permeability class. They are not only important for late drug developability 
but also for early drug discovery. A compound has to be sufficiently soluble to enable 
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a dose–response‐dependent readout. In addition, the compound has to have the appropriate 
permeability properties to reach its site of action within a cell or tissue. It is thus logical 
that a number of models focus on these properties.

Besides cheminformatics software like ACD/Labs Percepta Platform [45], Schrodinger’s 
QikProp [46], or Simulation Plus’ ADMET Predictor [47], which are based on advanced 
quantitative structure–property relationship (QSPR) modeling methods, there are a number 
of simpler heuristic‐based models that have the advantage of being easily interpretable by 
the medicinal chemist. Chris Lipinski’s pioneering work on the rule of 5, for instance, is 
derived from a quest for experimental and computational approaches to estimate solubility 
and permeability in drug discovery and development settings [48]. In the discovery setting, 
the rule of 5 predicts that poor absorption or permeation is more likely when there are 
more than 5 H‐bond donors and 10 H‐bond acceptors, the MW is greater than 500 Da, and 
the calculated LogP (CLogP) is greater than 5.

As the rule of 5 is, for instance, not able to statistically discriminate drugs from 
nondrugs, Lipinksi’s thinking was initially highly controverted in an era where combina-
torial chemistry aimed to deliver compounds that were easily synthesized and purified 
with having higher MW and LogP. Later, Lipinski’s thinking influenced an entire school 
of thought around small molecules for drug discovery [49, 50].

The analysis provided by Wenlock showed that MW and ClogP distributions move 
through the phases of drug development and that the property distributions approach 
those of marketed oral drugs—Figure 1.2 [51]. Given that the early combinatorial chem-
istry was not successful, it is not surprising that over time a quantity to quality shift 
developed. The observation that medicinal chemists focus on potency during early lead 
optimization by making compounds even bigger and lipophilic led Oprea’s group at 
AstraZeneca to introduce the concept of lead‐likeness [52]. Larger size and lipophilicity 
drive also compound promiscuity and potential off‐target effects [53–55]. Increasing 
MW and CLogP is an easy way to reach the common nanomolar potency. This tendency 
is, however, counterproductive for ADMET and moves the properties further away from 
historical drug space.

Over the time, Oprea refined his analysis of lead–drug pairs and recommended that 
lead‐likeness libraries should have the following as characteristics: MW < 460 Da, 
−4 < CLogP < 4.2, water solubility LogS > −5, number of rotatable bonds less than 10, 
number of rings less than 4, number of H‐bond donors less than 5, and number of H‐bond 
acceptors less than 9 [56]. These differences compared to drugs are thus subtle, and as 
concluded by Proudfoot, successful and timely drug discovery campaigns require high‐
quality lead structures, and these lead structures may need to be much more drug‐like than 
is commonly accepted [57]. Similar conclusions were derived by Oprea when analyzing 
more recently chemical probes and leads [58]. The field of fragment‐based drug discovery 
takes the concept of having small molecule starting points further. Following an analysis 
done at Astex, fragment libraries are often designed by applying a rule of 3 in which MW 
is less than 300 Da, the number of hydrogen‐bond donors is less than or equal to 3, the 
number of hydrogen‐bond acceptors is less than or equal to 3, and ClogP is less than or 
equal to 3. In addition, the analysis suggested that the number of rotatable bonds (NROT) 
(≤3) and topological polar surface area (tPSA) (≤60 Å2) might also be useful criteria for 
fragment selection [59]. The Astex scientists argue that ADMET properties can be better 
controlled during optimization when starting with a fragment compound compared to a 
larger compound.
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The observation that smaller and less lipophilic starting points are better prompted 
researchers at GSK to propose the concept of lead‐oriented synthesis (LOS), which aims 
for compounds with LogP values in the range −1 to 3 and MW in the range of 200–350 Da 
[60]. The authors emphasize the need to access to novel synthesis methodologies given 
that the current array chemistry has an unintentional bias toward the synthesis of less 
drug‐like molecules.

Further analyses of computed and experimental physicochemical properties of drug 
compounds lead to the conclusion that the property spaces depend on the target class and 
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Figure 1.2  Analysis by Wenlock et al. of the evolution of molecular property distributions with 
progressing through development stages [51]. Phase I (PI); discontinued phase I (DI); phase II 
(PII); discontinued phase II (DII); phase III (PIII); discontinued phase III; preregistration (Prereg); 
marketed oral drugs. The analysis shows that the mean molecular weight of orally administered 
drugs in development decreases on passing through each of the different clinical phases and gradu-
ally converges toward the mean molecular weight of marketed oral drugs. It is also clear that the 
most lipophilic compounds are being discontinued from development. Reprinted with permission 
from Ref. 51. © 2003, American Chemical Society.
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therapeutic indication [35, 61]. For a given therapeutic indication, the site of in vivo action 
might require due to specific barriers the active compound to occupy quite specific 
property spaces like those illustrated, for instance, by the central nervous system (CNS) 
property space or the antibacterial property spaces [62, 63].

Gleeson provided a set of simple, consistent structure–property rules of thumb determined 
from an analysis of a number of key ADMET assays run within GSK: solubility, permeability, 
bioavailability, volume of distribution, plasma protein binding, CNS penetration, brain tissue 
binding, P‐gp efflux, hERG inhibition, and cytochrome P450 1A2/2C9/2C19/2D6/3A4 
inhibition [64, 65]. The rules have again been formulated using molecular properties that 
chemists intuitively know how to alter in a molecule, namely, MW, LogP, and ionization state. 
This study reemphasizes again the need to focus on a lower MW and LogP area of physico-
chemical property space to obtain improved ADMET parameters.

To assess the use of this knowledge in reducing the likelihood of compound‐related 
attrition, the molecular properties of compounds acting at specific drug targets described 
in patents from leading pharmaceutical companies during the 2000–2010 period were 
analyzed by Leeson and St‐Gallay [66]. The authors conclude that a substantial sector of 
the pharmaceutical industry has not modified its drug design practices and is according to 
them producing compounds with suboptimal physicochemical profiles.

The Golden Triangle is a visualization tool developed at Pfizer from in vitro perme-
ability, in vitro clearance, and computational data designed to aid medicinal chemists in 
achieving metabolically stable, permeable, and potent drug candidates [67]. Classifying 
compounds as permeable and stable and plotting MW versus octanol–buffer (pH 7.4) 
distribution coefficients (LogD) or estimated octanol–buffer (pH 7.4) distribution coeffi-
cients (eLogD) reveal useful trends. The Golden Triangle is defined by an apex of MW 
450 Da and a base of MW 200 Da, and a logD range of −2 to +5. 25% of the compounds 
in Golden Triangle has acceptable Caco‐2 permeability and microsomal stability versus 
only 3% for compounds outside the Golden Triangle.

The analysis by Hill and Young of the relationship between hydrophobicity and approx-
imately 100 k measured kinetic solubility values showed that better solubility predictions 
are obtained by taking ACD clogD(pH 7.4) values together with the number of aromatic 
rings in a given molecule—Figure 1.3 [68]. The Solubility Forecast Index (SFI = clogD(pH 
7.4) + #Ar) was proposed as a simple, yet effective, guide to predicting solubility.

Pfizer provided with the 3/75 rule an example of how physicochemical drug properties 
are associated with in vivo toxicity [69]. From a data set consisting of animal in vivo 
toleration studies on 245 preclinical Pfizer compounds across a broad swath of chemical 
space, an increased likelihood of toxic events across a wide range of types of toxicity is 
observed for less polar, more lipophilic compounds. Compounds with CLogP < 3 and a 
tPSA > 75 Å2 show a clear correlation of lower odds of promiscuity and toxicity.

Strict property‐based assessment of drug‐likeness has been recently criticized as being 
too blunt an instrument that affords only a yes–no answer. The quantitative estimate of 
drug‐likeness (QED) has been introduced to overcome such limitations by characterizing 
how well physicochemical properties of a candidate compound match the property 
distributions of marketed oral drugs [70]. Ritchie and MacDonald showed that drugs with 
high QED scores exhibit higher absorption and bioavailability, are administered at lower 
doses, and have fewer drug–drug interaction warnings, P‐glycoprotein interactions, and 
absorption issues due to a food effect. By contrast, the high‐scoring drugs exhibit similar 
behavior to low‐scoring drugs with respect to free fraction in plasma, extent of gut‐wall 

0002552546.indd   20 9/3/2015   1:08:52 PM



MAJOR COMPOUND CLASSES� 21

metabolism, first‐pass hepatic extraction, elimination half‐life, clearance, volume of 
distribution, and frequency of dosing [71].

1.4 MA JOR COMPOUND CLASSES

Natural products, known bioactives, peptides, heterocycles, and DOS libraries, constitute 
the prevalent compound classes represented in screening collections and are reviewed in 
this section [4]. For obvious reasons, natural principles play a predominant role in the 
history of drug discovery. Diverse classes of natural products including carbohydrates, 
steroids, fatty acids, polyketides, peptides, terpenoids, flavonoids, alkaloids, and many 
other products were isolated initially from herbs and later from various micro and higher 
organisms for structure and activity characterization [72, 73]. Natural products are a 
major source of innovative tool compounds for the elucidation of signaling pathways and 
new medicines for most indications, such as lipid disorders, cancer, infectious diseases, 
and immunomodulation. Between 1981 and 2002, 5% of the around 870 new chemical 
entities approved by the US Food and Drug Administration (FDA) were natural products, 
and another 23% were molecules derived from natural products [74].
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Figure  1.3  Trelis plot of Hill and Young showing the distribution of water solubility as a 
function of computed LogD and # of aromatic rings [68]. Solubility classes—green, high (>200 μM); 
yellow, medium (30–200 μM); and red, low (<30 μM). The number above the pie charts corresponds 
to the number of compounds analyzed for each bin. Reprinted with permission from Ref. 68.  
© 2010, Elsevier. (See insert for color representation of the figure.)
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Natural products offer a wealth of new structures far beyond the classical repertoire of 
synthetic compounds. The current most comprehensive summary on the chemical and 
biological information of around 230,000 isolated natural products is provided in the 
Chapman & Hall Dictionary of Natural Products (DNP) database [75].

A number of studies have investigated the structural characteristics of natural products 
compared to synthetic organic compounds [76–79]. Natural products often contain a 
greater proportion of oxygen than nitrogen heteroatoms. Typically, the natural products 
have a higher number of stereocenters, a higher density of functionalization and pharma-
cophore sites, a higher number of rings, and more skeletal diversity. Natural products 
exemplify macro‐ and polycyclic scaffolds beyond the imagination of the classical 
synthetic medicinal chemist. Conversely, examples also exist of very simple natural 
product structures with biological activity. The structural repertoire can be extended by 
genomic approaches to natural products. Approaches based on genome sequence 
information and subsequent annotation of biosynthetic pathways are emerging technol-
ogies [80]. Tang and Khosla described the potential of combinatorial biosynthesis of 
“unnatural” natural products via the genetic engineering of the biosynthetic pathways of 
polyketides [81].

Natural products were excluded from Lipinski’s rule of 5 observation. Despite the fact 
that the distribution profiles of natural products are indeed broader compared to synthetic 
compounds, their fraction with two or more rule of 5 violations is equal to that of synthetic 
drugs. One interpretation of this finding might be that evolutionary optimization has coded 
in addition to these essential properties other biocharacteristics that still need to be deci-
phered. An analysis by Ganesan showed that those natural products that violated the rule 
of 5 have higher MW, more rotatable bonds, and more stereocenters; however, they remain 
largely compliant in terms of logP and H‐bond donors, highlighting the importance of 
these two metrics in predicting bioavailability [82]. Natural products have learned to main-
tain low hydrophobicity and intermolecular H‐bond donating potential when it needs to 
make biologically active compounds with high MW and large numbers of rotatable bonds. 
In addition, natural products are more likely than purely synthetic compounds to resemble 
biosynthetic intermediates or endogenous metabolites and hence take advantage of active 
transport mechanisms. Conversely, a number of marketed natural product‐based drugs are 
not orally available, but uniquely address a number of therapeutic applications.

One key dilemma for natural products drug discovery is that although the primary 
HTS hit rates in the micromolar affinity range are 5–10 times higher than the hit rates 
for synthetic compounds, the take‐up rate of the compounds by chemists for follow‐up 
lead optimization is significantly lower [1]. This finding is most probably due to the 
higher structural complexity and challenges related to the chemical structure elucidation 
and synthesis. A promising trend to broaden the scope of natural products is given by 
making small combinatorial libraries from natural products and natural product‐like 
scaffolds. A systematic extension of such libraries based on protein structure similarity 
clustering (PSSC) was proposed by the Waldmann group [83]. The principles of this 
approach consider the domain organization and conservation of proteins and the 
corresponding needs for conservatisms of the architectures and interaction modes of 
their ligands.

Primary metabolites and marketed drugs form additional sets of biologically relevant 
and validated compounds that form an essential component of a comprehensive screening 
collection [4].
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Primary metabolites, which are key intermediates of cellular metabolisms and which 
interact with key enzymes and cellular regulatory receptor systems, are systematically 
included in deorphanization libraries of orphan targets. The CheBI database organizes the 
relevant chemical and biological information [84]. Hits from such libraries allow the 
elucidation of the functional relevance of a new potential target protein.

Marketed drugs and derivative libraries are an important and invaluable compound 
source and provide the basis for the selective optimization of side activities (SOSA) 
approach [85]. The SOSA approach consists of testing old drugs on new pharmacological 
targets. The aim is to subject to pharmacological screening a limited number of drug mol-
ecules that are structurally and therapeutically very diverse and that have known safety and 
bioavailability in humans, thereby potentially shortening the time and the cost needed for 
hit optimization. Since bioavailability and toxicity studies have already been performed 
for those drugs and since they have proven their usefulness in human therapy, all hits are 
per definition drug‐like. In the second stage, the hits are optimized by means of traditional, 
parallel, or combinatorial chemistry in order to increase the affinity for the new target and 
decrease the affinity for the other targets. The objective is to prepare analogues of the hit 
molecule in order to transform the observed “side activity” into the main effect and to 
strongly reduce or abolish the initial pharmacological activity.

Peptide–protein molecular interactions are the most ubiquitous mode for controlling 
and modulating cellular function, intercellular communication, and signal transduction 
pathways [86]. Peptides are key components of chemogenomics discovery libraries and 
are especially useful for the characterization of orphan targets. A number of successful 
deorphanizations, especially in the GPCR field, are based on peptides, resulting in new 
drug discovery projects. New peptides for such libraries are discovered using HPLC frac-
tionations of tissue extracts together with random or designed peptide libraries based on 
the bioinformatics analysis of putatively secreted peptides and protein hormones defined 
in the genome [87].

Limiting factors of peptide‐based drugs are directed by the number of amide bonds 
that determine properties like a high tPSA, a low membrane permeability, and a poten-
tially high proteolytic degradation, resulting in quite poor ADME properties [88]. Mainly 
because of these reasons, robust strategies for the design of peptide mimetics have been 
successfully developed [89]. Oral delivery of therapeutic peptides is still a challenge. A 
number of factors including high proteolytic activity and low pH conditions of the gastro-
intestinal tract act as major barriers in the successful delivery of intact peptide to the 
targeted site. Low permeability of peptides across the intestinal barrier is also a factor 
adding to the low bioavailability. Nanocarrier‐based delivery presents an appropriate 
choice of drug carriers owing to their property to protect proteins from degradation by the 
low pH conditions in the stomach or by the proteolytic enzymes in the gastrointestinal 
tract [90]. Recently, cell‐penetrating peptides (CPPs) such as HIV‐1 Tat, penetratin, and 
oligoarginine are considered as a useful tool for the intracellular delivery of therapeutic 
macromolecules [91]. CPPs are likely to become powerful tools for overcoming the low 
permeability of therapeutic peptides through the intestinal membrane, the major barrier to 
their oral delivery. Peptide‐derived (natural and nonnatural amino acids) macrocycles are 
a relatively new trend in drug discovery [92–95]. Macrocycles are conformationally con-
strained molecules that can fix the bioactive conformation. Macrocycles come in different 
flavors and can’t be lumped into one class because they cover a wide range of different 
structural classes and different MW. A stapled peptide is very different from a large cyclic 
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peptide, which is very different from a synthetic macrocycle, which again is very different 
from a natural product macrocycle [95]. Heterocycles form historically the most prevalent 
class of drug molecules. They cover a diverse set of ring systems with various types of 
heteroatoms and have been extensively patented. The quest for new rings was systemati-
cally investigated in silico. Researchers at UCB generated a complete list of 24,847 ring 
systems called virtual exploratory heterocyclic library (VEHICLe) [96]. Searching 
literature and compound databases, using this list as substructure queries, identified only 
1701 as synthesized. Using a carefully validated machine learning approach, it was 
possible to estimate that the number of unpublished, but synthetically tractable, VEHICLe 
rings could be over 3000. This analysis also shows that the rate of publication of novel 
examples to be as low as 5–10 per year. Corroboratively, Ertl and coworkers at Novartis 
showed that bioactive molecules only contain a relatively limited number of unique ring 
types [97]. To identify those ring properties and structural characteristics that are necessary 
for biological activity, a large virtual library of nearly 600,000 heteroaromatic scaffolds 
was created and characterized by calculated properties. Using a self‐organizing neural 
network, the scaffolds were clustered and showed that bioactivity is very sparsely distrib-
uted within the scaffold property and structural space, forming only several relatively 
small, well‐defined “bioactivity islands.” Such analyses provide a fresh stimulus to 
creative organic chemists by highlighting a small set of apparently simple ring systems 
that are predicted to be tractable but are unconquered. A recent trend in heterocyclic 
chemistry is to increase the ratio of sp3‐hybridized carbon atoms (Fsp3) yielding more 
saturated ring systems. Lovering et al. showed that both complexity (as measured by 
Fsp3) and the presence of chiral centers correlate with success as compounds transition 
from discovery, through clinical testing, to drugs. In an attempt to explain these 
observations, it was demonstrated that saturation correlates with solubility [98]. Within 
the same perspective, Ishikawa and Hashimoto provided examples how the breaking of 
molecular symmetry and planarity is effective to improve solubility despite increasing 
hydrophobicity [99]. The impact of carboaromatic, heteroaromatic, carboaliphatic, and 
heteroaliphatic ring counts and fused aromatic ring count on several developability mea-
sures (solubility, lipophilicity, protein binding, P450 inhibition, and hERG binding) was 
recently reviewed [100]. Increasing ring counts have detrimental effects on developability 
in the order carboaromatics ≫ heteroaromatics > carboaliphatics > heteroaliphatics, with 
heteroaliphatics exerting a beneficial effect in many cases. Increasing aromatic ring 
count exerts effects on several developability parameters that are lipophilicity and size 
independent, and fused aromatic systems have a beneficial effect relative to their non-
fused counterparts.

The metabolism of heterocycles can result in challenges for the optimization of pharma-
cokinetics/pharmacodynamics (PK/PD) profiles of the compounds. Recently, systematic 
mitigating strategies for heterocycle metabolism have been established by St. Jean and 
Fotsch allowing the selection of improved building blocks for library design [101].

Diversity‐oriented synthesis (DOS), as opposed to the traditional target‐oriented 
synthesis (TOS) chemistry approach, was introduced by the Schreiber group for forward 
chemical genetic screening in order to mimic the structural complexity and the skeletal and 
stereochemical diversity of natural products [102]. Conversely to a convergent synthesis 
strategy resulting from the logic of retrosynthetic analysis of the target molecules, DOS, in 
the ideal state, allows the application of a diverse set of reagents and structural transfor-
mations on each synthesis intermediate; this results in diverging synthesis pathways that 
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create a broad diversity of target molecules with different scaffolds. DOS compounds 
clearly share a number of characteristics with natural products including most notably the 
scaffold diversity and stereochemical complexity. The question remains, however, whether 
these products of pure chemist imagination capture the evolutionary advantages of natural 
products and natural product‐based compounds. The DOS planning strategy allows, by 
enumeration over a larger number of steps, the genesis of truly novel structures that by 
itself is an innovative concept. In practice, DOS combinatorial libraries focus to leverage 
information about existing biologically active molecules in order to address the biologi-
cally relevant regions of chemical space. DOS libraries are not directed toward a single 
biological target and aim to provide diverse discovery libraries. DOS has increased the 
need for exceptionally efficient, stereoselective, and chemoselective reactions, including 
multicomponent reactions (MCR) that can be applied to a broad range of substrates.

A number of recent success stories prove that DOS compounds provide invaluable 
tools for target validation [103]. The validation of the ADMET and in vivo properties of 
these compounds and their value as therapeutics remains however to be proven. 
Comparable to natural products, as result of the structural complexity, a key challenge is 
expected in the lead optimization phase and for the industrial chemical development of 
the final compounds.

In a comparative analysis, Clemons et al. found that compounds from different sources 
(commercial, academic DOS, natural products) have different protein‐binding behaviors 
against each of 100 diverse (sequence‐unrelated) proteins [104]. These behaviors corre-
late with general trends in stereochemical and shape descriptors for these compound 
collections. Increasing the content of sp3‐hybridized and stereogenic atoms relative to 
compounds from commercial sources, which comprise the majority of current screening 
collections, improved binding selectivity and frequency.

1.5  CHEMICAL DESIGN APPROACHES TO EXPAND BIOACTIVE 
CHEMICAL SPACE

Systematic hypothesis‐based expansion of the chemical space to reach a maximum of 
biological binding sites appears possible when conserved molecular recognition princi-
ples are the founding hypothesis for the design of the compounds. Such chemogenomics 
principles, including approaches focusing on target families, privileged scaffolds, protein 
secondary structure mimetics, cofactor mimetics, and BIOS libraries, were recently 
summarized by us [5]. To be broadly successful, these approaches are complemented by 
diversity‐based principles like DOS, DNA‐encoded libraries (DELs), and fragment‐
based approaches (FBS).

More than 50% of the marketed drugs target only four key gene families, including the 
rhodopsin‐like GPCRs, nuclear receptors, ligand‐gated ion channels, and voltage‐gated 
ion channels [61, 105]. Historically, drug discovery has thus been focusing on a few 
“druggable” target families. The key design principles, focusing on similarities or differ-
ences in the physicochemistry of equivalent residues lining the binding site, can also 
rationalize the polypharmacology of many drugs. Because protein family‐targeted library 
design requires extensive ligand‐based or structure‐based knowledge, it is not surprising 
that current design of chemical libraries directed to target classes focuses mainly on 
GPCRs, kinases, nuclear receptors, and more recently ion channels and epigenetic 
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targets. Today, protein family‐targeted libraries with a large diversity of chemotypes are 
specifically designed toward subfamilies with conserved molecular recognition [106]. 
Various strategies have been applied to design GPCR [107, 108] and ion channel libraries 
[109], mostly based on ligand information captured in the form of molecular descrip-
tors, pharmacophores, and substructures extracted from active reference compounds. In 
addition to these methods, the large amount of structure‐based information available from 
X‐ray analysis of ligand‐target complexes makes structure‐based design approaches 
feasible in the protein kinase [110, 111], protease [112], and nuclear receptor [113] 
classes. Impressive progress was reached within the last 5 years on new epigenetic targets 
like histone methyltransferases and bromodomains, thanks to the initiative of the structural 
genomics consortium (SGC) for chemical probes and structural biology [114–116]. The 
typical size of a protein target‐focused library is 100–1000 compounds if it is centered 
around one single chemotype; the library size can grow to 10,000–20,000 compounds if 
it is oriented around multiple chemotypes.

De novo design approaches for target families were recently reported [117]. Automated 
design of ligands to polypharmacological profiles was demonstrated by the Hopkins group 
by the evolution of an approved acetylcholinesterase inhibitor drug into brain‐penetrable 
ligands with either specific polypharmacology or exquisite selectivity profiles for biogenic 
G‐protein‐coupled receptors [118]. Overall, 800 ligand‐target predictions of prospec-
tively designed ligands were tested experimentally, of which 75% were confirmed to 
be correct. The approach can be a useful source of leads when multitarget profiles are 
required to achieve either selectivity over other drug targets or a desired polypharmacology. 
Hartenfeller at Novartis published the libDOGS methods in extension to DOGS developed 
by the Schneider group at ETH [119, 120]. The principle is a reaction‐driven de novo 
design method for automated design of target family‐oriented libraries. Focusing on 
hypotheses (suggested molecules) that can easily be validated via straightforward syntheses 
expected to allow testing more hypotheses compared to scenarios where complex molecules 
require more synthetic effort.

The goal of a protein family‐targeted library is not to target a specific target exclusively, 
but to address by different library members different members of the target subfamilies. 
This coverage of a targeted library could until recently only be addressed experimentally 
by the analysis of hit rates. Such analyses showed that some designed libraries hit not only 
the primary target family but also other a priori nonrelated target families [1].

Biology‐oriented synthesis (BIOS) was introduced by the Waldmann group [121–123]. 
BIOS centers on the generation of small compound libraries based on scaffolds of proven 
biological relevance. Library generation is focused on compound classes from the 
“biological relevant space,” that is, the natural products and drugs. BIOS unifies the 
aforementioned SCONP and PSSC concepts (vide supra) that, respectively, allow naviga-
tion in the chemical and biological spaces.

The use of privileged substructures or molecular master keys is an accepted concept in 
medicinal chemistry. The privileged structure approach emphasizes molecular scaffolds 
or selected substructures that are able to provide high‐affinity ligands (agonist or antago-
nists) for diverse receptors and originates from work at Merck Research Laboratories on 
the design of benzodiazepine‐based CCK (Cholecystokinin) antagonists, where the previ-
ously known κ‐opioid tifluadom was identified as a lead structure [124]. A number of 
recent literature reviews provide impressive reference repertoires of empirically derived 
privileged structures for various target families [125–127].
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Protein–protein molecular interactions are the most ubiquitous mode for controlling 
and modulating cellular function, intercellular communication, and signal transduction 
pathways. Peptide and protein mimetic libraries including β‐turn and α‐helix mimetics 
are recognized of central importance in chemogenomics. The design of drug‐like active 
β‐turn mimetics based on organic drug‐like scaffolds advanced to a quite routine meth-
odology and a variety of approaches have been validated as recently summarized by 
Marshall et al. [128], including α,β‐dehydroamino acids, proline and heterochiral N‐
methyl amino acids, or cyclic α‐peptides. The work of Garland and Dean [129, 130], 
defining a set of triangular distance constraints that the substitution points of a scaffold 
have to satisfy in order to mimic the specific Cα atoms of the peptide template, provided 
a generalized frame for the design of novel β‐turn mimetic scaffolds and was in 
combination with database searches successfully applied for the design of CCK, SST, 
and MC

4
 antagonists [131].

Other protein–protein interactions (PPI) are via key α‐helix motifs. The work of the 
groups of Hamilton [132] has established a solid foundation for the rational design of α‐
helix mimetics. 3.2′.2″‐substituted terphenyl‐derived motifs were among the first 
designed motifs and were shown to be able to mimic the side‐chain positions i, i + 3 or 
i + 4, and i + 7, which are on the same face of a α‐helix. Besides these rationally designed 
helix mimetics, diversity‐based high‐throughput screening (HTS) and virtual screening 
have identified a number of scaffolds for a variety of targets that allow the correct spatial 
orientation of substituents for interaction with the protein target [133]. Combinatorial 
libraries around such scaffolds are an essential component of a chemogenomics discovery 
library. Morelli et al. analyzed the PPI chemical space together with current structural 
knowledge regarding both protein–protein and protein–inhibitor complexes summarized 
in the 2P2I database [134]. The statistical analysis of the 39 inhibitors present in 2P2I

DB
 

enabled them to calculate the general characteristics of the PPI chemical space. Average 
values for the MW (547 ± 154 Da; thus, MW > 400 Da), ALogP (3.99 ± 2.37; thus, 
ALogP > 4), number of rings (4.44 ± 1.02; thus, #Rings > 4), and number of hydrogen‐
bond acceptors (6.62 ± 2.60; thus, #HBA > 4) define the generic profile of a PPI inhibitor 
compound that could be further derived into a more specific inhibitor. These chemical 
rule of 4 properties can be used to filter “in‐house” databases and accelerate the process 
of hit identification by lowering both cost and time.

With the successful design of MDM2‐P53 inhibitors, the Dömling group introduced 
the ANCHOR method whereby computational and MCR chemistry converge [135]. Their 
general workflow for the rapid generation of low‐molecular‐weight (ant)agonists of PPIs 
relies on a sequence of steps. First, the presence of a highly buried amino acid is identi-
fied. In the next step, a molecular anchor is generated by fragmentation of the candidate 
ligand. Virtual chemistry employing the anchor and based on MCR is then used for the 
enumeration of further candidate compounds that are docked into the binding site using 
the anchor as a constraint. Finally, chemical synthesis and biological screening of the 
most promising candidates are completed.

As successfully exemplified by the protein kinase ATP‐binding site, cofactor‐binding 
sites are evolutionary highly conserved binding sites that provide rich opportunities for 
enzyme‐based drug discovery. The detailed comparative structural analysis of substrate‐ 
and cofactor‐binding sites shows indeed that cofactor analogues open a very wide target 
window. Ji et al. examined around 2200 well‐defined small molecule ligands and thou-
sands of protein domains derived from a database of druggable binding sites and found that 
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cofactor molecules are the most prevalent bioligands in the protein fold universe and hence 
present a unique opportunity for chemogenomics systematization approaches [136].

Typical industrial screening libraries are of the size of approximately 1–2 Mio com-
pounds, which is a drop in the ocean compared to the theoretical chemical space of drug‐like 
molecules. FBS and DELs allow the access to a significantly larger chemical space compared 
to conventional screening libraries.

Considering the hypothetical case of a ligand comprising three fragments that bind to 
three subsites, if only 1000 fragments should be tested for each of the subsites, this would 
require the synthesis and testing of at least 1000 × 1000 × 1000 = 109 molecules, without 
considering the number of possible linkers. In an FBS, it would only require the screening 
of 1000 compounds in this hypothetical case.

Key to the success of FBS, which can be performed by a variety of biophysical 
methods, is the quality of the FBS library, and different generations of designs have been 
introduced in the past [137–139]. More recently, the concepts of 3D fragments, fragments 
of known drugs, and fragments of natural products have been realized [140, 141]. Very 
important for the follow‐up of the fragment hits is also the access to structural biology 
support providing high‐resolution structures of the fragment‐binding interactions and the 
three‐dimensional building plan to expand the fragments into full‐sized molecules [142, 
143]. Typically, dedicated chemistry support is required, and a number of BioTech com-
panies have focused on the FBS paradigm and delivered an impressive number of drug 
candidates [144, 145].

DELs provide access to 103–109 diverse compounds in a single test tube. The scientific 
approach was first described by Lerner and Brenner and consists of small molecules 
covalently attached to unique DNA sequences that serve as PCR amplifiable identification 
barcodes [146]. Selection offers large advantages over screening in terms of numbers, 
flexibility, convenience, and costs. A number of protocols have been designed [147]. The 
approaches enable the deconvolution of SAR information and families of actives are 
observed. One potential limitation is the restriction of chemical reactions to aqueous and 
DNA‐compatible conditions. DELs have started to yield novel modulators of biological 
targets [148–150].

1.6  CONCLUSION

The discovery of new innovative small molecule drugs will continue to rely on the 
systematic exploration of new chemotypes. The enhancement of the corporate screening 
collection with high‐quality chemical matter is a long‐term continuous process of capital 
interest to every drug discovery organization. Quality library design is one of the most 
important scientific drug discovery competencies and is recognized as critical to the 
future productivity [151, 152]. Disruptive versus incremental innovation can be promoted 
by moving on purpose into new areas of the chemical space. As outlined in this article, 
there are a number of strategic options that will need to be combined in an appropriate 
manner. The optimal strategy for one organization might be very different from that of 
another organization. Even within one same organization, there might be different needs 
from the different disease areas, for instance, which will call for a mixed‐strategy 
approach. A very important aspect is the time horizon on which the yield of the screen-
ing collection will be measured. Diverse libraries will require a longer readout time than 
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project‐focused libraries. Compared to partial deck screening and screening deck turnover 
strategies, the full deck screening of a collection over a longer time period (~10 years) 
adds additional value in building a comprehensive experimental structure–activity rela-
tionship (SAR) matrix, which will help in making informed decisions relevant for many 
projects and also help to build the basis for future knowledge‐based library design and 
virtual screening approaches [153–155].
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