
1

The x86 is little-endian architecture based on the Intel 8086 processor. For the

purpose of our chapter, x86 is the 32-bit implementation of the Intel architecture

(IA-32) as defi ned in the Intel Software Development Manual. Generally speaking,

it can operate in two modes: real and protected. Real mode is the processor state

when it is fi rst powered on and only supports a 16-bit instruction set. Protected

mode is the processor state supporting virtual memory, paging, and other

features; it is the state in which modern operating systems execute. The 64-bit

extension of the architecture is called x64 or x86-64. This chapter discusses the

x86 architecture operating in protected mode.

x86 supports the concept of privilege separation through an abstraction called

ring level. The processor supports four ring levels, numbered from 0 to 3. (Rings

1 and 2 are not commonly used so they are not discussed here.) Ring 0 is the

highest privilege level and can modify all system settings. Ring 3 is the lowest

privileged level and can only read/modify a subset of system settings. Hence,

modern operating systems typically implement user/kernel privilege separation

 C H A P T E R

1

x866 and x64

CO
PYRIG

HTED
 M

ATERIA
L

2 Chapter 1 ■ x86 and x64

by having user-mode applications run in ring 3, and the kernel in ring 0. The

ring level is encoded in the CS register and sometimes referred to as the current
privilege level (CPL) in offi cial documentation.

This chapter discusses the x86/IA-32 architecture as defi ned in the Intel 64
and IA-32 Architectures Software Developer’s Manual, Volumes 1–3 (www.intel((

.com/content/www/us/en/processors/architectures-software-developer-

manuals.html).

Register Set and Data Types

When operating in protected mode, the x86 architecture has eight 32-bit general-

purpose registers (GPRs): EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP. Some of

them can be further divided into 8- and 16-bit registers. The instruction pointer

is stored in the EIP register. The register set is illustrated in Figure 1-1. Table 1-1

describes some of these GPRs and how they are used.

EAX

AX

071531 01531

AH AL

ESI

SI

EDI

DI

EBP

BP

ESP

EIP

EFLAGS

SP

Figure 1-1

Table 1-1: Some GPRs and Their Usage

REGISTER PURPOSE

ECX Counter in loops

ESI Source in string/memory operations

EDI Destination in string/memory operations

EBP Base frame pointer

ESP Stack pointer

Chapter 1 ■ x86 and x64 3

The common data types are as follows:

■ Bytes—8 bits. Examples: AL, BL, CL

■ Word—16 bits. Examples: AX, BX, CX

■ Double word—32 bits. Examples: EAX, EBX, ECX

■ Quad word—64 bits. While x86 does not have 64-bit GPRs, it can combine

two registers, usually EDX:EAX, and treat them as 64-bit values in some sce-

narios. For example, the RDTSC instruction writes a 64-bit value to EDX:EAX.

The 32-bit EFLAGS register is used to store the status of arithmetic operations

and other execution states (e.g., trap fl ag). For example, if the previous “add”

operation resulted in a zero, the ZF fl ag will be set to 1. The fl ags in EFLAGS are

primarily used to implement conditional branching.

In addition to the GPRs, EIP, and EFLAGS, there are also registers that control

important low-level system mechanisms such as virtual memory, interrupts, and

debugging. For example, CR0 controls whether paging is on or off, CR2 contains

the linear address that caused a page fault, CR3 is the base address of a paging

data structure, and CR4 controls the hardware virtualization settings. DR0–DR7

are used to set memory breakpoints. We will come back to these registers later

in the “System Mechanism” section.

N O T E Although there are eight debug registers, the system allows only four mem-

ory breakpoints (DR0–DR3). The remaining registers are used for status.

There are also model-specifi c registers (MSRs). As the name implies, these

registers may vary between different processors by Intel and AMD. Each MSR

is identifi ed by name and a 32-bit number, and read/written to through the

RDMSR/WRMSR instructions. They are accessible only to code running in ring 0 and

typically used to store special counters and implement low-level functionality.

For example, the SYSENTER instruction transfers execution to the address stored

in the IA32_SYSENTER_EIP MSR (0x176), which is usually the operating system’s

system call handler. MSRs are discussed throughout the book as they come up.

Instruction Set

The x86 instruction set allows a high level of fl exibility in terms of data move-

ment between registers and memory. The movement can be classifi ed into fi ve

general methods:

■ Immediate to register

■ Register to register

■ Immediate to memory

4 Chapter 1 ■ x86 and x64

■ Register to memory and vice versa

■ Memory to memory

The fi rst four methods are supported by all modern architectures, but the last

one is specifi c to x86. A classical RISC architecture like ARM can only read/write

data from/to memory with load/store instructions (LDR and STR, respectively);

for example, a simple operation like incrementing a value in memory requires

three instructions:

 1. Read the data from memory to a register (LDR).

 2. Add one to the register (ADD).

 3. Write the register to memory (STR).

On x86, such an operation would require only one instruction (either INC or

ADD) because it can directly access memory. The MOVS instruction can read and

write memory at the same time.

ARM

01: 1A 68 LDR R2, [R3]
; read the value at address R3 and save it in R2
02: 52 1C ADDS R2, R2, #1
; add 1 to it
03: 1A 60 STR R2, [R3]
; write updated value back to address R3

x86

01: FF 00 inc dword ptr [eax]
; directly increment value at address EAX

Another important characteristic is that x86 uses variable-length instruction

size: the instruction length can range from 1 to 15 bytes. On ARM, instructions

are either 2 or 4 bytes in length.

Syntax

Depending on the assembler/disassembler, there are two syntax notations for

x86 assembly code, Intel and AT&T:

Intel

mov ecx, AABBCCDDh
mov ecx, [eax]
mov ecx, eax

AT&T

movl $0xAABBCCDD, %ecx
movl (%eax), %ecx
movl %eax, %ecx

 Chapter 1 ■ x86 and x64 5

It is important to note that these are the same instructions but written differ-

ently. There are several differences between Intel and AT&T notation, but the

most notable ones are as follows:

■ AT&T prefi xes the register with %, and immediates with $. Intel does not

do this.

■ AT&T adds a suffi x to the instruction to indicate operation width. For

example, MOVL (long), MOVB (byte), etc. Intel does not do this.

■ AT&T puts the source operand before the destination. Intel reverses the

order.

Disassemblers/assemblers and other reverse-engineering tools (IDA Pro,

OllyDbg, MASM, etc.) on Windows typically use Intel notation, whereas those

on UNIX frequently follow AT&T notation (GCC). In practice, Intel notation is

the dominant form and is used throughout this book.

Data Movement

Instructions operate on values that come from registers or main memory. The

most common instruction for moving data is MOV. The simplest usage is to move

a register or immediate to register. For example:

01: BE 3F 00 0F 00 mov esi, 0F003Fh ; set ESI = 0xF003
02: 8B F1 mov esi, ecx ; set ESI = ECX

The next common usage is to move data to/from memory. Similar to other

assembly language conventions, x86 uses square brackets ([]) to indicate memory

access. (The only exception to this is the LEA instruction, which usesA [] but does

not actually reference memory.) Memory access can be specifi ed in several dif-

ferent ways, so we will begin with the simplest case:

Assembly

01: C7 00 01 00 00+ mov dword ptr [eax], 1
; set the memory at address EAX to 1
02: 8B 08 mov ecx, [eax]
; set ECX to the value at address EAX
03: 89 18 mov [eax], ebx
; set the memory at address EAX to EBX
04: 89 46 34 mov [esi+34h], eax
; set the memory address at (ESI+34) to EAX
05: 8B 46 34 mov eax, [esi+34h]
; set EAX to the value at address (ESI+0x34)
06: 8B 14 01 mov edx, [ecx+eax]
; set EDX to the value at address (ECX+EAX)

6 Chapter 1 ■ x86 and x64

Pseudo C

01: *eax = 1;
02: ecx = *eax;
03: *eax = ebx;
04: *(esi+0x34) = eax;
05: eax = *(esi+0x34);
06: edx = *(ecx+eax);

These examples demonstrate memory access through a base register and

offset, where offset can be a register or immediate. This form is commonly used

to access structure members or data buffers at a location computed at runtime.

For example, suppose that ECX points to a structure of type KDPC with the layout

kd> dt nt!_KDPC
 +0x000 Type : UChar
 +0x001 Importance : UChar
 +0x002 Number : Uint2B
 +0x004 DpcListEntry : _LIST_ENTRY
 +0x00c DeferredRoutine : Ptr32 void
 +0x010 DeferredContext : Ptr32 Void
 +0x014 SystemArgument1 : Ptr32 Void
 +0x018 SystemArgument2 : Ptr32 Void
 +0x01c DpcData : Ptr32 Void

and used in the following context:

Assembly

01: 8B 45 0C mov eax, [ebp+0Ch]
02: 83 61 1C 00 and dword ptr [ecx+1Ch], 0
03: 89 41 0C mov [ecx+0Ch], eax
04: 8B 45 10 mov eax, [ebp+10h]
05: C7 01 13 01 00+ mov dword ptr [ecx], 113h
06: 89 41 10 mov [ecx+10h], eax

Pseudo C

KDPC *p = ...;
p->DpcData = NULL;
p->DeferredRoutine = ...;
*(int *)p = 0x113;
p->DeferredContext = ...;

Line 1 reads a value from memory and stores it in EAX. The DeferredRoutine

fi eld is set to this value in line 3. Line 2 clears the DpcData fi eld by AND’ing it

 Chapter 1 ■ x86 and x64 7

with 0. Line 4 reads another value from memory and stores it in EAX. The

DeferredContext fi eld is set to this value in line 6.

Line 5 writes the double-word value 0x113 to the base of the structure. Why

does it write a double-word value at the base if the fi rst fi eld is only 1 byte in

size? Wouldn’t that implicitly set the Importance and Number fi elds as well? The

answer is yes. Figure 1-2 shows the result of converting 0x113 to binary.

00000000 00000000 00000001 00010011 1
00000000 00000000 00000001 00010011

Number Importance Type

Figure 1-2

The Type fi eld is set to 0x13 (bold bits), Importance is set to 0x1 (italicized

bits), and Number is set to 0x0 (the remaining bits). By writing one value, the code

managed to initialize three fi elds with a single instruction! The code could have

been written as follows:

01: 8B 45 0C mov eax, [ebp+0Ch]
02: 83 61 1C 00 and dword ptr [ecx+1Ch], 0
03: 89 41 0C mov [ecx+0Ch], eax
04: 8B 45 10 mov eax, [ebp+10h]
05: C6 01 13 mov byte ptr [ecx],13h
06: C6 41 01 01 mov byte ptr [ecx+1],1
07: 66 C7 41 02 00+ mov word ptr [ecx+2],06
08: 89 41 10 mov [ecx+10h], eax

The compiler decided to fold three instructions into one because it knew

the constants ahead of time and wants to save space. The three-instruction

version occupies 13 bytes (the extra byte in line 7 is not shown), whereas the

one-instruction version occupies 6 bytes. Another interesting observation is that

memory access can be done at three granularity levels: byte (line 5–6), word

(line 6), and double-word (line 1–4, 8). The default granularity is 4 bytes, which

can be changed to 1 or 2 bytes with an override prefi x. In the example, the over-

ride prefi x byte is 66 (italicized). Other prefi xes are discussed as they come up.

The next memory access form is commonly used to access array-type objects.

Generally, the format is as follows: [Base + Index * scale]. This is best understood

through examples:

01: 8B 34 B5 40 05+ mov esi, _KdLogBuffer[esi*4]
; always written as mov esi, [_KdLogBuffer + esi * 4]
; _KdLogBuffer is the base address of a global array and
; ESI is the index; we know that each element in the array
; is 4 bytes in length (hence the scaling factor)

8 Chapter 1 ■ x86 and x64

02: 89 04 F7 mov [edi+esi*8], eax
; here is EDI is the array base address; ESI is the array
; index; element size is 8.

In practice, this is observed in code looping over an array. For example:

01: loop_start:
02: 8B 47 04 mov eax, [edi+4]
03: 8B 04 98 mov eax, [eax+ebx*4]
04: 85 C0 test eax, eax
...
05: 74 14 jz short loc_7F627F
06: loc_7F627F:
07: 43 inc ebx
08: 3B 1F cmp ebx, [edi]
09: 7C DD jl short loop_start

Line 2 reads a double-word from offset +4 from EDI and then uses it as the

base address into an array in line 3; hence, you know that EDI is likely a struc-

ture that has an array at +4. Line 7 increments the index. Line 8 compares the

index against a value at offset +0 in the same structure. Given this info, this

small loop can be decompiled as follows:

typedef struct _FOO
{
 DWORD size; // +0x00
 DWORD array[...]; // +0x04
} FOO, *PFOO;

PFOO bar = ...;
for (i = ...; i < bar->size; i++) {
 if (bar->array[i] != 0) {
 ...
 }
}

The MOVSB/MOVSW/MOVSD instructions move data with 1-, 2-, or 4-byte granu-

larity between two memory addresses. They implicitly use EDI/ESI as the

destination/source address, respectively. In addition, they also automatically

update the source/destination address depending on the direction fl ag (DF) fl ag

in EFLAGS. If DF is 1, the addresses are decremented; otherwise, they are incre-

mented. These instructions are typically used to implement string or memory

copy functions when the length is known at compile time. In some cases, they

are accompanied by the REP prefi x, which repeats an instruction up to ECX times.

Consider the following example:

 Chapter 1 ■ x86 and x64 9

Assembly

01: BE 28 B5 41 00 mov esi, offset _RamdiskBootDiskGuid
; ESI = pointer to RamdiskBootDiskGuid
02: 8D BD 40 FF FF+ lea edi, [ebp-0C0h]
; EDI is an address somewhere on the stack
03: A5 movsd
; copies 4 bytes from ESI to EDI ; increment each by 4
04: A5 movsd
; same as above
05: A5 movsd
; save as above
06: A5 movsd
; same as above

Pseudo C

/* a GUID is 16-byte structure */
GUID RamDiskBootDiskGuid = ...; // global
...
GUID foo;
memcpy(&foo, &RamdiskBootDiskGuid, sizeof(GUID));

Line 2 deserves some special attention. Although the LEA instruction uses

[], it actually does not read from a memory address; it simply evaluates the

expression in square brackets and puts the result in the destination register.

For example, if EBP were 0x1000, then EDI would be 0xF40 (=0x1000 – 0xC0)

after executing line 2. The point is that LEA does not access memory, despite

the misleading syntax.

The following example, from nt!KiInitSystem, uses the REP prefi x:

01: 6A 08 push 8 ; push 8 on the stack (will explain stacks

 ; later)

02: ...

03: 59 pop ecx ; pop the stack. Basically sets ECX to 8.

04: ...

05: BE 00 44 61 00 mov esi, offset _KeServiceDescriptorTable

06: BF C0 43 61 00 mov edi, offset _KeServiceDescriptorTableShadow

07: F3 A5 rep movsd ; copy 32 bytes (movsd repeated 8 times)

; from this we can deduce that whatever these two objects are, they are

; likely to be 32 bytes in size.

The rough C equivalent of this would be as follows:

memcpy(&KeServiceDescriptorTableShadow, &KeServiceDescriptorTable, 32);

10 Chapter 10 ■ x86 and x64

The fi nal example, nt!MmInitializeProcessAddressSpace, uses a combina-

tion of these instructions because the copy size is not a multiple of 4:

01: 8D B0 70 01 00+ lea esi, [eax+170h]

; EAX is likely the base address of a structure. Remember what we said

; about LEA ...

02: 8D BB 70 01 00+ lea edi, [ebx+170h]

; EBX is likely to be base address of another structure of the same type

03: A5 movsd

04: A5 movsd

05: A5 movsd

06: 66 A5 movsw6

07: A4 movsb

After lines 1–2, you know that EAX and EBX are likely to be of the same type

because they are being used as source/destination and the offset is identical.

This code snippet simply copies 15 bytes from one structure fi eld to another.

Note that the code could also have been written using the MOVSB instruction

with a REP prefi x and ECX set to 15; however, that would be ineffi cient because

it results in 15 reads instead of only fi ve.

Another class of data movement instructions with implicit source and destina-

tion includes the SCAS and STOS instructions. Similar to MOVS, these instructions

can operate at 1-, 2-, or 4-byte granularity. SCAS implicitly compares AL/AX/EAX

with data starting at the memory address EDI; EDI is automatically incremented/

decremented depending on the DF bit in EFLAGS. Given its semantic, SCAS is com-

monly used along with the REP prefi x to fi nd a byte, word, or double-word in

a buffer. For example, the C strlen() function can be implemented as follows:

01: 30 C0 xor al, al

; set AL to 0 (NUL byte). You will frequently observe the XOR reg, reg

; pattern in code.

02: 89 FB mov ebx, edi

; save the original pointer to the string

03: F2 AE repne scasb

; repeatedly scan forward one byte at a time as long as AL does not match the

; byte at EDI when this instruction ends, it means we reached the NUL byte in

; the string buffer

04: 29 DF sub edi, ebx

; edi is now the NUL byte location. Subtract that from the original pointer

; to the length.

STOS is the same as SCAS except that it writes the value AL/AX/EAX to EDI. It

is commonly used to initialize a buffer to a constant value (such as memset()).

Here is an example:

01: 33 C0 xor eax, eax

; set EAX to 0

02: 6A 09 push 9

; push 9 on the stack

03: 59 pop ecx

; pop it back in ECX. Now ECX = 9.

 Chapter 1 ■ x86 and x64 11

04: 8B FE mov edi, esi

; set the destination address

05: F3 AB rep stosd

; write 36 bytes of zero to the destination buffer (STOSD repeated 9 times)

; this is equivalent lent to memset(edi, 0, 36)

LODS is another instruction from the same family. It reads a 1-, 2-, or 4-byte

value from ESI and stores it in AL, AX, or EAX.

Exercise

 1. This function uses a combination SCAS and STOS to do its work. First, explain

what is the type of the [EBP+8] and [EBP+C] in line 1 and 8, respectively.

Next, explain what this snippet does.

01: 8B 7D 08 mov edi, [ebp+8]
02: 8B D7 mov edx, edi
03: 33 C0 xor eax, eax
04: 83 C9 FF or ecx, 0FFFFFFFFh
05: F2 AE repne scasb
06: 83 C1 02 add ecx, 2
07: F7 D9 neg ecx
08: 8A 45 0C mov al, [ebp+0Ch]
09: 8B FA mov edi, edx
10: F3 AA rep stosb
11: 8B C2 mov eax, edx

Arithmetic Operations

Fundamental arithmetic operations such as addition, subtraction, multiplication,

and division are natively supported by the instruction set. Bit-level operations

such as AND, OR, XOR, NOT, and left and right shift also have native corresponding

instructions. With the exception of multiplication and division, the remain-

ing instructions are straightforward in terms of usage. These operations are

explained with the following examples:

01: 83 C4 14 add esp, 14h ; esp = esp + 0x14

02: 2B C8 sub ecx, eax ; ecx = ecx - eax

03: 83 EC 0C sub esp, 0Ch ; esp = esp - 0xC

04: 41 inc ecx ; ecx = ecx + 1

05: 4F dec edi ; edi = edi - 1

06: 83 C8 FF or eax, 0FFFFFFFFh ; eax = eax | 0xFFFFFFFF

07: 83 E1 07 and ecx, 7 ; ecx = ecx & 7

08: 33 C0 xor eax, eax ; eax = eax ^ eax

09: F7 D7 not edi ; edi = ~edi

10: C0 E1 04 shl cl, 4 ; cl = cl << 4

11: D1 E9 shr ecx, 1 ; ecx = ecx >> 1

12: C0 C0 03 rol al, 3 ; rotate AL left 3 positions

13: D0 C8 ror al, 1 ; rotate AL right 1 position

12 Chapter 1 ■ x86 and x64

The left and right shift instructions (lines 11–12) merit some explanation, as

they are frequently observed in real-life code. These instructions are typically

used to optimize multiplication and division operations where the multiplicand

and divisor are a power of two. This type of optimization is sometimes known

as strength reduction because it replaces a computationally expensive operation

with a cheaper one. For example, integer division is relatively a slow operation,

but when the divisor is a power of two, it can be reduced to shifting bits to the

right; 100/2 is the same as 100>>1. Similarly, multiplication by a power of two

can be reduced to shifting bits to the left; 100*2 is the same as 100<<1.

Unsigned and signed multiplication is done through the MUL and IMUL instruc-

tions, respectively. The MUL instruction has the following general form: MUL reg/

memory. That is, it can only operate on register or memory values. The register

is multiplied with AL, AX, or EAX and the result is stored in AX, DX:AX, or EDX:EAX,

depending on the operand width. For example:

01: F7 E1 mul ecx ; EDX:EAX = EAX * ECX

02: F7 66 04 mul dword ptr [esi+4] ; EDX:EAX = EAX * dword_at(ESI+4)

03: F6 E1 mul cl ; AX = AL * CL

04: 66 F7 E2 mul dx ; DX:AX = AX * DX

Consider a few other concrete examples:

01: B8 03 00 00 00 mov eax,3 ; set EAX=3

02: B9 22 22 22 22 mov ecx,22222222h ; set ECX=0x22222222

03: F7 E1 mul ecx ; EDX:EAX = 3 * 0x22222222 =

 ; 0x66666666

 ; hence, EDX=0, EAX=0x66666666

04: B8 03 00 00 00 mov eax,3 ; set EAX=3

05: B9 00 00 00 80 mov ecx,80000000h ; set ECX=0x80000000

06: F7 E1 mul ecx ; EDX:EAX = 3 * 0x80000000 =

 ; 0x180000000

 ; hence, EDX=1, EAX=0x80000000

The reason why the result is stored in EDX:EAX for 32-bit multiplication is

because the result potentially may not fi t in one 32-bit register (as demonstrated

in lines 4–6).

IMUL has three forms:

■ IMUL reg/mem — Same as MUL

■ IMUL reg1, reg2/mem — reg1 = reg1 * reg2/mem

■ IMUL reg1, reg2/mem, imm — reg1 = reg2 * imm

Some disassemblers shorten the parameters. For example:

01: F7 E9 imul ecx ; EDX:EAX = EAX * ECX
02: 69 F6 A0 01 00+ imul esi, 1A0h ; ESI = ESI * 0x1A0

 Chapter 1 ■ x86 and x64 13

03: 0F AF CE imul ecx, esi ; ECX = ECX * ESI

Unsigned and signed division is done through the DIV and V IDIV instructions,V

respectively. They take only one parameter (divisor) and have the following

form: DIV/IDIV reg/mem. Depending on the divisor’s size, DIV will use either

AX, DX:AX, or EDX:EAX as the dividend, and the resulting quotient/remainder

pair are stored in AL/AH, AX/DX, or EAX/EDX. For example:

01: F7 F1 div ecx ; EDX:EAX / ECX, quotient in EAX,

02: F6 F1 div cl ; AX / CL, quotient in AL, remainder in AH

03: F7 76 24 div dword ptr [esi+24h] ; see line 1

04: B1 02 mov cl,2 ; set CL = 2

05: B8 0A 00 00 00 mov eax,0Ah ; set EAX = 0xA

06: F6 F1 div cl ; AX/CL = A/2 = 5 in AL (quotient),

 ; AH = 0 (remainder)

07: B1 02 mov cl,2 ; set CL = 2

08: B8 09 00 00 00 mov eax,09h ; set EAX = 0x9

09: F6 F1 div cl ; AX/CL = 9/2 = 4 in AL (quotient),

 ; AH = 1 (remainder)

Stack Operations and Function Invocation

The stack is a fundamental data structure in programming languages and operat-

ing systems. For example, local variables in C are stored on the functions’ stack

space. When the operating system transitions from ring 3 to ring 0, it saves state

information on the stack. Conceptually, a stack is a last-in fi rst-out data structure

supporting two operations: push and pop. Push means to put something on top

of the stack; pop means to remove an item from the top. Concretely speaking,

on x86, a stack is a contiguous memory region pointed to by ESP and it grows

downwards. Push/pop operations are done through the PUSH/POP instruc-

tions and they implicitly modify ESP. The PUSH instruction decrements ESP

and then writes data at the location pointed to by ESP; POP reads the data and

increments ESP. The default auto-increment/decrement value is 4, but it can be

changed to 1 or 2 with a prefi x override. In practice, the value is almost always

4 because the OS requires the stack to be double-word aligned.

Suppose that ESP initially points to 0xb20000 and you have the following code:

; initial ESP = 0xb20000

01: B8 AA AA AA AA mov eax,0AAAAAAAAh

02: BB BB BB BB BB mov ebx,0BBBBBBBBh

03: B9 CC CC CC CC mov ecx,0CCCCCCCCh

04: BA DD DD DD DD mov edx,0DDDDDDDDh

05: 50 push eax

; address 0xb1fffc will contain the value 0xAAAAAAAA and ESP

; will be 0xb1fffc (=0xb20000-4)

14 Chapter 14 ■ x86 and x64

06: 53 push ebx

; address 0xb1fff8 will contain the value 0xBBBBBBBB and ESP

; will be 0xb1fff8 (=0xb1fffc-4)

07: 5E pop esi

; ESI will contain the value 0xBBBBBBBB and ESP will be 0xb1fffc

; (=0xb1fff8+4)

08: 5F pop edi

; EDI will contain the value 0xAAAAAAAA and ESP will be 0xb20000

; (=0xb1fffc+4)

Figure 1-3 illustrates the stack layout.

AAAAAAAA
0xb20000 0xb1fffc

0xb20000

0xb1fff8

0xb1fffc

0xb1fffc

0xb20000

0xb20000

0xb20000
BBBBBBBB

AAAAAAAA

ESP

push eax

ESPESP

ESP ESP

AAAAAAAA

…
…
… …

…

…
…
…

……

… push ebx

pop edi

po
p e

si

Figure 1-3

ESP can also be directly modifi ed by other instructions, such as ADD and SUB.

While high-level programming languages have the concept of functions that

can be called and returned from, the processor does not provide such abstrac-

tion. At the lowest level, the processor operates only on concrete objects, such

as registers or data coming from memory. How are functions translated at the

machine level? They are implemented through the stack data structure! Consider

the following function:

C

int
__cdecl addme(short a, short b)
{
 return a+b;
}

Assembly

01: 004113A0 55 push ebp

 Chapter 1 ■ x86 and x64 15

02: 004113A1 8B EC mov ebp, esp
03: ...
04: 004113BE 0F BF 45 08 movsx eax, word ptr [ebp+8]
05: 004113C2 0F BF 4D 0C movsx ecx, word ptr [ebp+0Ch]
06: 004113C6 03 C1 add eax, ecx
07: ...
08: 004113CB 8B E5 mov esp, ebp
09: 004113CD 5D pop ebp
10: 004113CE C3 retn

The function is invoked with the following code:

C

sum = addme(x, y);

Assembly

01: 004129F3 50 push eax
02: ...
03: 004129F8 51 push ecx
04: 004129F9 E8 F1 E7 FF FF call addme
05: 004129FE 83 C4 08 add esp, 8

Before going into the details, fi rst consider the CALL/RET instructions and

calling conventions. The CALL instruction performs two operations:

 1. It pushes the return address (address immediately after the CALL instruc-

tion) on the stack.

 2. It changes EIP to the call destination. This effectively transfers control to

the call target and begins execution there.

RET simply pops the address stored on the top of the stack into EIP and trans-

fers control to it (literally like a “POP EIP” but such instruction sequence does

not exist on x86). For example, if you want to begin execution at 0x12345678,

you can just do the following:

01: 68 78 56 34 12 push 0x12345678
02: C3 ret

A calling convention is a set of rules dictating how function calls work at the

machine level. It is defi ned by the Application Binary Interface (ABI) for a par-

ticular system. For example, should the parameters be passed through the stack,

in registers, or both? Should the parameters be passed in from left-to-right or

right-to-left? Should the return value be stored on the stack, in registers, or both?

There are many calling conventions, but the popular ones are CDECL, STDCALL,

THISCALL, and FASTCALL. (The compiler can also generate its own custom call-

ing convention, but those will not be discussed here.) Table 1-2 summarizes

their semantic.

16 Chapter 16 ■ x86 and x64

Table 1-2: Calling Conventions

CDECL STDCALL FASTCALL

Parameters Pushed on the
stack from right-
to-left. Caller must
clean up the stack
after the call.

Same as CDECL
except that the
callee must clean
the stack.

First two parameters are
passed in ECX and EDX. The
rest are on the stack.

Return value Stored in EAX. Stored in EAX. Stored in EAX.

Non-volatile
registers

EBP, ESP, EBX,
ESI, EDI.

EBP, ESP, EBX,
ESI, EDI.

EBP, ESP, EBX, ESI, EDI.

We now return to the code snippet to discuss how the function addme is

invoked. In line 1 and 3, the two parameters are pushed on the stack; ECX and

EAX are the fi rst and second parameter, respectively. Line 4 invokes the addme

function with the CALL instruction. This immediately pushes the return address,

0x4129FE, on the stack and begins execution at 0x4113A0. Figure 1-4 illustrates

the stack layout after line 4 is executed.

004129FE
ECX
EAX

…
…

ESP

Figure 1-4

After line 4 executes, we are now in the addme function body. Line 1 pushes

EBP on the stack. Line 2 sets EBP to the current stack pointer. This two-instruction

sequence is typically known as the function prologue because it establishes a new

function frame. Line 4 reads the value at address EBP+8, which is the fi rst param-

eter on the stack; line 5 reads the second parameter. Note that the parameters

are accessed using EBP as the base register. When used in this context, EBP is

known as the base frame pointer (see line 2) because it points to the stack frame

for the current function, and parameters/locals can be accessed relative to it.

The compiler can also be instructed to generate code that does not use EBP as

the base frame pointer through an optimization called frame pointer omission.

With such optimization, access to local variables and parameters is done rela-

tive to ESP, and EBP can be used as a general register like EAX, EBX, ECX, and so

on. Line 6 adds the numbers and saves the result in EAX. Line 8 sets the stack

pointer to the base frame pointer. Line 9 pops the saved EBP from line 1 into

 Chapter 1 ■ x86 and x64 17

EBP. This two-instruction sequence is commonly referred to as the function epi-
logue because it is at the end of the function and restores the previous function

frame. At this point, the top of the stack contains the return address saved by

the CALL instruction at 0x4129F9. Line 10 performs a RET, which pops the stack

and resumes execution at 0x4129FE. Line 5 in the snippet shrinks the stack by

8 because the caller must clean up the stack per CDECL's calling convention.

If the function addme had local variables, the code would need to grow the

stack by subtracting ESP after line 2. All local variables would then be accessible

through a negative offset from EBP.

Exercises

 1. Given what you learned about CALL and RET, explain how you would read

the value of EIP? Why can’t you just do MOV EAX, EIP?

 2. Come up with at least two code sequences to set EIP to 0xAABBCCDD.

 3. In the example function, addme, what would happen if the stack pointer

were not properly restored before executing RET?

 4. In all of the calling conventions explained, the return value is stored in a

32-bit register (EAX). What happens when the return value does not fi t in a

32-bit register? Write a program to experiment and evaluate your answer.

Does the mechanism change from compiler to compiler?

Control Flow

This section describes how the system implements conditional execution for

higher-level constructs like if/else, switch/case, and while/for. All of these are

implemented through the CMP, TEST, JMP, and Jcc instructions and EFLAGS reg-

ister. The following list summarizes the common fl ags in EFLAGS:

■ ZF/Zero fl ag—Set if the result of the previous arithmetic operation is zero.

■ SF/Sign fl ag—Set to the most signifi cant bit of the result.

■ CF/Carry fl ag—Set when the result requires a carry. It applies to unsigned

numbers.

■ OF/Overfl ow fl ag—Set if the result overfl ows the max size. It applies to

signed numbers.

Arithmetic instructions update these fl ags based on the result. For example,

the instruction SUB EAX, EAX would cause ZF to be set. The Jcc instructions,

where “cc” is a conditional code, changes control fl ow depending on these

18 Chapter 18 ■ x86 and x64

fl ags. There can be up to 16 conditional codes, but the most common ones are

described in Table 1-3.

Table 1-3: Common Conditional Codes

CONDITIONAL
CODE ENGLISH DESCRIPTION

MACHINE
DESCRIPTION

B/NAE Below/Neither Above nor Equal. Used for
unsigned operations.

CF=1

NB/AE Not Below/Above or Equal. Used for
unsigned operations.

CF=0

E/Z Equal/Zero ZF=1

NE/NZ Not Equal/Not Zero ZF=0

L Less than/Neither Greater nor Equal. Used
for signed operations.

(SF ^ OF) = 1

GE/NL Greater or Equal/Not Less than. Used for
signed operations.

(SF ^ OF) = 0

G/NLE Greater/Not Less nor Equal. Used for
signed operations.

((SF ^ OF) | ZF) = 0

Because assembly language does not have a defi ned type system, one of the

few ways to recognize signed/unsigned types is through these conditional codes.

The CMP instruction compares two operands and sets the appropriate condi-

tional code in EFLAGS; it compares two numbers by subtracting one from another

without updating the result. The TEST instruction does the same thing except

it performs a logical AND between the two operands.

If-Else

If-else constructs are quite simple to recognize because they involve a compare/

test followed by a Jcc. For example:

Assembly

01: mov esi, [ebp+8]
02: mov edx, [esi]
03: test edx, edx
04: jz short loc_4E31F9
05: mov ecx, offset _FsRtlFastMutexLookasideList
06: call _ExFreeToNPagedLookasideList@8
07: and dword ptr [esi], 0
08: lea eax, [esi+4]
09: push eax
10: call _FsRtlUninitializeBaseMcb@4
11: loc_4E31F9:

 Chapter 1 ■ x86 and x64 19

12: pop esi
13: pop ebp
14: retn 4
15: _FsRtlUninitializeLargeMcb@4 endp

Pseudo C

if (*esi == 0) {
 return;
}
ExFreeToNPagedLookasideList(...);
*esi = 0;
...
return;

OR

if (*esi != 0) {
 ...
 ExFreeToNPagedLookasideList(...);
 *esi = 0;
 ...
}
return;

Line 2 reads a value at location ESI and stores it in EDX. Line 3 ANDs EDX with

itself and sets the appropriate fl ags in EFLAGS. Note that this pattern is commonly

used to determine whether a register is zero. Line 4 jumps to loc_4E31F9 (line 12)

if ZF=1. If ZF=0, then it executes line 5 and continues until the function returns.

Note that there are two slightly different but logically equivalent C transla-

tions for this snippet.

Switch-Case

A switch-case block is a sequence of if/else statements. For example:

Switch-Case

switch(ch) {
 case 'c':
 handle_C();
 break;
 case 'h':
 handle_H();
 break;
 default:
 break;
}
domore();
...

20 Chapter 10 ■ x86 and x64

If-Else

if (ch == 'c') {
 handle_C();

} else
if (ch == 'h') {
 handle_H();
}
domore();
...

Hence, the machine code translation will be a series if/else. The following

simple example illustrates the idea:

Assembly

01: push ebp
02: mov ebp, esp
03: mov eax, [ebp+8]
04: sub eax, 41h
05: jz short loc_caseA
06: dec eax
07: jz short loc_caseB
08: dec eax
09: jz short loc_caseC
10: mov al, 5Ah
11: movzx eax, al
12: pop ebp
13: retn
14: loc_caseC:
15: mov al, 43h
16: movzx eax, al
17: pop ebp
18: retn
19: loc_caseB:
20: mov al, 42h
21: movzx eax, al
22: pop ebp
23: retn
24: loc_caseA:
25: mov al, 41h
26: movzx eax, al
27: pop ebp
28: retn

C

unsigned char switchme(int a)
{
 unsigned char res;

 Chapter 1 ■ x86 and x64 21

 switch(a) {
 case 0x41:
 res = 'A';
 break;
 case 0x42:
 res = 'B';
 break;
 case 0x43:
 res = 'C';
 break;
 default:
 res = 'Z';
 break;
 }
 return res;
}

Real-life switch-case statements can be more complex, and compilers commonly

build a jump table to reduce the number of comparisons and conditional jumps.

The jump table is essentially an array of addresses, each pointing to the handler

for a specifi c case. This pattern can be observed in Sample J in sub_10001110:

Assembly

01: cmp edi, 5
02: ja short loc_10001141
03: jmp ds:off_100011A4[edi*4]
04: loc_10001125:
05: mov esi, 40h
06: jmp short loc_10001145
07: loc_1000112C:
08: mov esi, 20h
09: jmp short loc_10001145
10: loc_10001133:
11: mov esi, 38h
12: jmp short loc_10001145
13: loc_1000113A:
14: mov esi, 30h
15: jmp short loc_10001145
16: loc_10001141:
17: mov esi, [esp+0Ch]
18: ...
19: off_100011A4 dd offset loc_10001125
20: dd offset loc_10001125
21: dd offset loc_1000113A
22: dd offset loc_1000112C
23: dd offset loc_10001133
24: dd offset loc_1000113A

22 Chapter 1 ■ x86 and x64

Pseudo C

switch(edi) {
 case 0:
 case 1:
 // goto loc_10001125;
 esi = 0x40;
 break;
 case 2:
 case 5:
 // goto loc_1000113A;
 esi = 0x30;
 break;
 case 3:
 // goto loc_1000112C;
 esi = 0x20;
 break;
 case 4:
 // goto loc_10001133;
 esi = 0x38;
 break;
 default:
 // goto loc_10001141;
 esi = *(esp+0xC)
 break;
}
...

Here, the compiler knows that there are only fi ve cases and the case value

is consecutive; hence, it can construct the jump table and index into it directly

(line 3). Without the jump table, there would be 10 additional instructions to

test each case and branch to the handler. (There are other forms of switch/case

optimizations, but we will not cover them here.)

Loops

At the machine level, loops are implemented using a combination of Jcc and

JMP instructions. In other words, they are implemented using if/else and goto

constructs. The best way to understand this is to rewrite a loop using only if/

else and goto. Consider the following example:

Using for

for (int i=0; i<10; i++) {
 printf("%d\n", i);
}
printf("done!\n");

 Chapter 1 ■ x86 and x64 23

Using if/else and goto

int i = 0;
loop_start:
 if (i < 10) {
 printf("%d\n", i);
 i++;
 goto loop_start;
 }
printf("done!n");

When compiled, both versions are identical at the machine-code level:

01: 00401002 mov edi, ds:__imp__printf
02: 00401008 xor esi, esi
03: 0040100A lea ebx, [ebx+0]
04: 00401010 loc_401010:
05: 00401010 push esi
06: 00401011 push offset Format ; "%d\n"
07: 00401016 call edi ; __imp__printf
08: 00401018 inc esi
09: 00401019 add esp, 8
10: 0040101C cmp esi, 0Ah
11: 0040101F jl short loc_401010
12: 00401021 push offset aDone ; "done!\n"
13: 00401026 call edi ; __imp__printf
14: 00401028 add esp, 4

Line 1 sets EDI to the printf function. Line 2 sets ESI to 0. Line 4 begins

the loop; however, note that it does not begin with a comparison. There is no

comparison here because the compiler knows that the counter was initialized

to 0 (see line 2) and is obviously going to be less than 10 so it skips the check.

Lines 5–7 call the printf function with the right parameters (format specifi er

and our number). Line 8 increments the number. Line 9 cleans up the stack

because printf uses the CDECL calling convention. Line 10 checks to see if the

counter is less than 0xA. If it is, it jumps back to loc_401010. If the counter is

not less than 0xA, it continues execution at line 12 and fi nishes with a printf.

One important observation to make is that the disassembly allowed us to

infer that the counter is a signed integer. Line 11 uses the “less than” conditional

code (JL), so we immediately know that the comparison was done on signed

integers. Remember: If “above/below,” it is unsigned; if “less than/greater than,”

it is signed. Sample L has a small function, sub_1000AE3B, with the following

interesting loop:

Assembly

01: sub_1000AE3B proc near
02: push edi

24 Chapter 14 ■ x86 and x64

03: push esi
04: call ds:lstrlenA
05: mov edi, eax
06: xor ecx, ecx
07: xor edx, edx
08: test edi, edi
09: jle short loc_1000AE5B
10: loc_1000AE4D:
11: mov al, [edx+esi]
12: mov [ecx+esi], al
13: add edx, 3
14: inc ecx
15: cmp edx, edi
16: jl short loc_1000AE4D
17: loc_1000AE5B:
18: mov byte ptr [ecx+esi], 0
19: mov eax, esi
20: pop edi
21: retn
22: sub_1000AE3B endp

C

char *sub_1000AE3B (char *str)
{
 int len, i=0, j=0;
 len = lstrlenA(str);
 if (len <= 0) {
 str[j] = 0;
 return str;
 }
 while (j < len) {
 str[i] = str[j];
 j = j+3;
 i = i+1;
 }
 str[i] = 0;
 return str;
}

The sub_1000AE3B function has one parameter passed using a custom calling

convention (ESI holds the parameter). Line 2 saves EDI. Line 3 calls lstrlenA

with the parameter; hence, you immediately know that ESI is of type char *.

Line 5 saves the return value (string length) in EDI. Lines 6–7 clear ECX and

EDX. Lines 8–9 check to see if the string length is less than or equal to zero. If it

is, control is transferred to line 18, which sets the value at ECX+ESI to 0. If it is

not, then execution is continued at line 11, which is the start of a loop. First, it

reads the character at ESI+EDX (line 11), and then it stores it at ESI+ECX (line 12).

 Chapter 1 ■ x86 and x64 25

Next, it increments the EDX and ECX by three and one, respectively. Lines 15–16

check to see if EDX is less than the string length; if so, execution goes back to

the loop start. If not, execution is continued at line 18.

It may seem convoluted at fi rst, but this function takes an obfuscated string

whose deobfuscated value is every third character. For example, the string SX]

OTYFKPTY^W\\aAFKRW\\E is actually SOFTWARE. The purpose of this function

is to prevent naïve string scanners and evade detection. As an exercise, you

should decompile this function so that it looks more “natural” (as opposed to

our literal translation).

Outside of the normal Jcc constructs, certain loops can be implemented using

the LOOP instruction. The LOOP instruction executes a block of code up to ECX

time. For example:

Assembly

01: 8B CA mov ecx, edx
02: loc_CFB8F:
03: AD lodsd
04: F7 D0 not eax
05: AB stosd
06: E2 FA loop loc_CFB8F

Rough C

while (ecx != 0) {
 eax = *esi;
 esi++;
 *edi = ~eax;
 edi++;
 ecx--;
}

Line 1 reads the counter from EDX. Line 3 is the loop start; it reads in a double-

word at the memory address ESI and saves that in EAX; it also increments EDI

by 4. Line 4 performs the NOT operator on the value just read. Line 5 writes the

modifi ed value to the memory address EDI and increments ESI by 4. Line 6

checks to see if ECX is 0; if not, execution is continued at the loop start.

System Mechanism

The previous sections explain mechanisms and instructions that are available to

code running at all privilege levels. To get a better appreciation of the architec-

ture, this section discusses two fundamental system-level mechanisms: virtual
address translation and exception/n interrupt// handling. You may skip this section ongg
a fi rst read.

26 Chapter 16 ■ x86 and x64

Address Translation

The physical memory on a computer system is divided into 4KB units called

pages. (A page can be more than 4KB, but we will not discuss the other sizes

here.) Memory addresses are divided into two categories: virtual and physical.

Virtual addresses are those used by instructions executed in the processor when

paging is enabled. For example:

01: A1 78 56 34 12 mov eax, [0x12345678]; read memory at the virtual

 ; address 0x12345678

01: 89 08 mov [eax], ecx ; write ECX at the virtual

 ; address EAX

Physical addresses are the actual memory locations used by the processor

when accessing memory. The processor’s memory management unit (MMU)

transparently translates every virtual address into a physical address before

accessing it. While a virtual address may seem like just another number to the

user, there is a structure to it when viewed by the MMU. On x86 systems with

physical address extension (PAE) support, a virtual memory address can be

divided into indices into three tables and offset: page directory pointer table

(PDPT), page directory (PD), page table (PT), and page table entry (PTE). A PDPT

is an array of four 8-byte elements, each pointing to a PD. A PD is an array of

512 8-byte elements, each pointing to a PT. A PT is an array of 512 8-byte ele-

ments each containing a PTE. For example, the virtual address 0xBF80EE6B can

be understood as shown in Figure 1-5.

10111111 10000000 11101110 01101011

0×BF80EE6B

10 (0×2)

2 bits

Index into PDPT Index into PD Index into PT Page offset

9 bits

111111 100
(0×1FC)

00000 1110 (0×E) 1110 01101011
(0×E6B)

9 bits 12 bits

Figure 1-5

The 8-byte elements in these tables contain data about the tables, memory

permission, and other memory characteristics. For example, there are bits that

determine whether the page is read-only or readable/writable, executable or

non-executable, accessible by user or not, and so on.

The address translation process revolves around these three tables and the

CR3 register. CR3 holds the physical base address of the PDPT. The rest of this

section walks through the translation of the virtual address 0xBF80EE6B on a

real system (refer to Figure 1-5):

kd> r @cr3 ; CR3 is the physical address for the base of a PDPT

cr3=085c01e0

kd> !dq @cr3+2*8 L1 ; read the PDPT entry at index 2

85c01f0 00000000`0d66e001

 Chapter 1 ■ x86 and x64 27

Per the documentation, the bottom 12 bits of a PDPT entry are fl ags/reserved

bits, and the remaining ones are used as the physical address of the PD base.

Bit 63 is the NX fl ag in PAE, so you will also need to clear that as well. In this

particular example, we did not clear it because it is already 0. (We are looking

at code pages that are executable.)

; 0x00000000`0d66e001 = 00001101 01100110 11100000 00000001
; after clearing the bottom 12 bits, we have
; 0x0d66e000 = 00001101 01100110 11100000 00000000
; This tells us that the PD base is at physical address 0x0d66e000
kd> !dq 0d66e000+0x1fc*8 L1 ; read the PD entry at index 0x1FC
d66efe0 00000000`0964b063

Again, per the documentation, the bottom 12 bits of a PD entry are used for

fl ags/reserved bits, and the remaining ones are used as the base for the PT:

; 0x0964b063 = 00001001 01100100 10110000 01100011
; after clearing the bottom 12 bits, we get
; 0x0964b000 = 00001001 01100100 10110000 00000000
; This tells us that the PT base is at 0x0964b000
kd> !dq 0964b000+e*8 L1 ; read the PT entry at index 0xE
964b070 00000000`06694021

Again, the bottom 12 bits can be cleared to get to the base of a page entry:

; 0x06694021 = 00000110 01101001 01000000 00100001

; after clearing bottom 12 bits, we get

; 0x06694000 = 00000110 01101001 01000000 00000000

; This tells us that the page entry base is at 0x06694000

kd> !db 06694000+e6b L8 ; read 8 bytes from the page entry at offset

0xE6B

6694e6b 8b ff 55 8b ec 83 ec 0c ..U.....[).t.... ; our data at that

 ; physical page

kd> db bf80ee6b L8 ; read 8 bytes from the virtual address

bf80ee6b 8b ff 55 8b ec 83 ec ..U.....[).t.... ; same data!

After the entire process, it is determined that the virtual address 0xBF80EE6B

translates to the physical address 0x6694E6B.

Modern operating systems implement process address space separation using

this mechanism. Every process is associated with a different CR3, resulting in

process-specifi c virtual address translation. It is the magic behind each pro-

cess’s illusion that it has its own address space. Hopefully you will have more

appreciation for the processor the next time your program accesses memory!

Interrupts and Exceptions

This section briefl y discusses interrupts and exceptions, as complete implemen-

tation details can be found in Chapter 3, “The Windows Kernel.”

In contemporary computing systems, the processor is typically connected to

peripheral devices through a data bus such as PCI Express, FireWire, or USB.

28 Chapter 18 ■ x86 and x64

When a device requires the processor’s attention, it causes an interrupt that

forces the processor to pause whatever it is doing and handle the device’s request.

How does the processor know how to handle the request? At the highest level,

one can think of an interrupt as being associated with a number that is then

used to index into an array of function pointers. When the processor receives

the interrupt, it executes the function at the index associated with the interrupt

and resumes execution at wherever it was before the interrupt occurred. These

are called hardware interrupts because they are generated by hardware devices.

They are asynchronous by nature.

When the processor is executing an instruction, it may run into exceptions.

For example, an instruction could generate a divide-by-zero error, reference an

invalid address, or trigger a privilege level transition. For the purpose of this

discussion, exceptions can be classifi ed into two categories: faults and traps. A
fault is a correctable exception. For example, when the processor executes an

instruction that references a valid memory address but the data is not present

in main memory (it was paged out), a page fault exception is generated. The

processor handles this by saving the current execution state, calling the page

fault handler to correct this exception (by paging in the data), and re-executing

the same instruction (which should no longer cause a page fault). A trap is an

exception caused by executing special kinds of instructions. For example, the

instruction SYSENTER causes the processor to begin executing the generic system

call handler; after the handler is done, execution is resumed at the instruction

immediately after SYSENTER. Hence, the major difference between a fault and

a trap is where execution resumes. Operating systems commonly implement

system calls through the interrupt and exception mechanism.

Walk-Through

We fi nish the chapter with a walk-through of a function with fewer than 100

instructions. It is Sample J’s DllMain routine. This exercise has two objectives.

First, it applies almost every concept covered in the chapter (except for switch-

case). Second, it teaches an important requirement in the practice of reverse

engineering: reading technical manuals and online documentation. Here is

the function:

01: ; BOOL __stdcall DllMain(HINSTANCE hinstDLL, DWORD fdwReason,

 ; LPVOID lpvReserved)

02: _DllMain@12 proc near

03: 55 push ebp

04: 8B EC mov ebp, esp

05: 81 EC 30 01 00+ sub esp, 130h

06: 57 push edi

07: 0F 01 4D F8 sidt fword ptr [ebp-8]

08: 8B 45 FA mov eax, [ebp-6]

09: 3D 00 F4 03 80 cmp eax, 8003F400h

 Chapter 1 ■ x86 and x64 29

10: 76 10 jbe short loc_10001C88 (line 18)

11: 3D 00 74 04 80 cmp eax, 80047400h

12: 73 09 jnb short loc_10001C88 (line 18)

13: 33 C0 xor eax, eax

14: 5F pop edi

15: 8B E5 mov esp, ebp

16: 5D pop ebp

17: C2 0C 00 retn 0Ch

18: loc_10001C88:

19: 33 C0 xor eax, eax

20: B9 49 00 00 00 mov ecx, 49h

21: 8D BD D4 FE FF+ lea edi, [ebp-12Ch]

22: C7 85 D0 FE FF+ mov dword ptr [ebp-130h], 0

23: 50 push eax

24: 6A 02 push 2

25: F3 AB rep stosd

26: E8 2D 2F 00 00 call CreateToolhelp32Snapshot

27: 8B F8 mov edi, eax

28: 83 FF FF cmp edi, 0FFFFFFFFh

29: 75 09 jnz short loc_10001CB9 (line 35)

30: 33 C0 xor eax, eax

31: 5F pop edi

32: 8B E5 mov esp, ebp

33: 5D pop ebp

34: C2 0C 00 retn 0Ch

35: loc_10001CB9:

36: 8D 85 D0 FE FF+ lea eax, [ebp-130h]

37: 56 push esi

38: 50 push eax

39: 57 push edi

40: C7 85 D0 FE FF+ mov dword ptr [ebp-130h], 128h

41: E8 FF 2E 00 00 call Process32First

42: 85 C0 test eax, eax

43: 74 4F jz short loc_10001D24 (line 70)

44: 8B 35 C0 50 00+ mov esi, ds:_stricmp

45: 8D 8D F4 FE FF+ lea ecx, [ebp-10Ch]

46: 68 50 7C 00 10 push 10007C50h

47: 51 push ecx

48: FF D6 call esi ; _stricmp

49: 83 C4 08 add esp, 8

50: 85 C0 test eax, eax

51: 74 26 jz short loc_10001D16 (line 66)

52: loc_10001CF0:

53: 8D 95 D0 FE FF+ lea edx, [ebp-130h]

54: 52 push edx

55: 57 push edi

56: E8 CD 2E 00 00 call Process32Next

57: 85 C0 test eax, eax

58: 74 23 jz short loc_10001D24 (line 70)

59: 8D 85 F4 FE FF+ lea eax, [ebp-10Ch]

60: 68 50 7C 00 10 push 10007C50h

61: 50 push eax

62: FF D6 call esi ; _stricmp

63: 83 C4 08 add esp, 8

30 Chapter 10 ■ x86 and x64

64: 85 C0 test eax, eax

65: 75 DA jnz short loc_10001CF0 (line 52)

66: loc_10001D16:

67: 8B 85 E8 FE FF+ mov eax, [ebp-118h]

68: 8B 8D D8 FE FF+ mov ecx, [ebp-128h]

69: EB 06 jmp short loc_10001D2A (line 73)

70: loc_10001D24:

71: 8B 45 0C mov eax, [ebp+0Ch]

72: 8B 4D 0C mov ecx, [ebp+0Ch]

73: loc_10001D2A:

74: 3B C1 cmp eax, ecx

75: 5E pop esi

76: 75 09 jnz short loc_10001D38 (line 82)

77: 33 C0 xor eax, eax

78: 5F pop edi

79: 8B E5 mov esp, ebp

80: 5D pop ebp

81: C2 0C 00 retn 0Ch

82: loc_10001D38:

83: 8B 45 0C mov eax, [ebp+0Ch]

84: 48 dec eax

85: 75 15 jnz short loc_10001D53 (line 93)

86: 6A 00 push 0

87: 6A 00 push 0

88: 6A 00 push 0

89: 68 D0 32 00 10 push 100032D0h

90: 6A 00 push 0

91: 6A 00 push 0

92: FF 15 20 50 00+ call ds:CreateThread

93: loc_10001D53:

94: B8 01 00 00 00 mov eax, 1

95: 5F pop edi

96: 8B E5 mov esp, ebp

97: 5D pop ebp

98: C2 0C 00 retn 0Ch

99: _DllMain@12 endp

Lines 3–4 set up the function prologue, which saves the previous base frame

pointer and establishes a new one. Line 5 reserves 0x130 bytes of stack space.

Line 6 saves EDI. Line 7 executes the SIDT instruction, which writes the 6-byte

IDT register to a specifi ed memory region. Line 8 reads a double-word at EBP-6

and saves it in EAX. Lines 9–10 check if EAX is below-or-equal to 0x8003F400. If it

is, execution is transferred to line 18; otherwise, it continues executing at line 11.

Lines 11–12 do a similar check except that the condition is not-below 0x80047400.

If it is, execution is transferred to line 18; otherwise, it continues executing at

line 13. Line 13 clears EAX. Line 14 restores the saved EDI register in line 6. Lines

15–16 restore the previous base frame and stack pointer. Line 17 adds 0xC bytes

to the stack pointer and then returns to the caller.

Before discussing the next area, note a few things about these fi rst 17 lines.

The SIDT instruction (line 7) writes the content of the IDT register to a 6-byte

 Chapter 1 ■ x86 and x64 31

memory location. What is the IDT register? The Intel/AMD reference manual

states that IDT is an array of 256 8-byte entries, each containing a pointer to an

interrupt handler, segment selector, and offset. When an interrupt or exception

occurs, the processor uses the interrupt number as an index into the IDT and

calls the entry’s specifi ed handler. The IDT register is a 6-byte register; the top

4 bytes contain the base of the IDT array/table and the bottom 2 bytes store the

table limit. With this in mind, you now know that line 8 is actually reading the

IDT base address. Lines 9 and 11 check whether the base address is in the range

(0x8003F400, 0x80047400). What is special about these seemingly random con-

stants? If you search the Internet, you will note that 0x8003F400 is an IDT base

address on Windows XP on x86. This can be verifi ed in the kernel debugger:

0: kd> vertarget

Windows XP Kernel Version 2600 (Service Pack 3) MP (2 procs) Free x86 compat-

ible

Built by: 2600.xpsp.080413-2111

…

0: kd> r @idtr

idtr=8003f400

0: kd> ~1

1: kd> r @idtr

idtr=bab3c590

Why does the code check for this behavior? One possible explanation is that the

developer assumed that an IDT base address falling in that range is considered

“invalid” or may be the result of being virtualized. The function automatically

returns zero if the IDTR is “invalid.” You can decompile this code to C as follows:

typedef struct _IDTR {

 DWORD base;

 SHORT limit;

} IDTR, *PIDTR;

BOOL __stdcall DllMain (HINSTANCE hinstDLL, DWORD fdwReason, LPVOID lpvRe-

served)

{

 IDTR idtr;

 __sidt(&idtr);

 if (idtr.base > 0x8003F400 && idtr.base < 0x80047400h) { return FALSE; }

 //line 18

 ...

}

N O T E If you read the manual closely, you’ll note that each processor has its own

IDT and hence IDTR. Therefore, on a multi-core system, IDTR will be diff erent for each

core. Clearly, 0x8003F400 is valid only for core 0 on Windows XP. If the instruction

were to be scheduled to run on another core, the IDTR would be 0xBAB3C590. On later

versions of Windows, the IDT base addresses change between reboots; hence, the

practice of hardcoding base addresses will not work.

32 Chapter 1 ■ x86 and x64

If the IDT base seems valid, the code continues execution at line 18. Lines

19–20 clear EAX and set ECX to 0x49. Line 21 uses sets EDI to whatever EBP-0x12C

is; since EBP is the base frame pointer, EBP-0x12C is the address of a local vari-

able. Line 22 writes zero at the location pointed to by EBP-0x130. Lines 23–24

push EAX and 2 on the stack. Line 25 zeroes a 0x124-byte buffer starting from

EBP-0x12C. Line 26 calls CreateToolhelp32Snapshot:

HANDLE WINAPI CreateToolhelp32Snapshot(
 In DWORD dwFlags,
 In DWORD th32ProcessID
);

This Win32 API function takes two integer parameters. As a general rule,

Win32 API functions follow STDCALL calling convention. Hence, the dwFlags

and th32ProcessId parameters are 0x2 (line 24) and 0x0 (line 23). This func-

tion enumerates all processes on the system and returns a handle to be used in

Process32Next. Lines 27–28 save the return value in EDI and check if it is -1. If

it is, the return value is set to 0 and it returns (lines 30–34); otherwise, execution

continues at line 35. Line 36 sets EAX to the address of the local variable previ-

ously initialized to 0 in line 22; line 40 initializes it to 0x128. Lines 37–39 push

ESI, EAX, and EDI on the stack. Line 41 calls Process32First:

Function prototype

BOOL WINAPI Process32First(
 In HANDLE hSnapshot,
 Inout LPPROCESSENTRY32 lppe

);

Relevant structure defi nition

typedef struct tagPROCESSENTRY32 {
 DWORD dwSize;
 DWORD cntUsage;
 DWORD th32ProcessID;
 ULONG_PTR th32DefaultHeapID;
 DWORD th32ModuleID;
 DWORD cntThreads;
 DWORD th32ParentProcessID;
 LONG pcPriClassBase;
 DWORD dwFlags;
 TCHAR szExeFile[MAX_PATH];
} PROCESSENTRY32, *PPROCESSENTRY32;

00000000 PROCESSENTRY32 struc ; (sizeof=0x128)
00000000 dwSize dd ?
00000004 cntUsage dd ?
00000008 th32ProcessID dd ?

 Chapter 1 ■ x86 and x64 33

0000000C th32DefaultHeapID dd ?
00000010 th32ModuleID dd ?
00000014 cntThreads dd ?
00000018 th32ParentProcessID dd ?
0000001C pcPriClassBase dd ?
00000020 dwFlags dd ?
00000024 szExeFile db 260 dup(?)
00000128 PROCESSENTRY32 ends

Because this API takes two parameters, hSnapshot is EDI (line 39, previously

the returned handle from CreateToolhelp32Snapshot in line 27), and lppe is the

address of a local variable (EBP-0x130). Because lppe points to a PROCESSENTRY32

structure, we immediately know that the local variable at EBP-0x130 is of the

same type. It also makes sense because the documentation for Process32First

states that before calling the function, the dwSize fi eld must be set to the size

of a PROCESSENTRY32 structure (which is 0x128). We now know that lines 19–25

were simply initializing this structure to 0. In addition, we can say that this

local variable starts at EBP-0x130 and ends at EBP-0x8.

Line 42 tests the return value of Process32Next. If it is zero, execution begins at

line 70; otherwise, it continues at line 43. Line 44 saves the address of the stricmp

function in ESI. Line 45 sets ECX to the address of a local variable (EBP-0x10C),

which happens to be a fi eld in PROCESSENTRY32 (see the previous paragraph).

Lines 46–48 push 0x10007C50/ECX on the stack and call stricmp. We know

that stricmp takes two character strings as arguments; hence, ECX must be the

szExeFile fi eld in PROCESSENTRY32 and 0x10007C50 is the address of a string:

.data:10007C50 65 78 70 6C 6F+Str2 db 'explorer.exe',0

Line 49 cleans up the stack because stricmp uses CDECL calling convention.

Line 50 checks stricmp’s return value. If it is zero, meaning that the string

matched "explorer.exe", execution begins at line 66; otherwise, it continues

execution at line 52. We can now decompile lines 18–51 as follows:

 HANDLE h;
 PROCESSENTRY32 procentry;
 h = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, 0);
 if (h == INVALID_HANDLE_VALUE) { return FALSE; }

 memset(&procentry, 0, sizeof(PROCESSENTRY32));
 procentry.dwSize = sizeof(procentry); // 0x128
 if (Process32Next(h, &procentry) == FALSE) {
 // line 70
 ...
 }
 if (stricmp(procentry.szExeFile, "explorer.exe") == 0) {
 // line 66
 ...
 }
 // line 52

34 Chapter 14 ■ x86 and x64

Lines 52–65 are nearly identical to the previous block except that they form

a loop with two exit conditions. The fi rst exit condition is when Process32Next

returns FALSE (line 58) and the second is when stricmp returns zero. We can

decompile lines 52–65 as follows:

 while (Process32Next(h, &procentry) != FALSE) {
 if (stricmp(procentry.szExeFile, "explorer".exe") == 0)
 break;
 }

After the loop exits, execution resumes at line 66. Lines 67–68 save the match-

ing PROCESSENTRY32’s th32ParentProcessID/th32ProcessID in EAX/ECX and

continue execution at 37. Notice that Line 66 is also a jump target in line 43.

Lines 70–74 read the fdwReason parameter of DllMain (EBP+C) and check

whether it is 0 (DLL_PROCESS_DETACH). If it is, the return value is set to 0 and

it returns; otherwise, it goes to line 82. Lines 82–85 check if the fdwReason is

greater than 1 (i.e., DLL_THREAD_ATTACH, DLL_THREAD_DETACH). If it is, the return

value is set to 1 and it returns; otherwise, execution continues at line 86. Lines

86–92 call CreateThread:

HANDLE WINAPI CreateThread(
 _In_opt_ LPSECURITY_ATTRIBUTES lpThreadAttributes,
 In SIZE_T dwStackSize,
 In LPTHREAD_START_ROUTINE lpStartAddress,
 _In_opt_ LPVOID lpParameter,
 In DWORD dwCreationFlags,
 _Out_opt_ LPDWORD lpThreadId
);

with lpStartAddress as 0x100032D0. This block can be decompiled as follows:

if (fdwReason == DLL_PROCESS_DETACH) { return FALSE; }

if (fdwReason == DLL_THREAD_ATTACH || fdwReason == DLL_THREAD_DETACH) {

 return TRUE; }

CreateThread(0, 0, (LPTHREAD_START_ROUTINE) 0x100032D0, 0, 0, 0);

return TRUE;

Having analyzed the function, we can deduce that the developer’s original

intention was this:

 1. Detect whether the target machine has a “sane” IDT.

 2. Check whether “explorer.exe” is running on the system—i.e., someone

logged on.

 3. Create a main thread that infects the target machine.

 Chapter 1 ■ x86 and x64 35

Exercises

 1. Repeat the walk-through by yourself. Draw the stack layout, including

parameters and local variables.

 2. In the example walk-through, we did a nearly one-to-one translation of

the assembly code to C. As an exercise, re-decompile this whole function

so that it looks more natural. What can you say about the developer’s skill

level/experience? Explain your reasons. Can you do a better job?

 3. In some of the assembly listings, the function name has a @ prefi x followed

by a number. Explain when and why this decoration exists.

 4. Implement the following functions in x86 assembly: strlen, strchr, mem-

cpy, memset, strcmp, strset.

 5. Decompile the following kernel routines in Windows:

■ KeInitializeDpc

■ KeInitializeApc

■ ObFastDereferenceObject (and explain its calling convention)

■ KeInitializeQueue

■ KxWaitForLockChainValid

■ KeReadyThread

■ KiInitializeTSS

■ RtlValidateUnicodeString

 6. Sample H. The function sub_13846 references several structures whose types

are not entirely clear. Your task is to fi rst recover the function prototype

and then try to reconstruct the structure fi elds. After reading Chapter 3,

return to this exercise to see if your understanding has changed. (Note:

This sample is targeting Windows XP x86.)

 7. Sample H. The function sub_10BB6 has a loop searching for something.

First recover the function prototype and then infer the types based on the

context. Hint: You should probably have a copy of the PE specifi cation

nearby.

 8. Sample H. Decompile sub_11732 and explain the most likely programming

construct used in the original code.

 9. Sample L. Explain what function sub_1000CEA0 does and then decompile

it back to C.

36 Chapter 16 ■ x86 and x64

10. If the current privilege level is encoded in CS, which is modifi able by

user-mode code, why can’t user-mode code modify CS to change CPL?

11. Read the Virtual Memory chapter in Intel Software Developer Manual,
Volume 3 and AMD64 Architecture Programmer’s Manual, Volume 2: System
Programming. Perform a few virtual address to physical address transla-

tions yourself and verify the result with a kernel debugger. Explain how

data execution prevention (DEP) works.

12. Bruce’s favorite x86/x64 disassembly library is BeaEngine by BeatriX

(www.beaengine.org). Experiment with it by writing a program to disas-

semble a binary at its entry point.

x64

x64 is an extension of x86, so most of the architecture properties are the same,

with minor differences such as register size and some instructions are unavail-

able (like PUSHAD). The following sections discuss the relevant differences.

Register Set and Data Types

The register set has 18 64-bit GPRs, and can be illustrated as shown in

Figure 1-6. Note that 64-bit registers have the “R” prefi x.

RAX
EAX

AX
ALAH

0

715

31 31
15

7

63
RBP

EBP
BP

BPL

063

Figure 1-6

While RBP can still be used as the base frame pointer, it is rarely used for that

purpose in real-life compiler-generated code. Most x64 compilers simply treat

RBP as another GPR, and reference local variables relative to RSP.

Data Movement

x64 supports a concept referred to as RIP-relative addressing,gg which allows instruc-

tions to reference data at a relative position to RIP. For example:

01: 0000000000000000 48 8B 05 00 00+ mov rax, qword ptr cs:loc_A

02: ; originally written as "mov rax,

[rip]"

03: 0000000000000007 loc_A:

 Chapter 1 ■ x86 and x64 37

04: 0000000000000007 48 31 C0 xor rax, rax

05: 000000000000000A 90 nop

Line 1 reads the address of loc_A (which is 0x7) and saves it in RAX. RIP-

relative addressing is primarily used to facilitate position-independent code.

Most arithmetic instructions are automatically promoted to 64 bits even

though the operands are only 32 bits. For example:

48 B8 88 77 66+ mov rax, 1122334455667788h

31 C0 xor eax, eax ; will also clear the upper 32bits of RAX.

 ; i.e., RAX=0 after this

48 C7 C0 FF FF+ mov rax,0FFFFFFFFFFFFFFFFh

FF C0 inc eax ; RAX=0 after this

Canonical Address

On x64, virtual addresses are 64 bits in width, but most processors do not sup-

port a full 64-bit virtual address space. Current Intel/AMD processors only use

48 bits for the address space. All virtual memory addresses must be in canonical

form. A virtual address is in canonical form if bits 63 to the most signifi cant

implemented bit are either all 1s or 0s. In practical terms, it means that bits 48–63

need to match bit 47. For example:

0xfffff801`c9c11000 = 11111111 11111111 11111000 00000001 11001001 11000001

 00010000 00000000 ; canonical

0x000007f7`bdb67000 = 00000000 00000000 00000111 11110111 10111101 10110110

 01110000 00000000 ; canonical

0xffff0800`00000000 = 11111111 11111111 00001000 00000000 00000000 00000000

 00000000 00000000 ; non-canonical

0xffff8000`00000000 = 11111111 11111111 10000000 00000000 00000000 00000000

 00000000 00000000 ; canonical

0xfffff960`000989f0 = 11111111 11111111 11111001 01100000 00000000 00001001

 10001001 11110000 ; canonical

If code tries to dereference a non-canonical address, the system will cause

an exception.

Function Invocation

Recall that some calling conventions require parameters to be passed on the

stack on x86. On x64, most calling conventions pass parameters through reg-

isters. For example, on Windows x64, there is only one calling convention and

the fi rst four parameters are passed through RCX, RDX, R8, and R9; the remaining

are pushed on the stack from right to left. On Linux, the fi rst six parameters are

passed on RDI, RSI, RDX, RCX, R8, and R9.

N O T E For more information regarding x64 ABI on Windows, see the “x64 Software

Conventions” section on MSDN (http://msdn.microsoft.com/en-us

/library/7kcdt6fy.aspx).

38 Chapter 18 ■ x86 and x64

Exercises

 1. Explain two methods to get the instruction pointer on x64. At least one of

the methods must use RIP addressing.

 2. Perform a virtual-to-physical address translation on x64. Were there any

major differences compared to x86?

