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The x86 is little-endian architecture based on the Intel 8086 processor. For the 

purpose of our chapter, x86 is the 32-bit implementation of the Intel architecture 

(IA-32) as defi ned in the Intel Software Development Manual. Generally speaking,

it can operate in two modes: real and protected. Real mode is the processor state 

when it is fi rst powered on and only supports a 16-bit instruction set. Protected 

mode is the processor state supporting virtual memory, paging, and other 

features; it is the state in which modern operating systems execute. The 64-bit 

extension of the architecture is called x64 or x86-64.  This chapter discusses the 

x86 architecture operating in protected mode.

x86 supports the concept of privilege separation through an abstraction called 

ring level. The processor supports four ring levels, numbered from 0 to 3. (Rings 

1 and 2 are not commonly used so they are not discussed here.) Ring 0 is the 

highest privilege level and can modify all system settings. Ring 3 is the lowest 

privileged level and can only read/modify a subset of system settings. Hence, 

modern operating systems typically implement user/kernel privilege separation 
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2 Chapter 1 ■ x86 and x64

by having user-mode applications run in ring 3, and the kernel in ring 0. The 

ring level is encoded in the CS register and sometimes referred to as the current
privilege level (CPL) in offi cial documentation.

This chapter discusses the x86/IA-32 architecture as defi ned in the Intel 64
and IA-32 Architectures Software Developer’s Manual, Volumes 1–3 (www.intel((

.com/content/www/us/en/processors/architectures-software-developer-

manuals.html).

Register Set and Data Types

When operating in protected mode, the x86 architecture has eight 32-bit general-

purpose registers (GPRs): EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP. Some of 

them can be further divided into 8- and 16-bit registers. The instruction pointer 

is stored in the EIP register. The register set is illustrated in Figure 1-1. Table 1-1 

describes some of these GPRs and how they are used.
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Figure 1-1

Table 1-1: Some GPRs and Their Usage

REGISTER PURPOSE

ECX Counter in loops

ESI Source in string/memory operations

EDI Destination in string/memory operations

EBP Base frame pointer

ESP Stack pointer
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The common data types are as follows:

■ Bytes—8 bits. Examples: AL, BL, CL

■ Word—16 bits. Examples: AX, BX, CX

■ Double word—32 bits. Examples: EAX, EBX, ECX

■ Quad word—64 bits. While x86 does not have 64-bit GPRs, it can combine 

two registers, usually EDX:EAX, and treat them as 64-bit values in some sce-

narios. For example, the RDTSC instruction writes a 64-bit value to EDX:EAX.

The 32-bit EFLAGS register is used to store the status of arithmetic operations

and other execution states (e.g., trap fl ag). For example, if the previous “add” 

operation resulted in a zero, the ZF fl ag will be set to 1. The fl ags in EFLAGS are 

primarily used to implement conditional branching.

In addition to the GPRs, EIP, and EFLAGS, there are also registers that control 

important low-level system mechanisms such as virtual memory, interrupts, and 

debugging. For example, CR0 controls whether paging is on or off, CR2 contains 

the linear address that caused a page fault, CR3 is the base address of a paging

data structure, and CR4 controls the hardware virtualization settings. DR0–DR7

are used to set memory breakpoints. We will come back to these registers later 

in the “System Mechanism” section.

N O T E  Although there are eight debug registers, the system allows only four mem-

ory breakpoints (DR0–DR3). The remaining registers are used for status.

There are also model-specifi c registers (MSRs). As the name implies, these 

registers may vary between different processors by Intel and AMD. Each MSR 

is identifi ed by name and a 32-bit number, and read/written to through the 

RDMSR/WRMSR instructions. They are accessible only to code running in ring 0 and

typically used to store special counters and implement low-level functionality. 

For example, the SYSENTER instruction transfers execution to the address stored 

in the IA32_SYSENTER_EIP MSR (0x176), which is usually the operating system’s

system call handler. MSRs are discussed throughout the book as they come up.

Instruction Set

The x86 instruction set allows a high level of fl exibility in terms of data move-

ment between registers and memory. The movement can be classifi ed into fi ve 

general methods:

■ Immediate to register

■ Register to register

■ Immediate to memory
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■ Register to memory and vice versa

■ Memory to memory

The fi rst four methods are supported by all modern architectures, but the last 

one is specifi c to x86. A classical RISC architecture like ARM can only read/write

data from/to memory with load/store instructions (LDR and STR, respectively);

for example, a simple operation like incrementing a value in memory requires 

three instructions: 

 1. Read the data from memory to a register (LDR).

 2. Add one to the register (ADD).

 3. Write the register to memory (STR). 

On x86, such an operation would require only one instruction (either INC or 

ADD) because it can directly access memory. The MOVS instruction can read and

write memory at the same time.

ARM

01: 1A 68     LDR   R2, [R3]
; read the value at address R3 and save it in R2
02: 52 1C     ADDS   R2, R2, #1
; add 1 to it
03: 1A 60         STR      R2, [R3]
; write updated value back to address R3

x86

01: FF 00         inc      dword ptr [eax]
; directly increment value at address EAX

Another important characteristic is that x86 uses variable-length instruction 

size: the instruction length can range from 1 to 15 bytes. On ARM, instructions 

are either 2 or 4 bytes in length.

Syntax

Depending on the assembler/disassembler, there are two syntax notations for 

x86 assembly code, Intel and AT&T:

Intel

mov ecx, AABBCCDDh
mov ecx, [eax]
mov ecx, eax

AT&T

movl $0xAABBCCDD, %ecx
movl (%eax), %ecx
movl %eax, %ecx
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It is important to note that these are the same instructions but written differ-

ently. There are several differences between Intel and AT&T notation, but the 

most notable ones are as follows:

■ AT&T prefi xes the register with %, and immediates with $. Intel does not 

do this.

■ AT&T adds a suffi x to the instruction to indicate operation width. For 

example, MOVL (long), MOVB (byte), etc. Intel does not do this.

■ AT&T puts the source operand before the destination. Intel reverses the 

order.

Disassemblers/assemblers and other reverse-engineering tools (IDA Pro, 

OllyDbg, MASM, etc.) on Windows typically use Intel notation, whereas those 

on UNIX frequently follow AT&T notation (GCC). In practice, Intel notation is 

the dominant form and is used throughout this book.

Data Movement

Instructions operate on values that come from registers or main memory. The 

most common instruction for moving data is MOV. The simplest usage is to move

a register or immediate to register. For example:

01: BE 3F 00 0F 00   mov   esi, 0F003Fh ; set ESI = 0xF003
02: 8B F1            mov   esi, ecx     ; set ESI = ECX

The next common usage is to move data to/from memory. Similar to other 

assembly language conventions, x86 uses square brackets ([]) to indicate memory 

access. (The only exception to this is the LEA instruction, which usesA [] but does

not actually reference memory.) Memory access can be specifi ed in several dif-

ferent ways, so we will begin with the simplest case:

Assembly

01: C7 00 01 00 00+  mov   dword ptr [eax], 1
; set the memory at address EAX to 1
02: 8B 08            mov   ecx, [eax]
; set ECX to the value at address EAX
03: 89 18            mov   [eax], ebx
; set the memory at address EAX to EBX
04: 89 46 34         mov   [esi+34h], eax
; set the memory address at (ESI+34) to EAX
05: 8B 46 34         mov   eax, [esi+34h]
; set EAX to the value at address (ESI+0x34)
06: 8B 14 01         mov   edx, [ecx+eax]
; set EDX to the value at address (ECX+EAX)
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Pseudo C

01: *eax = 1;
02: ecx = *eax;
03: *eax = ebx;
04: *(esi+0x34) = eax;
05: eax = *(esi+0x34);
06: edx = *(ecx+eax);

These examples demonstrate memory access through a base register and 

offset, where offset can be a register or immediate. This form is commonly used 

to access structure members or data buffers at a location computed at runtime. 

For example, suppose that ECX points to a structure of type KDPC with the layout

kd> dt nt!_KDPC
   +0x000 Type             : UChar
   +0x001 Importance       : UChar
   +0x002 Number           : Uint2B
   +0x004 DpcListEntry     : _LIST_ENTRY
   +0x00c DeferredRoutine  : Ptr32     void
   +0x010 DeferredContext  : Ptr32 Void
   +0x014 SystemArgument1  : Ptr32 Void
   +0x018 SystemArgument2  : Ptr32 Void
   +0x01c DpcData          : Ptr32 Void

and used in the following context:

Assembly

01: 8B 45 0C         mov   eax, [ebp+0Ch]
02: 83 61 1C 00      and   dword ptr [ecx+1Ch], 0
03: 89 41 0C         mov   [ecx+0Ch], eax
04: 8B 45 10         mov   eax, [ebp+10h]
05: C7 01 13 01 00+  mov   dword ptr [ecx], 113h
06: 89 41 10         mov   [ecx+10h], eax

Pseudo C

KDPC *p = ...;
p->DpcData = NULL;
p->DeferredRoutine = ...;
*(int *)p = 0x113;
p->DeferredContext = ...;

Line 1 reads a value from memory and stores it in EAX. The DeferredRoutine

fi eld is set to this value in line 3. Line 2 clears the DpcData fi eld by AND’ing it
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with 0. Line 4 reads another value from memory and stores it in EAX. The 

DeferredContext fi eld is set to this value in line 6.

Line 5 writes the double-word value 0x113 to the base of the structure. Why 

does it write a double-word value at the base if the fi rst fi eld is only 1 byte in 

size? Wouldn’t that implicitly set the Importance and Number fi elds as well? The

answer is yes. Figure 1-2 shows the result of converting 0x113 to binary.

00000000 00000000 00000001 00010011 1
00000000 00000000 00000001 00010011

Number Importance Type

Figure 1-2

The Type fi eld is set to 0x13 (bold bits), Importance is set to 0x1 (italicized 

bits), and Number is set to 0x0 (the remaining bits). By writing one value, the code

managed to initialize three fi elds with a single instruction! The code could have 

been written as follows:

01: 8B 45 0C         mov   eax, [ebp+0Ch]
02: 83 61 1C 00      and   dword ptr [ecx+1Ch], 0
03: 89 41 0C         mov   [ecx+0Ch], eax
04: 8B 45 10         mov   eax, [ebp+10h]
05: C6 01 13         mov   byte ptr [ecx],13h
06: C6 41 01 01      mov   byte ptr [ecx+1],1
07: 66 C7 41 02 00+  mov   word ptr [ecx+2],06
08: 89 41 10         mov   [ecx+10h], eax

The compiler decided to fold three instructions into one because it knew 

the constants ahead of time and wants to save space. The three-instruction 

version occupies 13 bytes (the extra byte in line 7 is not shown), whereas the 

one-instruction version occupies 6 bytes. Another interesting observation is that 

memory access can be done at three granularity levels: byte (line 5–6), word 

(line 6), and double-word (line 1–4, 8). The default granularity is 4 bytes, which 

can be changed to 1 or 2 bytes with an override prefi x. In the example, the over-

ride prefi x byte is 66 (italicized). Other prefi xes are discussed as they come up.

The next memory access form is commonly used to access array-type objects. 

Generally, the format is as follows: [Base + Index * scale]. This is best understood 

through examples:

01: 8B 34 B5 40 05+  mov   esi, _KdLogBuffer[esi*4]
; always written as  mov   esi, [_KdLogBuffer + esi * 4]
; _KdLogBuffer is the base address of a global array and
; ESI is the index; we know that each element in the array
; is 4 bytes in length (hence the scaling factor)
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02: 89 04 F7         mov   [edi+esi*8], eax
; here is EDI is the array base address; ESI is the array
; index; element size is 8.

In practice, this is observed in code looping over an array. For example:

01:                loop_start:
02: 8B 47 04         mov   eax, [edi+4]
03: 8B 04 98         mov   eax, [eax+ebx*4]
04: 85 C0            test  eax, eax
...
05: 74 14            jz    short loc_7F627F
06:                loc_7F627F:
07: 43               inc   ebx
08: 3B 1F            cmp   ebx, [edi]
09: 7C DD            jl    short loop_start

Line 2 reads a double-word from offset +4 from EDI and then uses it as the 

base address into an array in line 3; hence, you know that EDI is likely a struc-

ture that has an array at +4. Line 7 increments the index. Line 8 compares the 

index against a value at offset +0 in the same structure. Given this info, this 

small loop can be decompiled as follows:

typedef struct _FOO
{
    DWORD size;        // +0x00
    DWORD array[...];  // +0x04
} FOO, *PFOO;

PFOO bar = ...;
for (i = ...; i < bar->size; i++) {
    if (bar->array[i] != 0) {
    ...
    }
}

The MOVSB/MOVSW/MOVSD instructions move data with 1-, 2-, or 4-byte granu-

larity between two memory addresses. They implicitly use EDI/ESI as the 

destination/source address, respectively. In addition, they also automatically 

update the source/destination address depending on the direction fl ag (DF) fl ag 

in EFLAGS. If DF is 1, the addresses are decremented; otherwise, they are incre-

mented. These instructions are typically used to implement string or memory 

copy functions when the length is known at compile time. In some cases, they 

are accompanied by the REP prefi x, which repeats an instruction up to ECX times.

Consider the following example:
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Assembly

01: BE 28 B5 41 00   mov   esi, offset _RamdiskBootDiskGuid
; ESI = pointer to RamdiskBootDiskGuid
02: 8D BD 40 FF FF+  lea   edi, [ebp-0C0h]
; EDI is an address somewhere on the stack
03: A5               movsd
; copies 4 bytes from ESI to EDI ; increment each by 4
04: A5               movsd
; same as above
05: A5               movsd
; save as above
06: A5               movsd
; same as above

Pseudo C

/* a GUID is 16-byte structure */
GUID RamDiskBootDiskGuid = ...; // global
...
GUID foo;
memcpy(&foo, &RamdiskBootDiskGuid, sizeof(GUID));

Line 2 deserves some special attention. Although the LEA instruction uses 

[], it actually does not read from a memory address; it simply evaluates the 

expression in square brackets and puts the result in the destination register. 

For example, if EBP were 0x1000, then EDI would be 0xF40 (=0x1000 – 0xC0) 

after executing line 2. The point is that LEA does not access memory, despite 

the misleading syntax.

The following example, from nt!KiInitSystem, uses the REP prefi x:

01: 6A 08            push   8    ; push 8 on the stack (will explain stacks

                                 ; later)

02: ...

03: 59               pop    ecx  ; pop the stack. Basically sets ECX to 8.

04: ...

05: BE 00 44 61 00   mov    esi, offset _KeServiceDescriptorTable

06: BF C0 43 61 00   mov    edi, offset _KeServiceDescriptorTableShadow

07: F3 A5            rep movsd   ; copy 32 bytes (movsd repeated 8 times)

; from this we can deduce that whatever these two objects are, they are

;  likely to be 32 bytes in size.

The rough C equivalent of this would be as follows:

memcpy(&KeServiceDescriptorTableShadow, &KeServiceDescriptorTable, 32);
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The fi nal example, nt!MmInitializeProcessAddressSpace, uses a combina-

tion of these instructions because the copy size is not a multiple of 4:

01: 8D B0 70 01 00+  lea   esi, [eax+170h]

; EAX is likely the base address of a structure. Remember what we said

; about LEA ...

02: 8D BB 70 01 00+  lea   edi, [ebx+170h]

; EBX is likely to be base address of another structure of the same type

03: A5               movsd

04: A5               movsd

05: A5               movsd

06: 66 A5            movsw6

07: A4               movsb

After lines 1–2, you know that EAX and EBX are likely to be of the same type 

because they are being used as source/destination and the offset is identical. 

This code snippet simply copies 15 bytes from one structure fi eld to another. 

Note that the code could also have been written using the MOVSB instruction

with a REP prefi x and ECX set to 15; however, that would be ineffi cient because 

it results in 15 reads instead of only fi ve.

Another class of data movement instructions with implicit source and destina-

tion includes the SCAS and STOS instructions. Similar to MOVS, these instructions 

can operate at 1-, 2-, or 4-byte granularity. SCAS implicitly compares AL/AX/EAX

with data starting at the memory address EDI; EDI is automatically incremented/

decremented depending on the DF bit in EFLAGS. Given its semantic, SCAS is com-

monly used along with the REP prefi x to fi nd a byte, word, or double-word in 

a buffer. For example, the C strlen() function can be implemented as follows:

01: 30 C0            xor    al, al

; set AL to 0 (NUL byte).  You will frequently observe the XOR reg, reg

;  pattern in code.

02: 89 FB            mov    ebx, edi

; save the original pointer to the string

03: F2 AE            repne  scasb

; repeatedly scan forward one byte at a time as long as AL does not match the

; byte at EDI when this instruction ends, it means we reached the NUL byte in

; the string buffer

04: 29 DF            sub    edi, ebx

; edi is now the NUL byte location. Subtract that from the original pointer

; to the length.

STOS is the same as SCAS except that it writes the value AL/AX/EAX to EDI. It

is commonly used to initialize a buffer to a constant value (such as memset()).

Here is an example:

01: 33 C0            xor    eax, eax

; set EAX to 0

02: 6A 09            push   9

; push 9 on the stack

03: 59               pop    ecx

; pop it back in ECX. Now ECX = 9.
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04: 8B FE            mov    edi, esi

; set the destination address

05: F3 AB            rep stosd

; write 36 bytes of zero to the destination buffer (STOSD repeated 9 times)

; this is equivalent lent to memset(edi, 0, 36)

LODS is another instruction from the same family. It reads a 1-, 2-, or 4-byte

value from ESI and stores it in AL, AX, or EAX.

Exercise

 1. This function uses a combination SCAS and STOS to do its work. First, explain

what is the type of the [EBP+8] and [EBP+C] in line 1 and 8, respectively.

Next, explain what this snippet does.

01: 8B 7D 08         mov   edi, [ebp+8]
02: 8B D7            mov   edx, edi
03: 33 C0            xor   eax, eax
04: 83 C9 FF         or    ecx, 0FFFFFFFFh
05: F2 AE            repne scasb
06: 83 C1 02         add   ecx, 2
07: F7 D9            neg   ecx
08: 8A 45 0C         mov   al, [ebp+0Ch]
09: 8B FA            mov   edi, edx
10: F3 AA            rep stosb
11: 8B C2            mov   eax, edx

Arithmetic Operations

Fundamental arithmetic operations such as addition, subtraction, multiplication, 

and division are natively supported by the instruction set. Bit-level operations 

such as AND, OR, XOR, NOT, and left and right shift also have native corresponding 

instructions. With the exception of multiplication and division, the remain-

ing instructions are straightforward in terms of usage. These operations are 

explained with the following examples:

01: 83 C4 14         add   esp, 14h          ; esp = esp + 0x14

02: 2B C8            sub   ecx, eax          ; ecx = ecx - eax

03: 83 EC 0C         sub   esp, 0Ch          ; esp = esp - 0xC

04: 41               inc   ecx               ; ecx = ecx + 1

05: 4F               dec   edi               ; edi = edi - 1

06: 83 C8 FF         or    eax, 0FFFFFFFFh   ; eax = eax | 0xFFFFFFFF

07: 83 E1 07         and   ecx, 7            ; ecx = ecx & 7

08: 33 C0            xor   eax, eax          ; eax = eax ^ eax

09: F7 D7            not   edi               ; edi = ~edi

10: C0 E1 04         shl   cl, 4             ; cl = cl << 4

11: D1 E9            shr   ecx, 1            ; ecx = ecx >> 1

12: C0 C0 03         rol   al, 3             ; rotate AL left 3 positions

13: D0 C8            ror   al, 1             ; rotate AL right 1 position
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The left and right shift instructions (lines 11–12) merit some explanation, as 

they are frequently observed in real-life code. These instructions are typically 

used to optimize multiplication and division operations where the multiplicand 

and divisor are a power of two. This type of optimization is sometimes known 

as strength reduction because it replaces a computationally expensive operation

with a cheaper one. For example, integer division is relatively a slow operation, 

but when the divisor is a power of two, it can be reduced to shifting bits to the 

right; 100/2 is the same as 100>>1. Similarly, multiplication by a power of two

can be reduced to shifting bits to the left; 100*2 is the same as 100<<1.

Unsigned and signed multiplication is done through the MUL and IMUL instruc-

tions, respectively. The MUL instruction has the following general form: MUL reg/

memory. That is, it can only operate on register or memory values. The register 

is multiplied with AL, AX, or EAX and the result is stored in AX, DX:AX, or EDX:EAX, 

depending on the operand width. For example:

01: F7 E1          mul   ecx                ; EDX:EAX = EAX * ECX

02: F7 66 04       mul   dword ptr [esi+4]  ; EDX:EAX = EAX * dword_at(ESI+4)

03: F6 E1          mul   cl                 ; AX = AL * CL

04: 66 F7 E2       mul   dx                 ; DX:AX = AX * DX

Consider a few other concrete examples:

01: B8 03 00 00 00   mov   eax,3          ; set EAX=3

02: B9 22 22 22 22   mov   ecx,22222222h  ; set ECX=0x22222222

03: F7 E1            mul   ecx            ; EDX:EAX = 3 * 0x22222222 =

                                          ; 0x66666666

                                          ; hence, EDX=0, EAX=0x66666666

04: B8 03 00 00 00   mov   eax,3          ; set EAX=3

05: B9 00 00 00 80   mov   ecx,80000000h  ; set ECX=0x80000000

06: F7 E1            mul   ecx            ; EDX:EAX = 3 * 0x80000000 =

                                          ; 0x180000000

                                          ; hence, EDX=1, EAX=0x80000000

The reason why the result is stored in EDX:EAX for 32-bit multiplication is 

because the result potentially may not fi t in one 32-bit register (as demonstrated 

in lines 4–6).

IMUL has three forms:

■ IMUL reg/mem — Same as MUL

■ IMUL reg1, reg2/mem — reg1 = reg1 * reg2/mem

■ IMUL reg1, reg2/mem, imm — reg1 = reg2 * imm

Some disassemblers shorten the parameters. For example:

01: F7 E9            imul  ecx        ; EDX:EAX = EAX * ECX
02: 69 F6 A0 01 00+  imul  esi, 1A0h  ; ESI = ESI * 0x1A0
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03: 0F AF CE         imul  ecx, esi   ; ECX = ECX * ESI

Unsigned and signed division is done through the DIV and V IDIV instructions,V

respectively. They take only one parameter (divisor) and have the following 

form: DIV/IDIV reg/mem. Depending on the divisor’s size, DIV will use either 

AX, DX:AX, or EDX:EAX as the dividend, and the resulting quotient/remainder 

pair are stored in AL/AH, AX/DX, or EAX/EDX. For example:

01: F7 F1            div   ecx     ; EDX:EAX / ECX, quotient in EAX,

02: F6 F1            div   cl      ; AX / CL, quotient in AL, remainder in AH

03: F7 76 24         div   dword ptr [esi+24h] ; see line 1

04: B1 02            mov   cl,2    ; set CL = 2

05: B8 0A 00 00 00   mov   eax,0Ah ; set EAX = 0xA

06: F6 F1            div   cl      ; AX/CL = A/2 = 5 in AL (quotient),

                                   ; AH = 0 (remainder)

07: B1 02            mov   cl,2    ; set CL = 2

08: B8 09 00 00 00   mov   eax,09h ; set EAX = 0x9

09: F6 F1            div   cl      ; AX/CL = 9/2 = 4 in AL (quotient),

                                   ; AH = 1 (remainder)

Stack Operations and Function Invocation

The stack is a fundamental data structure in programming languages and operat-

ing systems. For example, local variables in C are stored on the functions’ stack 

space. When the operating system transitions from ring 3 to ring 0, it saves state 

information on the stack. Conceptually, a stack is a last-in fi rst-out data structure 

supporting two operations: push and pop. Push means to put something on top 

of the stack; pop means to remove an item from the top. Concretely speaking, 

on x86, a stack is a contiguous memory region pointed to by ESP and it grows 

downwards. Push/pop operations are done through the PUSH/POP instruc-

tions and they implicitly modify ESP. The PUSH instruction decrements ESP

and then writes data at the location pointed to by ESP; POP reads the data and

increments ESP. The default auto-increment/decrement value is 4, but it can be

changed to 1 or 2 with a prefi x override. In practice, the value is almost always 

4 because the OS requires the stack to be double-word aligned.

Suppose that ESP initially points to 0xb20000 and you have the following code:

; initial ESP = 0xb20000

01: B8 AA AA AA AA  mov    eax,0AAAAAAAAh

02: BB BB BB BB BB  mov    ebx,0BBBBBBBBh

03: B9 CC CC CC CC  mov    ecx,0CCCCCCCCh

04: BA DD DD DD DD  mov    edx,0DDDDDDDDh

05: 50              push   eax

; address 0xb1fffc will contain the value 0xAAAAAAAA and ESP

; will be 0xb1fffc (=0xb20000-4)
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06: 53              push   ebx

; address 0xb1fff8 will contain the value 0xBBBBBBBB and ESP

; will be 0xb1fff8 (=0xb1fffc-4)

07: 5E              pop    esi

; ESI will contain the value 0xBBBBBBBB and ESP will be 0xb1fffc

; (=0xb1fff8+4)

08: 5F              pop    edi

; EDI will contain the value 0xAAAAAAAA and ESP will be 0xb20000

; (=0xb1fffc+4)

Figure 1-3 illustrates the stack layout.
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……

… push ebx

pop edi

po
p e

si

Figure 1-3

ESP can also be directly modifi ed by other instructions, such as ADD and SUB.

While high-level programming languages have the concept of functions that 

can be called and returned from, the processor does not provide such abstrac-

tion. At the lowest level, the processor operates only on concrete objects, such 

as registers or data coming from memory. How are functions translated at the 

machine level? They are implemented through the stack data structure! Consider 

the following function:

C

int
__cdecl addme(short a, short b)
{
    return a+b;
}

Assembly

01: 004113A0 55           push   ebp
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02: 004113A1 8B EC        mov    ebp, esp
03: ...
04: 004113BE 0F BF 45 08  movsx  eax, word ptr [ebp+8]
05: 004113C2 0F BF 4D 0C  movsx  ecx, word ptr [ebp+0Ch]
06: 004113C6 03 C1        add   eax, ecx
07: ...
08: 004113CB 8B E5        mov    esp, ebp
09: 004113CD 5D           pop    ebp
10: 004113CE C3           retn

The function is invoked with the following code:

C

sum = addme(x, y);

Assembly

01: 004129F3 50               push  eax   
02: ...
03: 004129F8 51               push  ecx   
04: 004129F9 E8 F1 E7 FF FF   call  addme 
05: 004129FE 83 C4 08         add   esp, 8

Before going into the details, fi rst consider the CALL/RET instructions and 

calling conventions. The CALL instruction performs two operations:

 1. It pushes the return address (address immediately after the CALL instruc-

tion) on the stack.

 2. It changes EIP to the call destination. This effectively transfers control to 

the call target and begins execution there.

RET simply pops the address stored on the top of the stack into EIP and trans-

fers control to it (literally like a “POP EIP” but such instruction sequence does

not exist on x86). For example, if you want to begin execution at 0x12345678, 

you can just do the following:

01: 68 78 56 34 12   push  0x12345678
02: C3               ret

A calling convention is a set of rules dictating how function calls work at the

machine level. It is defi ned by the Application Binary Interface (ABI) for a par-

ticular system. For example, should the parameters be passed through the stack, 

in registers, or both? Should the parameters be passed in from left-to-right or 

right-to-left? Should the return value be stored on the stack, in registers, or both? 

There are many calling conventions, but the popular ones are CDECL, STDCALL, 

THISCALL, and FASTCALL. (The compiler can also generate its own custom call-

ing convention, but those will not be discussed here.) Table 1-2 summarizes 

their semantic.
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Table 1-2: Calling Conventions

CDECL STDCALL FASTCALL

Parameters Pushed on the 
stack from right-
to-left. Caller must 
clean up the stack 
after the call.

Same as CDECL
except that the
callee must clean
the stack.

First two parameters are
passed in ECX and EDX. The 
rest are on the stack.

Return value Stored in EAX. Stored in EAX. Stored in EAX.

Non-volatile 
registers

EBP, ESP, EBX, 
ESI, EDI.

EBP, ESP, EBX, 
ESI, EDI.

EBP, ESP, EBX, ESI, EDI.

We now return to the code snippet to discuss how the function addme is 

invoked. In line 1 and 3, the two parameters are pushed on the stack; ECX and

EAX are the fi rst and second parameter, respectively. Line 4 invokes the addme

function with the CALL instruction. This immediately pushes the return address,

0x4129FE, on the stack and begins execution at 0x4113A0. Figure 1-4 illustrates 

the stack layout after line 4 is executed.

004129FE
ECX
EAX

…
…

ESP

Figure 1-4

After line 4 executes, we are now in the addme function body. Line 1 pushes 

EBP on the stack. Line 2 sets EBP to the current stack pointer. This two-instruction

sequence is typically known as the function prologue because it establishes a new

function frame. Line 4 reads the value at address EBP+8, which is the fi rst param-

eter on the stack; line 5 reads the second parameter. Note that the parameters 

are accessed using EBP as the base register. When used in this context, EBP is

known as the base frame pointer (see line 2) because it points to the stack frame 

for the current function, and parameters/locals can be accessed relative to it. 

The compiler can also be instructed to generate code that does not use EBP as

the base frame pointer through an optimization called frame pointer omission. 

With such optimization, access to local variables and parameters is done rela-

tive to ESP, and EBP can be used as a general register like EAX, EBX, ECX, and so

on. Line 6 adds the numbers and saves the result in EAX. Line 8 sets the stack

pointer to the base frame pointer. Line 9 pops the saved EBP from line 1 into 



 Chapter 1 ■ x86 and x64 17

EBP. This two-instruction sequence is commonly referred to as the function epi-
logue because it is at the end of the function and restores the previous function

frame. At this point, the top of the stack contains the return address saved by 

the CALL instruction at 0x4129F9. Line 10 performs a RET, which pops the stack 

and resumes execution at 0x4129FE. Line 5 in the snippet shrinks the stack by 

8 because the caller must clean up the stack per CDECL's calling convention.

If the function addme had local variables, the code would need to grow the

stack by subtracting ESP after line 2. All local variables would then be accessible

through a negative offset from EBP.

Exercises

 1. Given what you learned about CALL and RET, explain how you would read 

the value of EIP? Why can’t you just do MOV EAX, EIP?

 2. Come up with at least two code sequences to set EIP to 0xAABBCCDD.

 3. In the example function, addme, what would happen if the stack pointer 

were not properly restored before executing RET?

 4. In all of the calling conventions explained, the return value is stored in a 

32-bit register (EAX). What happens when the return value does not fi t in a

32-bit register? Write a program to experiment and evaluate your answer.

Does the mechanism change from compiler to compiler?

Control Flow

This section describes how the system implements conditional execution for 

higher-level constructs like if/else, switch/case, and while/for. All of these are 

implemented through the CMP, TEST, JMP, and Jcc instructions and EFLAGS reg-

ister. The following list summarizes the common fl ags in EFLAGS:

■ ZF/Zero fl ag—Set if the result of the previous arithmetic operation is zero.

■ SF/Sign fl ag—Set to the most signifi cant bit of the result.

■ CF/Carry fl ag—Set when the result requires a carry. It applies to unsigned 

numbers.

■ OF/Overfl ow fl ag—Set if the result overfl ows the max size. It applies to

signed numbers.

Arithmetic instructions update these fl ags based on the result. For example, 

the instruction SUB EAX, EAX would cause ZF to be set. The Jcc instructions,

where “cc” is a conditional code, changes control fl ow depending on these 
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fl ags. There can be up to 16 conditional codes, but the most common ones are 

described in Table 1-3.

Table 1-3: Common Conditional Codes

CONDITIONAL 
CODE ENGLISH DESCRIPTION

MACHINE 
DESCRIPTION

B/NAE Below/Neither Above nor Equal. Used for
unsigned operations.

CF=1

NB/AE Not Below/Above or Equal. Used for
unsigned operations.

CF=0

E/Z Equal/Zero ZF=1

NE/NZ Not Equal/Not Zero ZF=0

L Less than/Neither Greater nor Equal. Used 
for signed operations.

(SF ^ OF) = 1

GE/NL Greater or Equal/Not Less than. Used for 
signed operations.

(SF ^ OF) = 0

G/NLE Greater/Not Less nor Equal. Used for
signed operations.

((SF ^ OF) | ZF) = 0

Because assembly language does not have a defi ned type system, one of the 

few ways to recognize signed/unsigned types is through these conditional codes.

The CMP instruction compares two operands and sets the appropriate condi-

tional code in EFLAGS; it compares two numbers by subtracting one from another

without updating the result. The TEST instruction does the same thing except

it performs a logical AND between the two operands.

If-Else

If-else constructs are quite simple to recognize because they involve a compare/

test followed by a Jcc. For example:

Assembly

01:   mov   esi, [ebp+8]
02:   mov   edx, [esi]
03:   test  edx, edx
04:   jz    short loc_4E31F9
05:   mov   ecx, offset _FsRtlFastMutexLookasideList
06:   call  _ExFreeToNPagedLookasideList@8
07:   and   dword ptr [esi], 0
08:   lea   eax, [esi+4]
09:   push  eax
10:   call  _FsRtlUninitializeBaseMcb@4
11: loc_4E31F9:
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12:   pop   esi
13:   pop   ebp
14:   retn  4
15: _FsRtlUninitializeLargeMcb@4 endp

Pseudo C

if (*esi == 0) {
  return;
}
ExFreeToNPagedLookasideList(...);
*esi = 0;
...
return;

OR

if (*esi != 0) {
  ...
  ExFreeToNPagedLookasideList(...);
  *esi = 0;
  ...
}
return;

Line 2 reads a value at location ESI and stores it in EDX. Line 3 ANDs EDX with 

itself and sets the appropriate fl ags in EFLAGS. Note that this pattern is commonly 

used to determine whether a register is zero. Line 4 jumps to loc_4E31F9 (line 12) 

if ZF=1. If ZF=0, then it executes line 5 and continues until the function returns.

Note that there are two slightly different but logically equivalent C transla-

tions for this snippet.

Switch-Case

A switch-case block is a sequence of if/else statements. For example:

Switch-Case

switch(ch) {
    case 'c':
        handle_C();
        break;
    case 'h':
        handle_H();
        break;
    default:
        break;
}
domore();
...
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If-Else

if (ch == 'c') {
   handle_C();

} else
if (ch == 'h') {
   handle_H();
}
domore();
...

Hence, the machine code translation will be a series if/else. The following 

simple example illustrates the idea:

Assembly

01:   push   ebp
02:   mov    ebp, esp
03:   mov    eax, [ebp+8]
04:   sub    eax, 41h
05:   jz     short loc_caseA
06:   dec    eax
07:   jz     short loc_caseB
08:   dec    eax
09:   jz     short loc_caseC
10:   mov    al, 5Ah
11:   movzx  eax, al
12:   pop    ebp
13:   retn
14: loc_caseC: 
15:   mov    al, 43h
16:   movzx  eax, al
17:   pop    ebp
18:   retn
19: loc_caseB: 
20:   mov    al, 42h
21:   movzx  eax, al
22:   pop    ebp
23:   retn
24: loc_caseA:
25:   mov    al, 41h
26:   movzx  eax, al
27:   pop    ebp
28:   retn

C

unsigned char switchme(int a)
{
   unsigned char res;
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    switch(a) {
    case 0x41:
        res = 'A';
        break;
    case 0x42:
        res = 'B';
        break;
    case 0x43:
        res = 'C';
        break;
    default:
        res = 'Z';
        break;
    }
    return res;
}

Real-life switch-case statements can be more complex, and compilers commonly 

build a jump table to reduce the number of comparisons and conditional jumps.

The jump table is essentially an array of addresses, each pointing to the handler 

for a specifi c case. This pattern can be observed in Sample J in sub_10001110:

Assembly

01:   cmp     edi, 5
02:   ja      short loc_10001141   
03:   jmp     ds:off_100011A4[edi*4]
04: loc_10001125:                  
05:   mov     esi, 40h             
06:   jmp     short loc_10001145
07: loc_1000112C:                  
08:   mov     esi, 20h             
09:   jmp     short loc_10001145
10: loc_10001133:                  
11:   mov     esi, 38h             
12:   jmp     short loc_10001145
13: loc_1000113A:                  
14:   mov     esi, 30h             
15:   jmp     short loc_10001145
16: loc_10001141:                  
17:   mov     esi, [esp+0Ch]    
18: ...
19: off_100011A4 dd offset loc_10001125
20:   dd offset loc_10001125          
21:   dd offset loc_1000113A
22:   dd offset loc_1000112C
23:   dd offset loc_10001133
24:   dd offset loc_1000113A
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Pseudo C

switch(edi) {
  case 0:
  case 1:
    // goto loc_10001125;
    esi = 0x40;
    break;
  case 2:
  case 5:
    // goto loc_1000113A;
    esi = 0x30;
    break;
  case 3:
    // goto loc_1000112C;
    esi = 0x20;
    break;
  case 4:
    // goto loc_10001133;
    esi = 0x38;
    break;
  default:
    // goto loc_10001141;
    esi = *(esp+0xC)
    break;
}
...

Here, the compiler knows that there are only fi ve cases and the case value 

is consecutive; hence, it can construct the jump table and index into it directly 

(line 3). Without the jump table, there would be 10 additional instructions to 

test each case and branch to the handler. (There are other forms of switch/case 

optimizations, but we will not cover them here.)

Loops

At the machine level, loops are implemented using a combination of Jcc and 

JMP instructions. In other words, they are implemented using if/else and goto

constructs. The best way to understand this is to rewrite a loop using only if/

else and goto. Consider the following example:

Using for

for (int i=0; i<10; i++) {
    printf("%d\n", i);
}
printf("done!\n");
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Using if/else and goto

int i = 0;
loop_start:
    if (i < 10) {
        printf("%d\n", i);
        i++;
        goto loop_start;
    }
printf("done!n");

When compiled, both versions are identical at the machine-code level:

01: 00401002   mov    edi, ds:__imp__printf
02: 00401008   xor    esi, esi
03: 0040100A   lea    ebx, [ebx+0]
04: 00401010 loc_401010:           
05: 00401010   push   esi
06: 00401011   push   offset Format                 ; "%d\n"
07: 00401016   call   edi ; __imp__printf
08: 00401018   inc    esi
09: 00401019   add    esp, 8
10: 0040101C   cmp    esi, 0Ah
11: 0040101F   jl     short loc_401010
12: 00401021   push   offset aDone                  ; "done!\n"
13: 00401026   call   edi ; __imp__printf
14: 00401028   add    esp, 4

Line 1 sets EDI to the printf function. Line 2 sets ESI to 0. Line 4 begins 

the loop; however, note that it does not begin with a comparison. There is no 

comparison here because the compiler knows that the counter was initialized 

to 0 (see line 2) and is obviously going to be less than 10 so it skips the check. 

Lines 5–7 call the printf function with the right parameters (format specifi er 

and our number). Line 8 increments the number. Line 9 cleans up the stack 

because printf uses the CDECL calling convention. Line 10 checks to see if the

counter is less than 0xA. If it is, it jumps back to loc_401010. If the counter is

not less than 0xA, it continues execution at line 12 and fi nishes with a printf.

One important observation to make is that the disassembly allowed us to 

infer that the counter is a signed integer. Line 11 uses the “less than” conditional 

code (JL), so we immediately know that the comparison was done on signed 

integers. Remember: If “above/below,” it is unsigned; if “less than/greater than,” 

it is signed. Sample L has a small function, sub_1000AE3B, with the following 

interesting loop:

Assembly

01: sub_1000AE3B proc near
02:   push    edi
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03:   push    esi
04:   call    ds:lstrlenA
05:   mov     edi, eax
06:   xor     ecx, ecx
07:   xor     edx, edx
08:   test    edi, edi
09:   jle     short loc_1000AE5B
10: loc_1000AE4D:
11:   mov     al, [edx+esi]
12:   mov     [ecx+esi], al
13:   add     edx, 3
14:   inc     ecx
15:   cmp     edx, edi
16:   jl      short loc_1000AE4D
17: loc_1000AE5B:
18:   mov     byte ptr [ecx+esi], 0
19:   mov     eax, esi
20:   pop     edi
21:   retn
22: sub_1000AE3B endp

C

char *sub_1000AE3B (char *str)
{
 int len, i=0, j=0;
 len = lstrlenA(str);
 if (len <= 0) {
   str[j] = 0;
   return str;
 }
 while (j < len) {
   str[i] = str[j];
   j = j+3;
   i = i+1;
 }
 str[i] = 0;
 return str;
}

The sub_1000AE3B function has one parameter passed using a custom calling

convention (ESI holds the parameter). Line 2 saves EDI. Line 3 calls lstrlenA

with the parameter; hence, you immediately know that ESI is of type char *. 

Line 5 saves the return value (string length) in EDI. Lines 6–7 clear ECX and

EDX. Lines 8–9 check to see if the string length is less than or equal to zero. If it 

is, control is transferred to line 18, which sets the value at ECX+ESI to 0. If it is 

not, then execution is continued at line 11, which is the start of a loop. First, it 

reads the character at ESI+EDX (line 11), and then it stores it at ESI+ECX (line 12). 



 Chapter 1 ■ x86 and x64 25

Next, it increments the EDX and ECX by three and one, respectively. Lines 15–16 

check to see if EDX is less than the string length; if so, execution goes back to 

the loop start. If not, execution is continued at line 18.

It may seem convoluted at fi rst, but this function takes an obfuscated string 

whose deobfuscated value is every third character. For example, the string SX]

OTYFKPTY^W\\aAFKRW\\E is actually SOFTWARE. The purpose of this function 

is to prevent naïve string scanners and evade detection. As an exercise, you 

should decompile this function so that it looks more “natural” (as opposed to 

our literal translation).

Outside of the normal Jcc constructs, certain loops can be implemented using 

the LOOP instruction. The LOOP instruction executes a block of code up to ECX

time. For example:

Assembly

01: 8B CA         mov    ecx, edx
02:             loc_CFB8F:
03: AD            lodsd
04: F7 D0         not    eax
05: AB            stosd
06: E2 FA         loop   loc_CFB8F

Rough C

while (ecx != 0) {
    eax = *esi;
    esi++;
    *edi = ~eax;
    edi++;
    ecx--;
}

Line 1 reads the counter from EDX. Line 3 is the loop start; it reads in a double-

word at the memory address ESI and saves that in EAX; it also increments EDI

by 4. Line 4 performs the NOT operator on the value just read. Line 5 writes the

modifi ed value to the memory address EDI and increments ESI by 4. Line 6

checks to see if ECX is 0; if not, execution is continued at the loop start.

System Mechanism

The previous sections explain mechanisms and instructions that are available to 

code running at all privilege levels. To get a better appreciation of the architec-

ture, this section discusses two fundamental system-level mechanisms: virtual
address translation and exception/n interrupt// handling. You may skip this section ongg
a fi rst read.
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Address Translation

The physical memory on a computer system is divided into 4KB units called 

pages. (A page can be more than 4KB, but we will not discuss the other sizes

here.) Memory addresses are divided into two categories: virtual and physical. 

Virtual addresses are those used by instructions executed in the processor when 

paging is enabled. For example:

01: A1 78 56 34 12  mov   eax, [0x12345678]; read memory at the virtual

                                           ; address 0x12345678

01: 89 08           mov   [eax], ecx       ; write ECX at the virtual

                                           ; address EAX

Physical addresses are the actual memory locations used by the processor 

when accessing memory. The processor’s memory management unit (MMU) 

transparently translates every virtual address into a physical address before

accessing it. While a virtual address may seem like just another number to the

user, there is a structure to it when viewed by the MMU. On x86 systems with 

physical address extension (PAE) support, a virtual memory address can be 

divided into indices into three tables and offset: page directory pointer table 

(PDPT), page directory (PD), page table (PT), and page table entry (PTE). A PDPT 

is an array of four 8-byte elements, each pointing to a PD. A PD is an array of 

512 8-byte elements, each pointing to a PT. A PT is an array of 512 8-byte ele-

ments each containing a PTE. For example, the virtual address 0xBF80EE6B can 

be understood as shown in Figure 1-5.

10111111 10000000 11101110 01101011

0×BF80EE6B

10 (0×2)

2 bits

Index into PDPT Index into PD Index into PT Page offset

9 bits

111111 100
(0×1FC)

00000 1110 (0×E) 1110 01101011
(0×E6B)

9 bits 12 bits

Figure 1-5

The 8-byte elements in these tables contain data about the tables, memory 

permission, and other memory characteristics. For example, there are bits that 

determine whether the page is read-only or readable/writable, executable or 

non-executable, accessible by user or not, and so on.

The address translation process revolves around these three tables and the 

CR3 register. CR3 holds the physical base address of the PDPT. The rest of this 

section walks through the translation of the virtual address 0xBF80EE6B on a 

real system (refer to Figure 1-5):

kd> r @cr3           ; CR3 is the physical address for the base of a PDPT

cr3=085c01e0

kd> !dq @cr3+2*8 L1  ; read the PDPT entry at index 2

# 85c01f0 00000000`0d66e001
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Per the documentation, the bottom 12 bits of a PDPT entry are fl ags/reserved 

bits, and the remaining ones are used as the physical address of the PD base. 

Bit 63 is the NX fl ag in PAE, so you will also need to clear that as well. In this 

particular example, we did not clear it because it is already 0. (We are looking 

at code pages that are executable.)

; 0x00000000`0d66e001 = 00001101 01100110 11100000 00000001
; after clearing the bottom 12 bits, we have
; 0x0d66e000          = 00001101 01100110 11100000 00000000
; This tells us that the PD base is at physical address 0x0d66e000
kd> !dq 0d66e000+0x1fc*8 L1   ; read the PD entry at index 0x1FC
# d66efe0 00000000`0964b063

Again, per the documentation, the bottom 12 bits of a PD entry are used for 

fl ags/reserved bits, and the remaining ones are used as the base for the PT:

; 0x0964b063 = 00001001 01100100 10110000 01100011
; after clearing the bottom 12 bits, we get
; 0x0964b000 = 00001001 01100100 10110000 00000000
; This tells us that the PT base is at 0x0964b000
kd> !dq 0964b000+e*8 L1      ; read the PT entry at index 0xE
# 964b070 00000000`06694021

Again, the bottom 12 bits can be cleared to get to the base of a page entry:

; 0x06694021 = 00000110 01101001 01000000 00100001

; after clearing bottom 12 bits, we get

; 0x06694000 = 00000110 01101001 01000000 00000000

; This tells us that the page entry base is at 0x06694000

kd> !db 06694000+e6b L8      ; read 8 bytes from the page entry at offset

0xE6B

# 6694e6b 8b ff 55 8b ec 83 ec 0c ..U.....[).t....    ; our data at that

                                                      ; physical page

kd> db bf80ee6b L8           ; read 8 bytes from the virtual address

bf80ee6b  8b ff 55 8b ec 83 ec ..U.....[).t....       ; same data!

After the entire process, it is determined that the virtual address 0xBF80EE6B 

translates to the physical address 0x6694E6B.

Modern operating systems implement process address space separation using 

this mechanism. Every process is associated with a different CR3, resulting in 

process-specifi c virtual address translation. It is the magic behind each pro-

cess’s illusion that it has its own address space. Hopefully you will have more 

appreciation for the processor the next time your program accesses memory!

Interrupts and Exceptions

This section briefl y discusses interrupts and exceptions, as complete implemen-

tation details can be found in Chapter 3, “The Windows Kernel.”

In contemporary computing systems, the processor is typically connected to 

peripheral devices through a data bus such as PCI Express, FireWire, or USB. 
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When a device requires the processor’s attention, it causes an interrupt that 

forces the processor to pause whatever it is doing and handle the device’s request. 

How does the processor know how to handle the request? At the highest level, 

one can think of an interrupt as being associated with a number that is then 

used to index into an array of function pointers. When the processor receives

the interrupt, it executes the function at the index associated with the interrupt 

and resumes execution at wherever it was before the interrupt occurred. These 

are called hardware interrupts because they are generated by hardware devices.

They are asynchronous by nature.

When the processor is executing an instruction, it may run into exceptions. 

For example, an instruction could generate a divide-by-zero error, reference an 

invalid address, or trigger a privilege level transition. For the purpose of this 

discussion, exceptions can be classifi ed into two categories: faults and traps. A
fault is a correctable exception. For example, when the processor executes an 

instruction that references a valid memory address but the data is not present 

in main memory (it was paged out), a page fault exception is generated. The 

processor handles this by saving the current execution state, calling the page 

fault handler to correct this exception (by paging in the data), and re-executing 

the same instruction (which should no longer cause a page fault). A trap is an 

exception caused by executing special kinds of instructions. For example, the 

instruction SYSENTER causes the processor to begin executing the generic system 

call handler; after the handler is done, execution is resumed at the instruction 

immediately after SYSENTER. Hence, the major difference between a fault and 

a trap is where execution resumes. Operating systems commonly implement 

system calls through the interrupt and exception mechanism.

Walk-Through

We fi nish the chapter with a walk-through of a function with fewer than 100 

instructions. It is Sample J’s DllMain routine. This exercise has two objectives.

First, it applies almost every concept covered in the chapter (except for switch-

case). Second, it teaches an important requirement in the practice of reverse 

engineering: reading technical manuals and online documentation. Here is 

the function:

01:    ; BOOL __stdcall DllMain(HINSTANCE hinstDLL, DWORD fdwReason,

       ; LPVOID lpvReserved)

02:                _DllMain@12 proc near                

03: 55               push    ebp

04: 8B EC            mov     ebp, esp

05: 81 EC 30 01 00+  sub     esp, 130h

06: 57               push    edi

07: 0F 01 4D F8      sidt    fword ptr [ebp-8]

08: 8B 45 FA         mov     eax, [ebp-6]

09: 3D 00 F4 03 80   cmp     eax, 8003F400h
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10: 76 10            jbe     short loc_10001C88 (line 18)

11: 3D 00 74 04 80   cmp     eax, 80047400h

12: 73 09            jnb     short loc_10001C88 (line 18)

13: 33 C0            xor     eax, eax

14: 5F               pop     edi

15: 8B E5            mov     esp, ebp

16: 5D               pop     ebp

17: C2 0C 00         retn    0Ch

18:                loc_10001C88:                        

19: 33 C0            xor     eax, eax

20: B9 49 00 00 00   mov     ecx, 49h

21: 8D BD D4 FE FF+  lea     edi, [ebp-12Ch]

22: C7 85 D0 FE FF+  mov     dword ptr [ebp-130h], 0

23: 50               push    eax                  

24: 6A 02            push    2

25: F3 AB            rep stosd

26: E8 2D 2F 00 00   call    CreateToolhelp32Snapshot

27: 8B F8            mov     edi, eax

28: 83 FF FF         cmp     edi, 0FFFFFFFFh

29: 75 09            jnz     short loc_10001CB9 (line 35)

30: 33 C0            xor     eax, eax

31: 5F               pop     edi

32: 8B E5            mov     esp, ebp

33: 5D               pop     ebp

34: C2 0C 00         retn    0Ch

35:                loc_10001CB9:

36: 8D 85 D0 FE FF+  lea     eax, [ebp-130h]

37: 56               push    esi

38: 50               push    eax

39: 57               push    edi

40: C7 85 D0 FE FF+  mov     dword ptr [ebp-130h], 128h

41: E8 FF 2E 00 00   call    Process32First

42: 85 C0            test    eax, eax

43: 74 4F            jz      short loc_10001D24 (line 70)

44: 8B 35 C0 50 00+  mov     esi, ds:_stricmp

45: 8D 8D F4 FE FF+  lea     ecx, [ebp-10Ch]

46: 68 50 7C 00 10   push    10007C50h

47: 51               push    ecx

48: FF D6            call    esi ; _stricmp

49: 83 C4 08         add     esp, 8

50: 85 C0            test    eax, eax

51: 74 26            jz      short loc_10001D16 (line 66)

52:                loc_10001CF0:

53: 8D 95 D0 FE FF+  lea     edx, [ebp-130h]

54: 52               push    edx

55: 57               push    edi

56: E8 CD 2E 00 00   call    Process32Next

57: 85 C0            test    eax, eax

58: 74 23            jz      short loc_10001D24 (line 70)

59: 8D 85 F4 FE FF+  lea     eax, [ebp-10Ch]

60: 68 50 7C 00 10   push    10007C50h

61: 50               push    eax

62: FF D6            call    esi ; _stricmp

63: 83 C4 08         add     esp, 8
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64: 85 C0            test    eax, eax

65: 75 DA            jnz     short loc_10001CF0 (line 52)

66:                loc_10001D16:

67: 8B 85 E8 FE FF+  mov     eax, [ebp-118h]

68: 8B 8D D8 FE FF+  mov     ecx, [ebp-128h]

69: EB 06            jmp     short loc_10001D2A (line 73)

70:                loc_10001D24:

71: 8B 45 0C         mov     eax, [ebp+0Ch]

72: 8B 4D 0C         mov     ecx, [ebp+0Ch]

73:                loc_10001D2A:

74: 3B C1            cmp     eax, ecx

75: 5E               pop     esi

76: 75 09            jnz     short loc_10001D38 (line 82)

77: 33 C0            xor     eax, eax

78: 5F               pop     edi

79: 8B E5            mov     esp, ebp

80: 5D               pop     ebp

81: C2 0C 00         retn    0Ch

82:                loc_10001D38:

83: 8B 45 0C         mov     eax, [ebp+0Ch]

84: 48               dec     eax

85: 75 15            jnz     short loc_10001D53 (line 93)

86: 6A 00            push    0

87: 6A 00            push    0

88: 6A 00            push    0

89: 68 D0 32 00 10   push    100032D0h

90: 6A 00            push    0

91: 6A 00            push    0

92: FF 15 20 50 00+  call    ds:CreateThread

93:                loc_10001D53:

94: B8 01 00 00 00   mov     eax, 1

95: 5F               pop     edi

96: 8B E5            mov     esp, ebp

97: 5D               pop     ebp

98: C2 0C 00         retn    0Ch

99:                _DllMain@12 endp

Lines 3–4 set up the function prologue, which saves the previous base frame 

pointer and establishes a new one. Line 5 reserves 0x130 bytes of stack space. 

Line 6 saves EDI. Line 7 executes the SIDT instruction, which writes the 6-byte

IDT register to a specifi ed memory region. Line 8 reads a double-word at EBP-6

and saves it in EAX. Lines 9–10 check if EAX is below-or-equal to 0x8003F400. If it 

is, execution is transferred to line 18; otherwise, it continues executing at line 11. 

Lines 11–12 do a similar check except that the condition is not-below 0x80047400. 

If it is, execution is transferred to line 18; otherwise, it continues executing at 

line 13. Line 13 clears EAX. Line 14 restores the saved EDI register in line 6. Lines

15–16 restore the previous base frame and stack pointer. Line 17 adds 0xC bytes 

to the stack pointer and then returns to the caller.

Before discussing the next area, note a few things about these fi rst 17 lines. 

The SIDT instruction (line 7) writes the content of the IDT register to a 6-byte 
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memory location. What is the IDT register? The Intel/AMD reference manual 

states that IDT is an array of 256 8-byte entries, each containing a pointer to an

interrupt handler, segment selector, and offset. When an interrupt or exception 

occurs, the processor uses the interrupt number as an index into the IDT and 

calls the entry’s specifi ed handler. The IDT register is a 6-byte register; the top 

4 bytes contain the base of the IDT array/table and the bottom 2 bytes store the 

table limit. With this in mind, you now know that line 8 is actually reading the 

IDT base address. Lines 9 and 11 check whether the base address is in the range 

(0x8003F400, 0x80047400). What is special about these seemingly random con-

stants? If you search the Internet, you will note that 0x8003F400 is an IDT base 

address on Windows XP on x86. This can be verifi ed in the kernel debugger:

0: kd> vertarget

Windows XP Kernel Version 2600 (Service Pack 3) MP (2 procs) Free x86 compat-

ible

Built by: 2600.xpsp.080413-2111

…

0: kd> r @idtr

idtr=8003f400

0: kd> ~1

1: kd> r @idtr

idtr=bab3c590

Why does the code check for this behavior? One possible explanation is that the 

developer assumed that an IDT base address falling in that range is considered 

“invalid” or may be the result of being virtualized. The function automatically 

returns zero if the IDTR is “invalid.” You can decompile this code to C as follows:

typedef struct _IDTR {

    DWORD base;

    SHORT limit;

} IDTR, *PIDTR;

BOOL __stdcall DllMain (HINSTANCE hinstDLL, DWORD fdwReason, LPVOID lpvRe-

served)

{

    IDTR idtr;

    __sidt(&idtr);

    if (idtr.base > 0x8003F400 && idtr.base < 0x80047400h) { return FALSE; }

    //line 18

    ...

}

N O T E  If you read the manual closely, you’ll note that each processor has its own

IDT and hence IDTR. Therefore, on a multi-core system, IDTR will be diff erent for each 

core. Clearly, 0x8003F400 is valid only for core 0 on Windows XP. If the instruction 

were to be scheduled to run on another core, the IDTR would be 0xBAB3C590. On later 

versions of Windows, the IDT base addresses change between reboots; hence, the

practice of hardcoding base addresses will not work.
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If the IDT base seems valid, the code continues execution at line 18. Lines 

19–20 clear EAX and set ECX to 0x49. Line 21 uses sets EDI to whatever EBP-0x12C

is; since EBP is the base frame pointer, EBP-0x12C is the address of a local vari-

able. Line 22 writes zero at the location pointed to by EBP-0x130. Lines 23–24 

push EAX and 2 on the stack. Line 25 zeroes a 0x124-byte buffer starting from 

EBP-0x12C. Line 26 calls CreateToolhelp32Snapshot:

HANDLE WINAPI CreateToolhelp32Snapshot(
 _In_  DWORD dwFlags,
 _In_  DWORD th32ProcessID
);

This Win32 API function takes two integer parameters. As a general rule,

Win32 API functions follow STDCALL calling convention. Hence, the dwFlags

and th32ProcessId parameters are 0x2 (line 24) and 0x0 (line 23). This func-

tion enumerates all processes on the system and returns a handle to be used in 

Process32Next. Lines 27–28 save the return value in EDI and check if it is -1. If 

it is, the return value is set to 0 and it returns (lines 30–34); otherwise, execution 

continues at line 35. Line 36 sets EAX to the address of the local variable previ-

ously initialized to 0 in line 22; line 40 initializes it to 0x128. Lines 37–39 push 

ESI, EAX, and EDI on the stack. Line 41 calls Process32First:

Function prototype

BOOL WINAPI Process32First(
 _In_     HANDLE hSnapshot,
 _Inout_  LPPROCESSENTRY32 lppe

);

Relevant structure defi nition

typedef struct tagPROCESSENTRY32 {
 DWORD     dwSize;
 DWORD     cntUsage;
 DWORD     th32ProcessID;
 ULONG_PTR th32DefaultHeapID;
 DWORD     th32ModuleID;
 DWORD     cntThreads;
 DWORD     th32ParentProcessID;
 LONG      pcPriClassBase;
 DWORD     dwFlags;
 TCHAR     szExeFile[MAX_PATH];
} PROCESSENTRY32, *PPROCESSENTRY32;

00000000 PROCESSENTRY32 struc ; (sizeof=0x128)
00000000 dwSize dd ?
00000004 cntUsage dd ?
00000008 th32ProcessID dd ?
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0000000C th32DefaultHeapID dd ?
00000010 th32ModuleID dd ?
00000014 cntThreads dd ?
00000018 th32ParentProcessID dd ?
0000001C pcPriClassBase dd ?
00000020 dwFlags dd ?
00000024 szExeFile db 260 dup(?)
00000128 PROCESSENTRY32 ends

Because this API takes two parameters, hSnapshot is EDI (line 39, previously 

the returned handle from CreateToolhelp32Snapshot in line 27), and lppe is the 

address of a local variable (EBP-0x130). Because lppe points to a PROCESSENTRY32

structure, we immediately know that the local variable at EBP-0x130 is of the

same type. It also makes sense because the documentation for Process32First

states that before calling the function, the dwSize fi eld must be set to the size

of a PROCESSENTRY32 structure (which is 0x128). We now know that lines 19–25 

were simply initializing this structure to 0. In addition, we can say that this 

local variable starts at EBP-0x130 and ends at EBP-0x8.

Line 42 tests the return value of Process32Next. If it is zero, execution begins at

line 70; otherwise, it continues at line 43. Line 44 saves the address of the stricmp 

function in ESI. Line 45 sets ECX to the address of a local variable (EBP-0x10C),

which happens to be a fi eld in PROCESSENTRY32 (see the previous paragraph). 

Lines 46–48 push 0x10007C50/ECX on the stack and call stricmp. We know

that stricmp takes two character strings as arguments; hence, ECX must be the 

szExeFile fi eld in PROCESSENTRY32 and 0x10007C50 is the address of a string:

.data:10007C50 65 78 70 6C 6F+Str2 db 'explorer.exe',0

Line 49 cleans up the stack because stricmp uses CDECL calling convention.

Line 50 checks stricmp’s return value. If it is zero, meaning that the string 

matched "explorer.exe", execution begins at line 66; otherwise, it continues

execution at line 52. We can now decompile lines 18–51 as follows:

    HANDLE h;
    PROCESSENTRY32 procentry;
    h = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, 0);
    if (h == INVALID_HANDLE_VALUE) { return FALSE; }
    
    memset(&procentry, 0, sizeof(PROCESSENTRY32));
    procentry.dwSize = sizeof(procentry); // 0x128
    if (Process32Next(h, &procentry) == FALSE) {
        // line 70
        ...
    }
    if (stricmp(procentry.szExeFile, "explorer.exe") == 0) {
        // line 66
        ...
    }
    // line 52
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Lines 52–65 are nearly identical to the previous block except that they form 

a loop with two exit conditions. The fi rst exit condition is when Process32Next

returns FALSE (line 58) and the second is when stricmp returns zero. We can 

decompile lines 52–65 as follows:

    while (Process32Next(h, &procentry) != FALSE) {
        if (stricmp(procentry.szExeFile, "explorer".exe") == 0)
            break;
    }

After the loop exits, execution resumes at line 66. Lines 67–68 save the match-

ing PROCESSENTRY32’s th32ParentProcessID/th32ProcessID in EAX/ECX and 

continue execution at 37. Notice that Line 66 is also a jump target in line 43.

Lines 70–74 read the fdwReason parameter of DllMain (EBP+C) and check 

whether it is 0 (DLL_PROCESS_DETACH). If it is, the return value is set to 0 and 

it returns; otherwise, it goes to line 82. Lines 82–85 check if the fdwReason is 

greater than 1 (i.e., DLL_THREAD_ATTACH, DLL_THREAD_DETACH). If it is, the return

value is set to 1 and it returns; otherwise, execution continues at line 86. Lines 

86–92 call CreateThread:

HANDLE WINAPI CreateThread(
  _In_opt_   LPSECURITY_ATTRIBUTES lpThreadAttributes,
  _In_       SIZE_T dwStackSize,
  _In_       LPTHREAD_START_ROUTINE lpStartAddress,
  _In_opt_   LPVOID lpParameter,
  _In_       DWORD dwCreationFlags,
  _Out_opt_  LPDWORD lpThreadId
);

with lpStartAddress as 0x100032D0. This block can be decompiled as follows:

if (fdwReason == DLL_PROCESS_DETACH) { return FALSE; }

if (fdwReason == DLL_THREAD_ATTACH || fdwReason == DLL_THREAD_DETACH) {

   return TRUE; }

CreateThread(0, 0, (LPTHREAD_START_ROUTINE) 0x100032D0, 0, 0, 0);

return TRUE;

Having analyzed the function, we can deduce that the developer’s original 

intention was this:

 1. Detect whether the target machine has a “sane” IDT.

 2. Check whether “explorer.exe” is running on the system—i.e., someone 

logged on.

 3. Create a main thread that infects the target machine.
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Exercises

 1. Repeat the walk-through by yourself. Draw the stack layout, including

parameters and local variables.

 2. In the example walk-through, we did a nearly one-to-one translation of 

the assembly code to C. As an exercise, re-decompile this whole function

so that it looks more natural. What can you say about the developer’s skill 

level/experience? Explain your reasons. Can you do a better job?

 3. In some of the assembly listings, the function name has a @ prefi x followed 

by a number. Explain when and why this decoration exists.

 4. Implement the following functions in x86 assembly: strlen, strchr, mem-

cpy, memset, strcmp, strset.

 5. Decompile the following kernel routines in Windows:

■ KeInitializeDpc

■ KeInitializeApc

■ ObFastDereferenceObject (and explain its calling convention)

■ KeInitializeQueue

■ KxWaitForLockChainValid

■ KeReadyThread

■ KiInitializeTSS

■ RtlValidateUnicodeString

 6. Sample H. The function sub_13846 references several structures whose types 

are not entirely clear. Your task is to fi rst recover the function prototype

and then try to reconstruct the structure fi elds. After reading Chapter 3, 

return to this exercise to see if your understanding has changed. (Note: 

This sample is targeting Windows XP x86.)

 7. Sample H. The function sub_10BB6 has a loop searching for something.

First recover the function prototype and then infer the types based on the 

context. Hint: You should probably have a copy of the PE specifi cation 

nearby.

 8. Sample H. Decompile sub_11732 and explain the most likely programming 

construct used in the original code.

 9. Sample L. Explain what function sub_1000CEA0 does and then decompile

it back to C.
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10. If the current privilege level is encoded in CS, which is modifi able by 

user-mode code, why can’t user-mode code modify CS to change CPL?

11. Read the Virtual Memory chapter in Intel Software Developer Manual,
Volume 3 and AMD64 Architecture Programmer’s Manual, Volume 2: System
Programming. Perform a few virtual address to physical address transla-

tions yourself and verify the result with a kernel debugger. Explain how 

data execution prevention (DEP) works.

12. Bruce’s favorite x86/x64 disassembly library is BeaEngine by BeatriX 

(www.beaengine.org). Experiment with it by writing a program to disas-

semble a binary at its entry point.

x64

x64 is an extension of x86, so most of the architecture properties are the same, 

with minor differences such as register size and some instructions are unavail-

able (like PUSHAD). The following sections discuss the relevant differences.

Register Set and Data Types

The register set has 18 64-bit GPRs, and can be illustrated as shown in 

Figure 1-6. Note that 64-bit registers have the “R” prefi x.

RAX
EAX

AX
ALAH

0

715

31 31
15

7

63
RBP

EBP
BP

BPL

063

Figure 1-6

While RBP can still be used as the base frame pointer, it is rarely used for that 

purpose in real-life compiler-generated code. Most x64 compilers simply treat 

RBP as another GPR, and reference local variables relative to RSP.

Data Movement

x64 supports a concept referred to as RIP-relative addressing,gg  which allows instruc-

tions to reference data at a relative position to RIP. For example:

01: 0000000000000000 48 8B 05 00 00+  mov     rax, qword ptr cs:loc_A

02:                                   ; originally written as "mov rax,

[rip]"

03: 0000000000000007                loc_A:
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04: 0000000000000007 48 31 C0         xor     rax, rax

05: 000000000000000A 90               nop

Line 1 reads the address of loc_A (which is 0x7) and saves it in RAX. RIP-

relative addressing is primarily used to facilitate position-independent code.

Most arithmetic instructions are automatically promoted to 64 bits even 

though the operands are only 32 bits. For example:

48 B8 88 77 66+ mov   rax, 1122334455667788h

31 C0           xor   eax, eax  ; will also clear the upper 32bits of RAX.

                                ; i.e., RAX=0 after this

48 C7 C0 FF FF+ mov   rax,0FFFFFFFFFFFFFFFFh

FF C0           inc   eax  ; RAX=0 after this

Canonical Address

On x64, virtual addresses are 64 bits in width, but most processors do not sup-

port a full 64-bit virtual address space. Current Intel/AMD processors only use 

48 bits for the address space. All virtual memory addresses must be in canonical 

form. A virtual address is in canonical form if bits 63 to the most signifi cant 

implemented bit are either all 1s or 0s. In practical terms, it means that bits 48–63 

need to match bit 47. For example:

0xfffff801`c9c11000 = 11111111 11111111 11111000 00000001 11001001 11000001

   00010000 00000000 ; canonical

0x000007f7`bdb67000 = 00000000 00000000 00000111 11110111 10111101 10110110

   01110000 00000000 ; canonical

0xffff0800`00000000 = 11111111 11111111 00001000 00000000 00000000 00000000

   00000000 00000000 ; non-canonical

0xffff8000`00000000 = 11111111 11111111 10000000 00000000 00000000 00000000

   00000000 00000000 ; canonical

0xfffff960`000989f0 = 11111111 11111111 11111001 01100000 00000000 00001001

   10001001 11110000 ; canonical

If code tries to dereference a non-canonical address, the system will cause 

an exception.

Function Invocation

Recall that some calling conventions require parameters to be passed on the 

stack on x86. On x64, most calling conventions pass parameters through reg-

isters. For example, on Windows x64, there is only one calling convention and 

the fi rst four parameters are passed through RCX, RDX, R8, and R9; the remaining

are pushed on the stack from right to left. On Linux, the fi rst six parameters are 

passed on RDI, RSI, RDX, RCX, R8, and R9.

N O T E  For more information regarding x64 ABI on Windows, see the “x64 Software 

Conventions” section on MSDN (http://msdn.microsoft.com/en-us

/library/7kcdt6fy.aspx).



38 Chapter 18 ■ x86 and x64

Exercises

 1. Explain two methods to get the instruction pointer on x64. At least one of 

the methods must use RIP addressing.

 2. Perform a virtual-to-physical address translation on x64. Were there any 

major differences compared to x86?




