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PLL BASICS AND
STANDARD STRUCTURE

This chapter provides an overview of the standard phase-locked loop (PLL)
structure and illustrates that this structure is not suitable for power engineer-
ing applications. The large double-frequency ripples in the PLL cause errors
beyond admissible limits of many power engineering applications. Attempts
to reduce such errors by means of linear filters bring about long transient
response times inadmissible for similar applications.

1.1 STANDARD PLL STRUCTURE

Structure of a standard PLL is shown in Figure 1.1 [5, 25, 31, 59]. The
input signal is denoted by u(t), LF stands for loop filter, and VCO stands for
voltage-controlled oscillator. The input signal is multiplied with the VCO’s
output signal y, is passed through the LF, and the outcome is applied to
the VCO.

The VCO generates a sinusoidal signal whose phase angle is proportional
to the integral of the VCO’s input. The VCO has a center frequency ωn, and
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4 PLL BASICS AND STANDARD STRUCTURE

× LF VCO
u z y

FIGURE 1.1 Structure of a standard PLL.
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FIGURE 1.2 Two recommended structures for the VCO. (a) y = cosφo, y⊥ =
cos(φo − π

2 ) = sinφo. (b) y = − sinφo, y⊥ = − sin(φo − π
2 ) = cosφo.

the relationship between its output signal phase angle and the input signal is
given by

φo =
t�
ωo(τ )dτ (1.1)

where ωo = ωn + �ωo is the estimated frequency and �ωo represents the
deviation of frequency from the center frequency ωn.1 The VCO’s opera-
tion can be modeled as an integration and a trigonometric function as shown
in Figure 1.2. The center frequency for the VCO is equal to the nominal value
of the input signal frequency.

Assume that the sinusoidal input signal is given by

u(t) = Ui sinφi (1.2)

where Ui is its peak value and φi is its phase angle.2 Then, using Figure 1.2a,
the multiplier output signal z is equal to

z(t) = u(t) = Ui sinφi cosφo =
Ui

2
sin(φi − φo)︸ ︷︷ ︸

low frequency

+
Ui

2
sin(φi + φo)︸ ︷︷ ︸

high frequency

. (1.3)

This signal comprises two terms: a low-frequency term and a high-frequency
term. The low-frequency term is a measure of the difference between phase

1 The subscript o denotes “output” variables, that is, those that are estimated and outputted by
the PLL.
2 The subscript i is used to denote variables of the “input” signal.
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APPROXIMATE LINEAR MODEL 5

angles of input and output. Thus, the multiplier is also called the phase detec-
tor (PD) or the phase-difference detector.

If the input signal is considered as u(t) = Ui cosφi, then using Figure 1.2b,
the multiplier output signal z is

z(t) = u(t) = −Ui cosφi sinφo =
Ui

2
sin(φi − φo)︸ ︷︷ ︸

low frequency

− Ui

2
sin(φi + φo)︸ ︷︷ ︸

high frequency

. (1.4)

In other words, the low-frequency term is the same in (1.3) and (1.4). The
signal y⊥ defined in Figure 1.2 is the 90◦ phase-delayed version of y. In
steady state situation where PLL regulates φi − φo to 0, y⊥ is synchronous
with the input signal u.

1.2 APPROXIMATE LINEAR MODEL

The following set of notations is introduced:

ωi = ωn + �ωi : input frequency φi = ωnt + �φi : input phase angle

ωo = ωn + �ωo : output frequency φo = ωnt + �φo : output phase angle

The relationship between frequency and phase angle is3

φio =
t�
ωio(τ )dτ = ωnt +

t�
�ωio(τ )dτ .

The low-frequency term in (1.3) is then equal to Ui
2 sin(�φi − �φo) and the

high-frequency term is Ui
2 sin(2ωnt + �φi + �φo).

Assuming that the PLL is operating such that the output frequency is close
to the input frequency, the high-frequency term is around the double fre-
quency. It will be shown that the loop has low-pass characteristics. Thus, let
us now neglect the high-frequency term in the loop assuming that the low-
pass loop attenuates it sufficiently. Then, (1.3) is simplified to

z(t) ≈ Ui

2
sin(�φi − �φo). (1.5)

The simplified model of the PLL based on ignoring the double-frequency
term is shown in Figure 1.3. The model can further be simplified by making

3 The subscript io shows that the relationship is valid for both “input” and “output” variables.
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6 PLL BASICS AND STANDARD STRUCTURE
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FIGURE 1.3 Simplified model of a PLL when high-frequency term is neglected.
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FIGURE 1.4 Linear model of the PLL.

an assumption that �φi − �φo is close to 0. This means that the PD out-
put is proportional to the difference between phase angles. In this case, the
sine nonlinearity can be replaced by its linear approximation that is identity
operation. The resultant transfer function diagram is shown in Figure 1.4.
In this figure, H(s) denotes the LF transfer function. This loop is a linear
time invariant (LTI) loop if it is assumed that the input signal magnitude is
constant.

Assume that the loop filter H(s) is selected such that the loop is stable
and the tracking error e(t) tends to 0. This means that the phase angle of y(t)
remains in 90◦ phase shift from that of the input signal. The complementary
output signal y⊥(t) as shown in Figure 1.2 will then be in phase (meaning
that it will have the same phase angle) with the input signal. In other words,
y⊥(t) will be a signal with unity amplitude that is in phase or synchronous
with the input signal. This can serve as the synchronization signal.

The open-loop transfer function (also called the loop gain) of the
system is

G(s) =
UiH(s)

2s
,

the closed-loop transfer function is given by

T(s) =
��o(s)

��i(s)
=

G(s)

1 + G(s)
=

UiH(s)

UiH(s) + 2s
,

and the error transfer function is

F(s) =
E(s)

��i(s)
=

1

1 + G(s)
=

2s

2s + UiH(s)
.
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1.3 LOOP FILTER DESIGN

The control objectives in the PLL system are as follows:

• The output phase angle follows the changes in the input phase angle
within a desirable transient time and transient behavior.

• The loop performance must be robust to noise and distortions.

These ensure that the PLL will be able to supply a synchronizing signal
despite variations in the input signal and despite the noise and distortions.
The noise can originate from the system and/or from the measurement.
The distortions are in the form of measurement noise, bias (direct current
(DC) offset), harmonics, interharmonics, transient signals, and/or switching
notches. The control objectives are to be achieved by proper design of the LF
transfer function H(s).

Loop Filter of Order Zero

The simplest LF structure is a constant: H(s) = ho. The closed-loop transfer
function is T(s) = Uiho

Uiho + 2s that is stable for all ho > 0 and is a first-order low-

pass filter (LPF) with unity gain and cutoff frequency ωc = Uiho
2 . The error

transfer function is F(s) = 2s
2s + Uiho

.
The error to a unit step function in the input phase angle is

E(s) =
2s

2s + Uiho

1

s
=

2

2s + Uiho
.

Based on the final value theorem (FVT) [24], the error signal tends to

lim
t→∞ e(t) = lim

s→0
sE(s) = lim

s→0

2s

2s + Uiho
= 0.

This means that the loop tracks the constant jumps in the phase angle with
no steady state error.

The error to a unit ramp function in the input phase angle is

E(s) =
2s

2s + Uiho

1

s2 =
2

s(2s + Uiho)
.

Based on the FVT, the error signal tends to

lim
t→∞ e(t) = lim

s→0
sE(s) = lim

s→0

2

2s + Uiho
=

2

Uiho
.
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8 PLL BASICS AND STANDARD STRUCTURE

This means that the loop does not track the ramp changes of the phase angle
or the constant changes in the frequency.

Loop Filter of Order One

A first-order proportional-integrating (PI) structure for the LF is given by
H(s) = ho + h1

s . The closed-loop transfer function is equal to

T(s) =
Uiho + Ui

h1
s

Uiho + Ui
h1
s + 2s

=
Uiho

2 s + Uih1
2

s2 + Uiho
2 s + Uih1

2

. (1.6)

The error transfer function is

F(s) =
2s

2s + Uiho + Ui
h1
s

=
s2

s2 + Uiho
2 s + Uih1

2

.

Similar to the analysis for loop filter of order zero, the FVT can be applied
to prove that step jumps and ramp variations of the phase angle (which cor-
respond to step jumps in frequency) are tracked by the loop filter of order
one with no steady state error. In other words, a PLL with a first-order LF
guarantees that the “slow” variations of input frequency are tracked. This is
desirable for power engineering applications.

Loop Filters of Higher Order

An LF structure with two integrators tracks ramp variations in the frequency.
In addition to integrators, one may also include general transfer functions
with nonzero poles and zeros. LPF and band-stop filters are of specific
interest because they can attenuate the double-frequency ripples and other
harmonics. For higher order filters, the design stage can be done using the
classical control techniques (such as Bode diagrams, root-locus method, and
Nyquist method) as well as other techniques (such as optimal control design
tools including linear quadratic design methods and robust control methods)
to achieve the control objectives.

1.4 REMARKS

• The transfer function (1.6) indicates that the loop modes depend on the
magnitude of the input signal Ui. This means that the LF gains ho and
h1 depend on the input signal magnitude and they must be readjusted if
the magnitude experiences drastic changes.
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FIGURE 1.5 Tapping the frequency from the I output.

• The relationship (1.6) shows a second-order transfer function with a
zero. Adjusting the poles does not guarantee that the expected transient
response from a standard second-order system is achieved. The zero
often causes larger overshoot and longer settling time.

• The input signal to the VCO is often considered as an estimate for the
frequency (or frequency deviation from the center value). However, the
integrator output (within the PI unit) provides a more accurate point for
this variable. In other words, the P branch can be bypassed as is shown
in Figure 1.5.

• The root-locus method [22] can be used to observe the closed-loop poles
and to design the LF coefficients. The loop-characteristic equation is
1 + G(s) = 0, where G(s) = UiH(s)

2s is the loop gain and H(s) is the LF

transfer function. For a LF of order one, H(s) = h0 + h1
s = h0

s + z
s , the char-

acteristic equation can be written as

1 + k
(s + z)

s2 = 0,

where h0 = k 2
Ui

and h1 = h0z. The root locus can be drawn by selecting
z and varying k. For a given z, the root locus is shown in Figure 1.6.
It is observed that at k = 2z, the poles are both at −z ± jz and at k = 4z,
the poles are at −2z. If z = 50, for example, then k = 4z = 200 places both
poles at −100. And for this placement, h0 = 400

Ui
and h1 = 20,000

Ui
.

1.5 NUMERICAL RESULTS

Figure 1.7 shows a simulation result when the LF transfer function is H(s) =
ho + h1

s = 400 + 20,000
s . The system’s poles are both located at −100 for this

selection of h0 and h1, assuming a unity magnitude input signal. The input
signal frequency is initially 50 Hz and jumps to 60 Hz at t = 0.1 s. The PI’s
output has double-frequency ripples as large as about 60 Hz peak-to-peak.
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10 PLL BASICS AND STANDARD STRUCTURE
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FIGURE 1.6 Root-locus of the PLL loop for H(s) = h0 + h1
s where k = Ui
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FIGURE 1.7 Performance of PLL with a LF of H(s) = ho + h1
s .

The ripples at the I’s output are almost 15 times smaller (about 4 Hz peak-to-
peak). The extent of ripples on the phase angle is about 25◦.

It is possible to decrease the ripples by modifying the LF. For example, as
shown in Figure 1.8, a LPF with a cutoff frequency of 50 Hz decreases the
ripples to almost about 50% of the original values, see Figure 1.9.
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FIGURE 1.8 Structure of a standard PLL with modified LF.
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FIGURE 1.9 Performance of PLL with a LF of H(s) = 1
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It is clearly observed from Figure 1.7 and Figure 1.9 that the phase angle
error not only has a double-frequency ripple, it also has some offset. In other
words, there is a bias error in the estimated phase angle. This phenomenon
cannot be explained by the linear model of the PLL because the linear model
(which includes a PI filter) states that there must be no bias in the estimated
angle. This error has its origin in the nonlinearity of PLL.

1.6 SUMMARY AND CONCLUSION

The conventional PLL structure is discussed and its performance is studied
for a power system situation. It was observed that for a pure sinusoidal signal
with no distortion or noise, the error in phase locking is in the order of several
degrees when a first order integrating plus a LPF is used for the loop filter.
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12 PLL BASICS AND STANDARD STRUCTURE

This level of error is not admissible for most power engineering applications
let alone that harmonics and noise would contribute to increase this error in
a realistic scenario. Adding more low-pass filtering in the loop can decrease
the ripples, but, by the time the ripples are small enough, the transient time of
the loop is beyond the admissible range for power system applications. This
is why this standard PLL structure has not been of much interest in power
engineering.

PROBLEMS

1.1 Let u = Ui sin(φi(t)) be the input signal to the PLL of Figure 1.1.
Show that φo will be equal to φi if the VCO realization of Figure 1.2a
is used. However, φo = φi − π

2 if the VCO realization of Figure 1.2b
is used.

1.2 Let u = Ui cos(φi(t)) be the input signal to the PLL of Figure 1.1. Show
that φo will be equal to φi if the VCO realization of Figure 1.2b is
used. However, φo = φi + π

2 if the VCO realization of Figure 1.2b
is used.

1.3 Consider the standard PLL structure with a pure sinusoidal input signal
u(t) = Ui sin(ωit). The LF is given by the general transfer function H(s).
a. Show that the steady state peak-to-peak value of the ripples in the

estimated phase angle is equal to Ui
2ωi

|H(j2ωi)| rad.
b. Calculate the steady state peak-to-peak value of the ripples in the

estimated frequency.
c. Express the results in (a) and (b) when H(s) = h0 + h1

s .
d. Repeat (b) when Figure 1.5 is used.
e. Verify the results in part (c) and (d) by simulations for the case

where Ui = 1, ωi = 120π , h0 = 400, and h1 = 20,000.

1.4 Consider the standard PLL structure with a pure sinusoidal input sig-
nal u(t) = Ui sin(ωit). The LF is a combination of a PI and a LPF given
by H(s) = (h0 + h1

s )( ωc
s + ωc

) as shown in Figure 1.8. Choose Ui = 1,
ωi = 120π , h0 = 400, and h1 = 20,000. Assume that a maximum peak-
to-peak ripple of 1◦ is allowed in the phase angle.
a. Find the value of ωc analytically.
b. Verify your answer by simulation.
c. Based on the simulation, how long is the transient time of the system

with this value of ωc?
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m

lθ

FIGURE 1.10 Pendulum system.

1.5 Consider the second-order LF of the form H(s) = h0 + h1
s + h2

s2 .
a. Prove that a PLL with this LF can track the ramp variations of fre-

quency with no steady state error.
b. Write down the closed-loop characteristic equation of the system.

Set value of h0, h1, and h2 so that the closed-loop poles are all at
−50 for a unity magnitude input signal.

c. Simulate the system and observe its responses when the input signal
frequency changes in step and ramp formats.

d. Write the LF in the form H(s) = h0
(s + z1)(s + z2)

s2 , assume that z1 and z2
are known, and draw the root locus of the system to find a suitable
value for h0. Consider three different cases:

i. z1 = z2 = −100,
ii. z1 = −100, z2 = −50,

iii. z1,2 = −100 ± j100.

1.6 Consider the pendulum system shown in Figure 1.10. A mass m is sus-
pended from a pivot through a massless rod with length � and can swing
freely. The angle of the rod with the vertical axis is θ .
a. Show that

Iθ̈ = −mg� sinθ − kθ̇

describes the pendulum movement where I = m�2 is the moment of
inertia, g is the gravitational constant, and k is the friction constant.

b. Define the state variables x1 = θ and x2 = θ̇ and derive a state-space
representation for this system.

c. Show that Pk = (kπ , 0) for all integer k are equilibrium points of the
system.

d. Physically, the possible equilibrium points are P0 = (0, 0) and P1 =
(π , 0). Intuitively, it is clear that P1 is globally stable and P2 is unsta-
ble. Show this fact analytically.
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14 PLL BASICS AND STANDARD STRUCTURE

1.7 Consider the PLL system with the LF of H(s) = 1
τ s + 1 . Write down the

equations of the PLL, ignore the double-frequency terms, and show that
it is mathematically equivalent to the pendulum system introduced in
problem 1.6. You may use the block diagram of Figure 1.3.

1.8 Consider the PLL system with a general LF described by the transfer
function H(s). Let (A, B, C, D) be a minimal state-space representation
for H(s).
a. Write down a state-space representation for the PLL system with

this LF.
b. Show that Pk = (kπ , 0) for all integer k are equilibrium points of the

system.


