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1.1 Discovery of the Pauli Exclusion Principle
and Early Developments

Wolfgang Pauli formulated his principle before the creation of the contemporary
quantum mechanics (1925–1927). He arrived at the formulation of this principle
trying to explain regularities in the anomalous Zeeman effect in strong magnetic
fields. Although in his Princeton address [1], Pauli recalled that the history of
the discovery goes back to his student days in Munich. At that time the periodic
system of chemical elements was well known and the series of whole numbers
2, 8, 18, 32… giving the lengths of the periods in this table was zealously discussed
in Munich. A great influence on Pauli had his participation in the Niels Bohr guest
lectures at Göttingen in 1922, when he met Bohr for the first time. In these lectures
Bohr reported on his theoretical investigations of the Periodic System of Elements.
Bohr emphasized that the question of why all electrons in an atom are not bound in
the innermost shell is the fundamental problem in these studies. However, no
convincing explanation for this phenomenon could be given on the basis of
classical mechanics.

In his first studies Pauli was interested in the explanation of the anomalous type
of splitting in the Zeeman effect in strong magnetic fields. As he recalled [1]:

The anomalous type of splitting was especially fruitful because it exhibited beautiful
and simple laws, but on the other hand it was hardly understandable, since very
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general assumptions concerning the electron using classical theory, as well as quan-
tum theory, always led to the same triplet. A closer investigation of this problem left
me with the feeling, it was even more unapproachable. A colleague whomet me strol-
ling rather aimlessly in the beautiful streets of Copenhagen said to me in a friendly
manner, ‘You look very unhappy’; whereupon I answered fiercely, ‘How can one
look happy when he is thinking about the anomalous Zeeman effect?’

Pauli decided to analyze the simplest case, the doublet structure of the alkali
spectra. In December 1924 Pauli submitted a paper on the Zeeman effect [2], in
which he showed that Bohr’s theory of doublet structure based on the nonvanishing
angular moment of a closed shell, such as K-shell of the alkali atoms, is incorrect
and closed shell has no angular and magnetic moments. Pauli came to the conclu-
sion that instead of the angular momentum of the closed shells of the atomic core, a
new quantum property of the electron had to be introduced. In that paper he wrote,
remarkable for that time, prophetic words. Namely:

According to this point of view, the doublet structure of alkali spectra … is due to a
particular two-valuedness of the quantum theoretic properties of the electron, which
cannot be described from the classical point of view.

This nonclassical two-valued nature of electron is now called spin. In anticipating
the quantum nature of the magnetic moment of electron before the creation of
quantum mechanics, Pauli exhibited a striking intuition.
After that, practically all was ready for the formulation of the exclusion

principle. Pauli also stressed the importance of the paper by Stoner [3], which
appeared right at the time of his thinking on the problem. Stoner noted that the
number of energy levels of a single electron in the alkali metal spectra for the given
value of the principal quantum number in an external magnetic field is the same as
the number of electrons in the closed shell of the rare gas atoms corresponding to
this quantum number. On the basis of his previous results on the classification of
spectral terms in a strong magnetic field, Pauli came to the conclusion that a single
electron must occupy an entirely nondegenerate energy level [1].
In the paper submitted for publication on January 16, 1925 Pauli formulated his

principle as follows [4]:

In an atom there cannot be two or more equivalent electrons, for which in strong fields
the values of all four quantum numbers coincide. If an electron exists in an atom for
which all of these numbers have definite values, then this state is ‘occupied.’

In this paper Pauli explained the meaning of four quantum numbers of a single
electron in an atom, n, l, j= l± 1 2, and mj (in the modern notations); by n and
l he denoted the well known at that time the principal and angular momentum
quantum numbers, by j and mj—the total angular momentum and its projection,
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respectively. Thus, Pauli characterized the electron by some additional quantum
number j, which in the case of l= 0 was equal to ± 1 2. For the fourth quantum
number of the electron Pauli did not give any physical interpretations, since he
was sure, as we discussed above, that it cannot be described in terms of classical
physics.

Introducing two additional possibilities for electron states, Pauli obtained
2 2l+ 1 possibilities for the set (n, l, j, mj). That led to the correct numbers 2,
8, 18, and 32 for the lengths of the periods in the Periodic Table of the Elements.

As Pauli noted in his Nobel Prize lecture [5]: “…physicists found it difficult to
understand the exclusion principle, since nomeaning in terms of a model was given
to the fourth degree of freedom of the electron.”Although not all physicists! Young
scientists first Ralph Kronig and then George Uhlenbeck and Samuel Goudsmit did
not take into account the Pauli words that the electron fourth degree of freedom
cannot be described by classical physics and suggested the classical model of
the spinning electron. Below I will describe in some detail the discovery of spin
using the reminiscences of the main participants of this dramatic story.

Kronig recalled [6] that on January 7, 1925, at the age of 20, he, as a traveling
fellow of the Columbia University, arrived in the small German university town of
Tübingen to see Landé and Gerlach. At the Institute of Physics Kronig was
received by Landé with the remark that it was a very opportune moment, since
he was expecting Pauli the following day and he just received a long and very inter-
esting letter from Pauli. In that letter Pauli described his exclusion principle. Pauli’s
letter made a great impression on Kronig and it immediately occurred to him that
additional to the orbital angular momentum l the momentum s = 1 2 can be con-
sidered as an intrinsic angular momentum of the electron. The same day Kronig
performed calculations of the doublet splitting. The results encouraged him,
although the obtained splitting was too large, by a factor of 2. He reported his
results to Landé. Landé recommended telling these results to Pauli. Next day Pauli
arrived at Tübingen, and Kronig had an opportunity to discuss with him his ideas.
As Kronig [6] wrote: “Pauli remarked: ‘Das ist ja ein ganz Einfall’,1 but did not
believe that the suggestion had any connection with reality.”

Later Kronig discussed his ideas in Copenhagen with Heisenberg, Kramers, and
others and they also did not approve them. Under the impression of the negative
reaction of most authoritative physicists and some serious problems in his calcu-
lations Kronig did not publish his ideas about a spinning electron. In the letter to
van der Waerden [7] Kronig wrote about the difficulties he met in his studies of the
spinning electron:

First, the factor 2 alreadymentioned.Next, thedifficulty tounderstandhowa rotationof
the electron about its axis would yield a magnetic moment of just onemagneton. Next,
the necessity to assume, for the rotating charge of an electron of classical size, velocities

1 This is a very funny idea.
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surpassing the velocity of light. Finally, the smallness of the magnetic moments of
atomic nuclei, which were supposed, at that time, to consist of proton and electrons

Independent ofKronig, theDutch physicists Uhlenbeck andGoudsmit after read-
ing the Pauli paper on his exclusive principle also arrived at the idea of the spinning
electron. In his address, delivered at Leiden on the occasion of his Lorentz Profes-
sorship, Uhlenbeck [8] told in detail the story of their discovery and its publication.2

According toUhlenbeck, heandGoudsmitweregreatlyaffectedby thePauli exclu-
sion principle, in particular by the fourth quantum number of the electron. It was a
mystery, why Pauli did not suggest any concrete picture for it. Due to their conviction
that every quantum number corresponds to a degree of freedom, they decided that the
pointmodel for the electron, which had only three degrees of freedom,was not appro-
priateand the electron shouldbe assumedas a small sphere that could rotate.However,
very soon they recognized that the rotational velocity at the surface of the electron had
to be many times larger than the velocity of light. As Uhlenbeck writes further,

…we had not the slightest intention of publishing anything. It seems so speculative
and bold, that something ought to be wrong with it, especially since Bohr, Heisenberg
and Pauli, our great authorities, had never proposed anything of this kind. But of
course we told Erenfest. He was impressed at once, mainly, I feel, because of the vis-
ual character of our hypothesis, which was very much in his line.… and finally said
that it was either highly important or nonsense, and that we should write a short note
for Naturwissenschaften and give it to him. He ended with the words ‘und dann wer-
den wir Herrn–Lorentz fragen’.3 This was done. … already next week he (Lorentz)
gave us a manuscript, written in his beautiful hand writing, containing long calcula-
tions on the electromagnetic properties of rotating electrons. We could not fully
understand it, but it was quite clear that the picture of the rotating electron, if taken
seriously, would give rise to serious difficulties. … Goudsmit and myself felt that it
might be better for present not to publish anything; but when we said this to Erenfest,
he answered: ‘Ich habe Ihren Brief schon längst abgesandt; Sie sind beide jung genug
um sich eine Dummheit leisten zu können.4

Thus, the short letter of Uhlenbeck and Goudsmit was transmitted by Erenfest to
the editor of Naturwissenschaften and soon published [9]. Then in February 1926
they published a paper inNature [10]. In the letter to Goudsmit fromNovember 21,
1925 (see van derWaerden [7]), Heisenberg congratulated him with their paper but
also asked him how he envisaged getting rid of the wrong factor 2 in the doublet
splitting formula. Bohr, who was initially rather skeptic about the hypothesis of the
spinning electron and did not approve the Kronig idea, gradually changed his mind.

2 English translation of an essential part of Uhlenbeck’s address represented in Ref. [7].
3
…and then we will also ask Mr. Lorentz.

4 I have already sent your letter some time ago. You are both young enough and can afford yourself a
foolishness.
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The meeting with Einstein became crucial. In his letter to Kronig from March 26,
1926 (see van der Waerden [7]), Bohr writes:

When I came to Leiden to the Lorenz festivals (December 1925), Einstein asked the
very first moment I saw him what I believe about the spinning electron. Upon my
question about the cause of the necessary mutual coupling between spin axis and
the orbital motion, he explained that this coupling was an immediate consequence
of the theory of relativity. This remark acted as a complete revelation to me, and
I have never since faltered in my conviction that we at last were at the end of our
sorrows.

Under the influence of Bohr’s opinion on the idea of spinning electron, Heisenberg
at last removed his objections.

However, Pauli did not! His deep intuition did not allow him at once to admit the
hypothesis of the spin as an intrinsic angular momentum of the rotating electron.
Pauli’s objections resulted from the wrong factor 2 in the doublet splitting, but
mainly from the classical nature of the spin hypothesis. After the Lorentz festival
(December 1925), Pauli met Bohr in Berlin and in strong words expressed his
dissatisfaction that Bohr changed his position. Pauli was convinced that a new
“Irrlehre”5 has arisen in atomic physics, as van der Waerden wrote in his recollec-
tions [7].

Meanwhile, in April 1926, a young English physicist Llewellyn Thomas, who
had spent half a year in Copenhagen with Bohr, published a letter in Nature [11],
where he presented a relativistic calculation of the doublet splitting. Thomas dem-
onstrated that the wrong factor 2 disappears and the relativistic doublet splitting
does not involve any discrepancy. In the end Thomas noted, “… as Dr. Pauli
and Dr. Heisenberg have kindly communicated in letters to Prof. Bohr, it seems
possible to treat the doublet separation as well as the anomalous Zeeman effect
rigorously on the basis of the new quantum mechanics.” Thus, this time Pauli
was certain that the problem can be treated rigorously by the quantum mechanical
approach. The relativistic calculations by Thomas finally deleted all his doubts.

In his Nobel Prize lecture Pauli recalled [5]:

Although at first I strongly doubted the correctness of this idea because of its classical
mechanical character, I was finally converted to it by Thomas [11] calculations on the
magnitude of doublet splitting. On the other hand, my earlier doubts as well as the
cautious expression ‘classically non-describable two-valuedness’ experienced a cer-
tain verification during later developments, as Bohr was able to show on the basis of
wave mechanics that the electron spin cannot be measured by classically describable
experiments (as, for instance, deflection of molecular beams in external electromag-
netic fields) and must therefore be considered as an essentially quantum mechanical
property of the electron.

5 Heresy.
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It is now clear that Pauli was right in not agreeing with the classical interpret-
ation of the fourth degree of freedom. The spin in principle cannot be described by
classical physics. The first studies devoted to applying the newborn quantum
mechanics to many-particle systems were performed independently by Heisenberg
[12] and Dirac [13]. In these studies, the Pauli principle, formulated as the prohib-
ition for two electrons to occupy the same quantum state, was obtained as a con-
sequence of the antisymmetry of the wave function of the system of electrons.
It is instructive to stress how young were the main participants of this

dramatic story. They were between 20 and 25 years. In 1925, the creators
of quantum mechanics—Werner Heisenberg (1901–1976), Paul Dirac
(1902–1984), Wolfgang Pauli (1900–1960), Enrico Fermi (1901–1954), and
some others—were of the same age. Namely: Heisenberg—24, Dirac—23,
Pauli—25, Fermi—24.

∗ ∗
∗

In his first paper [12], submitted in June 1926, Heisenberg constructed the
antisymmetric Schrödinger eigenfunction for the system of n identical particles
(electrons) as a sum:

φ=
1

n
−1

δk
φ1 mk

α φ2 mk
β …φn mk

ν (1.1)

where δk is a number of transpositions in a permutation, Pk (a parity of permuta-
tion), and mk

αm
k
β…mk

ν the new order of quantum numbers m1m2…mn after the
application of permutation Pk. Heisenberg concluded that this function cannot have
two particles in the same state, that is, it satisfies the Pauli exclusion principle. In
the following paper [14], submitted in July 1926, Heisenberg considered a two-
electron atom and from the beginning assumed that the Pauli-allowed wave func-
tions must be antisymmetric. He demonstrated that the total antisymmetric wave
function can be constructed as a product of spatial and spin wave functions and
discussed two possibilities: A—the symmetric eigenfunction of the space coord-
inates is multiplied by the antisymmetric eigenfunction of the spin coordinates;
B—the antisymmetric eigenfunction of the space coordinates is multiplied by
the symmetric eigenfunction of the spin coordinates. Case A corresponds to the
atomic singlet state with the total spin S = 0; case B corresponds to the triplet state
with S = 1. Heisenberg presented detailed calculations for the atom He and the ion
Li+ . These were first quantum mechanical calculations of the atomic states char-
acterized by the total spin S of the atom defined by the vector addition of the spins
of the individual electrons.
Dirac [13] began with the two-electron atom and noted that the states differing

by permutations of electrons ψn(1)ψm(2) and ψn(2)ψm(1) correspond to the same
state of the atom; these two independent eigenfunctions must give rise to the sym-
metric and antisymmetric linear combinations providing a complete solution of the
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two-electron problem. Then Dirac considered the systems with any number of elec-
trons and represents an N-electron antisymmetric function as a determinant6:

ψn1 1 ψn1 2 … ψn1 r

ψn2 1 ψn2 2 … ψn2 r

… … … …

ψnr 1 ψnr 2 … ψnr r

(1.2)

After presenting the many-electron wave function in the determinantal form
Dirac wrote: “An antisymmetrical eigenfunction vanishes identically when two
of the electrons are in the same orbit. This means that in the solution of the problem
with antisymmetrical eigenfunctions there can be no stationary states with two or
more electrons in the same orbit, which is just Pauli’s exclusion principle. The
solution with symmetrical eigenfunctions, on the other hand, allows any number
of electrons to be in the same orbit, so that this solution cannot be the correct one
for the problem of electrons in an atom.”

In the second part of his paper [13], Dirac considered an assembly of noninter-
acting molecules. At that time it was supposed that molecules are resembled elec-
trons and should satisfy the Pauli exclusion principle. Dirac described this
assembly, in which every quantum state can be occupied by only one molecule,
by the antisymmetric wave functions and obtained the distribution function and
some statistical quantities. It should be mentioned that these statistical formulae
were independently published by Fermi [16] in the paper submitted several months
earlier than the Dirac paper [13]. Fermi also considered an assembly of molecules
and although his study was performed within the framework of classical mechan-
ics, the results were the same as those obtained by Dirac who applied the newborn
quantum mechanics. This concluded the creation of the statistics, which is at pre-
sent named the Fermi–Dirac statistics.

In the same fundamental paper [13], Dirac considered the assembly described by
the symmetric wave functions and concluded that he arrived at the already known
Bose–Einstein statistical mechanics.7 Dirac stressed that the light quanta must be
described by the symmetric wave functions and he specially noted that a system of
electrons cannot be described by the symmetric wave functions since this allows
any number of electrons to occupy a quantum state.

6 It is important to note that the determinantal representation of the electronic wave function, at present
widely used in atomic and molecular calculations, was first introduced in general form by Dirac [13] in
1926. In 1929, Slater [15] introduced the spin functions into the determinant and used the determinantal
representation of the electronic wave function (so-called Slater’s determinants) for calculations of the
atomic multiplets.
7 This statistics was introduced for the quanta of light by Bose [17] and generalized for particles by
Einstein [18, 19].
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Thus, with the creation of quantummechanics, the prohibition on the occupation
numbers of electron system states was supplemented by the prohibition of all types
of permutation symmetry of electron wave functions except for antisymmet-
ric ones.
The first quantum mechanical calculation of the doublet splitting and the

anomalous Zeeman effect for atoms with one valence electron was performed
by Heisenberg and Jordan [20] in 1926. They used the Heisenberg matrix approach
and introduced the spin vector s with components sx, sy, and sz with commutations
relations the same as for the components of the orbital angular moment l. The
spin–orbit interaction was taken as proportional to l s. The application of the
perturbation theory led to results, which were in full accordance with experiment.
In 1927, Pauli [21] studied the spin problem using the wave functions. Pauli

introduced the spin operators sx, sy, sz acting on the wave functions, which depend
on the three spatial coordinates, q, and a spin coordinate. Pauli took sz as a spin
coordinate. The latter is discrete with only two values. Therefore, the wave func-
tion ψ(q, sz) can be presented as a two-component function with components ψα(q)
and ψβ(q) corresponding to sz = 1 2 and sz = −1 2, respectively. The operator, act-
ing on the two-component functions, can be presented as a matrix of the second
order. Pauli obtained an explicit form of the spin operators, representing them
as sx = 1 2σx, sy = 1 2σy, and sz = 1 2σz, where στ are the famous Pauli matrices:

σx =
0 1

1 0
, σy =

0 − i

i 0
, σz =

1 0

0 −1
(1.3)

Applying his formalism to the problem of the doublet splitting and the anomalous
Zeeman effect, Pauli obtained, as can be expected, the same results as Heisenberg
and Jordan [20] obtained by the matrix approach.
The Pauli matrices were used by Dirac in his derivation of the Schrödinger

equation for the relativistic electron [22]. However, for most of physicists the
two-component functions that do not transform like vectors or tensors seemed very
strange. As van der Waerden recalled [7]: “Erenfest called these quantities Spinors
and asked me on his visit to Göttingen (summer, 1929): ‘Does a Spinor Analysis
exist, which every physicist can learn like Tensor Analysis, and by which all
possible kinds of spinors and all invariant equations between spinors can be written
down?’ ” This request made by an outstanding physicist was fulfilled by van der
Waerden in his publication [23].
After these publications, the first stage of the quantum mechanical foundation of

the Pauli exclusion principle and the conception of the spin could be considered as
completed. Although it is necessary to mention very important applications of the
group-theoretical methods to the quantum mechanical problems, which were
developed at that time by John von Neumann and Eugene Wigner [24–27]. Very
soon the three remarkable books on the group theory and quantummechanics were

8 The Pauli Exclusion Principle

0002783080.3D 8 30/9/2016 7:04:55 PM



published; first by Herman Weyl [28] and then by Wigner [29] and by van der
Waerden [30].

The discovery of various types of elementary particles in the 1930s allowed for-
mulating the Pauli exclusion principle in a quite general form. Namely:

The only possible states of a system of identical particles possessing spin s are those
for which the total wave function transforms upon interchange of any two particles as

PijΨ 1,…, i,…j,…,N = −1 2sΨ 1,…, i,…j,…,N (1.4)

that is, it is symmetric for the integer values of s (the Bose–Einstein statistics) and
antisymmetric for the half-integers (the Fermi–Dirac statistics).

The Pauli exclusion principle formulated above also holds for composite
particles. First, it was discussed by Wigner [31] and independently by Ehrenfest
and Oppenheimer [32]. The latter authors considered some clusters of electrons
and protons; it can be atoms, molecules, or nuclei (at that time the neutron had
not been discovered yet and it was believed that the nuclei were built from electrons
and protons). They formulated a rule, according to which statistics of a cluster
depends upon the number of particles from which they are built up. In the case
of odd number of particles it is the Fermi–Dirac statistics, while in the case of even
number it is the Bose–Einstein statistics, see Fig. 1.1. It was stressed that this rule is
valid, if the interaction between composite particles does not change their internal
states; that is, the composite particle is stable enough to preserve its identity.

A good example of such stable composite particle is the atomic nucleus. It con-
sists of nucleons: protons and neutrons, which are fermions because they both have
s = 1 2. Depending on the value of the total nuclear spin, one can speak of boson
nuclei or fermion nuclei. The nuclei with an even number of nucleons have an inte-
ger value of the total spin S and are bosons; the nuclei with an odd number of
nucleons have a half-integer value of the total spin S and are fermions.

Fermion composite particle Boson composite particle

2N+1
Fermions

2N
Fermions

Fig. 1.1 The statistics of composite particles
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Awell-known example, in which the validity of the Pauli exclusion principle for
composite particles can be precisely checked in experiment, is the 16O2 molecule.
The nucleus 16O is a boson composite particle, so the total wave function of the
16O2 molecule must be symmetric under the permutations of nuclei. At the
Born–Oppenheimer approximation [33] a molecular wave function can be repre-
sented as a product of the electronic, Ψel, and nuclear, Φn, wave functions. At the
equilibrium distances the nuclear wave function, in its turn, can be represented as a
product of the vibrational, Φvib, and rotational, Φrot, wave functions. Thus,

Ψ 16Oa−
16Ob =Ψel ab Φvib ab Φrot ab (1.5)

The vibrational wave function, Φvib(ab), depends only on the magnitude of the
interatomic distance and remains unaltered under the interchange of the nuclei.
The ground state electronic wave, Ψel(ab), is antisymmetric under the interchange
of the nuclei. Hence, for fulfilling the boson symmetry of the total wave function
(1.5), the rotational wave function, Φrot(ab), must be also antisymmetric under the
interchange of the nuclei. The symmetry of the rotational wave function in the state
with the rotational angular momentum K is determined by the factor −1 K . There-
fore, in the ground electronic state the even values of K are forbidden and only odd
values of K are allowed. Exactly this was revealed in 1927 in spectroscopic meas-
urements [34] made before the theoretical studies [31, 32].
I presented above the general formulation of the Pauli exclusion principle in the

terms of the permutation symmetry of the total wave function. There is also a for-
mulation of the Pauli exclusion principle in the second quantization formalism. The
second quantization for the electromagnetic field, that is, for bosons, was created
by Dirac [35]; the commutations relations for fermion and boson operators in the
explicit modern form were formulated by Jordan and Wigner [36], see also refer-
ences therein.
For bosons, which are described by the symmetric wave functions and satisfy the

Bose–Einstein statistics, the commutation relations for the creation b+
k and anni-

hilation bk operators in the quantum state k are (see Appendix E)

bk,b
+
k −

= bk b
+
k −b+

k bk = δkk ,

bk,bk − = b+
k ,b

+
k −

= 0
(1.6)

while for fermions, which correspond to the Fermi–Dirac statistics with the
antisymmetric wave functions, the commutation relations for the creation c +k
and annihilation ck operators (in the fermion case they are transformed to the
anticommutation relations) are

ck,c
+
k + = ck c

+
k + c +k ck = δkk ,

ck,ck + = c +k ,c
+
k + = 0

(1.7)
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As follows from the second line of the fermion anticommutation relations (1.7),

c +k
2
= 0 (1.8)

or no more than one fermion particle can be created in one quantum state, which is
exactly the primary formulation of the Pauli principle. A more detailed description
of the second quantization formalism is presented in Appendix E.

Some of the field theory specialists claimed that the second quantization formu-
lation of the Pauli exclusion principle is the most general; see, for instance, Ref.
[37]. I do not think so, these formulations are quite different. On the one hand,
the second quantization formalism is developed for N-particle system in the case
when each particle is characterized by its own wave function (so-called one-
particle approximation),8 while the ψ-formalism considers the permutation
symmetry of the total wave function in any approximation, even for an exact solu-
tion when the particles lost their individualities. Thus, in this sense the
ψ -formulation of the Pauli exclusion principle is more general than the formulation
in the second quantization formalism. On the other hand, for the composite par-
ticles the formulation in the second quantization formalism allows to take into
account the internal structure of the composite particle. The symmetry of the wave
functions of N-particle system does not change when we go from elementary to
composite particles satisfying the same statistics, while for the commutation rela-
tions of the second quantization operators it is not true; in the case of composite
particles they are changed. We will discuss this problem and the reasons for this
in the next subsection.

1.2 Further Developments and Still Existing Problems

In 1932, Chadwick [38] discovered neutron. In the same year, Heisenberg [39]
considered consequences of the model, in which the nuclei are built from protons
and neutrons, assuming that the forces between all pairs of particles are equal and
in this sense the proton and neutron can be considered as different states of one
particle. Heisenberg [39] introduced a variable τ. The value τ = −1 was assigned
to the proton state, and the value τ = 1 to the neutron state. Wigner [40] called τ as
isotopic spin (at present named also as isobaric spin). Taking into account for pro-
tons and neutrons their nuclear spin s = 1 2 too,Wigner studied the nuclear charge-
spin supermultiplets for Hamiltonian not involving the isotope spin and the ordin-
ary spin as well, see also Refs. [41, 42].

In the 1940s, Giulio Racah published a series of four papers [43–46], in which he
considerably improved methods of classification and calculation of atomic spectra.
At that time the calculations of atomic spectra were performed by the diagonal-sum

8 It is natural in the relativistic theory where the number of particles in the system can be changed.
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procedure elaborated in 1929 by Slater [15]; its generalized version extended to
electron shells up to f electrons was represented in the widely used Condon and
Shortley book [47]. The calculations by the diagonal-sum method were very
lengthy and did not give general formulas, but only numerical tables.
Racah [43–46] developed new elegant and effective methods introducing in the

atomic spectroscopy the tensor operator techniques and the concept of the frac-
tional parentage coefficients. The latter permitted a genealogical construction of
the N-electron wave function from the parent (N–1)-electron states. The antisym-
metric wave function for the configuration ℓ

N was presented as a linear combin-
ation of the wave functions obtained by the addition of an electron with the
angular momentum ℓ to the possible states of the configuration ℓN−1. Racah studied
the transformation matrices for the three-dimensional rotation groupR3 connecting
different coupling schemes for three angular momenta and introduced so-called
Racah’s W coefficients, see Appendix C, Section C.2. In the last paper [46] he
applied the theory of continuous group to the problem of classification of the
Pauli-allowed states for configurations of equivalent electrons. These publications
made a great impact on the atomic spectroscopy as well as on the nuclear physics.
In 1950, Jahn [48] used the Racah approach for a classification, in the Russell–

Saunders (LS) coupling scheme, of the states for the nuclear d-shell according to
their transformation properties under the group of rotations in the five-dimensional
space of the orbital states of the d-particle. He determined the charge–spin structure
of all Wigner’s supermultiplets [40]. Then Jahn with coauthors calculated the
energy of nuclear d- and p-shells at the Hartree–Fock approximation using the
method of the fractional parentage coefficients [49–52]. The new point in these
studies was the presentation of the total wave function as a linear combination
of the products of orbital and charge–spin wave functions symmetrized according
to the mutually conjugate representations Γ[λ] and Γ λ of the permutation group
that provides the antisymmetry of the total wave function. The Young diagram
λ is dual to [λ], that is, it is obtained from the latter by replacing rows by columns,
see Appendix A. For jj-coupling in nuclear shell model this approach was elabor-
ated in Refs. [53, 54]. In many problems, in particular for the classification of the
Pauli-allowed states, an employment of the permutation group proved to be more
effective than the original Racah approach. This was demonstrated in the nuclear
studies cited above and in our studies [55–57] devoted to the application of the
permutation group apparatus to molecular spectroscopy for finding nuclear and
electronic multiplets allowed by the Pauli exclusion principle.
In 1961, Kaplan [58] introduced the transformation matrices for the permutation

group connecting representations with different types of reduction on subgroups,
which can be considered as an analog of the transformation matrices connecting
different angular momentum couplings for the rotation group. The symmetry prop-
erties of the transformation matrices for the permutation group were studied by
Kramer [59, 60] who showed that these matrices are identical with the invariants
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of the unitary groups. In the case of electrons the transformation matrices for the
permutation group can be expressed in terms of the invariants of the group SU2,
which are just the 3nj-symbols of the three-dimensional rotation group; these con-
nections are also discussed in a special section “The Kaplan matrices and
nj-symbols for group SU(n)” in review by Neudachin et al. [61]. Employment
of Kaplan’s matrices allowed obtaining the general expressions for the spatial-
coordinate fractional parentage coefficients of an arbitrary multishell nuclear (or
atomic) configuration [62].

The first application of the permutation group to molecular problems was done
by Kotani and Siga [63] to study the CH4 molecule. Then Kotani and coworkers
[64, 65] applied this approach to the configuration interaction calculations of
diatomic molecules. In 1963, Kaplan [66, 67] applied his methodology [58, 62]
developed for the spherical symmetry case to molecular systems and then elabor-
ated it in a series of papers [68], where this approach was named as the coordinate
(that meant spatial coordinate) function method. Later on it was named as spin-free
quantum chemistry. These studies were systemized and generalized in a mono-
graph [69].

Though the concept of the spin has enabled to explain the nature of the chemical
bond, electron spins are not involved directly in the formation of the latter. The
interactions responsible for chemical bonding have a purely electrostatic nature.
The main idea of the spin-free quantum chemistry is to use in the calculations with
a nonrelativistic Hamiltonian only the spatial wave functions Φ λ

r , which entered
the total wave function as products with the spin wave functions Ω λ

r . The Young
diagram λ is dual to [λ], which provides the antisymmetry of the total wave func-
tion. For the spin s= 1 2, the spin Young diagram λ is uniquely connected with
the value of the total spin S. Thus, the spatial wave functionsΦ λ

r describe the anti-
symmetric state with the definite total spin S. In the case of the Hamiltonian not
containing spin-dependent interactions, this approach is more natural than the
employment of the Slater determinants; it allows obtaining the energy matrix elem-
ents in an explicit compact form for arbitrary electronic configurations in the state
with a definite spin S [69, 70].

At the same time the concepts of the spin-free quantum chemistry were inde-
pendently developed by Matsen [71–74]. Later this approach was applied to
molecular calculations by Goddard [75, 76], Gallup [77, 78], Gerratt [79, 80],
and many others.

As we mentioned in the end of the previous subsection, despite the fact that the
wave function of composite particles can be characterized only by the boson or
fermion permutation symmetry, its second quantization operators do not obey
the pure boson or fermion commutation relations. This was studied in detail by
Girardeau [81, 82] and Gilbert [83], see also recent publications [84, 85]. When
the internal structure of the composite particle is taken into account, the deviations
from the purely bosonic or fermionic properties usually appear. For two fermions it
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was revealed earlier, in 1957, in the Bardeen–Cooper–Schrieffe (BCS) theory of
superconductivity [86] based on the conception of the Cooper pairs [87], see an
excellent description of their theory by Schrieffer [88].
The operators of creation, b+

k , and annihilation, bk, of Cooper’s pair in a state
(kα, −kβ), where k is the electron momentum and α and β are the spin projections,
are defined as products of the electron creation, c +kα, and annihilation, ckα, operators

b+
k = c +kac

+
−kβ, bk = c−kβckα (1.9)

The Cooper pairs have spin S = 0, so the permutation symmetry of their wave
functions is bosonic. But their operators do not obey the boson commutation
relations. Direct calculation results in

bk,b
+
k −

= δkk 1−c +kαckα−c
+
kβckβ (1.10)

Only in the case k k

bk,bk − = 0 (1.11)

and Cooper’s pairs obey the boson commutation relations. For k= k

bk,bk − = 1−c
+
kαckα−c

+
kβckβ (1.12)

Due to the fermion nature of electrons, the commutation relations for Cooper’s pair
operators are not bosonic and even more, they have the fermion occupation
numbers for one-particle states, since

b +
k

2
= bk

2 = 0 (1.13)

Thus, Cooper’s pair operators may not be considered as the Bose, or as the Fermi
operators [89, 90], see Section 5.3.
One of the first studies of the effective repulsion between identical elementary

particles was performed by Zeldovich [91] who considered the repulsion between
elementary barions (neutrons, protons, and others) and showed that the Pauli repul-
sion arises when the overlap of wave functions become appreciable. This corres-
ponds to the well known in atomic and molecular physics exchange interaction
stipulated by the requirement of the antisymmetry of many-electron wave func-
tions. The exchange interaction is a direct consequence of the Pauli exclusion prin-
ciple. For taking into account the Pauli repulsion, different computational schemes
were elaborated. We mention two methods: the Pauli repulsion operator [92],
see recent application in Ref. [93], and the so-called Pauli blockade method
[94], see recent application in Ref. [95].
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However, the first application of the Pauli repulsion was performed by Fowler
[96] in astrophysics already in the next year after Pauli suggested his principle.
Fowler applied the Pauli exclusion principle for an explanation of the white-dwarf
structure. The radius of the white dwarfs is comparable with the earth’s radius,
while their mass is comparable with the solar mass. Therefore, the average density
of the white dwarfs is 106 times greater than the average density of the sun; it is
approximately 106 g/cm3. The white dwarfs are composed from plasma of bare
nuclei and electrons. Fowler [96] had resolved a paradox: why such dense objects,
as the white dwarfs, are not collapsed at low temperature? He applied to the elec-
tron gas in the white dwarfs the Fermi–Dirac statistics, introduced in the same
1926, and showed that even at very low temperatures the electron gas, called at
this conditions as degenerate, still possesses a high energy; compressing of a white
dwarf leads to increase of the inner electron pressure. Fowler concluded his paper
in the following manner: “…the origin of this important part of interatomic forces
(repulsion, IK) is… in the quasi-thermodynamic consequences of the existence of
the quantum constraints embodied in Pauli’s principle.” Thus, the Pauli repulsion
prevents the white dwarfs from the gravitational collapse.

In Refs. [85, 97] the Pauli exclusion principle was connected with such interest-
ing andmysterious quantum phenomenon as entanglement [98], which at present is
broadly implemented in quantum information theory [99]. The term “entangle-
ment” was introduced by Schrödinger [100] when he analyzed the so-called
Einstein–Podolsky–Rosen paradox [101], see also discussions in Refs. [102–104].

∗ ∗
∗

All experimental data known to date agree with the Pauli exclusion principle.
Some theoretical ideas and experimental searches for possible violations of the
Pauli exclusion principle were discussed by Okun [105] and recently by Ignatiev
[37]; the published experimental tests of the validity of the Pauli exclusion prin-
ciple were classified in the review report by Gillaspy [106]. Below I discuss a wide-
spread spectroscopic approach.

The systematic spectroscopic study of the validity of the Pauli exclusion prin-
ciple for electrons has been recently carried out by the Violation Pauli (VIP)
collaboration. In their experiments they performed a search of X-rays from the
Pauli-forbidden atomic transition from the 2p shell to the closed 1s2 shell of Cu
atoms, forming the non-Pauli 1s3 shell, see Fig. 1.2.9 The obtained probability that
the Pauli exclusion principle is violated, according to their last measurements [108,
109], was

1
2
β2 < 6 × 10−29 (1.14)

9 It should be mentioned that it is a quite widespread approach, which at present is usually used in the
experimental verification of the Pauli exclusion principle after the Ramberg and Snow experiment [107].
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In the experiments performed in the Los Alamos laboratory by Elliott et al. [110]
Pb instead of Cu was used. They reported a much stronger limit on the violation of
the Pauli exclusion principle for electrons. Namely:

1
2
β2 < 2 6 × 10−39 (1.15)

It must be mentioned that this limit was obtained by a modified method of the
processing of the experimental data. As noted in Ref. [110], in the conductor there
are two kinds of electrons: the current electrons that have no previous contacts with
the target and the electrons within the target, which are “less new.” The authors
[110] took into account all free electrons. The application of this approach to
the VIP data also changes their limit on 10 orders. On the other hand, it seems that
the processing method used in Ref. [110] cannot be rigorously based. In any case,
as follows from experimental data, the probability of formation of the non-Pauli
states is practically zero.
It is worthwhile to make several comments in connection with the described

above experimental verifications of the Pauli exclusion principle. First, usually
experimenters consider the violation of the Pauli exclusion principle as a small
admixture of the symmetric wave functions to the antisymmetric ones. They start
from the Ignatiev–Kuzmin [111] and Greenberg–Mohapatra [112] theoretical sug-
gestions, last years from the quon theory [113]. These theories are based on the
second quantization formalism, in which only the symmetric and antisymmetric
states are defined. In general, this limitation on the permutation symmetry of

e

X-ray

2p6 2p7

2p6

1s2 1s2

1s3

Fig. 1.2 The schematic representation of the formation of the Pauli-forbidden atomic
inner-shell populations in the experimental search of the non-Pauli electrons
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the possible states is not valid, because the solutions of the Schrödinger equation
may belong to any representation of the permutation group, see below Eq. (1.16)
and its discussion. If the Pauli exclusion principle is violated, it means that there are
some electrons described by wave functions with an arbitrary permutation sym-
metry, not necessarily the symmetric one, see also discussion in Chapter 3.

The electrons not satisfying the Pauli exclusion principle are not described by
the antisymmetric wave functions; therefore, they may not be mixed with the nor-
mal electrons that are the fermions. The transitions between states with different
permutation symmetry are strictly forbidden (superselection rule). Thus, the tran-
sitions may take place only inside this group of probable non-Pauli electrons and
these electrons are not identical to the “normal” Pauli electrons; in the other case
they must be characterized by the antisymmetric wave functions, compare in this
connection the comments by Amado and Primakoff [114]. It is also important to
stress that every system of identical particles is characterized by one of the irredu-
cible representations of the permutation group, but not by its superposition. If par-
ticles are characterized by some superposition of irreducible representations of the
permutation group, they are not satisfied by the indistinguishability principle and
are not identical; whereas the Pauli exclusion principle was formulated for systems
of identical particles.

And last but not the least: Since the Pauli and probable non-Pauli electrons may
not possess the same permutation symmetries, it is quite doubtful that the non-Pauli
electrons can be located on the filled fermionic shells. We must take into account
that the energy of identical particle system depends upon its permutation sym-
metry. The energy level separation for non-Pauli electrons can be in another energy
region than measured X-ray transitions in experiments. Thus, even if really a small
part of electrons exists that does not obey the Pauli exclusion principle, these non-
Pauli electrons cannot be detected in the experiments described above.

The history of creation of the Pauli exclusion principle and consequent studies
clearly indicate that it was not derived from the concepts of quantum mechanics,
but was based on the analysis of experimental data. Pauli himself was never sat-
isfied by this. In his Nobel Prize lecture Pauli said [5]:

Already in my initial paper, I especially emphasized the fact that I could not find a
logical substantiation for the exclusion principle nor derive it from more general
assumptions. I always had a feeling, which remains until this day, that this is the fault
of some flaw in the theory.

Let us stress that this was said in 1946, or after the famous Pauli theorem [115] of
the relation between spin and statistics. In this theorem, Pauli did not give a direct
proof. He showed that due to some physical contradictions, the second quantiza-
tion operators for particles with integral spins cannot obey the fermion commuta-
tion relations; while for particles with half-integral spins their second quantization
operators cannot obey the boson commutation relations. Thus, according to the
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Pauli theorem, the connection between the value of spin and the permutation sym-
metry of many-particle wave function, Eq. (1.1), follows if we assume that particles
can obey only two types of commutation relations: boson or fermion relations. At
that time it was believed that it is really so. However, Pauli was not satisfied by
such kind of negative proof. Very soon it became clear that he was right.
In 1953, Green [116] (then independently Volkov [117]) showed that more

general paraboson and parafermion trilinear commutation relations, satisfying
all physical requirements and containing the boson and fermion commutation
relations as particular cases, can be introduced. A corresponding parastatistics is
classified by its rank p. For the parafermi statistics p is the maximum occupation
number. For p = 1 the parafermi statistics becomes identical to the Fermi–Dirac
statistics. For the parabose statistics there are no restrictions in the occupation num-
bers; for p = 1 the parabose statistics is reduced to the Bose–Einstein statistics (for
more details, see the book by Ohnuki and Kamefuchi [118] and Chapter 5).
So far the elementary particles obeying the parastatistics are not detected.

Although, as discussed in Refs. [119–121], the ordinary fermions, which differ
by some intrinsic properties (e.g., charge or color), but are similar dynamically,
can be described by the parafermi statistics. In this case, fermions with different
internal quantum numbers are considered as different, or as different states of
dynamically equivalent particles. So, quarks with three colors obey the parafermi
statistics of rank p = 3; nucleons in nuclei (isotope spin 1/2) obey the parafermi
statistics of rank p = 2. It is important to stress that the parafermi statistics of rank
p describes systems with p different types of fermions. The total wave function for
such parafermions always can be constructed as an antisymmetric function in full
accordance with the Pauli exclusion principle.
In 1976, Kaplan [122] revealed that the parafermi statistics is realized for

quasiparticles in a crystal lattice, for example, the Frenkel excitons or magnons,
but due to a periodical crystal field, the Green trilinear commutation relations are
modified by the quasi-impulse conservation law, see also Ref. [123]. Later on, it
was shown that the modified parafermi statistics [122] introduced by Kaplan is
valid for different types of quasiparticles in a periodical lattice: polaritons [124,
125], defectons [126], the Wannier–Mott excitons [127], delocalized holes in
crystals [128], delocalized coupled hole pairs [129], and some others, see also
Ref. [130].
The study of properties of the quasiparticles in a periodical lattice revealed [122,

128] that even in the absence of dynamical interactions, the quasiparticle system is
characterized by some kinematic interaction depending on the deviation of their
statistics from the Bose (Fermi) statistics. This kinematic interaction mixes all
states of the quasiparticle band. One cannot define an independent quasiparticle
in a definite state. The ideal gas of such quasiparticles does not exist fundamen-
tally. There are also no direct connection between the commutation relations for
quasiparticle operators and the permutation symmetry of many-quasiparticle wave
functions.
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Let us return to the Pauli theorem [115]. Since there are no prohibitions on the
existence of elementary particles obeying the parastatistics commutation relations,
the proof [115] loses its base. After 1940, numerous proofs of the spin–statistics
connection were published; see, for instance, Refs. [131–134] and the Pauli criti-
cism [135] on the Feynman [136] and Schwinger [137] approaches. In the compre-
hensive book by Duck and Sudarshan [138] and in their review [139] they
criticized all proofs of the spin–statistics connection published at that time except
the Sudarshan proof [140]. Only this proof they assumed as correct and elementary
understandable. However, in his critical review on the Duck–Sudarshan book
[138], Wightman [141] noted that none of the authors criticized in the Duck–
Sudarshan book will find the proof [140] satisfactory.

In his famous lectures [142] Feynman asked:

Why is it that particles with half-integral spin are Fermi particles whose amplitudes
add with the minus sign, whereas particles with integral spin are Bose particles whose
amplitudes add with the positive sign? We apologize for the fact that we cannot give
you an elementary explanation. An explanation has been worked out by Pauli from
complicated arguments of quantum field theory and relativity. He has shown that two
must necessarily go together, but we have not been able to find a way of reproducing
his arguments on an elementary level. It appears to be one of the few places in physics
where there is a rule which can be stated very simply, but for which no one found a
simple and easy explanation. The explanation is deep down in relativistic quantum
mechanics. This probably means that we do not have a complete understanding of
the fundamental principle involve.

Unfortunately, after that time there has not been any progress in this direction.
Most proofs of the spin–statistics connection contain negative statements; they
demonstrate that abnormal cases cannot exist, but they did not answer why the nor-
mal case exists. We still have no answer what are the physical reasons that identical
particles with half-integer spin are described by antisymmetric functions and
identical particles with integer spin are described by completely symmetric func-
tions. As Berry and Robbins [143] emphasized, the relation between spin and
statistics “cries out for understanding.”10

It is worthwhile to stress that the Pauli exclusion principle is not reduced only to
the spin–statistics connection. It can be considered from the point of the restrictions
on the allowed symmetry types of many-particle wave functions. Namely, only two
types of permutation symmetry are allowed: symmetric and antisymmetric. Both

10 After this Feynman comment, many studies were published, in which authors claimed that they ful-
filled the Feynman requirement and proposed a simple explanation of the spin–statistics connection.
However, none of these proofs can be considered rigorous, including recent publications by Jabs
[144] and based on it a relativistic proof by Bennett [145].
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belong to the one-dimensional representations of the permutation group; all other
types of permutation symmetry are forbidden. However, the Schrödinger equation
is invariant under any permutation of identical particles. The Hamiltonian of an
identical particle system commutes with the permutation operators,

P,H − = 0 (1.16)

From this it follows that the solutions of the Schrödinger equation may belong
to any representation of the permutation group, including multidimensional
representations.
The following question might be asked:

whether this limitation on the solutions of the Schrödinger equation follows from the
fundamental principles of quantum mechanics or it is an independent principle?

In Chapter 3 I discuss possible answers to this question. Here I only would
like to mention that in my publications [146–148] it was rigorously proved
that the indistinguishability principle is insensitive to the permutation
symmetry of the wave function and cannot be used as a criterion for the veri-
fication of the Pauli exclusion principle. All published up-to-date proofs that
only two types of the permutation symmetry can exist are incorrect, including
the proof in the famous book by Landau and Lifshitz Quantum Mechanics,
translated in many languages, see section 61 in English translation [149] of
this book.
Thus, quantum mechanics allows all types of the permutation symmetry. In this

aspect in a rigorous proof of the spin–statistics connection the possibility of the
multidimensional representations of the permutation group must also be con-
sidered. However, the second quantization formalism is developed only for the
symmetric and antisymmetric representations. This makes the proof of the spin–
statistics connection even more improbable.
It should be mentioned that in our studies [146–148] of different scenarios fol-

lowing from the allowance of multidimensional representations of the permutation
group, it was demonstrated that the latter leads to some contradictions with the con-
cepts of particle identity and their independency from each other, see discussion in
Section 3.2. Thus, the existence in Nature of only the one-dimensional permutation
symmetries is not occasional.
It seems that at this point it makes sense to conclude this historical survey,

because many of problems mentioned above will be discussed in detail in the fol-
lowing chapters of this book. As we saw, the Pauli exclusion principle plays the
decisive role in a very wide range of phenomena: from the structure of nuclei,
atoms, molecules, and solids to the formation of stars, for instance, the white
dwarfs.
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