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PROBABILITY

1.1 INTRODUCTION

The theory of probability had its origin in gambling and games of chance. It owes much
to the curiosity of gamblers who pestered their friends in the mathematical world with all
sorts of questions. Unfortunately this association with gambling contributed to a very slow
and sporadic growth of probability theory as a mathematical discipline. The mathemati-
cians of the day took little or no interest in the development of any theory but looked only
at the combinatorial reasoning involved in each problem.

The first attempt at some mathematical rigor is credited to Laplace. In his monumental
work, Theorie analytique des probabilités (1812), Laplace gave the classical definition of
the probability of an event that can occur only in a finite number of ways as the proportion
of the number of favorable outcomes to the total number of all possible outcomes, provided
that all the outcomes are equally likely. According to this definition, the computation of
the probability of events was reduced to combinatorial counting problems. Even in those
days, this definition was found inadequate. In addition to being circular and restrictive,
it did not answer the question of what probability is, it only gave a practical method of
computing the probabilities of some simple events.

An extension of the classical definition of Laplace was used to evaluate the probabilities
of sets of events with infinite outcomes. The notion of equal likelihood of certain events
played a key role in this development. According to this extension, ifΩ is some region with
a well-defined measure (length, area, volume, etc.), the probability that a point chosen at
random lies in a subregion A of Ω is the ratio measure(A)/measure(Ω). Many problems
of geometric probability were solved using this extension. The trouble is that one can
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define “at random” in any way one pleases, and different definitions therefore lead to dif-
ferent answers. Joseph Bertrand, for example, in his book Calcul des probabilités (Paris,
1889) cited a number of problems in geometric probability where the result depended
on the method of solution. In Example 9 we will discuss the famous Bertrand paradox
and show that in reality there is nothing paradoxical about Bertrand’s paradoxes; once
we define “probability spaces” carefully, the paradox is resolved. Nevertheless difficul-
ties encountered in the field of geometric probability have been largely responsible for
the slow growth of probability theory and its tardy acceptance by mathematicians as a
mathematical discipline.

The mathematical theory of probability, as we know it today, is of comparatively recent
origin. It was A. N. Kolmogorov who axiomatized probability in his fundamental work,
Foundations of the Theory of Probability (Berlin), in 1933. According to this development,
random events are represented by sets and probability is just a normed measure defined on
these sets. This measure-theoretic development not only provided a logically consistent
foundation for probability theory but also, at the same time, joined it to the mainstream of
modern mathematics.

In this book we follow Kolmogorov’s axiomatic development. In Section 1.2 we intro-
duce the notion of a sample space. In Section 1.3 we state Kolmogorov’s axioms of
probability and study some simple consequences of these axioms. Section 1.4 is devoted to
the computation of probability on finite sample spaces. Section 1.5 deals with conditional
probability and Bayes’s rule while Section 1.6 examines the independence of events.

1.2 SAMPLE SPACE

In most branches of knowledge, experiments are a way of life. In probability and statis-
tics, too, we concern ourselves with special types of experiments. Consider the following
examples.

Example 1. A coin is tossed. Assuming that the coin does not land on the side, there are
two possible outcomes of the experiment: heads and tails. On any performance of this
experiment one does not know what the outcome will be. The coin can be tossed as many
times as desired.

Example 2. A roulette wheel is a circular disk divided into 38 equal sectors numbered
from 0 to 36 and 00. A ball is rolled on the edge of the wheel, and the wheel is rolled
in the opposite direction. One bets on any of the 38 numbers or some combinations of
them. One can also bet on a color, red or black. If the ball lands in the sector numbered
32, say, anybody who bet on 32 or combinations including 32 wins, and so on. In this
experiment, all possible outcomes are known in advance, namely 00, 0, 1, 2, . . . ,36, but
on any performance of the experiment there is uncertainty as to what the outcome will be,
provided, of course, that the wheel is not rigged in any manner. Clearly, the wheel can be
rolled any number of times.

Example 3. A manufacturer produces footrules. The experiment consists in measuring
the length of a footrule produced by the manufacturer as accurately as possible. Because
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of errors in the production process one does not know what the true length of the footrule
selected will be. It is clear, however, that the length will be, say, between 11 and 13 in.,
or, if one wants to be safe, between 6 and 18 in.

Example 4. The length of life of a light bulb produced by a certain manufacturer is
recorded. In this case one does not know what the length of life will be for the light bulb
selected, but clearly one is aware in advance that it will be some number between 0 and
∞ hours.

The experiments described above have certain common features. For each experiment,
we know in advance all possible outcomes, that is, there are no surprises in store after the
performance of any experiment. On any performance of the experiment, however, we do
not know what the specific outcome will be, that is, there is uncertainty about the outcome
on any performance of the experiment. Moreover, the experiment can be repeated under
identical conditions. These features describe a random (or a statistical) experiment.

Definition 1. A random (or a statistical) experiment is an experiment in which

(a) all outcomes of the experiment are known in advance,

(b) any performance of the experiment results in an outcome that is not known in
advance, and

(c) the experiment can be repeated under identical conditions.

In probability theory we study this uncertainty of a random experiment. It is convenient
to associate with each such experiment a set Ω, the set of all possible outcomes of the
experiment. To engage in any meaningful discussion about the experiment, we associate
with Ω a σ-field S, of subsets of Ω. We recall that a σ-field is a nonempty class of subsets
of Ω that is closed under the formation of countable unions and complements and contains
the null set Φ.

Definition 2. The sample space of a statistical experiment is a pair (Ω,S), where

(a) Ω is the set of all possible outcomes of the experiment and

(b) S is a σ-field of subsets of Ω.

The elements of Ω are called sample points. Any set A∈ S is known as an event. Clearly
A is a collection of sample points. We say that an event A happens if the outcome of the
experiment corresponds to a point in A. Each one-point set is known as a simple or an
elementary event. If the set Ω contains only a finite number of points, we say that (Ω,S) is
a finite sample space. If Ω contains at most a countable number of points, we call (Ω,S)
a discrete sample space. If, however, Ω contains uncountably many points, we say that
(Ω,S) is an uncountable sample space. In particular, if Ω = Rk or some rectangle in Rk,
we call it a continuous sample space.

Remark 1. The choice of S is an important one, and some remarks are in order. If Ω con-
tains at most a countable number of points, we can always take S to be the class of all
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subsets of Ω. This is certainly a σ-field. Each one point set is a member of S and is the
fundamental object of interest. Every subset of Ω is an event. If Ω has uncountably many
points, the class of all subsets of Ω is still a σ-field, but it is much too large a class of
sets to be of interest. It may not be possible to choose the class of all subsets of Ω as S.
One of the most important examples of an uncountable sample space is the case in which
Ω=R or Ω is an interval in R. In this case we would like all one-point subsets of Ω and all
intervals (closed, open, or semiclosed) to be events. We use our knowledge of analysis to
specify S. We will not go into details here except to recall that the class of all semiclosed
intervals (a,b] generates a class B1 which is a σ-field on R. This class contains all one-
point sets and all intervals (finite or infinite). We take S =B1. Since we will be dealing
mostly with the one-dimensional case, we will write B instead of B1. There are many
subsets of R that are not in B1, but we will not demonstrate this fact here. We refer the
reader to Halmos [42], Royden [96], or Kolmogorov and Fomin [54] for further details.

Example 5. Let us toss a coin. The set Ω is the set of symbols H and T, where H
denotes head and T represents tail. Also, S is the class of all subsets of Ω, namely,
{{H},{T},{H,T},Φ}. If the coin is tossed two times, then

Ω= {(H,H),(H,T),(T,H),(T,T)}, S= {∅,{(H,H)},
{(H,T)},{(T,H)},{(T,T)},{(H,H),(H,T)},{(H,H),(T,H)},
{(H,H),(T,T)},{(H,T),(T,H)},{(T,T),(T,H)},{(T,T),
(H,T)},{(H,H),(H,T),(T,H)},{(H,H),(H,T),(T,T)},
{(H,H),(T,H),(T,T)},{(H,T),(T,H),(T,T)},Ω},

where the first element of a pair denotes the outcome of the first toss and the second
element, the outcome of the second toss. The event at least one head consists of sample
points (H,H), (H,T), (T,H). The event at most one head is the collection of sample points
(H,T), (T,H), (T,T).

Example 6. A die is rolled n times. The sample space is the pair (Ω,S), where Ω is the
set of all n-tuples (x1,x2, . . . ,xn), xi ∈ {1,2,3,4,5,6}, i = 1,2, . . . ,n, and S is the class of
all subsets of Ω. Ω contains 6n elementary events. The event A that 1 shows at least once
is the set

A = {(x1,x2, . . . ,xn) : at least one of xi’s is 1}
=Ω−{(x1,x2, . . . ,xn) : none of the xi’s is 1}
=Ω−{(x1,x2, . . . ,xn) : xi ∈ {2,3,4,5,6}, i = 1,2, . . . ,n}.

Example 7. A coin is tossed until the first head appears. Then

Ω= {H,(T,H),(T,T,H),(T,T,T,H), . . .},

and S is the class of all subsets of Ω. An equivalent way of writing Ω would be to look
at the number of tosses required for the first head. Clearly, this number can take values
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1,2,3, . . . , so that Ω is the set of all positive integers. The S is the class of all subsets of
positive integers.

Example 8. Consider a pointer that is free to spin about the center of a circle. If the pointer
is spun by an impulse, it will finally come to rest at some point. On the assumption that
the mechanism is not rigged in any manner, each point on the circumference is a possible
outcome of the experiment. The set Ω consists of all points 0 ≤ x < 2πr, where r is the
radius of the circle. Every one-point set {x} is a simple event, namely, that the pointer
will come to rest at x. The events of interest are those in which the pointer stops at a point
belonging to a specified arc. Here S is taken to be the Borel σ-field of subsets of [0,2πr).

Example 9. A rod of length l is thrown onto a flat table, which is ruled with parallel lines
at distance 2l. The experiment consists in noting whether the rod intersects one of the ruled
lines.

Let r denote the distance from the center of the rod to the nearest ruled line, and let θ
be the angle that the axis of the rod makes with this line (Fig. 1). Every outcome of this
experiment corresponds to a point (r,θ) in the plane. As Ω we take the set of all points
(r,θ) in {(r,θ) : 0 ≤ r ≤ l,0 ≤ θ < π}. For S we take the Borel σ-field, B2, of subsets of
Ω, that is, the smallest σ-field generated by rectangles of the form

{(x,y) : a < x ≤ b, c < y ≤ d, 0 ≤ a < b ≤ l, 0 ≤ c < d < π}.

Clearly the rod will intersect a ruled line if and only if the center of the rod lies in the area
enclosed by the locus of the center of the rod (while one end touches the nearest line) and
the nearest line (shaded area in Fig. 2).

Remark 2. From the discussion above it should be clear that in the discrete case there is
really no problem. Every one-point set is also an event, and S is the class of all subsets ofΩ.

r

l/2

l/2
2l

Fig. 1
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Fig. 2

The problem, if there is any, arises only in regard to uncountable sample spaces. The reader
has to remember only that in this case not all subsets ofΩ are events. The case of most inter-
est is the one in whichΩ=Rk. In this case, roughly all sets that have a well-defined volume
(or area or length) are events. Not every set has the property in question, but sets that lack
it are not easy to find and one does not encounter them in practice.

PROBLEMS 1.2

1. A club has five members A, B, C, D, and E. It is required to select a chairman and a
secretary. Assuming that one member cannot occupy both positions, write the sam-
ple space associated with these selections. What is the event that member A is an
office holder?

2. In each of the following experiments, what is the sample space?

(a) In a survey of families with three children, the sexes of the children are recorded
in increasing order of age.

(b) The experiment consists of selecting four items from a manufacturer’s output
and observing whether or not each item is defective.

(c) A given book is opened to any page, and the number of misprints is counted.

(d) Two cards are drawn (i) with replacement and (ii) without replacement from an
ordinary deck of cards.

3. Let A, B, C be three arbitrary events on a sample space (Ω,S). What is the event that
only A occurs? What is the event that at least two of A, B, C occur? What is the event
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that both A and C, but not B, occur? What is the event that at most one of A, B, C
occurs?

1.3 PROBABILITY AXIOMS

Let (Ω,S) be the sample space associated with a statistical experiment. In this section we
define a probability set function and study some of its properties.

Definition 1. Let (Ω,S) be a sample space. A set function P defined on S is called a
probability measure (or simply probability) if it satisfies the following conditions:

(i) P(A)≥ 0 for all A ∈ S.

(ii) P(Ω) = 1.

(iii) Let {Aj}, Aj ∈ S, j = 1,2, . . . , be a disjoint sequence of sets, that is, Aj ∩Ak = Φ
for j �= k where Φ is the null set. Then

P

⎛
⎝ ∞∑

j=1

Aj

⎞
⎠=

∞∑
j=1

P(Aj), (1)

where we have used the notation
∑∞

j=1 Aj to denote union of disjoint sets Aj.

We call P(A) the probability of event A. If there is no confusion, we will write PA
instead of P(A). Property (iii) is called countable additivity. That PΦ = 0 and P is also
finitely additive follows from it.

Remark 1. If Ω is discrete and contains at most n (<∞) points, each single-point set {ωj},
j = 1,2, . . . ,n, is an elementary event, and it is sufficient to assign probability to each {ωj}.
Then, if A ∈ S, where S is the class of all subsets of Ω, PA =

∑
ω∈A P{ω}. One such

assignment is the equally likely assignment or the assignment of uniform probabilities.
According to this assignment, P{ωj}= 1/n, j = 1,2, . . . ,n. Thus PA = m/n if A contains
m elementary events, 1 ≤ m ≤ n.

Remark 2. If Ω is discrete and contains a countable number of points, one cannot make
an equally likely assignment of probabilities. It suffices to make the assignment for
each elementary event. If A ∈ S, where S is the class of all subsets of Ω, define PA =∑

ω∈A P{ω}.

Remark 3. If Ω contains uncountably many points, each one-point set is an elementary
event, and again one cannot make an equally likely assignment of probabilities. Indeed,
one cannot assign positive probability to each elementary event without violating the
axiom PΩ = 1. In this case one assigns probabilities to compound events consisting of
intervals. For example, if Ω = [0,1] and S is the Borel σ-field of all subsets of Ω, the
assignment P[I] = length of I, where I is a subinterval of Ω, defines a probability.
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Definition 2. The triple (Ω,S,P) is called a probability space.

Definition 3. Let A ∈ S. We say that the odds for A are a to b if PA = a/(a+b), and then
the odds against A are b to a.

In many games of chance, probability is often stated in terms of odds against an event.
Thus in horse racing a two dollar bet on a horse to win with odds of 2 to 1 (against) pays
approximately six dollars if the horse wins the race. In this case the probability of winning
is 1/3.

Example 1. Let us toss a coin. The sample space is (Ω,S), where Ω = {H,T}, and S is
the σ-field of all subsets of Ω. Let us define P on S as follows.

P{H}= 1/2, P{T}= 1/2.

Then P clearly defines a probability. Similarly, P{H}= 2/3, P{T}= 1/3, and P{H}= 1,
P{T}= 0 are probabilities defined on S. Indeed,

P{H}= p and P{T}= 1−p (0 ≤ p ≤ 1)

defines a probability on (Ω,S).

Example 2. Let Ω = {1,2,3, . . .} be the set of positive integers, and let S be the class of
all subsets of Ω. Define P on S as follows:

P{i}= 1
2i
, i = 1,2, . . . .

Then
∑∞

i=1 P{i}= 1, and P defines a probability.

Example 3. Let Ω= (0,∞) and S=B, the Borel σ-Field on Ω. Define P as follows: for
each interval I ⊆ Ω,

PI =
∫

I
e−x dx.

Clearly PI ≥ 0, PΩ= 1, and P is countably additive by properties of integrals.

Theorem 1. P is monotone and subtractive; that is, if A,B ∈ S and A ⊆ B, then PA ≤ PB
and P(B−A) = PB−PA, where B−A = B∩Ac, Ac being the complement of the event A.

Proof. If A ⊆ B, then

B = (A∩B)+(B−A) = A+(B−A).

and it follows that PB = PA+P(B−A).

Corollary. For all A ∈ S, 0 ≤ PA ≤ 1.
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Remark 4. We wish to emphasize that, if PA = 0 for some A ∈ S, we call A an event with
zero probability or a null event. However, it does not follow that A=Φ. Similarly, if PB= 1
for some B ∈ S, we call B a certain event but it does not follow that B =Ω.

Theorem 2 (The Addition Rule). If A,B ∈ S, then

P(A∪B) = PA+PB−P(A∩B). (2)

Proof. Clearly

A∪B = (A−B)+(B−A)+(A∩B)

and

A = (A∩B)+(A−B),B = (A∩B)+(B−A).

The result follows by countable additivity of P.

Corollary 1. P is subadditive, that is, if A,B ∈ S, then

P(A∪B)≤ PA+PB. (3)

Corollary 1 can be extended to an arbitrary number of events Aj,

P

(⋃
j

Aj

)
≤
∑

j

PAj. (4)

Corollary 2. If B = Ac, then A and B are disjoint and

PA = 1−PAc. (5)

The following generalization of (2) is left as an exercise.

Theorem 3 (The Principle of Inclusion–Exclusion). Let A1,A2, . . . ,An ∈ S. Then

P

(
n⋃

k=1

Ak

)
=

n∑
k=1

PAk −
n∑

k1<k2

P(Ak1 ∩Ak2)

+
n∑

k1<k2<k3

P(Ak1 ∩Ak2 ∩Ak3)

+ · · ·+(−1)n+1P

(
n⋂

k=1

Ak

)
. (6)
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Example 4. A die is rolled twice. Let all the elementary events in Ω = {(i, j) : i, j =
1,2, . . . ,6} be assigned the same probability. Let A be the event that the first throw shows
a number ≤ 2, and B, the event that the second throw shows at least 5. Then

A = {(i, j) : 1 ≤ i ≤ 2, j = 1,2, . . . ,6},
B = {(i, j) : 5 ≤ j ≤ 6, i = 1,2, . . . ,6},

A∩B = {(1,5),(1,6),(2,5),(2,6)};

P(A∪B) = PA+PB−P(A∩B)

= 1
3 +

1
3 −

4
36 = 5

9 .

Example 5. A coin is tossed three times. Let us assign equal probability to each of the 23

elementary events in Ω. Let A be the event that at least one head shows up in three throws.
Then

P(A) = 1−P(Ac)

= 1−P(no heads)

= 1−P(TTT) = 7
8 .

We next derive two useful inequalities.

Theorem 4 (Bonferroni’s Inequality). Given n (> 1) events A1,A2, . . . ,An,

n∑
i=1

PAi −
∑
i<j

P(Ai ∩Aj)≤ P

(
n⋃

i=1

Ai

)
≤

n∑
i=1

PAi. (7)

Proof. In view of (4) it suffices to prove the left side of (7). The proof is by induction.
The inequality on the left is true for n = 2 since

PA1 +PA2 −P(A1 ∩A2) = P(A1 ∪A2).

For n = 3,

P

(
3⋃

i=1

Ai

)
=

3∑
i=1

PAi −
∑
i<j

P(Ai ∩Aj)+P(A1 ∩A2 ∩A3),

and the result holds. Assuming that (7) holds for 3 < m ≤ n−1, we show that it holds also
for m+1:

P

(
m+1⋃
i=1

Ai

)
= P

((
m⋃

i=1

Ai

)
∪Am+1

)

= P

(
m⋃

i=1

Ai

)
+PAm+1 −P

(
Am+1 ∩

(
m⋃
1

Ai

))
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≥
m+1∑
i=1

PAi −
m∑

i<j

P(Ai ∩Aj)−P

(
m⋃

i=1

(Ai ∩Am+1)

)

≥
m+1∑
i=1

PAi −
m∑

i<j

P(Ai ∩Aj)−
m∑

i=1

P(Ai ∩Am+1)

=

m+1∑
i=1

PAi −
m+1∑
i<j

P(Ai ∩Aj).

Theorem 5 (Boole’s Inequality). For any two events, A and B,

P(A∩B)≥ 1−PAc −PBc. (8)

Corollary 1. Let {Aj}, j = 1,2, . . . , be a countable sequence of events; then

P(∩Aj)≥ 1−
∑

P(Ac
j ). (9)

Proof. Take

B =
∞⋂

j=2

Aj and A = A1

in (8).

Corollary 2 (The Implication Rule). If A,B,C ∈ S and A and B imply C, then

PCc ≤ PAc +PBc. (10)

Let {An} be a sequence of sets. The set of all pointsω ∈Ω that belong to An for infinitely
many values of n is known as the limit superior of the sequence and is denoted by

limsup
n→∞

An or lim
n→∞

An.

The set of all points that belong to An for all but a finite number of values of n is known
as the limit inferior of the sequence {An} and is denoted by

lim
n→∞

inf An or lim
n→∞

An.

If

lim
n→∞

An = lim
n→∞

An,

we say that the limit exists and write limn→∞ An for the common set and call it the limit
set.
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We have

lim
n→∞

An =

∞⋃
n=1

∞⋂
k=n

Ak ⊆
∞⋂

n=1

∞⋃
k=n

Ak = lim
n→∞

An.

If the sequence {An} is such that An ⊆ An+1, for n = 1,2, . . ., it is called nondecreasing;
if An ⊇ An+1, n = 1,2, . . ., it is called nonincreasing. If the sequence An is nondecreasing,
we write An �↓ ; if An is nonincreasing, we write An �↑ . Clearly, if An �↑ or An �↓ , the limit
exists and we have

lim
n

An =

∞⋃
n=1

An if An �↓

and

lim
n

An =

∞⋂
n=1

An if An �↑ .

Theorem 6. Let {An} be a nondecreasing sequence of events in S, that is, An ∈ S,
n = 1,2, . . . , and

An ⊇ An−1, n = 2,3, . . . .

Then

lim
n→∞

PAn = P
(
lim

n→∞
An

)
= P

( ∞⋃
n=1

An

)
. (11)

Proof. Let

A =

∞⋃
j=1

Aj.

Then

A = An +
∞∑

j=n

(Aj+1 −Aj).

By countable additivity we have

PA = PAn +
∞∑

j=n

P(Aj+1 −Aj).

and letting n →∞, we see that

PA = lim
n→∞

PAn + lim
n→∞

∞∑
j=n

P(Aj+1 −Aj).
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The second term on the right tends to 0 as n →∞ since the sum
∑∞

j=1 P(Aj+1 −Aj) ≤ 1
and each summand is nonnegative. The result follows.

Corollary. Let {An} be a nonincreasing sequence of events in S. Then

lim
n→∞

PAn = P
(
lim

n→∞
An

)
= P

( ∞⋂
n=1

An

)
. (12)

Proof. Consider the nondecreasing sequence of events {Ac
n}. Then

lim
n→∞

Ac
n =

∞⋃
j=1

Ac
j = Ac.

It follows from Theorem 6 that

lim
n→∞

PAc
n = P

(
lim

n→∞
Ac

n

)
= P

⎛
⎝∞⋃

j=1

Ac
n

⎞
⎠= P(Ac).

In other words,

lim
n→∞

(1−PAn) = 1−PA,

as asserted.

Remark 5. Theorem 6 and its corollary will be used quite frequently in subsequent chap-
ters. Property (11) is called the continuity of P from below, and (12) is known as the
continuity of P from above. Thus Theorem 6 and its corollary assure us that the set function
P is continuous from above and below.

We conclude this section with some remarks concerning the use of the word “ran-
dom” in this book. In probability theory “random” has essentially three meanings. First,
in sampling from a finite population a sample is said to be a random sample if at each
draw all members available for selection have the same probability of being included.
We will discuss sampling from a finite population in Section 1.4. Second, we speak of a
random sample from a probability distribution. This notion is formalized in Section 6.2.
The third meaning arises in the context of geometric probability, where statements such
as “a point is randomly chosen from the interval (a,b)” and “a point is picked randomly
from a unit square” are frequently encountered. Once we have studied random variables
and their distributions, problems involving geometric probabilities may be formulated
in terms of problems involving independent uniformly distributed random variables, and
these statements can be given appropriate interpretations.

Roughly speaking, these statements involve a certain assignment of probability. The
word “random” expresses our desire to assign equal probability to sets of equal lengths,
areas, or volumes. Let Ω⊆Rn be a given set, and A be a subset of Ω. We are interested in
the probability that a “randomly chosen point” in Ω falls in A. Here “randomly chosen”
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means that the point may be any point of Ω and that the probability of its falling in some
subset A of Ω is proportional to the measure of A (independently of the location and shape
of A). Assuming that both A andΩ have well-defined finite measures (length, area, volume,
etc.), we define

PA =
measure(A)
measure(Ω)

.

(In the language of measure theory we are assuming that Ω is a measurable subset of Rn

that has a finite, positive Lebesque measure. If A is any measurable set, PA = μ(A)/μ(Ω),
where μ is the n-dimensional Lebesque measure.) Thus, if a point is chosen at random
from the interval (a,b), the probability that it lies in the interval (c,d), a ≤ c < d ≤ b,
is (d− c)/(b−a). Moreover, the probability that the randomly selected point lies in any
interval of length (d− c) is the same.

We present some examples.

Example 6. A point is picked “at random” from a unit square. Let Ω= {(x,y) : 0 ≤ x ≤ 1,
0 ≤ y ≤ 1}. It is clear that all rectangles and their unions must be in S. So too should all
circles in the unit square, since the area of a circle is also well defined. Indeed, every set
that has a well-defined area has to be in S. We choose S=B2, the Borel σ-field generated
by rectangles in Ω. As for the probability assignment, if A ∈ S, we assign PA to A, where
PA is the area of the set A. If A = {(x,y) : 0 ≤ x ≤ 1/2,1/2 ≤ y ≤ 1}, then PA = 1/4. If
B is a circle with center (1/2,1/2) and radius 1/2, then PB = π(1/2)2 = π/4. If C is the
set of all points which are at most a unit distance from the origin, then PC = π/4 (see
Figs. 1–3).

Example 7 (Buffon’s Needle Problem). We return to Example 1.2.9. A needle (rod) of
length l is tossed at random on a plane that is ruled with a series of parallel lines at distance

x

y

(1,1)(0,1)

(0,0) (1,0)

A

Fig. 1 A = {(x,y) : 0 ≤ x ≤ 1/2,1/2 ≤ y ≤ 1}.
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y

x

(1,0)

(1,1)(0,1)

(0,0)

B

Fig. 2 B = {(x,y) : (x−1/2)2 +(y−1/2)2 = 1}.

(0,0) (1,0)

(1,1)(0,1)

C

y

x

Fig. 3 C = {(x,y) : (x2 + y2 ≤ 1}.

2l apart. We wish to find the probability that the needle will intersect one of the lines.
Denoting by r the distance from the center of the needle to the closest line and by θ the
angle that the needle forms with this line, we see that a necessary and sufficient condition
for the needle to intersect the line is that r ≤ (l/2)sinθ. The needle will intersect the
nearest line if and only if its center falls in the shaded region in Fig. 1.2.2. We assign
probability to an event A as follows:

PA =
area of set A

lπ
.
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Thus the required probability is

1
lπ

∫ π

0

l
2
sinθdθ =

1
π
.

Here we have interpreted “at random” to mean that the position of the needle is character-
ized by a point (r,θ) which lies in the rectangle 0 ≤ r ≤ l, 0 ≤ θ ≤ π. We have assumed
that the probability that the point (r,θ) lies in any arbitrary subset of this rectangle is pro-
portional to the area of this set. Roughly, this means that “all positions of the midpoint of
the needle are assigned the same weight and all directions of the needle are assigned the
same weight.”

Example 8. An interval of length 1, say (0, 1), is divided into three intervals by choosing
two points at random. What is the probability that the three line segments form a triangle?

It is clear that a necessary and sufficient condition for the three segments to form a
triangle is that the length of any one of the segments be less than the sum of the other two.
Let x,y be the abscissas of the two points chosen at random. Then we must have either

0 < x <
1
2
< y < 1 and y− x <

1
2

or

0 < y <
1
2
< x < 1 and x− y <

1
2
.

This is precisely the shaded area in Fig. 4. It follows that the required probability is 1/4.
If it is specified in advance that the point x is chosen at random from (0,1/2), and the

point y at random from (1/2,1), we must have

0 < x <
1
2
,

1
2
< y < 1,

(0,0)
(1,0)

(1,1)(0,1)

x

y

Fig. 4 {(x,y) : 0< x< 1/2< y< 1, and (y−x)< 1/2 or 0< y< 1/2< x< 1, and (x−y)< 1/2}.
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and

y− x < x+1− y or 2(y− x)< 1.

In this case the area bounded by these lines is the shaded area in Fig. 5, and it follows that
the required probability is 1/2.

Note the difference in sample spaces in the two computations made above.

Example 9 (Bertrand’s Paradox). A chord is drawn at random in the unit circle. What is
the probability that the chord is longer than the side of the equilateral triangle inscribed in
the circle?

We present here three solutions to this problem, depending on how we interpret the
phrase “at random.” The paradox is resolved once we define the probability spaces
carefully.

Solution 1. Since the length of a chord is uniquely determined by the position of
its midpoint, choose a point C at random in the circle and draw a line through C and O,
the center of the circle (Fig. 6). Draw the chord through C perpendicular to the line OC.
If l1 is the length of the chord with C as midpoint, l1 >

√
3 if and only if C lies inside the

circle with center O and radius 1/2. Thus PA = π(1/2)2/π = 1/4.
In this case Ω is the circle with center O and radius 1, and the event A is the concentric

circle with center O and radius 1
2 . S is the usual Borel σ-field of subsets of Ω.

Solution 2. Because of symmetry, we may fix one end point of the chord at some
point P and then choose the other end point P1 at random. Let the probability that P1 lies
on an arbitrary arc of the circle be proportional to the length of this arc. Now the inscribed
equilateral triangle having P as one of its vertices divides the circumference into three

l/2

1

0
l/2 x

y

Fig. 5 {(x,y) : 0 < x < 1/2, 1/2 < y < 1 and 2(y− x)< 1}.
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c

o

Fig. 6

P P1

Fig. 7

equal parts. A chord drawn through P will be longer than the side of the triangle if and
only if the other end point P1 (Fig. 7) of the chord lies on that one third of the circumference
that is opposite to P. It follows that the required probability is 1/3. In this case Ω= [0,2π],
S=B1 ∩Ω and A = [2π/3,4π/3].

Solution 3. Note that the length of a chord is uniquely determined by the distance of
its midpoint from the center of the circle. Due to the symmetry of the circle, we assume that
the midpoint of the chord lies on a fixed radius, OM, of the circle (Fig. 8). The probability
that the midpoint M lies in a given segment of the radius through M is then proportional
to the length of this segment. Clearly, the length of the chord will be longer than the side
of the inscribed equilateral triangle if the length of OM is less than radius/2. It follows
that the required probability is 1/2.
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O

M

Fig. 8

PROBLEMS 1.3

1. Let Ω be the set of all nonnegative integers and S the class of all subsets of Ω. In
each of the following cases does P define a probability on (Ω,S)?

(a) For A ∈ S, let

PA =
∑
x∈A

e−λλx

x!
, λ > 0.

(b) For A ∈ S, let

PA =
∑
x∈A

p(1−p)x, 0 < p < 1.

(c) For A ∈ S, let PA = 1 if A has a finite number of elements, and PA = 0 otherwise.

2. Let Ω=R and S=B. In each of the following cases does P define a probability on
(Ω,S)?

(a) For each interval I, let

PI =
∫

I

1
π
.

1
1+ x2

dx.

(b) For each interval I, let PI = 1 if I is an interval of finite length and PI = 0 if I is
an infinite interval.

(c) For each interval I, let PI = 0 if I ⊆ (−∞,1) and PI =
∫

I(1/2)dx if I ⊆ [1,∞].
(If I = I1 + I2, where I1 ⊆ (−∞,1) and I2 ⊆ [1,∞), then PI = PI2.)

3. Let A and B be two events such that B ⊇ A. What is P(A∪B)? What is P(A∩B)?
What is P(A−B)?
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4. In Problems 1(a) and (b), let A = {all integers > 2}, B = {all nonnegative
integers < 3}, and C = {all integers x, 3 < x < 6}. Find PA, PB, PC, P(A ∩ B),
P(A∪B), P(B∪C), P(A∩C), and P(B∩C).

5. In Problem 2(a) let A be the event A = {x : x ≥ 0}. Find PA. Also find P{x : x > 0}.

6. A box contains 1000 light bulbs. The probability that there is at least 1 defective bulb
in the box is 0.1, and the probability that there are at least 2 defective bulbs is 0.05.
Find the probability in each of the following cases:

(a) The box contains no defective bulbs.

(b) The box contains exactly 1 defective bulb.

(c) The box contains at most 1 defective bulb.

7. Two points are chosen at random on a line of unit length. Find the probability that
each of the three line segments so formed will have a length >1/4.

8. Find the probability that the sum of two randomly chosen positive numbers (both
≤1) will not exceed 1 and that their product will be ≤2/9.

9. Prove Theorem 3.

10. Let {An} be a sequence of events such that An → A as n →∞. Show that PAn → PA
as n →∞.

11. The base and the altitude of a right triangle are obtained by picking points ran-
domly from [0,a] and [0,b], respectively. Show that the probability that the area
of the triangle so formed will be less than ab/4 is (1+ �n 2)/2.

12. A point X is chosen at random on a line segment AB. (i) Show that the probability
that the ratio of lengths AX/BX is smaller than a (a > 0) is a/(1+a). (ii) Show that
the probability that the ratio of the length of the shorter segment to that of the larger
segment is less than 1/3 is 1/2.

1.4 COMBINATORICS: PROBABILITY ON FINITE SAMPLE SPACES

In this section we restrict attention to sample spaces that have at most a finite number of
points. Let Ω= {ω1,ω2, . . . ,ωn} and S be the σ-field of all subsets of Ω. For any A ∈ S,

PA =
∑
ωj∈A

P{ωj}.

Definition 1. An assignment of probability is said to be equally likely (or uniform) if each
elementary event in Ω is assigned the same probability. Thus, if Ω contains n points ωj,
P{ωj}= 1/n, j = 1,2, . . . ,n.

With this assignment

PA =
number of elementary events in A

total number of elementary events in Ω
. (1)

Example 1. A coin is tossed twice. The sample space consists of four points. Under the
uniform assignment, each of four elementary events is assigned probability 1/4.
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Example 2. Three dice are rolled. The sample space consists of 63 points. Each one-point
set is assigned probability 1/63.

In games of chance we usually deal with finite sample spaces where uniform proba-
bility is assigned to all simple events. The same is the case in sampling schemes. In such
instances the computation of the probability of an event A reduces to a combinatorial
counting problem. We therefore consider some rules of counting.

Rule 1. Given a collection of n1 elements a11,a12, . . . ,a1n1 , n2 elements a21,a22, . . . ,a2n2 ,
and so on, up to nk elements ak1,ak2, . . . ,aknk , it is possible to form n1 ·n2 · · · · ·nk ordered
k-tuples (a1j1 ,a2j2 , . . . ,akjk) containing one element of each kind, 1 ≤ ji ≤ ni, i= 1,2, . . . ,k.

Example 3. Here r distinguishable balls are to be placed in n cells. This amounts to choos-
ing one cell for each ball. The sample space consists of nr r-tuples (i1, i2, . . . , ir), where ij
is the cell number of the jth ball, j = 1,2, . . . ,r, (1 ≤ ij ≤ n).

Consider r tossings with a coin. There are 2r possible outcomes. The probability that
no heads will show up in r throws is (1/2)r. Similarly, the probability that no 6 will turn
up in r throws of a die is (5/6)r.

Rule 2 is concerned with ordered samples. Consider a set of n elements a1,a2, . . . ,an.
Any ordered arrangement (ai1 ,ai2 , . . . ,air) of r of these n symbols is called an ordered
sample of size r. If elements are selected one by one, there are two possibilities:

1. Sampling with replacement In this case repetitions are permitted, and we can draw
samples of an arbitrary size. Clearly there are nr samples of size r.

2. Sampling without replacement In this case an element once chosen is not replaced,
so that there can be no repetitions. Clearly the sample size cannot exceed n, the size
of the population. There are n(n−1) · · ·(n− r+1) = nPr, say, possible samples of
size r. Clearly nPr = 0 for integers r > n. If r = n, then nPr = n!.

Rule 2. If ordered samples of size r are drawn from a population of n elements, there are
nr different samples with replacement and nPr samples without replacement.

Corollary. The number of permutations of n objects is n!.

Remark 1. We will frequently use the term “random sample” in this book to describe the
equal assignment of probability to all possible samples in sampling from a finite popula-
tion. Thus, when we speak of a random sample of size r from a population of n elements,
it means that each of nr samples, in sampling with replacement, has the same probability
1/nr or that each of nPr samples, in sampling without replacement, is assigned probability
1/nPr.

Example 4. Consider a set of n elements. A sample of size r is drawn at random with
replacement. Then the probability that no element appears more than once is clearly
nPr/nr.
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Thus, if n balls are to be randomly placed in n cells, the probability that each cell will
be occupied is n!/nn.

Example 5. Consider a class of r students. The birthdays of these r students form a sample
of size r from the 365 days in the year. Then the probability that all r birthdays are different
is 365Pr/(365)r. One can show that this probability is <1/2 if r = 23.

The following table gives the values of qr = 365Pr/(365)r for some selected values of r.

r 20 23 25 30 35 60

qr 0.589 0.493 0.431 0.294 0.186 0.006

Next suppose that each of the r students is asked for his birth date in order, with the
instruction that as soon as a student hears his birth date he is to raise his hand. Let us
compute the probability that a hand is first raised when the kth (k = 1,2, . . . ,r) student
is asked his birth date. Let pk be the probability that the procedure terminates at the kth
student. Then

p1 = 1−
(

364
365

)r−1

and

pk =
365Pk−1

(365)k−1

(
1− k−1

365

)r−k+1
[

1−
(

365− k
365− k+1

)r−k
]
, k = 2,3, . . . . ,r.

Example 6. LetΩ be the set of all permutations of n objects. Let Ai be the set of all permu-
tations that leave the ith object unchanged. Then the set ∪n

i=1Ai is the set of permutations
with at least one fixed point. Clearly

PAi =
(n−1)!

n!
, i = 1,2, . . . ,n,

P(Ai ∩Aj) =
(n−2)!

n!
, i < j; i, j = 1,2, . . . ,n, etc.

By Theorem 1.3.3 we have

P

(
n⋃

i=1

Ai

)
=

(
1− 1

2!
+

1
3!

−·· ·± 1
n!

)
.

As an application consider an absent-minded secretary who places n letters in n
envelopes at random. Then the probability that she will misplace every letter is

1−
(

1− 1
2!

+
1
3!

−·· ·± 1
n!

)
.

It is easy to see that this last probability −→ e−1 = 0.3679 as n →∞.
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Rule 3. There are
(n

r

)
different subpopulations of size r ≤ n from a population of n

elements, where

(
n
r

)
=

n!
r!(n− r)!

. (2)

Example 7. Consider the random distribution of r balls in n cells. Let Ak be the event that
a specified cell has exactly k balls, k = 0,1,2, . . . ,r; k balls can be chosen in

(r
k

)
ways. We

place k balls in the specified cell and distribute the remaining r− k balls in the n−1 cells
in (n−1)r−k ways. Thus

PAk =

(
r
k

)
(n−1)r−k

nr
=

(
r
k

)(
1
n

)k (
1− 1

n

)r−k

.

Example 8. There are
(52

13

)
= 635,013,559,600 different hands at bridge, and

(52
5

)
=

2,598,960 hands at poker.
The probability that all 13 cards in a bridge hand have different face values is 413/

(52
13

)
.

The probability that a hand at poker contains five different face values is
(13

5

)
45/

(52
5

)
.

Rule 4. Consider a population of n elements. The number of ways in which the population
can be partitioned into k subpopulations of sizes r1,r2, . . . ,rk, respectively, r1 + r2 + · · ·+
rk = n, 0 ≤ ri ≤ n, is given by

(
n

r1,r2, . . . ,rk

)
=

n!
r1!r2! · · ·rk!

. (3)

The numbers defined in (3) are known as multinomial coefficients.

Proof. For the proof of Rule 4 one uses Rule 3 repeatedly. Note that

(
n

r1,r2, . . . ,rk

)
=

(
n
r1

)(
n− r1

r2

)
· · ·

(
n− r1 · · ·− rk−2

rk−1

)
. (4)

Example 9. In a game of bridge the probability that a hand of 13 cards contains 2 spades,
7 hearts, 3 diamonds, and 1 club is

(
13
2

)(
13
7

)(
13
3

)(
13
1

)
(

52
13

) .

Example 10. An urn contains 5 red, 3 green, 2 blue, and 4 white balls. A sample of size 8
is selected at random without replacement. The probability that the sample contains 2 red,
2 green, 1 blue, and 3 white balls is



“c01” — 2015/7/3 — 12:24 — page 24 — #24

24 PROBABILITY(
5
2

)(
3
2

)(
2
1

)(
4
3

)
(

14
8

) .

PROBLEMS 1.4

1. How many different words can be formed by permuting letters of the word “Missis-
sippi”? How many of these start with the letters “Mi”?

2. An urn contains R red and W white marbles. Marbles are drawn from the urn one
after another without replacement. Let Ak be the event that a red marble is drawn for
the first time on the kth draw. Show that

PAk =

(
R

R+W − k+1

) k−1∏
j=1

(
1− R

R+W − j+1

)
.

Let p be the proportion of red marbles in the urn before the first draw. Show that
PAk → p(1−p)k−1 as R+W →∞. Is this to be expected?

3. In a population of N elements, R are red and W = N −R are white. A group of n
elements is selected at random. Find the probability that the group so chosen will
contain exactly r red elements.

4. Each permutation of the digits 1, 2, 3, 4, 5, 6 determines a six-digit number. If the
numbers corresponding to all possible permutations are listed in increasing order of
magnitude, find the 319th number on this list.

5. The numbers 1,2, . . . ,n are arranged in random order. Find the probability that the
digits 1,2, . . . ,k (k < n) appear as neighbors in that order.

6. A pin table has seven holes through which a ball can drop. Five balls are played.
Assuming that at each play a ball is equally likely to go down any one of the seven
holes, find the probability that more than one ball goes down at least one of the holes.

7. If 2n boys are divided into two equal subgroups find the probability that the two
tallest boys will be (a) in different subgroups and (b) in the same subgroup.

8. In a movie theater that can accommodate n+ k people, n people are seated. What is
the probability that r ≤ n given seats are occupied?

9. Waiting in line for a Saturday morning movie show are 2n children. Tickets are
priced at a quarter each. Find the probability that nobody will have to wait for change
if, before a ticket is sold to the first customer, the cashier has 2k (k < n) quarters.
Assume that it is equally likely that each ticket is paid for with a quarter or a half-
dollar coin.

10. Each box of a certain brand of breakfast cereal contains a small charm, with k distinct
charms forming a set. Assuming that the chance of drawing any particular charm is
equal to that of drawing any other charm, show that the probability of finding at least
one complete set of charms in a random purchase of N ≥ k boxes equals
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1−
(

k
1

)(
k−1

k

)N

+

(
k
2

)(
k−2

k

)N

−
(

k
3

)(
k−3

k

)N

+ · · ·+(−1)k−1

(
k

k−1

)(
1
k

)N

.

[Hint: Use (1.3.6).]

11. Prove Rules 1–4.

12. In a five-card poker game, find the probability that a hand will have:

(a) A royal flush (ace, king, queen, jack, and 10 of the same suit).

(b) A straight flush (five cards in a sequence, all of the same suit; ace is high but A,
2, 3, 4, 5 is also a sequence) excluding a royal flush.

(c) Four of a kind (four cards of the same face value).

(d) A full house (three cards of the same face value x and two cards of the same face
value y).

(e) A flush (five cards of the same suit excluding cards in a sequence).

(f) A straight (five cards in a sequence).

(g) Three of a kind (three cards of the same face value and two cards of different
face values).

(h) Two pairs.

(i) A single pair.

13. (a) A married couple and four of their friends enter a row of seats in a concert hall.
What is the probability that the wife will sit next to her husband if all possible
seating arrangements are equally likely?

(b) In part (a), suppose the six people go to a restaurant after the concert and sit at
a round table. What is the probability that the wife will sit next to her husband?

14. Consider a town with N people. A person sends two letters to two separate people,
each of whom is asked to repeat the procedure. Thus for each letter received, two
letters are sent out to separate persons chosen at random (irrespective of what hap-
pened in the past). What is the probability that in the first n stages the person who
started the chain letter game will not receive a letter?

15. Consider a town with N people. A person tells a rumor to a second person, who in
turn repeats it to a third person, and so on. Suppose that at each stage the recipient
of the rumor is chosen at random from the remaining N − 1 people. What is the
probability that the rumor will be repeated n times

(a) Without being repeated to any person.

(b) Without being repeated to the originator.

16. There were four accidents in a town during a seven-day period. Would you be sur-
prised if all four occurred on the same day? Each of the four occurred on a different
day?

17. While Rules 1 and 2 of counting deal with ordered samples with or without replace-
ment, Rule 3 concerns unordered sampling without replacement. The most difficult
rule of counting deals with unordered with replacement sampling. Show that there



“c01” — 2015/7/3 — 12:24 — page 26 — #26

26 PROBABILITY

are
(n+r−1

r

)
possible unordered samples of size r from a population of n elements

when sampled with replacement.

1.5 CONDITIONAL PROBABILITY AND BAYES THEOREM

So far, we have computed probabilities of events on the assumption that no information
was available about the experiment other than the sample space. Sometimes, however,
it is known that an event H has happened. How do we use this information in mak-
ing a statement concerning the outcome of another event A? Consider the following
examples.

Example 1. Let urn 1 contain one white and two black balls, and urn 2, one black and two
white balls. A fair coin is tossed. If a head turns up, a ball is drawn at random from urn 1
otherwise, from urn 2. Let E be the event that the ball drawn is black. The sample space
is Ω = {Hb11,Hb12,Hw11,Tb21,Tw21,Tw22}, where H denotes head, T denotes tail, bij

denotes jth black ball in ith urn, i = 1,2, and so on. Then

PE = P{Hb11,Hb12,Tb21}= 3
6 = 1

2 .

If, however, it is known that the coin showed a head, the ball could not have been drawn
from urn 2. Thus, the probability of E, conditional on information H, is 2

3 . Note that this
probability equals the ratio P{Head and ball drawn black}/P{Head}.

Example 2. Let us toss two fair coins. Then the sample space of the experiment is Ω =
{HH,HT,TH,TT}. Let event A = {both coins show same face} and B = {at least one
coin shows H}. Then PA = 2/4. If B is known to have happened, this information assures
that TT cannot happen, and P{A conditional on the information that B has happened} =
1
3 = 1

4/
3
4 = P(A∩B)/PB.

Definition 1. Let (Ω,S,P) be a probability space, and let H ∈ S with PH > 0. For an
arbitrary A ∈ S we shall write

P{A | H}= P(A∩H)

PH
(1)

and call the quantity so defined the conditional probability of A, given H. Conditional
probability remains undefined when PH = 0.

Theorem 1. Let (Ω,S,P) be a probability space, and let H ∈ S with PH > 0. Then
(Ω,S,PH), where PH(A) = P{A | H} for all A ∈ S, is a probability space.

Proof. Clearly PH(A) = P{A | H} ≥ 0 for all A ∈ S. Also, PH(Ω) = P(Ω∩H)/PH = 1.
If A1,A2, . . . is a disjoint sequence of sets in S, then
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PH

( ∞∑
i=1

Ai

)
= P

{ ∞∑
i=1

Ai | H

}
=

P{(
∑∞

1 Ai)∩H}
PH

=

∑∞
i=1 P(Ai ∩H)

PH

=
∞∑

i=1

PH(Ai).

Remark 1. What we have done is to consider a new sample space consisting of the basic
set H and the σ-field SH = S∩H, of subsets A∩H, A ∈ S, of H. On this space we have
defined a set function PH by multiplying the probability of each event by (PH)−1. Indeed,
(H,SH,PH) is a probability space.

Let A and B be two events with PA > 0, PB > 0. Then it follows from (1) that⎧⎨
⎩

P(A∩B) = PA ·P{B | A},

P(A∩B) = PB ·P{A | B}.
(2)

Equation (2) may be generalized to any number of events. Let A1,A2, . . . ,An ∈ S, n ≥ 2,
and assume that P(

⋂n−1
j=1 Ai)> 0. Since

A1 ⊃ (A1 ∩A2)⊃ (A1 ∩A2 ∩A3)⊃ ·· · ⊃

⎛
⎝n−2⋂

j=1

Aj

⎞
⎠⊃

⎛
⎝n−1⋂

j=1

Aj

⎞
⎠ ,

we see that

PA1 > 0, P(A1 ∩A2)> 0, . . . , P

(
n−2⋂
j=1

Aj

)
> 0.

It follows that P{Ak | ∩k−1
j=1 Aj} are well defined for k = 2,3, . . . ,n.

Theorem 2 (The Multiplication Rule). Let (Ω,S,P) be a probability space and A1,A2, . . . ,
An ∈ S, with P(∩n−1

j=1 Aj)> 0. Then

P

{
n⋂

j=1

Aj

}
= P(A1)P{A2 | A1}P{A3 | A1 ∩A2}· · ·P

{
An |

n−1⋂
j=1

Aj

}
. (3)

Proof. The proof is simple.

Let us suppose that {Hj} is a countable collection of events in S such that Hj ∩Hk =Φ,
j �= k, and

∑∞
j=1 Hj =Ω. Suppose that PHj > 0 for all j. Then

PB =

∞∑
j=1

P(Hj)P{B | Hj} for all B ∈ S. (4)
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For the proof we note that

B =
∞∑

j=1

(B∩Hj),

and the result follows. Equation (4) is called the total probability rule.

Example 3. Consider a hand of five cards in a game of poker. If the cards are dealt at
random, there are

(52
5

)
possible hands of five cards each. Let A = {at least 3 cards of

spades} and B = {all 5 cards of spades}. Then

P(A∩B) = P{all 5 cards of spades}

=

(
13
5

)
(

52
5

)

and

P{B | A}= P(A∩B)
PA

=

(
13
5

)/(
52
5

)
[(

13
3

)(
39
2

)
+

(
13
4

)(
39
1

)
+

(
13
5

)]/(
52
5

) .

Example 4. Urn 1 contains one white and two black marbles, urn 2 contains one black
and two white marbles, and urn 3 contains three black and three white marbles. A die is
rolled. If a 1, 2, or 3 shows up, urn 1 is selected; if a 4 shows up, urn 2 is selected; and if
a 5 or 6 shows up, urn 3 is selected. A marble is then drawn at random from the selected
urn. Let A be the event that the marble drawn is white. If U, V , W, respectively, denote the
events that the urn selected is 1, 2, 3, then

A = (A∩U)+(A∩V)+(A∩W),

P(A∩U) = P(U) ·P{A | U}= 3
6 ·

1
3 ,

P(A∩V) = P(V) ·P{A | V}= 1
6 ·

2
3 ,

P(A∩W) = P(W) ·P{A | W}= 2
6 ·

3
6 .

It follows that

PA = 1
6 +

1
9 +

1
6 = 4

9 .

A simple consequence of the total probability rule is the Bayes rule, which we now
prove.
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Theorem 3 (Bayes Rule). Let {Hn} be a disjoint sequence of events such that PHn > 0,
n = 1,2, . . . , and

∑∞
n=1 Hn =Ω. Let B ∈ S with PB > 0. Then

P{Hj | B}= P(Hj)P{B | Hj}∑∞

i=1
P(Hi)P{B | Hi}

, j = 1,2, . . . . (5)

Proof. From (2)

P{B∩Hj}= P(B)P{Hj | B}= PHjP{B | Hj},

and it follows that

P{Hj | B}= PHjP{B | Hj}
PB

.

The result now follows on using (4).

Remark 2. Suppose that H1,H2, . . . are all the “causes” that lead to the outcome of a ran-
dom experiment. Let Hj be the set of outcomes corresponding to the jth cause. Assume
that the probabilities PHj, j = 1,2, . . . , called the prior probabilities, can be assigned. Now
suppose that the experiment results in an event B of positive probability. This information
leads to a reassessment of the prior probabilities. The conditional probabilities P{Hj | B}
are called the posterior probabilities. Formula (5) can be interpreted as a rule giving the
probability that observed event B was due to cause or hypothesis Hj.

Example 5. In Example 4 let us compute the conditional probability P{V | A}.
We have

P{V | A}= PV P{A | V}
PU P{A | U}+PV P{A | V}+PW P{A | W}

=
1
6 ·

2
3

3
6 ·

1
3 +

1
6 ·

2
3 +

2
6 ·

3
6

=
1
9
4
9

= 1
4 .

PROBLEMS 1.5

1. Let A and B be two events such that PA = p1 > 0, PB = p2 > 0, and p1 + p2 > 1.
Show that P{B | A} ≥ 1− [(1−p2)/p1].

2. Two digits are chosen at random without replacement from the set of integers
{1,2,3,4,5,6,7,8}.

(a) Find the probability that both digits are greater than 5.

(b) Show that the probability that the sum of the digits will be equal to 5 is the same
as the probability that their sum will exceed 13.

3. The probability of a family chosen at random having exactly k children is αpk, 0 <
p < 1. Suppose that the probability that any child has blue eyes is b, 0 < b < 1,
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independently of others. What is the probability that a family chosen at random has
exactly r (r ≥ 0) children with blue eyes?

4. In Problem 3 let us write

pk = probability of a randomly chosen family having exactly k children = αpk,

k = 1,2, . . . ,

p0 = 1− αp
(1−p)

.

Suppose that all sex distributions of k children are equally likely. Find the probability
that a family has exactly r boys, r ≥ 1. Find the conditional probability that a family
has at least two boys, given that it has at least one boy.

5. Each of (N + 1) identical urns marked 0,1,2, . . . ,N contains N balls. The kth urn
contains k black and N−k white balls, k = 0,1,2, . . . ,N. An urn is chosen at random,
and n random drawings are made from it, the ball drawn being always replaced. If
all the n draws result in black balls, find the probability that the (n+1)th draw will
also produce a black ball. How does this probability behave as N →∞?

6. Each of n urns contains four white and six black balls, while another urn contains
five white and five black balls. An urn is chosen at random from the (n+ 1) urns,
and two balls are drawn from it, both being black. The probability that five white
and three black balls remain in the chosen urn is 1/7. Find n.

7. In answering a question on a multiple choice test, a candidate either knows the
answer with probability p (0 ≤ p < 1) or does not know the answer with probability
1−p. If he knows the answer, he puts down the correct answer with probability 0.99,
whereas if he guesses, the probability of his putting down the correct result is 1/k
(k choices to the answer). Find the conditional probability that the candidate knew
the answer to a question, given that he has made the correct answer. Show that this
probability tends to 1 as k →∞.

8. An urn contains five white and four black balls. Four balls are transferred to a sec-
ond urn. A ball is then drawn from this urn, and it happens to be black. Find the
probability of drawing a white ball from among the remaining three.

9. Prove Theorem 2.

10. An urn contains r red and g green marbles. A marble is drawn at random and its
color noted. Then the marble drawn, together with c > 0 marbles of the same color,
are returned to the urn. Suppose n such draws are made from the urn? Find the
probability of selecting a red marble at any draw.

11. Consider a bicyclist who leaves a point P (see Fig. 1), choosing one of the roads
PR1, PR2, PR3 at random. At each subsequent crossroad he again chooses a road at
random.

(a) What is the probability that he will arrive at point A?

(b) What is the conditional probability that he will arrive at A via road PR3?

12. Five percent of patients suffering from a certain disease are selected to undergo a
new treatment that is believed to increase the recovery rate from 30 percent to 50
percent. A person is randomly selected from these patients after the completion of
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P

R3R2R1

R11 R12 R21
A

R32 R33
R34

Fig. 1 Map for Problem 11.

the treatment and is found to have recovered. What is the probability that the patient
received the new treatment?

13. Four roads lead away from the county jail. A prisoner has escaped from the jail and
selects a road at random. If road I is selected, the probability of escaping is 1/8;
if road II is selected, the probability of success is 1/6; if road III is selected, the
probability of escaping is 1/4; and if road IV is selected, the probability of success
is 9/10.

(a) What is the probability that the prisoner will succeed in escaping?

(b) If the prisoner succeeds, what is the probability that the prisoner escaped by
using road IV? Road I?

14. A diagnostic test for a certain disease is 95 percent accurate; in that if a person has
the disease, it will detect it with a probability of 0.95, and if a person does not have
the disease, it will give a negative result with a probability of 0.95. Suppose only 0.5
percent of the population has the disease in question. A person is chosen at random
from this population. The test indicates that this person has the disease. What is the
(conditional) probability that he or she does have the disease?

1.6 INDEPENDENCE OF EVENTS

Let (Ω,S,P) be a probability space, and let A,B ∈ S, with PB > 0. By the multiplication
rule we have

P(A∩B) = P(B)P{A | B}.
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In many experiments the information provided by B does not affect the probability of
event A, that is, P{A | B}= P{A}.

Example 1. Let two fair coins be tossed, and let A = {head on the second throw},
B = {head on the first throw}. Then

P(A) = P{HH,TH}= 1
2 , P(B) = {HH,HT}= 1

2 ,

and

P{A | B}= P(A∩B)
P(B)

=
1
4
1
2

= 1
2 = P(A)

Thus

P(A∩B) = P(A)P(B).

In the following, we will write A∩B = AB.

Definition 1. Two events, A and B, are said to be independent if and only if

P(AB) = P(A)P(B). (1)

Note that we have not placed any restriction on P(A) or P(B). Thus conditional prob-
ability is not defined when P(A) or P(B) = 0 but independence is. Clearly, if P(A) = 0,
then A is independent of every E ∈ S. Also, any event A ∈ S is independent of Φ and Ω.

Theorem 1. If A and B are independent events, then

P{A | B}= P(A) if P(B)> 0

and

P{B | A}= P(B) if P(A)> 0.

Theorem 2. If A and B are independent, so are A and Bc, Ac and B, and Ac and Bc.

Proof.

P(AcB) = P(B− (A∩B))

= P(B)−P(A∩B) since B ⊇ (A∩B)

= P(B){1−P(A)}
= P(Ac)P(B).

Similarly, one proves that (i) Ac and Bc and (ii) A and Bc are independent.
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We wish to emphasize that independence of events is not to be confused with disjoint
or mutually exclusive events. If two events, each with nonzero probability, are mutually
exclusive, they are obviously dependent since the occurrence of one will automatically
preclude the occurrence of the other. Similarly, if A and B are independent and PA > 0,
PB > 0, then A and B cannot be mutually exclusive.

Example 2. A card is chosen at random from a deck of 52 cards. Let A be the event that
the card is an ace and B, the event that it is a club. Then

P(A) = 4
52 = 1

13 , P(B) = 13
52 = 1

4 ,

P(AB) = P{ace of clubs}= 1
52 ,

so that A and B are independent.

Example 3. Consider families with two children, and assume that all four possible dis-
tributions of sex—BB, BG, GB, GG, where B stands for boy and G for girl—are equally
likely. Let E be the event that a randomly chosen family has at most one girl and F, the
event that the family has children of both sexes. Then

P(E) = 3
4 , P(F) = 1

2 , and P(EF) = 1
2 ,

so that E and F are not independent.
Now consider families with three children. Assuming that each of the eight possible

sex distributions is equally likely, we have

P(E) = 4
8 , P(F) = 6

8 , P(EF) = 3
8 ,

so that E and F are independent.

An obvious extension of the concept of independence between two events A and B to a
given collection U of events is to require that any two distinct events in U be independent.

Definition 2. Let U be a family of events from S. We say that the events U are pairwise
independent if and only if, for every pair of distinct events A,B ∈ U,

P(AB) = PAPB.

A much stronger and more useful concept is mutual or complete independence.

Definition 3. A family of events U is said to be a mutually or completely independent
family if and only if, for every finite sub collection {Ai1 ,Ai2 , . . . ,Aik} of U, the following
relation holds:

P(Ai1 ∩Ai2 ∩·· ·∩Aik) =

k∏
j=1

PAij . (2)
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In what follows we will omit the adjective “mutual” or “complete” and speak of inde-
pendent events. It is clear from Definition 3 that in order to check the independence of n
events A1,A2, . . . ,An ∈ S we must check the following 2n −n−1 relations.

P(AiAj) = PAi PAj, i �= j; i, j = 1,2, . . . ,n,

P(AiAjAk) = PAi PAj PAk, i �= j �= k; i, j,k = 1,2, . . . ,n,

...

P(A1A2 · · ·An) = PA1 PA2 · · ·PAn.

The first of these requirements is pairwise independence. Independence therefore implies
pairwise independence, but not conversely.

Example 4 (Wong [120]). Take four identical marbles. On the first, write symbols A1A2A3.
On each of the other three, write A1, A2, A3, respectively. Put the four marbles in an urn
and draw one at random. Let Ei denote the event that the symbol Ai appears on the drawn
marble. Then

P(E1) = P(E2) = P(E3) =
1
2 ,

P(E1E2) = P(E2E3) = P(E1E3) =
1
4 ,

and

P(E1E2E3) =
1
4 . (3)

It follows that although events E1, E2, E3 are not independent, they are pairwise
independent.

Example 5 (Kac [48], pp. 22–23). In this example P(E1E2E3) = P(E1)P(E2)P(E3), but
E1, E2, E3 are not pairwise independent and hence not independent. Let Ω = {1,2,3,4},
and let pi be the probability assigned to {i}, i = 1,2,3,4. Let p1 =

√
2

2 − 1
4 , p2 =

1
4 ,p3 =

3
4 −

√
2

2 , p4 =
1
4 . Let E1 = {1,3}, E2 = {2,3}, E3 = {3,4}. Then

P(E1E2E3) = P{3}= 3
4
−

√
2

2
=

1
2

(
1−

√
2

2

)(
1−

√
2

2

)

= (p1 +p3)(p2 +p3)(p3 +p4)

= P(E1)P(E2)P(E3).

But P(E1E2) =
3
4 −

√
2

2 �= PE1PE2, and it follows that E1, E2, E3 are not independent.

Example 6. A die is rolled repeatedly until a 6 turns up. We will show that event A, that
“a 6 will eventually show up,” is certain to occur. Let Ak be the event that a 6 will show up
for the first time on the kth throw. Let A =

∑∞
k=1 Ak. Then

PAk =
1
6

(
5
6

)k−1

, k = 1,2, . . . . ,
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and

PA =
1
6

∞∑
k=1

(
5
6

)k−1

=
1
6

1

1− 5
6

= 1.

Alternatively, we can use the corollary to Theorem 1.3.6. Let Bn be the event that a 6 does
not show up on the first n trials. Clearly Bn+1 ⊆ Bn, and we have Ac = ∩∞

n=1Bn. Thus

1−PA = PAc = P

( ∞⋂
n=1

Bn

)
= lim

n→∞
P(Bn) = lim

n→∞

(
5
6

)n

= 0.

Example 7. A slip of paper is given to person A, who marks it with either a plus or a
minus sign; the probability of her writing a plus sign is 1/3. A passes the slip to B, who
may either leave it alone or change the sign before passing it to C. Next, C passes the slip
to D after perhaps changing the sign; finally, D passes it to a referee after perhaps changing
the sign. The referee sees a plus sign on the slip. It is known that B, C, and D each change
the sign with probability 2/3. We shall compute the probability that A originally wrote a
plus.

Let N be the event that A wrote a plus sign, and M, the event that she wrote a minus
sign. Let E be the event that the referee saw a plus sign on the slip. We have

P{N | E}= P(N)P{E | N}
P(M)P{E | M}+P(N)P{E | N} .

Now

P{E | N}= P{the plus sign was either not changed or changed exactly twice}

=

(
1
3

)3

+3

(
2
3

)2

+

(
1
3

)

and

P{E | M}= P{the minus sign was changed either once or three times}

= 3

(
2
3

)(
1
3

)2

+

(
2
3

)3

.

It follows that

P{N | E}=
( 1

3 )[(
1
3 )

3 +3( 2
3 )

2( 1
3 )]

( 1
3 )[(

1
3 )

3 +3( 2
3 )

2( 1
3 )]+( 2

3 )[3(
2
3 )(

1
3 )

2 +( 2
3 )

3]

=
13
18
41
81

=
13
41

.
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PROBLEMS 1.6

1. A biased coin is tossed until a head appears for the first time. Let p be the probability
of a head, 0 < p < 1. What is the probability that the number of tosses required is
odd? Even?

2. Let A and B be two independent events defined on some probability space, and let
PA = 1/3, PB = 3/4. Find (a) P(A∪B), (b) P{A | A∪B}, and (c) P{B | A∪B}.

3. Let A1, A2, and A3 be three independent events. Show that Ac
1, Ac

2, and Ac
3 are

independent.

4. A biased coin with probability p, 0 < p < 1, of success (heads) is tossed until for the
first time the same result occurs three times in succession (i.e., three heads or three
tails in succession). Find the probability that the game will end at the seventh throw.

5. A box contains 20 black and 30 green balls. One ball at a time is drawn at random,
its color is noted, and the ball is then replaced in the box for the next draw.

(a) Find the probability that the first green ball is drawn on the fourth draw.

(b) Find the probability that the third and fourth green balls are drawn on the sixth
and ninth draws, respectively.

(c) Let N be the trial at which the fifth green ball is drawn. Find the probability that
the fifth green ball is drawn on the nth draw. (Note that N take values 5,6,7, . . . .)

6. An urn contains four red and four black balls. A sample of two balls is drawn at
random. If both balls drawn are of the same color, these balls are set aside and a new
sample is drawn. If the two balls drawn are of different colors, they are returned to
the urn and another sample is drawn. Assume that the draws are independent and
that the same sampling plan is pursued at each stage until all balls are drawn.

(a) Find the probability that at least n samples are drawn before two balls of the
same color appear.

(b) Find the probability that after the first two samples are drawn four balls are left,
two black and two red.

7. Let A, B, and C be three boxes with three, four, and five cells, respectively. There are
three yellow balls numbered 1 to 3, four green balls numbered 1 to 4, and five red
balls numbered 1 to 5. The yellow balls are placed at random in box A, the green in
B, and the red in C, with no cell receiving more than one ball. Find the probability
that only one of the boxes will show no matches.

8. A pond contains red and golden fish. There are 3000 red and 7000 golden fish,
of which 200 and 500, respectively, are tagged. Find the probability that a random
sample of 100 red and 200 golden fish will show 15 and 20 tagged fish, respectively.

9. Let (Ω,S,P) be a probability space. Let A, B, C ∈ S with PB and PC > 0. If B and
C are independent show that

P{A | B}= P{A | B∩C}PC+P{A | B∩Cc}PCc.

Conversely, if this relation holds, P{A | BC} �= P{A | B}, and PA > 0, then B and C
are independent (Strait [111]).
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10. Show that the converse of Theorem 2 also holds. Thus A and B are independent if,
and only if, A and Bc are independent, and so on.

11. A lot of five identical batteries is life tested. The probability assignment is assumed
to be

P(A) =
∫

A
(1/λ)e−x/λdx

for any event A ⊆ [0,∞), where λ> 0 is a known constant. Thus the probability that
a battery fails after time t is given by

P(t,∞) =

∫ ∞

t
(1/λ)e−x/λdx, t ≥ 0.

If the times to failure of the batteries are independent, what is the probability that at
least one battery will be operating after t0 hours?

12. On Ω= (a,b), −∞< a < b <∞, each subinterval is assigned a probability propor-
tional to the length of the interval. Find a necessary and sufficient condition for two
events to be independent.

13. A game of craps is played with a pair of fair dice as follows. A player rolls the dice.
If a sum of 7 or 11 shows up, the player wins; if a sum of 2, 3, or 12 shows up, the
player loses. Otherwise the player continues to roll the pair of dice until the sum is
either 7 or the first number rolled. In the former case the player loses and in the latter
the player wins.

(a) Find the probability that the player wins on the nth roll.

(b) Find the probability that the player wins the game.

(c) What is the probability that the game ends on: (i) the first roll, (ii) second roll,
and (iii) third roll?
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