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1.1 Introduction

All over the world, fighting against poverty is assuming a more and more central role and
recent radical economic and social transformations have caused a renewed interest in this field.
Poverty is a complex concept. As a consequence, the focus should not be only on monetary
poverty, but also on the larger concept of well-being, which preliminarily includes the defini-
tion and measure of the following aspects: capability of income production, being involved in
a satisfying job, being in good health, living in an adequate house, achieving a proper level of
education, having good social relations, and so on. These characteristics require poverty to be
defined in a multidimensional setting.
Given that, the reduction of the risk of becoming poor can be achieved only through a very

wide range of policy actions and tools: from the mere monetary transfer to a varied supply of
social services.
Local governments play a fundamental role in implementing actions to provide help to

vulnerable people. By means of providing social services and transfers in kind, Local Gov-
ernmental Agencies (LGAs) are able to adapt their service supply to multiple and different
needs. The governance of local areas must be concerted and shared creating a virtuous pool of
governmental and not governmental actors and agencies.
So the policy makers need to know the situation as it is and the impact of their actions at this

local level and also stakeholders and citizens are interested in better understanding the effect
of policies on their own territory.
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2 Analysis of Poverty Data by Small Area Estimation

However the main sources of statistical data on monetary and non-monetary poverty are
from sample surveys on income and living conditions. These rarely give credible estimates
at sub-regional and local level. From this comes the importance of the Small Area Estimation
(SAE)methods for measuring poverty at local level. This is confirmed also by the large amount
of literature on these local estimates resulting from many projects, conferences and books in
the last decade.
This chapter has a twofold scope. It serves as necessary background to introduce the book as

it constitutes also a useful preparation to the specific methodologies described in each chapter,
and a common reference for the notation to use. We start from the definition of poverty indica-
tors and the problem of their estimation (Section 1.2), to present then the main issues related to
the data as data integration and data quality that are cross-cutting the methodologies presented
in the book (Section 1.3). Section 1.4 reviews the model-assisted and model-based methods
used in the book and also gives advice and recommendations on the previous issues.

1.2 Target Parameters

1.2.1 Definition of the Main Poverty Indicators

In order to monitor the process of social inclusion, a list of 18 indicators monitoring poverty
and social exclusion was proposed in 2001 (Atkinson et al. 2002). The list is constantly mod-
ified and complemented. It contains both indicators based on household incomes (monetary
indicators) and indicators based on non-monetary symptoms of poverty (non-monetary indi-
cators). Among poverty indicators, the so-called Laeken indicators are very often used to
target poverty and inequalities. They are a core set of statistical indicators on poverty and
social exclusion agreed by the European Council in December 2001, in the Brussels suburb of
Laeken, Belgium.
Referring to the monetary poverty and starting from the Income distribution the most fre-

quently used indicators are the average mean of the equalized income, the Head Count Ratio
(HCR) and the Poverty Gap (PG). The HCR measures the incidence of poverty and it is the
percentage of individuals of households under a poverty line, that can be defined at national
or regional level. For example, the European Commission fix it as 60% of the median value of
the equivalized income distribution. The PG index measures the intensity of poverty, that are
the depth of poverty by considering how far, on average, the poor are from that poverty line.
Formally, the incidence of poverty or HCR and the PG can be obtained by the gen-

eralized measures of poverty introduced by 1984. Denoting the poverty line by t, the
Foster-Greer-Thorbecke (FGT) poverty measures are defined as:

F(𝛼, t) = 1
N

N∑
j=1

( t − yj
t

)𝛼

I(yj ≤ t). (1.1)

Here y is a measure of income for individual/household j, N is the number of individu-
als/households and 𝛼 is a “sensitivity” parameter. Setting 𝛼 = 0 defines the HCR, F(0, t),
whereas setting 𝛼 = 1 defines the PG, F(1, t).
The HCR indicator is a widely used measure of poverty. The popularity of this indicator is

due to its ease of construction and interpretation, even if it has some limitations. As it assumes
that all poor individuals/households are in the same situation, the easiest way of reducing its
value is by implementing actions to target benefits to people who are just below the poverty
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line. In fact, they are the ones who are the cheapest to move across the line. Hence, policies
based on the headcount index might be not completely effective, as they are not based on
the exam of the whole income distribution. For this reason, estimates of the PG indicator
are important. The PG can be interpreted as the average shortfall of poor people. It shows
how much would have to be transferred to all the poor to bring their expenditure up to the
poverty line.
Together with the above indicators, the average value of the distribution of the household

income is also important. This is especially true when the level of income is modest and the
distribution of income has a long tail. In this case the median value on which the poverty line
is computed is expected to be low and the HCR tends to be low as well. Also the PG can lose
its relevance, giving a misleading indication of the deprivation of the population under study.
In many cases these measures are considered as a starting point for more in depth studies of

poverty and living conditions. In fact, analyses are done using also non-monetary indicators
in order to give a more complete picture of poverty and deprivation (Cheli and Lemmi, 1995).
In addition, as poverty is a question of graduation, the set of indicators is generally enlarged
with other indicators belonging to vulnerable groups, from which it can be likely to move
towards the status of poverty (see Chapter 2 of this book). The spatial distribution of these
poverty indicators is a feature of high interest. It can be illustrated and represented by building
poverty maps. Poverty maps can be constructed using censuses, surveys, administrative data
and other data. Here we refer to poverty mapping to visualize the spatial distribution of poverty
indicators. This is particularly useful, as it is shown in Chapter 2, to monitor the localization
of poverty and the individuation of the most vulnerable areas.

1.2.2 Direct and Indirect Estimate of Poverty Indicators at Small Area Level

The estimates of the different poverty indicators at area level can be done under the
design-based (Hansen et al. 1953; Kish 1965; Cochran 1977), model-assisted (Särndal
et al. 1992) and model based approach (Gosh and Meeden, 1997, Valliant et al. 2000; Rao
2003), as direct or indirect small area estimates. The direct estimates are produced under the
design-based approach using only data coming from one survey, the indirect estimates use
auxiliary information (variables) to improve the quality and accuracy of survey estimates or
to break down the known values referred to larger areas by using regression-type models. All
these estimates belong to the broad class of Small Area Estimation (SAE) methods.
Let us start introducing the notation we use in this chapter and in particular in the review

of the small areas model-assisted and model-based methods. Consider that a population U
of size N is divided into D non-overlapping subsets Ud (domains of study or areas) of size
Nd, d = 1, ...,D. We index the population units by j and the small areas by d, the variable of
interest is yjd, xjd is a vector of p auxiliary variables. We assume that xij contains 1 as its first
component. Suppose that a sample s is drawn according to some, possibly complex, sampling
design such that the inclusion probability of unit j within area d is given by 𝜋jd, and that
area-specific samples sd ⊂ Ud of size nd ≥ 0 are available for each area. Note that non-sample
areas have nd = 0, in which case sd is the empty set. The set rd ⊆ Ud contains the Nd − nd
indices of the non-sampled units in small area d.
Values of yjd are known only for sampled values while for the p-vector of auxiliary variables

it is assumed that area level totalsXd or means X̄d or individual values xjd are accurately known
from external sources.



�

� �

�

4 Analysis of Poverty Data by Small Area Estimation

The straightforward approach to calculate FGT poverty indicators referring to the areas of
interest is to compute direct estimates. For each area, direct estimators use only the data refer-
ring to the sampled households, since for these households the information on the household
income is available.
The direct estimators of the FGT poverty indicators are of the form:

Fdir
d (𝛼, t) = 1∑

i∈sd
𝑤jd

∑
j∈sd

𝑤jd

( t − yjd
t

)𝛼

I(yjd < t), d = 1, ... ,D, (1.2)

where 𝑤jd is the sampling weight (inverse of the probability of inclusion) of household j
belonging to area d and

∑
i∈sd𝑤jd = Nd. In the same way, the mean of the household equival-

ized income in each small area can be computed as:

mdir
d = 1∑

i∈sd𝑤jd

∑
j∈sd

𝑤jdyjd, d = 1, ... ,D. (1.3)

When the sample size in the areas of interest is limited, estimators such as (1.2) and (1.3)
cannot be used. In fact the size is too small to obtain acceptable statistical significance of
the direct estimates obtained under the sample design. Then the purely design-based solution
and the usage of direct estimates often implies the increase of the sample size, oversampling
of the studied domains. If oversampling is done, credible estimates can be obtained with
appropriate direct estimators and the SAE problem is solved. Nevertheless, in many practi-
cal situations oversampling is far from being an option as cost–benefit analysis excludes it as
a time-consuming and unaffordable solution.
In these cases, model-assisted and model-based SAE techniques need to be employed.

Therefore, the estimation of poverty indicators (target parameters) at local level is computed
with indirect methods by using auxiliary variables, usually coming from administrative data
available also at local area level. The relationship between the target parameters and the
auxiliary variables is described by a suitable model. Considering Särndal et al. (1992) we
clarify that in this context a model consists of “some assumptions of relationship, unverifiable
but not entirely out of place, to save survey resources or to bypass other practical difficulties”.
Under these approaches it is useful to express the mean and the FGT indicators for the small

area d as shown in the following.
The population small area mean can be written as:

md = N−1
d

(∑
j∈sd

yjd +
∑
j∈rd

yjd

)
. (1.4)

Since the y values for the rd non-sampled units are unknown, they need to be predicted.
The FGT poverty indicators in small area d can be written as:

Fd(𝛼, t) = N−1
d

(∑
j∈sd

zjd (𝛼, t) +
∑
j∈rd

zjd(𝛼, t)

)
, (1.5)

where

zjd(𝛼, t) =
( t − yjd

t

)𝛼

I(yjd < t). (1.6)
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Also the z values for the rd non-sampled units are unknown, and they need to be predicted
on the basis of the predicted y values.
The prediction of the y is generally based on a set of auxiliary variables following a regres-

sion model. In this perspective, the model-based methodologies allow for the construction of
efficient estimators and their confidence intervals by borrowing the strength through use of a
suitable model.
The prediction process can encounter inadequacies, difficulties, and problems due both to

the characteristics of the available data and the specification and fitting of the SAE model.
These issues depend on the amount and the extent of the information on the study variable and
on the auxiliary information, and on the typology of the study variable we are interested in.
Other problems are linked to the specification of the model as the under/over shrinkage effect
of the variability of the estimates between the areas, the modeling of the spatial relationships
among the areas and/or the units and the treatment of out-of-sample areas (see Section 1.3).

1.3 Data-related and Estimation-related Problems for the Estimation
of Poverty Indicators

The data-related problems are faced when preparing the data information available to set up
the estimation phase.
There are various sample surveys, both at EU and country level, on household income,

consumption, labor force and living conditions that can be used to compute direct estimates
of poverty and related indicators. However, these surveys have at least two limitations:
(i) problems of incoherent definitions may rise, because no single data source is able to cover
all the aspects; and (ii) the estimates are accurate only at the level of large areas, because the
sample is sized at regional level (e.g., in Italy not at province and municipality level).
To overcome the first limitation, it is necessary to check the coherence among the different

definitions of the target variables and to improve their comparability, as well as to integrate
the micro data coming from different surveys and other data sources to increase the accuracy
of the direct estimations.
The second limitation means that the survey data do not support reliable estimation at the

level of a local area because sample sizes are often too small to provide direct estimates with
acceptable variability (as measured by the coefficient of variation). Sometimes, these estimates
could be obtained with larger samples, oversampling the areas of interest, but increasing also
the survey costs, and this is not a generally feasible solution to the problem.
When the administrative register data are used as covariate in the SAEmodel, it is frequently

necessary to integrate data coming from different administrative sources in order to derive
more adequate auxiliary variables and more accurate and complete final statistics. This is not
a straightforward procedure, as it is shown in Chapters 3 and 4 of this book. The keyword is
the harmonization of the registers in such a way that information from different sources and
observed data should be consistent and coherent.
Other data-related problems arise when indirect methods based on sample surveys are used:

(i) The out-of-sample areas. The estimation of target parameters at local area use both the
data collected by the related survey and the auxiliary variables data available at that area
level. Frequently, for some ormany areas the values of the study variable are not available,
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and obviously the SAE have to face with this situation, that is known as the problem of
out-of-sample areas or domains.

(ii) The benchmarking. Often the target parameters to be estimated at area level are to be
related with known values referred to larger areas we want to break down with the esti-
mation models. Once obtained, the small area estimates should be consistent with already
known values for larger areas. Benchmarking is the consistency of a collection of small
area estimates with a reliable estimate obtained according to ordinary design-based meth-
ods for the union of the areas. The population counts or the values of the target parameters
in larger areas serve as a benchmark accounting for under coverage or over coverage
and underreporting of the small area target values. Realignment of the small area esti-
mates with the known values is an automatic result of the application of some small area
methods. This is also particularly important for National Statistical Institutes to ensure
coherence between small area estimates and direct estimates produced at higher level
planned domains. In Section 1.4 we examine the methods from this perspective giving
advice and warnings about their features and impact on the estimates, guiding the reader
to other chapters of the book.

(iii) The excess of zero values. The excess of significant zero values in the data requires a
preliminary investigation to formulate a model of behavior for the study variable in the
population. There are many practical situations where the study variable can be con-
ceptualized as skewed and strictly positive: in a population of individuals income and
consumption follow those models. The problem of the zero excess emerges in situations
where the target variable is not only skewed and strictly positive, but defined over the
whole positive axis, zero included. Also, when analyzing significant variables to build up
poverty indicators it is likely to be in the presence of survey data where there are many
zero values of that variable for many sampled households. We refer here to the case of
negative income values that are substituted by zero values. A high frequency of zeros can
occur also when the study variable is a characteristic of the households, such as presence
of households not able to keep their home adequately warm or with arrears on utility bills
in a local area where living conditions are acceptable. In this case the problem is different
and should be treated under the umbrella of SAE for a rare population.

(iv) The outlier. Outlier detection in the study variable have always been an interesting chal-
lenge when examining data to prepare the estimation of small area target parameters. If
they are significant and not to be eliminated cleaning up the data set, they require methods
that are robust against their effect on the validity of the small area model.

There are solutions described in recent literature to deal with the problem of excess of zeros
and with the estimation in the presence of outliers which we will mention in Section 1.4 and
they also are presented in the following chapters.
Part III of this book contains chapters devoted to the design-based estimation of poverty

indicators and on related themes. Particularly Chapter 5 provides evidence on the effect of the
sample design on SAE methods. Chapter 6 shows applications of the design-based framework
to SAE andChapter 7 illustrates the cumulation of panel data to estimate the sampling variance.
The estimation-related problems are inherent to the selected SAEmodel and its specification

and fitting procedure. They produce an effect on the set of small area estimates affecting their
heterogeneity and the meaning of their relation with other variables:
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(v) The shrinkage effect. The SAE estimates can often be motivated from both a Bayesian
and a frequentist point of view, can be obtained using the theory of best linear unbiased
prediction (BLUP) or empirical best linear unbiased prediction (EBLUP) or under
non-parametric and semi-parametric approaches using also M-quantile models. The
chapters of Part III and Part V of this book show many of these models and present
simulation studies and application to real poverty data. Nevertheless, there are situations
where the models have the tendency for under/over-shrinkage of small area estimators.
In fact, it is often the case that, if we consider a collection of small area estimates, they
misrepresent the variability of the underlying “ensemble” of population parameters. In
other words, the expected sampling variance of the set of predictions is less than the
expected sampling variance of the ensemble of the true Small Area parameters (see
Rao, 2003, section 9.6 for a discussion of this problem and also of adjusted predictors).

(vi) The spatial modeling. In recent years there have been significant developments in
model-based small area methods that incorporate spatial information in an attempt to
improve the efficiency of small area estimates by borrowing strength over space. The
possible gains from modeling the correlations among small area random effects used
to represent the unexplained variation of the small area target quantities are examined
and compared with other parametric and non parametric approaches. The reader can
find a review of spatio-temporal models in the chapters of Part IV. In Chapters 11, 12
and 13 there are examples of how these spatial models perform when estimation is for
out-of-sample areas that is areas with zero sample, and issues related to estimation of
mean squared error (MSE) of the resulting small area estimators are discussed. The
emphasis is on point prediction of the target area quantities, and mean square error
assessments. However, these alternative small area models using data with geographical
information have to be studied also with reference to their performance whenever the
Modifiable Area Unit Problem (MAUP) occurs.

(vii) The Modifiable Area Unit Problem. The MAUP appears when analyzing the relation
(spatial or not) between variables. It is a potential source of error that can affect spatial
studies, which utilize aggregate data sources and also the SAE results. The result can be
diverse when the same relation is measured on different areal units. This can give mis-
leading results in the specification of SAE models and affect the quality of the small area
estimates. A simple strategy to deal with the problem of MAUP in SAE is to undertake
analysis at multiple scales or zones. In Section 1.4 we will indicate some preliminary
results on the scale effect of MAUP when obtaining small area estimates.

1.4 Model-assisted and Model-based Methods Used for the Estimation
of Poverty Indicators: a Short Review

1.4.1 Model-assisted Methods

In the last 30 years mixture modes of making inference have become common in survey
sampling: in many cases design-based inference is model assisted. Also in the SAE context the
model-assisted approach has become popular and in this section we briefly review the most
common estimators under this approach.
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Among design-based methods assisted by the specification of a model for the study variable
there are three families of methods that have been recently applied in poverty mapping: Gener-
alized Regression (GREG) estimators; pseudo-EBLUP estimators; and M-quantile weighted
estimators.
The GREG approach can be used to estimate several poverty indicators. With reference to

the estimation of the small area mean, the estimators under this approach share the following
structure:

̂̄m
GREG
d =

∑
j∈Ud

ŷjd +
∑
j∈sd

𝑤jd(yjd − ŷjd), (1.7)

where 𝑤jd is the sampling weight of unit j within area d that is the reciprocal of the respective
inclusion probability 𝜋jd. Different GREG estimators are obtained in association with different
models specified for assisting estimation, that is for calculating predicted values ŷjd, j ∈ Ud.
In the simplest case a fixed effects regression model is assumed: E(yjd) = xTjd𝜷, ∀j ∈ Ud, ∀d
where the expectation is taken with respect to the assisting model. Lehtonen and Veijanen
(1999) introduce an assisting two-level model where E(yjd) = xTjd(𝜷 + ud), which is a model
with area-specific regression coefficients. In practice, not all coefficients need to be random
and models with area-specific intercepts mimicking linear mixed models may be used (Lehto-
nen et al. 2003). In this case the GREG estimator takes the form of (1.7) with ŷjd = xTjd(𝜷̂ + ûd).
Estimators 𝜷̂ and û are obtained using generalized least squares and restricted maximum like-
lihood methods (Lehtonen and Pahkinen, 2004). See Chapter 6 of this book.
Under the pseudo-EBLUP approach the estimators are derived taking into account the

sampling design both via the sampling weights and the auxiliary variables in the models. The
estimators of the area mean proposed by Prasad and Rao (1999) and You and Rao (2002) are
based on the assumption of a population nested error regression model and it is also assumed
that the sampling design is ignorable given the auxiliary variables included in the model. As

for the error terms it is assumed that ud
i.i.d.∼ N(0, 𝜎2u ) and eij

i.i.d.∼ N(0, 𝜎2e ).
By combining a Hájek type direct estimator of m̄d defined as ȳd𝑤 =

∑
j∈sd 𝑤̆jdyjd where

𝑤̆jd = 𝑤jd

(∑
j∈sd𝑤jd

)−1
, and the nested error regression model, Prasad and Rao (1999) obtain

the following aggregated area level model:

ȳd𝑤 = x̄Td𝑤𝜷 + 𝑣d + ēd𝑤, (1.8)

with ēd𝑤 =
∑

j∈sd 𝑤̆jdejd and X̄d𝑤 =
∑

j∈sd 𝑤̆jdxjd.
The design consistent pseudo-EBLUP estimator 𝜂̂d𝑤 of the d th area mean is then given by:

𝜂̂d𝑤 = 𝛾̂d𝑤ȳd𝑤 + (X̄d − 𝛾̂d𝑤x̄d𝑤)T 𝜷̂𝑤, (1.9)

where 𝛾̂d𝑤 = 𝜎̂2u (𝜎̂2u + 𝜎̂2e 𝛿d)−1, 𝛿d =
∑

j∈sd 𝑤̆
2
jd and

𝜷̂𝑤(𝜎̂2u , 𝜎̂2e ) =

(
D∑
d=1

∑
j∈sd

𝑤̆jdxjd(xjd − 𝛾̂d𝑤x̄Td𝑤)

)−1 ( D∑
d=1

∑
j∈sd

𝑤̆jd(xjd − 𝛾̂d𝑤x̄Td𝑤yjd)

)
. (1.10)

The variance components (𝜎2u , 𝜎2e ) can be estimated using for example, Restricted Maximum
Likelihood (REML) or the fitting-of-constants method. Both Prasad and Rao (1999) and
You and Rao (2002) provided formulae for the model-based MSE associated with the
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pseudo-EBLUP estimators of the area mean. Jiang and Lahiri (2006) noted that these
estimators are not second-order correct. Torabi and Rao (2010) derived a second order
unbiased predictor for the pseudo-EBLUP estimator (1.9).
An alternative family of model-assisted small area estimators is based on the M-quantile

methodology (Chambers and Tzavidis, 2006), see Chapter 9 of this book. Recently, under this
model, Fabrizi et al. (2014a) proposed a design consistent estimator of area-specific poverty
indicators using the Rao–Kovar–Mantel estimator of the distribution function of income Fi
(Rao et al. 1990) defined as:

F̂WMQ∕RKM
d = N−1

d

[∑
j∈sd

𝑤jdI(yjd ≤ t) +
∑
j∈Ud

I(xTjd𝜷̂𝑤𝜃̄d ≤ t) −
∑
j∈sd

𝑤jdI(xTjd𝜷̂𝑤𝜃̄d ≤ t)

]
,

(1.11)
where 𝜷̂𝑤q is a design consistent estimator of 𝜷q. In the application of M-quantile regres-
sion to SAE, Chambers and Tzavidis (2006) characterize the variability across the population,
beyond what is accounted for by the model covariates, by using the so-called M-quantile coef-
ficients of the population units. For unit j in area d, this coefficient is the value 𝜃jd such that
Q𝜃jd (yjd|xjd) = yjd, where Qq(yjd|xjd) is the conditional M-quantile that is assumed to be a
linear function of the auxiliary information. The authors observe that if a hierarchical struc-
ture does explain part of the variability in the population data, units within areas defined by
this hierarchy are expected to have similar M-quantile coefficients. Average area coefficients
𝜃̄d may be calculated and this represents an alternative approach to estimating area random
effects without the need for using parametric assumptions.
More specifically, the weighted M-quantile-based small area estimator of the mean from

(1.11) is:

̂̄m
WMQ
d = ∫ tdF̂WMQ∕RKM

d (t) = 1
Nd

∑
j∈sd

𝑤jdyjd +

(
1
Nd

∑
j∈Ud

xTjd −
1
Nd

∑
j∈sd

𝑤jdx
T
jd

)
𝜷̂𝑤𝜃̄d .

(1.12)
The M-quantile method can be also used for estimating the HCR and the PG. Using t to

denote the poverty line, different poverty indicators are defined by the area-specific mean of
the variable derived:

fjd(𝛼, t) =
( t − yjd

t

)𝛼

I(yjd ≤ t), d = 1,… ,D; j = 1,… ,Nd. (1.13)

The population-level small area-specific poverty indicator can be decomposed as:

Fd(𝛼, t) = N−1
d

[∑
j∈sd

fjd(𝛼, t) +
∑
j∈rd

fjd(𝛼, t)

]
. (1.14)

The first component in (1.14) is observed in the sample, whereas the second component has to
be predicted by using the M-quantile model. Tzavidis et al. (2014) propose a non-parametric
approach by using a smearing-type estimator. More specifically:

Fd(𝛼, t) = N−1
d

[∑
j∈sd

fjd(𝛼, t) +
∑
j∈rd

E(fjd(𝛼, t))

]
. (1.15)
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For simplicity let us focus on the simplest case when 𝛼 = 0. An estimator of Fd(0, t) is
obtained by substituting an estimator of E(fjd(𝛼, t)) in (1.15) leading to

F̂d(0, t) = N−1
d

⎡⎢⎢⎢⎣
∑
j∈sd

𝑤jdfjd(0, t) +
1∑

j∈sd
𝑤jd

∑
k∈rd

∑
j∈sd

𝑤jdI(xTkd𝜷̂𝑤𝜃̄d + êjd ≤ t)
⎤⎥⎥⎥⎦ , (1.16)

where êjds are the estimated residuals from the M-quantile fit. The same approach can be
followed to estimate F̂d(1, t) or any other of the FGT poverty measures.
For the estimation of the variance of the M-quantile (MQ) predictors see Fabrizi et al.

(2014a) where two alternative estimators of the variance of the MQ predictors are proposed.
Even if the use of design consistent estimators in SAE is somewhat questionable because of

the small sample sizes in some or all of the areas, as Pfeffermann noted (Pfeffermann, 2013),
the families of methods we have described above offer generally design consistent estimators.
The three approaches previously described give partial solutions to the problems listed in

Section 1.3: they give practical solutions to benchmarking, they deal with the presence of
outliers, the estimates that they provide are differently affected by the shrinkage effect, and
they all offer out-of-sample predictions.
Also to protect against possible model failures, benchmarking procedures make the total

of small area estimates match a design consistent estimate for a larger area. With respect to
benchmarking, all the families of methods offer a solution.
There are two kinds of benchmarked estimators: estimators that are internally benchmarked

(or self-benchmarked) and those that are externally benchmarked. Self-benchmarked predic-
tors are the GREG estimator and the pseudo-EBLUP introduced by You and Rao (2002). The
externally benchmarked ones are more common under the model-based approach. For a recent
review see Wang et al. (2008).
The GREG procedure uses the higher level totals as auxiliary data in calculating survey

weights, thereby adjusting the lower level weights so that the total and subtotal estimates are
consistent (see also Smith and Hidiroglou, 2005). In addition, the weights that are used for
direct estimation using survey data in GREG expression are often constructed using calibra-
tionmethods, Often benchmarking to auxiliary totals is used together with weight equalization.
Benchmarking (forcing certain estimates to match known totals) has been shown to reduce
variances for statistics correlated with the auxiliary characteristics, and weight equalization
(forcing the weights within higher-level units to be equal) has been shown to further reduce
variances for statistics measured on the higher-level units (Lehtonen and Veijanen, 1999).
The pseudo-EBLUP estimators satisfy the benchmarking property without any adjustment in
the sense that they add up to the direct survey regression estimator when aggregated over
the areas. A drawback of this type of self-benchmarked estimators is that they force the use of
the same auxiliary information used for the direct usually GREG-type estimator also for the
model-based small area predictors, whereas it could be very profitable to allow for different
auxiliary variables at the small area level. Coming to theM-quantile approach note that expres-
sion (1.12) has a GREG-type form. This is the basis to see that theMQ predictors do not satisfy
the benchmarking property as it is shown in Fabrizi et al. (2014b). Here the authors propose a
method of constraining M-quantile regression. It can be applied to obtain benchmarking MQ
small area estimates.
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The treatment of the outliers is not the focus of the estimators of GREG type nor of those
under the pseudo-EBLUP approach, while the weighted M-quantile approach this issue.
There are studies under the AMELI (2008) project that illustrate the behavior of the

GREG-like estimators in the presence of different models of outlier-contamination of the
observed data. The results show that even if a robust method of fitting the logistic mixed
model was not available, the poverty rate estimators are fairly robust: this happens both
under a simple random sampling design and under a complex sampling design (AMELI,
2008, Deliverable 2.2). To deal with outliers, Beaumont and Alavi (2004) use the weighted
generalized M-estimation technique to reduce the influence of units with large weighted
population residuals. With respect to the empirical pseudo best approach recalled before
there is no contribution addressing the robustification of the estimates against the presence of
outliers. Jiang et al. (2011) relaxed some of the classical EBLUPmodel to obtain robust-model
based predictors. These relaxations may work also under the pseudo-EBLUP approach but
until now no evidence of it has been produced. The AMELI project provides evidence also on
the behavior of the Empirical Best Predictor type estimator based on a logistic mixed model.
This estimator is least affected by contaminations when the data come from a simple random
sample but it is not based on the pseudo-EBLUP approach. As it concerns the M-quantile
estimator with respect to GREG-S popular in small area literature (see Rao, 2003, section 2.5),
note that: (i) the use of an area-specific coefficient (𝜃̄d) in M-quantile regression accounts for
area characteristics not explained by the auxiliary variables; and (ii) the use of M-estimation
offers outlier robust estimation. Specifically, the recourse to M-quantile regression reduces
the impact that outlier observations have on the estimated regression coefficients and thereby
on the small area means.
The models which are assisting the estimation under the design-based approach can have

have the tendency for under/over-shrinkage of small area estimators.
The desirable property of neutral shrinkage is not achieved under the pseudo-EBLUP

approach. In this case it is reasonable that the over-shrinking behavior of the Empirical Best
predictors is confirmed. The understatement of extreme values, referred to as over-shrinkage
in this context, is problematic when the goal is the description of the overall distribution
among areas. However this tendency can be adjusted (see EURAREA, 2001, section B.3) and
it is likely that the adjustment can work even under the pseudo-EBLUP approach, but up to
now no evidence of it has been produced.
The tendency of GREG estimators is similar to that of direct estimators and in contrast to that

of the over-shrinking empirical Bayes (EB) predictors, as the results of the EURAREA project
have shown. The behavior of M-quantile-based predictors is then more similar to that of direct
estimators and GREG. Fabrizi et al. (2014b) propose an adjustment of the benchmarked MQ
predictors in order to obtain estimators with approximately neutral shrinkage. This adjustment
parallels the one used to adjust EB predictors (Rao, 2003, see Section 9.6). They extend the
methodology of Fabrizi et al. (2014b) to obtain estimates that enjoy “ensemble” properties,
that is properties related to the estimation of a functional of an ensemble of parameters (Frey
and Cressie, 2003). An ensemble of estimators is said to be neutral with respect to shrinkage
if the variance of the ensemble of the parameters can be unbiasedly estimated by the variance
of the ensemble of the estimators. This guarantees a correct representation of the geographical
variation of the variable in question. Otherwise, this geographical variation may be over- or
underestimated. Neutral shrinkage is important when small area estimators are used to create
“maps”.
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For the set E = {d|nd = 0} of the out-of-sample areas, that is areas where nd = 0, the
GREG-like estimators cannot be computed. The pseudo-EBLUP approach provides predic-
tors under the specified models which are likely to underestimate the variability of th estimates
among areas. Consistently with Chambers and Tzavidis (2006), the small area estimator ̂̄m

WMQ
d

can be defined as N−1
d

∑
j∈Ud

xTjd𝜷̂𝑤0.5, that is a synthetic estimator based on the weighted
M-regression.

1.4.2 Model-based Methods

The most popular method used for model-based SAE employs linear mixed models. In the
general case such a model has the form:

yjd = xTjd𝜷 + ud + ejd, (1.17)

where ud is the area-specific random effect and ejd is an individual random effect. The empirical
best linear unbiased predictor (EBLUP) ofmd (Henderson, 1975, Rao, 2003, chapter 7) is then

̂̄m
LM
d = N−1

d

[∑
j∈sd

yjd +
∑
j∈rd

{xTjd𝜷̂ + ûd}

]
, (1.18)

where 𝛽, ûd are defined by substituting an optimal estimator for the covariance matrix of the
random effects in (1.17) in the best linear unbiased estimator of 𝜷 and the BLUP of ud, respec-
tively. A widely used estimator of the MSE of the EBLUP is based on the approach of Prasad
and Rao (1990). This estimator accounts for the variability due to the estimation of the random
effects, regression parameters, and variance components.
Models presented in Parts IV and V of this book rely on and often enlarge the assumptions of

this popular approach: Chapter 8 introduces the issue of measurement error in the covariates;
Chapter 10 extends it to a non-parametric regression environment; and Chapters 11, 12 and
13 extend it to take into account spatial and temporal correlations and the characteristics of
geographical patterns.
Assuming model (1.17) on the logarithmically transformed values of income yjd, the most

widely used method for small area poverty mapping is the so-called World Bank (WB) or
Elbers, Lanjouw and Lanjouw (ELL) method (Elbers et al. 2003). Chapter 18 describes links,
alternatives and models used under this approach. The model is fitted to clustered survey data
from the population of interest, with the random effects in the model corresponding to the
cluster used in the survey design. Once the model has been estimated using the survey data, the
ELL method uses the following bootstrap population model to generate L synthetic censuses:

y∗jd = xTjd𝜷̂ + u∗d + e∗jd, u
∗
d ∼ N(0, 𝜎̂2u ), e∗jd ∼ N(0, 𝜎̂2e ) (1.19)

For each draw, using the synthetic values of the welfare variable y∗jd, values of the poverty
indicators of interest for the different small areas are calculated. These are averaged over the
L Monte Carlo simulations to produce the final estimates of the poverty quantities, with the
simulation variability of these estimates used as an estimate of their uncertainty.
Molina and Rao (2010) point out that when small areas and clusters coincide, in the sim-

plest case of estimating a small area mean, the ELL method leads to a synthetic regression
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estimator that, in many cases, could be less efficient than the alternative model-based estima-
tors. Molina and Rao (2010) propose a modification of the ELL method (the empirical best
predictor (EBP) method) introducing random area effects (rather than random cluster effects)
into the linear regression model for the welfare variable, and also simulated out-of-sample
data by independent drawings the conditional distribution of the out-of-sample data, given the
sample data. Deeper insights on this and recent enhancements of the method are described in
Chapter 17.
An alternative approach to EBLUP has been discussed in Chandra and Chambers (2005)

and it is based on the use of model-based direct estimation (MBDE) within the small areas. In
this case an estimate for a small area of interest corresponds to a weighted linear combination
of the sample data for that area, with weights based on a population level version of the linear
mixed model. These weights “borrow strength” via this model, which includes random area
effects. Provided the assumed small area model is true, the EBLUP is asymptotically the most
efficient estimator for a particular small area. In practice however the “true” model for the data
is unknown and the EBLUP can be inefficient under misspecification. In such circumstances,
Chandra and Chambers (2005) note that MBDE offers an alternative to potentially unstable
EBLUP. In particular, MBDE is easy to implement, produces sensible estimates when the
sample data exhibit patterns of variability that are inconsistent with the assumed model (e.g.,
contain too many zeros) and generates robust MSE estimates. The MBDE is presented in
Chapter 14 of this book for the estimation of the Cumulative Distribution Function.
A different approach has been proposed in the literature for further robustification of the

inference by relaxing some of the model assumptions. This approach is based on M-quantile
regression (Breckling and Chambers, 1988). It provides a “quantile-like” generalization of
regression based on influence functions (Breckling and Chambers, 1988). A linear M-quantile
regression model is one where the qth M-quantileQq(yjd|xjd) of the conditional distribution of
y given x satisfies:

Qq(yjd|xjd) = xTjd𝜷q. (1.20)

That is, it allows a different set of regression parameters for each value of q. For specified q
and continuous influence function 𝜓 , an estimate 𝜷̂q of 𝜷q can be obtained via an iterative
weighted least squares algorithm.
As stated in the previous section, extending this line of thinking to SAE, Chambers and

Tzavidis (2006) observed that if variability between the small areas is a significant part of the
overall variability of the population data, then units from the same small area are expected to
have similar M-quantile coefficients. In particular, when (1.20) holds, and 𝜷q is a sufficiently
smooth function of q, these authors suggest a predictor of mj of the form:

̂̄m
MQ
d = N−1

d

[∑
j∈sd

yjd +
∑
j∈rd

Q̂𝜃̄d (yjd|xjd)
]
, (1.21)

where Q̂𝜃̄d (yjd|xjd) = xTjd𝜷̂ 𝜃̄d and 𝜃̄d is an estimate of the average value of the M-quantile coef-
ficients of the units in area d. Typically this is the average of estimates of these coefficients
for sample units in the area. When there is no sample in the area, we can form a “synthet-
ic” M-quantile predictor by setting 𝜃̄d = 0.5. Tzavidis et al. (2010) refer to (1.21) as the
“naïve” M-quantile predictor and note that this can be biased and they propose a bias adjusted
M-quantile predictor of md.
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The M-quantile small models are used also for estimating the poverty indicators such as
HCR and PG (Tzavidis et al. 2014) by using a smearing-type estimator (Duan, 1983). A small
area estimator of the HCR is obtained as:

F̂d(0, t) = N−1
d

[∑
j∈sd

fjd(0, t) + Ê[fjd(0, t)]

]
(1.22)

where

Ê[fjd(0, t)] = ∫ I(xTjd𝜷̂ 𝜃̄d + êjd ≤ t)dF̂(ê) = n−1
∑
k∈rd

∑
j∈sd

I(xTkd𝜷̂ 𝜃̄d + êjd ≤ t)

with the distribution function estimated as F̂(ê) = n−1
∑n

j=1 I(êj ≤ e). The same approach can
be used to estimate the PG indicator or any other of the FGT poverty measures.
Under the model-based approach many of the problems listed in Section 1.3 have a solution,

for example all of them offer out-of-sample predictors. Among the other issues we focus here
on the excess of zero values in the data and in the treatment of geographic information and
spatial data.
Model-based estimators usually do not have the benchmarking property under a complex

sampling design. Given a small area estimator, that does not show the benchmarking property,
a first simple way of achieving benchmarking is by a ratio type adjustment. Externally
benchmarked predictors are obtained through an a-posteriori adjustment of model-based
predictors. Among the others, Pfeffermann and Barnard (1991) propose an externally
restricted benchmarked estimator of small area means. This is constructed under an area
linear mixed model for a continuous response variable.
Many variables of interest in economics surveys on poverty and living conditions are

semicontinuous in nature, that is they either take a single fixed value (typically 0, zero) or
they have a continuous, often skewed, distribution on the positive real line. They present an
excess of zero values. A semicontinuous variable is quite different from one that has been left
censored or truncated, because the zeros are valid self-representing data values, not proxies
for negative or missing responses. A two-part random effects model (Olsen and Schafer,
2001) is widely used for SAE with zero-inflated variables, see for example, Pfeffermann et al.
(2008) and Chandra and Sud (2012). Chandra and Chambers (2014) propose a SAE method
for semicontinuous variables under a two part random effects model. The issues which arise
when the data are lognormal are discussed in Chapter 15.
In poverty studies observations that are spatially close may be more alike than observations

that are further apart. One approach for incorporating spatial information in spatial modeling
and in a small area regression model is to assume that the model coefficients themselves vary
spatially across the geography of interest and/or the random effects of the model be correlated.
Both EBLUP predictors and MQ predictors can be extended to include the effect of the spatial
characteristics of the data. These extensions can be applied to poverty studies (see SAMPLE,
2008, deliverables), but are not reviewed in this book.
When geography is included as auxiliary information in modeling, the spatial correlation

and the consequent correlation between the random effect in the EBLUP model require the
extension of the EBLUP estimator to the Spatial Empirical Best Linear Unbiased Predictor
(SEBLUP) estimator (Petrucci and Salvati, 2006, Pratesi and Salvati, 2009).
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Under the MQ approach the reference to the Geographically Weighted Regression (GWR)
(Brundson et al. 1996) helps in modeling spatial variation. This uses local rather than global
parameters in the regression model. That is, a GWR model assumes spatial non-stationarity
of the conditional mean of the variable of interest. Salvati et al. (2012) propose an M-quantile
GWR model, that is a local model for the M-quantiles of the conditional distribution of the
outcome variable given the covariates. This approach is semi-parametric in that it attempts to
capture spatial variability by allowing model parameters to change with the location of the
units, in effect by using a distance metric to introduce spatial non-stationarity into the mean
structure of the model. The model is then used to define a predictor of the small area character-
istic of interest. As a consequence, it integrates the concepts of bias-robust SAE and borrowing
strength over space within a unified modeling framework. By construction, the model is a local
model and so can provide more flexibility in SAE, particularly for out-of-sample small area
estimation, that is areas where there are no sampled units. For the estimation of the variance
of the predictors see Chambers et al. (2011, 2014).
When studying the spatial distribution of local poverty indicators obtained by SAEmethods,

it can be relevant to consider the possible effect of theMAUP. This is a source of statistical bias
that can radically affect the results of statistical analysis. It affects results when point-based
measures of spatial phenomena (e.g., population density) are aggregated into larger areas. The
resulting summary values (e.g., totals, rates, proportions) are influenced by the choice of the
boundaries of the areas. For example, point-based census or survey data may be aggregated
into census enumeration districts, or post-code areas, or any other spatial partition (thus, the
“areal units” are “modifiable”).
The topic has not yet been treated explicitly in the current literature on SAE. The only empir-

ical study is due to Pratesi and Petrucci (2014) who studied the scale effect on SAE predictors
by a simulation experiment. They provide evidence to assess the robustness of SAE methods
to different scale of aggregation of the point-based measures inside the pre-defined small areas
(domains) of interest. The rationale of this simulation study is to verify to what extent we can
aggregate the individual values inside the small areas and still have an acceptable accuracy of
the estimate of the small area parameter. Under this simulation experiment, methods that are
naturally robust to outliers and not linked to distributional assumption on the study variable
as M-quantile methods perform better than the alternative methods for SAE and are found
to be resilient to changing scale of analysis. This is likely due to the fact that the changes in
geography do not affect the M-quantile coefficients at area level.
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