
 Chapter 1 : Exploring the Standard
Library Further

 In This Chapter
 ✓ Categorizing the Standard Library functions

 ✓ Working with container functions such as hash

 ✓ Performing random access with iterator functions

 ✓ Working with algorithms such as find

 ✓ Creating random numbers with functors

 ✓ Working with utilities such as min and max

 ✓ Creating temporary buffers with allocators

 The Standard Library is one of the most important parts of the C++
developer’s toolkit because it contains a host of interesting functions

that let you write great applications. The Standard Library originally started
as the Standard Template Library (STL), and a number of companies, including
Silicon Graphics, Inc. (SGI) and IBM, distributed it for everyone to use. The
International Standards Organization (ISO) eventually took over STL, made a
few minor changes to it, and renamed it the Standard Library. Consequently,
when you see the STL online, don’t get confused; it’s merely an older ver-
sion of the Standard Library.

 For the purposes of this book, the differences between the Standard Library
and the STL are so small that you can probably use the terms interchange-
ably. Just remember that the Standard Library is newer and does contain
some changes to make the various versions of the STL work together. In
addition, the STL won’t provide support for features such as polymorphic
allocators and optional inputs.

 This chapter provides an overview of the Standard Library and shows you
some examples of how to use it. However, if you don’t see what you want
here, don’t worry; we discuss more examples in later chapters and you can
always refer to the Standard Library documentation for additional examples.
Before the chapter moves on to any examples, however, it’s important to
know what the Standard Library contains, so the first section of this chapter
provides you with a list of Standard Library function categories.

41_9781118823781-ch32.indd 68341_9781118823781-ch32.indd 683 7/17/2014 11:38:45 AM7/17/2014 11:38:45 AM

CO
PYRIG

HTED
 M

ATERIA
L

Considering the Standard Library Categories684

 Considering the Standard Library Categories
 The Standard Library documentation uses a formal approach that you’re
going to find difficult to read and even harder to understand; it must have
been put together by lawyers more interested in the precise meaning of
words rather than the usability of the document. This 1,338-page tome (in
the current version) requires quite a bit of time to review. Fortunately, you
don’t have to wade through all that legal jargon mixed indiscriminately with
computer jargon and the occasional bit of English. This chapter provides the
overview you need to get going quickly.

 The best way to begin is to break the Standard Library into smaller pieces.
You can categorize the Standard Library functions in a number of ways. One
of the most common approaches is to use the following categories:

 ✦ Containers

 ✦ Iterators

 ✦ Algorithms

 ✦ Functors

 The Standard Library is incredibly large, so
this book doesn’t document it completely. The
 Code::Blocks product doesn’t come with
a Standard Library reference either. However,
to really use the Standard Library, you really do
need a copy of the documentation.

 You can join ISO for a bazillion bucks and get
a copy of their document free or purchase
a copy of it from http://www.iso.
org/iso/home/store/catalogue_
ics/catalogue_detail_ics.
htm?csnumber=50372 . As an alternative,
you can buy a copy of the Standard Library
documentation from an ISO member such as
the American National Standards Institute
(ANSI) for a more reasonable sum. Check it
out at http://webstore.ansi.org/

FindStandards.aspx (simply type ISO/
IEC 14882:2011 in the search field).

 Because the STL and the Standard Library are
relatively close, you have a third alternative:
use an STL resource. One of the best written
and easiest to use resources is from SGI at
 http://www.sgi.com/tech/stl/ . The
downside to using the STL documentation is
that it doesn’t contain information about newer
features found only in the Standard Library.

 In addition to the resources mentioned so far,
you’ll want to check out Bjarne Stroustrup’s
website at http://www.stroustrup.
com/#standard . Just in case you don’t
know, he’s the guy who designed and originally
implemented C++.

 Getting a copy of the Standard
Library documentation

41_9781118823781-ch32.indd 68441_9781118823781-ch32.indd 684 7/17/2014 11:38:45 AM7/17/2014 11:38:45 AM

Book VI

Chapter 1

 E
x

p
lo

rin
g

 th
e

S

ta
n

d
a

rd
 Lib

ra
ry

Fu
rth

e
r

Considering the Standard Library Categories 685

 ✦ Utilities

 ✦ Adaptors

 ✦ Allocators

 ✦ Polymorphic allocators

 The following sections provide a brief description of each of these catego-
ries and tell what you can expect to find in them. Knowing the category can
help you locate the function you need quickly on websites that use these
relatively standard category names.

 Containers
 Containers work just like the containers in your home — they hold some-
thing. You’ve already seen containers at work in other areas of this book. For
example, both queues and deques are kinds of containers. The Containers
category doesn’t contain any functions, but it does contain a number of
types including those in the following table:

 basic_string bit_vector bitset

 char_producer deque hash

 list map multimap

 multiset priority_queue queue

 rope set slist

 stack vector

 Iterators
 Iterators enumerate something. When you create a list of items, and then go
through that list checking items off, you’re enumerating the list. Using itera-
tors helps you create lists of items and manipulate them in specific ways.

 The SGI website at http://www.sgi.
com/tech/stl/stl_index_cat.
html uses color-coding to tell you about the
content. Here are the categories you’ll see and
their associated color:

 ✓ Concept is red

 ✓ Type is yellow

 ✓ Function is green

 ✓ Overview is purple

 SGI color-coding

41_9781118823781-ch32.indd 68541_9781118823781-ch32.indd 685 7/17/2014 11:38:45 AM7/17/2014 11:38:45 AM

Considering the Standard Library Categories686

The kind of iterator you create is important because some iterators let you
go forward only, some can go in either direction, and some can choose items
at random. Each kind of iterator has its specific purpose.

 The Iterators category includes a number of types. These types determine
the kind of iterator you create in your code and the capabilities of that itera-
tor. The following is a list of the iterator types:

 back_insert_
iterator

 bidirectional_
iterator

 bidirectional_
iterator_tag

 forward_iterator forward_
iterator_tag

 front_insert_
iterator

 input_iterator input_iterator_
tag

 insert_iterator

 istream_iterator iterator_traits ostream_iterator

 output_iterator output_iterator_
tag

 random_access_
iterator

 random_access_
iterator_tag

 raw_storage_
iterator

 reverse_
bidirectional_
iterator

 reverse_iterator sequence_buffer

 The Standard Library also includes a number of iterator-specific functions.
These functions help you perform tasks such as advance (increment) the
iterator by a certain number of positions. You can also measure the distance
between the beginning and end of the iterator. The following is a list of itera-
tor functions:

 advance distance distance_type

 iterator_category value_type

 Algorithms
 Algorithms perform data manipulations such as replacing, locating, or sorting
information. You’ve already seen some algorithms used in the book because
it’s hard to create a substantial application without using one. There aren’t any
types in the Algorithms category. The following is a list of algorithm functions:

 accumulate adjacent_
difference

 adjacent_find

 advance binary_search copy

41_9781118823781-ch32.indd 68641_9781118823781-ch32.indd 686 7/17/2014 11:38:45 AM7/17/2014 11:38:45 AM

Book VI

Chapter 1

 E
x

p
lo

rin
g

 th
e

S

ta
n

d
a

rd
 Lib

ra
ry

Fu
rth

e
r

Considering the Standard Library Categories 687

 copy_backward copy_n count

 count_if distance equal

 equal_range fill fill_n

 find find_end find_first_of

 find_if for_each generate

 generate_n includes inner_product

 inplace_merge iota is_heap

 is_sorted iter_swap lexicographical_
compare

 lexicographical_
compare_3way

 lower_bound make_heap

 max max_element merge

 min min_element mismatch

 next_permutation nth_element partial_sort

 partial_sort_copy partial_sum partition

 pop_heap power prev_permutation

 push_heap random_sample random_sample_n

 random_shuffle remove remove_copy

 remove_copy_if remove_if replace

 replace_copy replace_copy_if replace_if

 reverse reverse_copy rotate

 rotate_copy search search_n

 set_difference set_
intersection

 set_symmetric_
difference

 set_union sort sort_heap

 stable_partition stable_sort swap

 swap_ranges transform uninitialized_
copy

 uninitialized_
copy_n

 uninitialized_
fill

 uninitialized_
fill_n

 unique unique_copy upper_bound

 Functors
 Functors are a special class of object that acts as if it’s a function. In most
cases, you call a functor by using the same syntax you use for a function,
but functors possess all the good elements of objects as well, such as the
ability to instantiate them at runtime. (See Book IV Chapter 7 for an exam-
ple of using a functor in this way.) Functors come in a number of forms.

41_9781118823781-ch32.indd 68741_9781118823781-ch32.indd 687 7/17/2014 11:38:45 AM7/17/2014 11:38:45 AM

Considering the Standard Library Categories688

For example, a binary function functor accepts two arguments as input and
provides a result as output. Functors include a number of types that deter-
mine the kind of function the code creates, as shown in the following table:

 binary_compose binary_
function

 binary_negate

 binder1st binder2nd divides

 equal_to greater greater_equal

 hash identity less

 less_equal logical_and logical_not

 logical_or mem_fun1_
ref_t

 mem_fun1_t

 mem_fun_ref_t mem_fun_t minus

 modulus multiplies negate

 not_equal_to plus pointer_to_
binary_function

 pointer_to_unary_
function

 project1st project2nd

 select1st select2nd subtractive_rng

 unary_compose unary_
function

 unary_negate

 The Functors category contains only one function, ptr_fun . This function
accepts a function pointer as input and outputs a function pointer adapter,
which is a kind of function object. You use ptr_fun when you need to pass
a function as input to another function such as transform . Here is an exam-
ple of such code (as found in the functor_ptr_fun example):

 #include <iostream>
 #include <math.h>
 #include <ext/functional>
 #include <algorithm>

 using namespace std;
 using namespace __gnu_cxx;

 int main()
 {
 const int N = 10;
 double A[N];
 fill(A, A+N, 100);

 cout << A[0] << endl;

41_9781118823781-ch32.indd 68841_9781118823781-ch32.indd 688 7/17/2014 11:38:45 AM7/17/2014 11:38:45 AM

Book VI

Chapter 1

 E
x

p
lo

rin
g

 th
e

S

ta
n

d
a

rd
 Lib

ra
ry

Fu
rth

e
r

Considering the Standard Library Categories 689

 transform(A, A+N, A, compose1(negate<double>(), ptr_fun(fabs)));

 cout << A[0] << endl;

 return 0;
 }

 This example begins by creating a constant that determines the number
of elements in the array A . The code then fills every element in A with the
value 100 and displays just one of those elements onscreen.

 The tricky part comes next. The transform() algorithm accepts the begin-
ning of an input iterator, the end of an input iterator, an output iterator, and
the transformation you want to perform. The transform() algorithm takes
each of the values in the input iterator, performs the transformation you
requested, and places the result in the output iterator.

 In this case, the code uses the nonstandard SGI functor compose1() , which
takes two adaptable unary functions as input. Because fabs() is a stan-
dard function, you must use ptr_fun() to change it into a function pointer
adapter before you can use it with compose1() . The result is that A contains
the negation of the absolute value of the original value in A or -100 when
the transformation is complete. When you run this example, you see the fol-
lowing output:

 100
 -100

 The GNU GCC compiler supports a number of STL features that don’t appear
as part of the Standard Library. In this case, compose1() appears in the
 ext/functional header, so you must provide the #include <ext/
functional> line of code. In addition, because compose1() is nonstan-
dard, it appears as part of a different namespace. Consequently, you must
also provide the using namespace __gnu_cxx; line of code to access the
functor without having to precede it with the namespace information.

 Many C++ examples rely on the nonstandard parts of STL to perform tasks. If
you want maximum compatibility and transportability for your code, you
should avoid these nonstandard features.

 Utilities
 Utilities are functions and types that perform small service tasks within the
Standard Library. The functions are min() , max() , and the relational opera-
tors. The types are chart_traits (the traits of characters used in other
Standard Library features, such as basic_string) and pair (a pairing of
two heterogeneous values).

41_9781118823781-ch32.indd 68941_9781118823781-ch32.indd 689 7/17/2014 11:38:45 AM7/17/2014 11:38:45 AM

Considering the Standard Library Categories690

 Adaptors
 Adaptors perform conversions of a sort. They make it possible to adapt
one kind of data to another. In some cases, adaptors perform data con-
version, such as negating numbers. The Adaptors category includes one
function, ptr_fun() , which is explained in the “ Functors ” section of the
chapter. In addition, the Adaptors category includes the types shown in
the following table:

 back_insert_
iterator

 binary_compose binary_negate

 binder1st binder2nd front_insert_
iterator

 insert_iterator mem_fun1_ref_t mem_fun1_t

 mem_fun_ref_t mem_fun_t pointer_to_
binary_function

 pointer_to_
unary_function

 priority_queue queue

 raw_storage_
iterator

 reverse_
bidirectional_
iterator

 reverse_iterator

 sequence_buffer stack unary_compose

 unary_negate

 Allocators
 Allocators manage resources, normally memory. In most cases, you won’t
ever need to use the members of the Allocators category. For example, you
normally create new objects using the new operator. The new operator allo-
cates memory for the object and then creates it by calling the object’s con-
structor. In rare cases, such as when you want to implement a form of object
pooling, you may want to separate the memory allocation process from
the construction process. In this case, you call construct() to perform
the actual task of constructing the object based on its class definition. The
Allocators category has the following functions.

 construct destroy get_temporary_
buffer

 return_
temporary_buffer

 uninitialized_
copy

 uninitialized_
copy_n

 uninitialized_
fill

 uninitialized_
fill_n

41_9781118823781-ch32.indd 69041_9781118823781-ch32.indd 690 7/17/2014 11:38:45 AM7/17/2014 11:38:45 AM

Book VI

Chapter 1

 E
x

p
lo

rin
g

 th
e

S

ta
n

d
a

rd
 Lib

ra
ry

Fu
rth

e
r

Parsing Strings Using a Hash 691

 The Allocators category also includes a couple of types. These types help
you manage memory, and you may find more use for them than you will the
functions in this category. The types are

 raw_storage_iterator temporary_buffer

 Polymorphic allocators
 When working with older versions of the Standard Library, allocators used
as arguments to templates create problems because they’re bound by type.
What this means is that a vector created using std::vector<int> is a
completely different type from a vector created using std::vector<int,
myalloc> , even though one is simply an extension of the other.

 The myalloc part of the template simply defines the method used to allo-
cate memory; it doesn’t actually affect the type of data managed by the
template. So, in both cases, you’re created a vector to hold int data — the
types are the same. The only difference is the method in which memory
is allocated (the first uses standard memory allocation techniques, while
the second uses a custom allocator). Using polymorphic allocators elimi-
nates this problem by defining an abstract base memory class, memory_
resource , to use for all memory allocators. This abstract class defines the
following pure virtual methods:

 allocate deallocate is_equal()

 In order to use this new feature in Code::Blocks, you must enable support for
C++ 11 extensions using the technique found in the “Configuring the IDE” sec-
tion of Book IV, Chapter 6 . In addition, you must use a version of Code::Blocks
that supports C++ 14 because older versions won’t include the required
resources (such as header files). To add support for this feature, you must
 #include <polymorphic_allocator> and add using namespace
std::polyalloc .

 Parsing Strings Using a Hash
 Hashes are an important security requirement for applications today. A hash
creates a unique numeric equivalent of any string you feed it. Theoretically,
you can’t duplicate the number that the hash creates by using another string.
A hash isn’t reversible — it isn’t the same as encryption and decryption.

41_9781118823781-ch32.indd 69141_9781118823781-ch32.indd 691 7/17/2014 11:38:45 AM7/17/2014 11:38:45 AM

Parsing Strings Using a Hash692

 A common use for hashes is to send passwords from a client to a server.
The client converts the user’s password into a numeric hash and sends that
number to the server. The server verifies the number, not the password.
Even if people are listening in, they have no way to ascertain the password
from the number; therefore they can’t steal the password for use with the
target application.

 The latest version of Code::Blocks provides excellent support for hashes.
However, in order to use it, you must enable support for C++ 11 extensions
using the technique found in the “Configuring the IDE” section of Book IV,
Chapter 6 . After you enable the required support, you can create the
 HashingStrings example shown here to demonstrate the use of hashes.

 #include <iostream>
 #include <unordered_map>

 using namespace std;

 int main()
 {
 hash<const char*> MyHash;

 cout << "The hash of \"Hello World\" is:" << endl;
 cout << MyHash("Hello World") << endl;
 cout << "while the hash of \"Goodbye Cruel World\" is:" << endl;
 cout << MyHash("Goodbye Cruel World") << endl;

 return 0;
 }

 The example begins by creating a hash function object, MyHash . You use this
function object to convert input text to a hash value. The function object
works just like any other function, so you might provide the input text as
 MyHash("Hello World") . Hashes always output precisely the same value
given a particular input. Consequently, you should see the following output
from this example.

 The hash of "Hello World" is:
 4644931
 while the hash of "Goodbye Cruel World" is:
 4644988

 Hashes have uses other than security requirements. For example, you can
create a container that relies on a hash to make locating a particular value
easier. In this case, you use a key/value pair in a hash map. The STL uses an
actual hash_map<> template. However, the Standard Library replaces
 hash_map<> with unordered_map<> , which means you must enable C++
extension support for this example. Except for the template name, you can
actually use the two templates interchangeably, but using the hash_map<>
template will display a warning message in newer versions of Code::Blocks.

41_9781118823781-ch32.indd 69241_9781118823781-ch32.indd 692 7/17/2014 11:38:45 AM7/17/2014 11:38:45 AM

Book VI

Chapter 1

 E
x

p
lo

rin
g

 th
e

S

ta
n

d
a

rd
 Lib

ra
ry

Fu
rth

e
r

Parsing Strings Using a Hash 693

 The HashMap example shown next illustrates how to create a hash map:

 #include <iostream>
 #include <unordered_map>
 #include <string.h>

 using namespace std;

 struct eqstr
 {
 bool operator()(const char* s1, const char* s2) const
 {
 return strcmp(s1, s2) == 0;
 }
 };

 int main()
 {
 unordered_map<const char*, int, hash<const char*>, eqstr> Colors;

 Colors["Blue"] = 1;
 Colors["Green"] = 2;
 Colors["Teal"] = 3;
 Colors["Brick"] = 4;
 Colors["Purple"] = 5;
 Colors["Brown"] = 6;
 Colors["LightGray"] = 7;

 cout << "Brown = " << Colors["Brown"] << endl;
 cout << "Brick = " << Colors["Brick"] << endl;

 // This key isn't in the hash map, so it returns a
 // value of 0.
 cout << "Red = " << Colors["Red"] << endl;
 }

 An unordered (hash) map requires four inputs:

 ✦ Key type

 ✦ Data type

 ✦ Hashing function

 ✦ Equality key

 The first three inputs are straightforward. In this case, the code uses a string
as a key type, an integer value as a data type, and hash<const char*>
as the hashing function. You already know how the hashing function works
from the previous example in this section.

 The Equality Key class is a little more complex. You must provide the hash
map with a means of determining equality. In this case, the code compares
the input string with the string stored as the key. The eqstr structure per-
forms the task of comparing the input string to the key. The structure must
return a Boolean value, so the code compares the strcmp function to 0.
When the two are equal, meaning the strings are equal, eqstr returns true .

41_9781118823781-ch32.indd 69341_9781118823781-ch32.indd 693 7/17/2014 11:38:45 AM7/17/2014 11:38:45 AM

Obtaining Information Using a Random Access Iterator694

 The example goes on to check for three colors, only two of which appear
in the hash map Colors . In the first two cases, you see the expected value.
In the third case, you see 0 , which indicates that Colors doesn’t contain the
desired key. Always reserve 0 as an error indicator when using a hash map,
because the hash map will always return a value, even if it doesn’t contain
the desired key. The output from this example is:

 Brown = 6
 Brick = 4
 Red = 0

 Obtaining Information Using
a Random Access Iterator

 Most containers let you perform random access of data they contain.
For example, the RandomAccess example shows that you can create an
 iterator and then add to or subtract from the current offset to obtain
values within the container that iterator supports:

 #include <iostream>
 #include <vector>

 using namespace std;

 int main()
 {
 vector<string> Words;

 Words.push_back("Blue");
 Words.push_back("Green");
 Words.push_back("Teal");

 You’ll find a wealth of STL examples on the
Internet because STL was around for a long
time before the Standard Library appeared.
In fact, some developers continue to prefer
the STL simply because they’re familiar with
it. Here’s a little secret: The STL headers use
a .h extension and the Standard Library head-
ers don’t have an extension. For example,
the now familiar iostream header used in

every previous example in the book is actually
the Standard Library form — the STL form is
 iostream.h .

 Here’s another secret. The Standard Library
headers often call on the STL headers, so
you’ve also been using STL throughout the
book. It’s amazing to see how these things
work out.

 Standard Library versus STL headers

41_9781118823781-ch32.indd 69441_9781118823781-ch32.indd 694 7/17/2014 11:38:45 AM7/17/2014 11:38:45 AM

Book VI

Chapter 1

 E
x

p
lo

rin
g

 th
e

S

ta
n

d
a

rd
 Lib

ra
ry

Fu
rth

e
r

Obtaining Information Using a Random Access Iterator 695

 Words.push_back("Brick");
 Words.push_back("Purple");
 Words.push_back("Brown");
 Words.push_back("LightGray");

 // Define a random iterator.
 vector<string>::iterator Iter = Words.begin();

 // Access random points.
 Iter += 5;
 cout << *Iter << endl;

 Iter -= 2;
 cout << *Iter << endl;

 return 0;
 }

 In this case, the vector , Words , contains a list of seven items. The code cre-
ates an iterator for Words named Iter . It then adds to or subtracts from
the iterator offset and displays the output onscreen. Here is what you see
when you run this example:

 Brown
 Brick

 Sometimes you need to perform a special task using a random-access
 iterator . For example, you might want to create a special function
to summate the members of vector or just a range of members within
 vector . In this case, you must create a specialized function to perform
the task as follows because the Standard Library doesn’t include any
functions to do it for you, as shown in the RandomAccess2 example:

 #include <iostream>
 #include <vector>

 using namespace std;

 template <class RandomAccessIterator>
 float AddIt(RandomAccessIterator begin, RandomAccessIterator end)
 {
 float Sum = 0;

 RandomAccessIterator Index;

 // Make sure that the values are in the correct order.
 if (begin > end)
 {
 RandomAccessIterator temp;
 temp = begin;
 begin = end;
 end = temp;
 }

 for (Index = begin; Index != end; Index++)
 Sum += *Index;

 return Sum;
 }

41_9781118823781-ch32.indd 69541_9781118823781-ch32.indd 695 7/17/2014 11:38:46 AM7/17/2014 11:38:46 AM

Obtaining Information Using a Random Access Iterator696

 int main()
 {
 vector<float> Numbers;

 Numbers.push_back(1.0);
 Numbers.push_back(2.5);
 Numbers.push_back(3.75);
 Numbers.push_back(1.26);
 Numbers.push_back(9.101);
 Numbers.push_back(11.3);
 Numbers.push_back(1.52);

 // Sum the individual members.
 float Sum;
 Sum = AddIt(Numbers.begin(), Numbers.end());
 cout << Sum << endl;

 Sum = AddIt(Numbers.end(), Numbers.begin());
 cout << Sum << endl;

 // Sum a range.
 vector<float>::iterator Iter = Numbers.begin();
 Iter += 5;
 Sum = AddIt(Iter, Numbers.end());
 cout << Sum << endl;

 return 0;
 }

 This example builds on the previous example. You still create vector ,
 Numbers , and fill it with data. However, in this case, you create an output
variable, Sum , that contains the summation of the elements contained in
 Numbers .

 AddIt() is a special function that accepts two RandomAccessIterator
values as input. These two inputs represent a range within the vector that
you want to manipulate in some way. The example simply adds them, but
you can perform any task you want. The output is a float that contains the
summation.

 AddIt() works as you expect. You call it as you would any other function
and provide a beginning point and an end point within vector . The first two
calls to AddIt sum the entire vector , while the third creates an iterator ,
changes its offset, and then sums a range within vector . Here is the output
from this example:

 30.431
 30.431
 12.82

 A random-access iterator can go in either direction. In addition, you can
work with individual members within the container supplied to iterator .
As a result, the functions you create for iterator must be able to work
with the inputs in any order. How you handle this requirement depends on
the kind of function you create.

41_9781118823781-ch32.indd 69641_9781118823781-ch32.indd 696 7/17/2014 11:38:46 AM7/17/2014 11:38:46 AM

Book VI

Chapter 1

 E
x

p
lo

rin
g

 th
e

S

ta
n

d
a

rd
 Lib

ra
ry

Fu
rth

e
r

Locating Values Using the Find Algorithm 697

 Locating Values Using the Find Algorithm
 The Standard Library contains a number of functions to find something you
need within a container. Locating what you need as efficiently as possible is
always a good idea. Unlike your closet, you want your applications well orga-
nized and easy to manage! The four common find() algorithms are

 ✦ find()

 ✦ find_end()

 ✦ find_first_of()

 ✦ find_if()

 The algorithm you use depends on what you want to find and where you
expect to find it. You’ll likely use the plain find() algorithm most often.
The FindString example shows how to locate a particular string within
 vector — you can use the same approach to locate something in any
container type:

 #include <iostream>
 #include <vector>
 #include <algorithm>

 using namespace std;

 int main()
 {
 vector<string> Words;

 Words.push_back("Blue");
 Words.push_back("Green");
 Words.push_back("Teal");
 Words.push_back("Brick");
 Words.push_back("Purple");
 Words.push_back("Brown");
 Words.push_back("LightGray");

 vector<string>::iterator Result =
 find(Words.begin(), Words.end(), "LightGray");

 if (Result != Words.end())
 cout << *Result << endl;
 else
 cout << "Value not found!" << endl;

 Result = find(Words.begin(), Words.end(), "Black");

 if (Result != Words.end())
 cout << *Result << endl;
 else
 cout << "Value not found!" << endl;
 }

 The example starts with vector containing Color strings. In both cases, the
code attempts to locate a particular color within vector . The first time the

41_9781118823781-ch32.indd 69741_9781118823781-ch32.indd 697 7/17/2014 11:38:46 AM7/17/2014 11:38:46 AM

Using the Random Number Generator698

code is successful because LightGray is one of the colors listed in vector .
However, the second attempt is thwarted because Black isn’t one of the
colors in vector . Here’s the output from this example:

 LightGray
 Value not found!

 Never assume that the code will find a particular value. Always assume that
someone is going to provide a value that doesn’t exist and then make sure
you provide a means of handling the nonexistent value. In this example, you
simply see a message stating the value wasn’t found. However, in real-world
code, you often must react to situations where the value isn’t found by

 ✦ Indicating an error condition

 ✦ Adding the value to the container

 ✦ Substituting a standard value

 ✦ Defining an alternative action based on invalid input

 The find() algorithm is a personal favorite because it’s so flexible. You can
use it for external and internal requirements. Even though the example
shows how you can locate information in an internal vector , you can also
use find() for external containers, such as disk drives. Have some fun with
this one — experiment with all the containers you come across.

 Using the Random Number Generator
 Random number generators fulfill a number of purposes. Everything from
games to simulations require a random number generator to work properly.
Randomness finds its way into business what-if scenarios as well. In short,
you need to add random output to your application in many situations.

 Creating a random number isn’t hard. All you need to do is call a random
number function as shown in the RandomNumberGenerator example:

 #include <iostream>
 #include <time.h>
 #include <stdlib.h>

 using namespace std;

 int main()
 {
 // Always set a seed value.
 srand((unsigned int)time(NULL));

 int RandomValue = rand() % 12;
 cout << "The random month number is: " << RandomValue + 1 << endl;

 return 0;
 }

41_9781118823781-ch32.indd 69841_9781118823781-ch32.indd 698 7/17/2014 11:38:46 AM7/17/2014 11:38:46 AM

Book VI

Chapter 1

 E
x

p
lo

rin
g

 th
e

S

ta
n

d
a

rd
 Lib

ra
ry

Fu
rth

e
r

Using the Random Number Generator 699

 Actually, not one of the random number generators in the Standard Library
works properly — imagine that! They are all pseudorandom number genera-
tors: The numbers are distributed such that it appears that you see a random
sequence, but given enough time and patience, eventually the sequence
repeats. In fact, if you don’t set a seed value for your random number gener-
ator, you can obtain predictable sequences of numbers every time. How
boring. Here is typical output from this example:

 The random month number is: 7

 The first line of code in main() sets the seed by using the system time.
Using the system time ensures a certain level of randomness in the starting
value — and therefore a level of randomness for your application as a whole.
If you comment out this line of code, you see the same output every time
you run the application. In our case, our system output 6 every time.

 The example application uses rand() to create the random value. When you
take the modulus of the random number, you obtain an output that is within
a specific range — 12 in this case. The example ends by adding 1 to the
random number because there isn’t any month 0 in the calendar, and then
outputs the month number for you.

 The Standard Library provides access to two types of pseudorandom number
generators. The first type requires that you set a seed value. The second
type requires that you provide an input value with each call and doesn’t
require a seed value. Each generator outputs a different data type, so you
can choose the kind of random number you obtain. Table 1-1 lists the random
number generators and tells you what data type they output.

 Table 1-1 Pseudorandom Number Generator Functions

 Function Output Type Seed Required?

 rand integer yes

 drand48 double yes

 erand48 double no

 lrand48 long yes

 nrand48 long no

 mrand48 signed long yes

 jrand48 signed long no

 Now that you know about the pseudorandom number generators, look at
the seed functions used to prime them. Table 1-2 lists the seed functions and
their associated pseudorandom number generator functions.

41_9781118823781-ch32.indd 69941_9781118823781-ch32.indd 699 7/17/2014 11:38:46 AM7/17/2014 11:38:46 AM

Performing Comparisons Using min and max700

 Table 1-2 Seed Functions

 Function Associated Pseudorandom Number Generator Function

 srand rand

 srand48 drand48

 seed48 mrand48

 lcong48 lrand48

 Performing Comparisons Using min and max
 Computer applications perform many comparisons. In most cases, you don’t
know what the values are in advance or you wouldn’t be interested in per-
forming the comparison in the first place. The min() and max() functions
make it possible to look at two values and determine the minimum or maxi-
mum value. The MinAndMax example demonstrates how you use these two
functions:

 #include <iostream>

 using namespace std;

 int main()
 {
 int Number1, Number2;

 cout << "Type the first number: ";
 cin >> Number1;

 cout << "Type the second number: ";
 cin >> Number2;

 cout << "The minimum number is: " << min(Number1, Number2) << endl;
 cout << "The maximum number is: " << max(Number1, Number2) << endl;

 return 0;
 }

 In this case, the code accepts two numbers as input and then compares
them using min() and max() . The output you see depends on what you pro-
vide as input, but the first output line tells you which number is smaller and
the second tells you which is larger. Assuming you provide values of 5 and 6,
here is the application output you see:

 Type the first number: 5
 Type the second number: 6
 The minimum number is: 5
 The maximum number is: 6

41_9781118823781-ch32.indd 70041_9781118823781-ch32.indd 700 7/17/2014 11:38:46 AM7/17/2014 11:38:46 AM

Book VI

Chapter 1

 E
x

p
lo

rin
g

 th
e

S

ta
n

d
a

rd
 Lib

ra
ry

Fu
rth

e
r

Working with Temporary Buffers 701

 Working with Temporary Buffers
 Temporary buffers are useful for all kinds of tasks. Normally, you use them
when you want to preserve the original data, yet you need to manipulate the
data in some way. For example, creating a sorted version of your data is a
perfect use of a temporary buffer. The TemporaryBuffer example shows
how to use a temporary buffer to sort some strings.

 #include <iostream>
 #include <vector>
 #include <memory>
 #include <algorithm>

 using namespace std;

 int main()
 {
 vector<string> Words;

 Words.push_back("Blue");
 Words.push_back("Green");
 Words.push_back("Teal");
 Words.push_back("Brick");
 Words.push_back("Purple");
 Words.push_back("Brown");
 Words.push_back("LightGray");

 int Count = Words.size();
 cout << "Words contains: " << Count << " elements." << endl;

 // Create the buffer and copy the data to it.
 pair<string*, ptrdiff_t> Mem = get_temporary_buffer<string>(Count);

 uninitialized_copy(Words.begin(), Words.end(), Mem.first);

 // Perform a sort and display the results.
 sort(Mem.first, Mem.first+Mem.second);

 for (int i = 0; i < Mem.second; i++)
 cout << Mem.first[i] << endl;

 return 0;
 }

 The example starts with the now familiar list of color names. It then counts
the number of entries in vector and displays the count onscreen.

 At this point, the code creates the temporary buffer using get_temporary_
buffer . The output is pair , with the first value containing a pointer to the
string values and the second value containing the count of data elements.
 Mem doesn’t contain anything — you have simply allocated memory for it.

41_9781118823781-ch32.indd 70141_9781118823781-ch32.indd 701 7/17/2014 11:38:46 AM7/17/2014 11:38:46 AM

Working with Temporary Buffers702

 The next task is to copy the data from vector (Words) to pair (Mem) using
 uninitialized_copy . Now that Mem contains a copy of your data, you can
organize it using the sort function. The final step is to display the Mem con-
tent onscreen. Here is what you’ll see:

 Words contains: 7 elements.
 Blue
 Brick
 Brown
 Green
 LightGray
 Purple
 Teal

41_9781118823781-ch32.indd 70241_9781118823781-ch32.indd 702 7/17/2014 11:38:46 AM7/17/2014 11:38:46 AM

