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Social media revolves around users, and their activities and interactions. Users 

create the content, communicate with each other, and ultimately keep the service 

alive and growing. This chapter looks at the typical user’s behavior on social 

media services and the universal similarities you can see across the different 

services.

First, we focus on the most basic questions about the overall activity of those 

using the service: Are there some regularities in their aggregate statistics? If 

regularities exist in one service, can they be generalized to other systems? A few 

very basic conditions affecting usage give rise to measured activity distributions, 

and we quantify the differences among users in terms of overall activity with 

the help of observed regularities. Because activity distributions have a specifi c 

analytical form, we discuss why it’s hard to take and interpret averages in actual 

social media systems in the presence of such distributions.

Throughout, we support our conclusions with data collected from Wikipedia 

and Twitter.
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Measuring Variations in User Behavior in Wikipedia

One of the most important questions in terms of user activities is: How much 

do users contribute to, or use, the service? You can look at this question from 

many different points of view, but certainly one of the most straightforward 

ways to characterize users is to describe how frequently they come back and 

are present on the service. You can certainly expect that some users are more 

“active” than others—but how do you exactly quantify user activity in relation 

to the service? 

User activity can be characterized in the most obvious manner by how many
times a user performed a certain action such as leaving a comment, sharing a

picture, creating or removing social network connections, and so on—in other 

words, using any facility that the service provides to its users. To determine this, 

the fi rst thing to do is to defi ne the time period for collecting the data needed 

to make the measurements.

Figure 1.1 shows two possible scenarios for choosing periods from which 

we can collect user activity data. In scenario (a), we chose more or less random, 

non-consecutive periods for the data collection. Although this choice may be 

valid under specifi c requirements, we generally prefer consecutive, closed-time 

ranges for data collection, like those that we can see in case (b). General user 

behavior may change over time (for instance new users might have different 

characteristics than older ones), so we prefer to sample user activity within as 

short a time range as possible. For this reason, case (b) is the natural choice, in 

which we select a continuous time interval and count the number of times a 

user has been active within this interval. This is the frequency of usage in the 

given time window.

(a)

(b)
time

Figure  1.1:  Possible choices for sampling time windows to measure aggregate user activity. In 
scenario (a), we pick non-consecutive time windows randomly. In (b), we choose a continuous 
time window between two given points in time.
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The Diversity of User Activities

We can reasonably assume that users will differ in how likely they are to use a 

service: some will be very active, whereas others will use the service only once 

in a while. How large are these differences, and how can we characterize them? 

These are the questions you look at in this section.

This section uses the Wikipedia edit history logs. First, we look at how often 

Wikipedia editors contribute to articles: The question is how many times a given 

user makes a change to any Wikipedia article in each time period. A Wikipedia “edi-

tor” is anyone with a registered user name, and in the broader sense anyone who 

makes a smaller or larger change to any Wikipedia article. Luckily, the Wikimedia 

foundation makes the edit history of all articles and users available on its web 

site (http://en.wikipedia.org/wiki/Wikipedia:Database_download#English-

language_Wikipedia). The dataset used in this chapter describes all revisions

(edits) of the English-language Wikipedia. We chose the English Wikipedia 

because it is the oldest and most comprehensive among Wikipedias in various lan-

guages. (For statistics on the different Wikipedias, see http://en.wikipedia.org/

wiki/Wikipedia:Size_of_Wikipedia#Comparisons_with_other_Wikipedias).

You can fi nd the revisions metadata (without actual page content) in the fi le 

named enwiki-*-stub-meta-history.xml.gz for the latest dump date. At the

beginning of 2018, the compressed fi le measured approximately 54GB. The data 

is in XML format, and for each page the fi le contains the full edit history with 

the name and ID of the user, and the timestamp of the edit. To measure users’ 

frequencies of usage in a time window, it’s only these fi elds that are of interest 

to us. You can download the latest Wikipedia data dump by running the shell 

script src/chapter1/wikipedia/get_data.sh from the book’s online repository.

Generally, in data analysis you spend a signifi cant amount of effort on just 

preprocessing and cleaning up data in a database or fl at fi le. To illustrate the typ-

ical workfl ow, we’ll walk you through this step with the downloaded Wikipedia 

fi le. Because XML is a rather verbose way to describe structured data, the fi rst 

task is to transform this fi le into a format that you can easily work with later 

because you’ll want to read through it multiple times as you experiment with 

the data. Transforming data fi les into a format that you feel comfortable 

with improves development and running times. To that end, in this example 

you fi rst preprocess the downloaded fi le with the src/chapter1/wikipedia/

process_revisions_xml.py Python script, which generates a fl at text fi le with 

the edit records in rows and the user IDs and timestamps in tab-separated 

columns (this may take a long time, given the large size of the input fi le). 

Alternatively, we could have chosen to store the data in a relational (SQL) 

database, which in many cases is a preferable solution. However, for simplic-

ity, we use a plain text fi le in this example.
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PROCESSING LARGE XML FILES: DOM VERSUS SAX

For processing large XML fi les, you have a choice between the Document Object
Model (DOM) or the Simple API for XML (SAX) approach. In both cases, there is a vari-
ety of high-quality libraries at your disposal in every major programming language, 
including Python, so the toolset available to you with either approach is essentially
equivalent. The diff erence is, however, that the DOM model represents the XML fi le 
after reading it in its entirety as a tree in memory, mapping the XML nodes to nodes of yy
the tree. On the other hand, SAX takes an event-driven approach: As the SAX parser
reads the XML input, events are fi red as callbacks to your main program, and you can 
decide what to do and how to process the nodes and data read. Obviously, for this
example, only SAX parsing works, as you cannot reasonably hope to store this much 
data in RAM. (Nor should you want to, as you need only one pass through the fi le to
distill the relevant information about the revisions, writing the fi elds of every revision 
out as you fi nish with a record.) In Python, the SAX library is in the package xml.sax, 
and you can see how XML nodes are handled in process_revisions_xml.py in 
the startElement and endElement methods that are called when an XML node is
opened and closed, respectively.

The result of parsing the Wikipedia revision database with our script is a fl at 

tab-separated text fi le as mentioned, with the following columns: 

■ Name of the page edited

■ “Namespace” of the page (which is the “type” of the page, https://

en.wikipedia.org/wiki/Wikipedia:Namespace)

■ ID of the page

■ Revision ID

■ Timestamp of the revision

■ ID of the editing user

■ Editing user’s account name

■ IP address of the user (only for anonymous editors)

Although Wikipedia pages are categorized into namespaces, such as normal 

articles, user pages, and help pages, among others, we did not restrict ourselves 

to any specifi c namespace and considered all edits. With this distilled fi le, we 

can easily calculate how many edits any user made in a given time frame by 

simply iterating through the fi le and recording the user ID of a revision that 

falls within a specifi c time range. In Listing 1.1, we specify three date ranges (the 

fi rst one, two, and three months of 2013, respectively) for counting the times a 

user made an edit within each of the date ranges. The number of times a user 

edited an article will then be written into the output fi le, where every line is for 

a user and three columns are for the number of edits by that user for the given 

date range, respectively.
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Listing 1.1: This script takes all Wikipedia revisions and outputs the number of edits made
by any user between the date periods defi ned in DATE_RANGES. (user_edits_in_
timeframes.py)

'''
Count the number of times particular users made edit in the given time
frames.
'''

import gzip
from collections import defaultdict

INPUT_FILE = 'data/wikipedia/revisions.tsv.gz'
OUTPUT_FILE = 'data/wikipedia/user_edits_in_timeframes.tsv.gz'

DATE_RANGES = [('2013-01-01T00:00:00', '2013-02-01T00:00:00'),
               ('2013-01-01T00:00:00', '2013-03-01T00:00:00'),
               ('2013-01-01T00:00:00', '2013-04-01T00:00:00')]

# The number of times a user made a revision in a given date range.
user_frequencies = defaultdict(lambda: defaultdict(int))

user_names = dict()
with gzip.open(INPUT_FILE, 'r') as input_file:
    for line in input_file:
        title, namespace, page_id, rev_id, timestamp, user_id, \
        user_name, ip = line[:-1].split('\t')
        # We only keep registered users, and need to strip user ID 0
        # due to a logging bug (http://en.wikipedia.org/wiki/User:0).
        if user_id != '' and user_id != '0':
            for range_id in xrange(0, len(DATE_RANGES)):
                if timestamp >= DATE_RANGES[range_id][0] and \
                timestamp < DATE_RANGES[range_id][1]:
                    user_frequencies[user_id][range_id] += 1
                    user_names[user_id] = user_name

with gzip.open(OUTPUT_FILE, 'w') as output_file:
    for user_id in user_frequencies.iterkeys():
        output_file.write('\t'.join(
            [user_names[user_id]] + \
            [str(user_frequencies[user_id].get(range_id, 0)) \
             for range_id in xrange(0, len(DATE_RANGES))
             ]))
        output_file.write('\n') 

The fi rst step toward describing aggregate user activities is to calculate a 

histogram of the number of times a user made an edit within a date range. 
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Visualizing histograms is a common task carried out to understand the differ-

ences among users, and we’ll frequently do this in this book. The R code snip-

pet in Listing 1.2 reads in the output produced by the Python script in Listing 

1.1 and plots the number of users with a given number of edits in the fi rst time 

period (January 2013).

Listing 1.2: Read and plot a frequency histogram for the number of times a Wikipedia editor 
changed a page for January 2013. (user_edits_in_timeframes.R)

library(plyr)
library(ggplot2)

revs.in.periods = read.table(
        gzfile('data/wikipedia/user_edits_in_timeframes.tsv.gz'),
        sep='\t', col.names=c('account', 'range1', 'range2', 'range3'),
        comment.char='', quote='')

# Only users with > 0 edits in Jan 2013 are considered.
ggplot(subset(revs.in.periods, range1 > 0, select='range1'),
aes(range1)) +
        geom_histogram(binwidth=1, origin=-0.5) + xlim(0, 20) +
        xlab('Number of revisions made') + ylab('Number of users in
        period')

The result of this is shown in Figure 1.2, where you can see that as you con-

sider a larger and larger number of revisions, the number of editors making that 

many edits quickly decreases. In fact, when you look at the distribution more in 

detail, you fi nd that there were a handful of registered users (this may include 

so-called “bots”, or robots, that are automated Wikipedia agents to carry out 

some bookkeeping task) that made tens of thousands of edits in just 1 month!

Figure  1.2:  The number of editors who made a certain number of revisions to any Wikipedia
article during January 2013. The horizontal axis has been truncated to show no more than 20
edits a month; however, the data shows that you can find users with tens of thousands of edits
as well.
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Nevertheless the number of such users is few; the average number of edits 

per user in January 2013 is approximately 30, and the median is 2. You can 

immediately see a big difference between the mean and the median: This is a 

sign of a highly skewed distribution, where a few of the high-end outliers can 

change the average, whereas the median will not be signifi cantly affected by 

them. We discuss this in more detail a little later in this chapter.

You can consider the number of revisions made by a user as a random process 

because so many unknown factors determine a user’s activity that it’s impos-

sible to account for all. Users may come and go, fi nd something interesting and 

add some modifi cations to an article, or start a new article when they fi nd that 

the topic of their interest does not exist yet. Indeed, when and how frequently 

users fi nd the time to come back to the service varies as well, yet, as Figure 1.2 

suggests, you can expect some regularities in this if you aggregate the behavior 

of many users: The histogram looks like a rather smooth function, so it wouldn’t 

be surprising to fi nd an explanation for why this is so.

Regarding user activity as a random process, then, you can also approximate 

the probability density function (PDF) of the process as just the normalization

of the histogram displayed in Figure 1.2. This means that you need to divide 

the frequency counts for users by the total number of users, which of course 

is also the area under the histogram considered as a function. The probability 

that a user will have n edits is given by the following formula:

P edits n
U edits n

U edits i
i

( )
( )

( )

.

1

 (1.1)

In this formula, P gives the likelihood that a randomly chosen user will have

made n edits in the period under consideration. U(edits(( = n) denotes the number 

of users who made n edits, so the denominator is just exactly the total number of 

users we have (because a user may not belong to two different activity buckets 

at the same time, and every user belongs to a bucket). This is the probability 

distribution function, yielding the likelihood of an event over the range of all 

possible events. (It is also sometimes called the probability mass function for dis-

crete distributions, such as we have for the number of edits per time period). 

If we were to plot the probability distribution function, it would look just like 

Figure 1.2, with only the vertical axis rescaled because we have divided all 

values by the same constant, the total number of users.

Is there anything more we can say, though, about how many revisions we will 

expect to see from the users, in the future, or for any time period? The smooth 

decay of the frequencies we have seen from this limited example suggests that 

we may fi nd some regularities for user behavior in a more general sense as 

well. After all, the whole purpose of this exercise is to learn from the past and 

to anticipate the user activity distribution in the future and detect any devia-

tions from our expectations.
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Now we’ll see how the user activity distribution changes if we consider 

longer and longer periods for our observations. To this point in the example 

we’ve been discussing, we took the edits of all users who were active during 

1 month. Now, we will extend this 1-month period to 2, and then to 3 months. 

We made provisions in Listing 1.1 for these measurements, where, to go through 

our distilled Wikipedia revisions fi le only once, we defi ned two other time 

periods aside from the 1 month we have been focusing on until now. These two 

additional date ranges, as the code example shows, are from the beginning of 

January until the end of February, and until the end of March 2013, respectively. 

To see how the user activity distributions relate to each other, we’ll plot them 

together. It is, of course, expected that 2 or 3 months will naturally enable more 

users to participate, and this is exactly what you can see in Figure 1.3. Although 

the shapes of the functions for the number of users making a certain number 

of revisions are similar across the three different time ranges, a longer range 

allows for more users to make more edits.

Figure 1.3: The number of revisions for three different time windows: for the first, the first 2, and
first 3 months of 2013, respectively, as is also indicated by the figure’s legend. The calculations
were made the exact same way as for Figure 1.2.

Moving on from just absolute user counts, now look at the probability distri-

bution functions for the number of revisions for all time periods: What is the 

likelihood that a given user will make a certain number of edits in the given 

period? For this we will calculate the probability that a randomly chosen user 

will make exactly r edits in period p. The corresponding equation follows the

same formulation as Equation 1.1:

P r
U r

U i
p

p

i
p

( )
( )

( )

.

0

 (1.2)
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Here and later in this section, U rp ( ) denotes the number of users making 

exactly r Wikipedia edits in the chosen period p (where p may be 1, 2, or 3 in our 

particular setup to denote the three date ranges of Figure 1.3, for instance). p = 1 

for Jan 2013, p = 2 for Jan–Feb 2013, and p = 3 for Jan–Mar 2013. P rp ( ) is therefore 

the likelihood that a randomly chosen user has r revisions in period p.

The part of the R code that calculates P rp ( ) can be seen in Listing 1.3.

Listing 1.3: This R code snippet splits up revs.in.periods.long twice, fi rst by time 
period, and then by revision count, and calculates the fraction of users in a time period who 
made a given number of edits, out of all the users in that time period. (user_edits_in_
timeframes.R)

 # Calculate the fraction of users separately for each date range who
# make a certain number of revisions, excluding all users who make zero 
# edits in any of the time windows.

revs.in.periods.long = melt(revs.in.periods, 'account',
        variable.name='range', value.name='revisions')

normalized.revisions = ddply(subset(revs.in.periods.long,
                       revisions > 0),
           .(range), function(one.range) {
                 user.count = nrow(one.range)
                 ddply(one.range, .(revisions),
                           function(one.revision)
                                  data.frame(user.fraction=
                                  nrow(one.revision) / user.count)
                 )
           })

We plotted the results of this for the normalized user counts in Figure 1.4. 

One thing that you can immediately notice is that the three probability dis-

tribution functions are similar to each other. (Actually, to prove this visual 

similarity with numbers, look at the code snippet under Calculation 1.1 in the 

user_edits_in_timeframes.R source fi le. This takes the three probability points 

for every single revision count and calculates the relative mean squared errors 

from their respective averages: They’re all in the 6–8% range for the revision 

counts between 1 and 10.) Now take a leap of faith, and assume that for every 

possible revision count r the user fractions are the same for all three periods:

U r

U i

U r

U i

U r

U i
i i i

1

1
1

2

1
2

3

1
3

( )

( )

( )

( )

( )

( )

.
 ( 1.3)

This assumption will help us a lot going forward, as we’d like to explain why 

this regularity may arise.
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Figure 1.4: The probability that a user will make a given number of Wikipedia edits. Note that 
the functions for the three periods overlap to a large degree, and it is hard to see a difference for 
any but the first data point.

Because the denominators of Equation 1.3 are all constants (these are the 

total number of users making at least one edit in each of the periods), we also 

should express the detailed user countsU rp ( ) with each other in a simpler way

by introducing the following ratios:

C

U i

U i

i

i

21
1

2

1
1

( )

( )

C

U i

U i

i

i

31
1

3

1
1

( )

( )

. (1.4)

Ostensibly, C21 is the total number of active users in Period 2, divided by the 

number of active users in Period 1 (and similarly for C31). With these, we can

express both U r2( ) andU r3 ( ) usingU r1( ), as follows:

U r C U r2 21 1( ) ( )

U r C U r3 31 1( ) ( ). (1.5)

Remember, though, that it was only our intuition that the normalized user 

counts should be equal at every r, and Equation 1.3 holds. To check this in arr
more direct way, we’ll for a second relax our assumption thatCp1 is independent 1

of r because we can measure theU r U rp ( )/ ( )1  fractions for every r, which we’llrr
naturally call C rp1( ). We can also check how C21 and C31 look in practice, and 
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whether, by measuring them directly, we can still see them being constant. The 

R code example in Listing 1.4 calculates these ratios for both Periods 2 and 3.

Listing 1.4: Calculate the ratio of the number of edits between users in Periods 2 and 3 to those
in Period 1, with the same number of revisions. See the fi gure below for the results. (user_
edits_in_timeframes.R)

 # Count the number of users in each period with a given number of > 0
# revisions.
user.counts.long = ddply(subset(revs.in.periods.long, revisions > 0),
                   .(range, revisions), nrow)

# Reformat the results into a wide table where the number of revisions
# are the rows and in three columns we have the user counts for each of
# the ranges.
user.counts.wide = dcast(user.counts, revisions ~ range)

# Calculate the pairwise ratios between the user frequencies in each
# revision bucket, with respect to those in range 1.
ratios = within(user.counts.wide, {
                    ratio21 = range2 / range1
                    ratio31 = range3 / range1
             })

Figure 1.5 displays C r21( ) and C r31( ) as a function of the number of revisions 

made. What we can immediately notice is that to a large degree, (the revision 

dependent) C21(r( ) and r C31(r(( ) appear to be constant, independent of the numberr
of revisions, r. Now we can ask: What if we can indeed model these ratios as rr
constants, and what consequences does this fact have on our understanding 

of user activities?

Figure 1.5: The number of active users were taken for the three periods we used before (Jan 
2013 for Period 1, Jan–Feb 2013 for Period 2, and Jan–Mar 2013 for Period 3) for any given
revision count. For this plot, we divided the number of editors with a given number of revisions 
in Period 2 with those in Period 1 with the same number of revisions, and plotted it in the dark 
line. Similarly, we also took the ratio of the user counts in Period 3 to those in Period 1 and
plotted those with the lighter line.
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First, let’s estimate what the values of these constants are! Figure 1.5 sug-

gests that the ratio between Periods 2 and 1 is approximately 1.6, and the 

ratio between Periods 3 and 1 is approximately 2.2–2.3. If we were thinking 

that these ratios are the same as the ratios between the lengths of the appro-

priate periods, assuming that a longer period gives rise to a proportionally 

larger number of active users, then we were wrong: If we divide the number 

of days in each period with each other, we will get (31 + 28) / 31 ≈ 1.9 and 

(31 + 28 + 31) / 31 ≈ 2.9, respectively. The differences between these pairs 

of numbers are large, so we cannot just assume that the longer periods we 

take, the more users we will see in the revision buckets, proportionately.

At any rate, what have we learned about user activity distributions up to now 

from Wikipedia’s example? To summarize the main fi ndings:

■ A large diversity exists in the number of actions that users take in a given 

period. There are many users who have only a few actions, and the num-

ber of the active users decreases sharply as the number of actions we 

consider increases.

■ If we take longer and longer time periods, we will naturally observe a 

larger number of actions from a larger number of users. However, the 

histograms for user activity counts appear to come from the same family

of functions, as their functional forms are scaled with respect to each other. 

■ Considering the normalized probability distribution functions, no mat-

ter which period we are sampling users from, these functions will be the

same. We have also seen that this is because the number of users with a 

certain number of actions is a constant multiple of a universal function 

that does not depend on the period. (This is what we expressed by the 

Cp1 constants earlier.)

The Origin of the User Activity Distribution

Let’s develop this last point further: Can we say something more about the user 

activity distributions, given that we found the regularities in the previous sec-

tion? This section highlights some more measurements necessary to come to 

our conclusion, and also some analytical methods often useful in modeling the 

random nature of online user behavior. For this we can also make and verify 

one more assumption: If we observe particular users for longer, the number of 

times they are active will be also larger. This is an almost trivial assumption, 

as we can expect that the longer time ranges are available for the users, the 

more chances they will fi nd to use the service. Also, we can reasonably think 

that their individual number of actions, on a large scale, will be proportional 
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to the length of the time window for the observation. This expresses our belief 

that individual users can be characterized by an average activity rate specifi c to 
them that describes how many times they use the service in a unit of time, and

we assume that this rate stays more or less constant over time. (At least if we 

take long enough time windows. We may expect that there are times when the 

user acts in “bursts,” which are short periods of time when they are more active 

than at other times. More on this in Chapter 4.) Note that this proportionality 

assumption does not necessarily mean that a time window that is, for example, 

twice as long as another will necessarily result in twice as many actions for a 

given user. Overall user activity may seasonally fl uctuate in time (for instance, 

with a yearly periodicity), and there could be periods when large-scale user 

activity goes down, and some other periods when it goes up.

To see how the number of user edits changes when you change the length 

of the observation window, you can look at how many more or fewer edits 

users made in Periods 2 or 3, given that they made a certain number of edits in 

Period 1. There are obviously a lot of users who make a given number of edits 

in Period 1, and they all individually have possibly different numbers of revi-

sions in the other periods. Therefore, you can take the average of the number of 

edits in the other periods for all users with that same exact number of edits in 

Period 1. In other words, if r r2 1( ) denotes the average number of edits in Period 2 

for all users who had r1 number of edits in Period 1, then, more formally,

r r

I r r r

I r r

i

N

i i

i

N

i

2 1
1

1 1 2

1
1 1

( )

( )

( )

,

, ,

,

( 1.6)

where the sums go over all users (their number we denoted here by N); ri,1 and
ri,2 stand for the number of revisions made by the ith user in Periods 1 and 2,

respectively; and I r ri( ),1 1  is the indicator function being 1 when its argument is

true, and 0 when it is false. The numerator of this equation is therefore the sum 

of the revisions in Period 2 for users who had r1 revisions in Period 1, and the 

denominator is the number of such users.

When you look at the average number of edits made by users calculated in 

this way, as shown by the Figure 1.6, you can notice that the edits in the longer 

periods are well approximated by linear functions of the edits made in the 

shorter period. Also, remember that Periods 2 and 3 run from January through 

the end of February and March, respectively, so they overlap with Period 1 

(which is January only), and thus the edits made in those two periods are never 

fewer than the edits in Period 1.
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Figure  1.6: The average number of edits made by users in Periods 2 (and 3), given that they 
made a certain number of edits in Period 1. The average values seem to be in a linear relationship 
with the number of edits in Period 1, and the best fitting linear functions are shown with the 
straight lines.

According to the observations above, then, you can assume that a good model 

for the number of revisions in two different time frames, at least in the average 

sense, as shown by the equation below, is that

r R r2 21 1 , ( 1.7)

such that if the user made r1 revisions in Period 1, he will make on average r2

revisions in Period 2, which is linearly proportional to r1 with the constant R21.

To recap, bear in mind the following two facts, which we will develop further: 

 1. The edits made by a user in two time periods of different lengths are 

linearly proportional to each other (Figure 1.6).

 2. The probability distribution function of the activities does not depend

on the time frame we performed the measurements in, as you saw in the

previous section (Figure 1.4).

In the next few paragraphs we elaborate on both facts, starting with the fi rst. 

Remember: Our goal is to explain the origin of the distribution functions that 

describe user activities.

Consider the number of edits that a user makes in a given time period as a 

random variable, R. We’ll denote the probability distribution function (which 

is, recall, approximated by the normalized number of users making a certain 

number of edits as in Figure 1.4) by f rR( ). R here stands for the random variable, 

and r is its particular value. This is, again, the probability that a random user

will have r revisions. Although we know that r is a discrete random variable, we

can proceed with the underlying assumption that it is continuous. The reason is 

that at this point we don’t want to derive exact results, but instead understand 
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the distributions that we have seen in a general sense that may be applicable 

to other systems as well.

If we multiply this continuous random variable by a constant c, its PDFc f rcR( )
will become, as expressed by its original PDF f rR( ), 

f r
c

f
r
ccR R( )

| |
.

1
 ( 1.8)

This is just a fact from probability theory for the resulting distribution func-

tion when we multiply the random variable by a constant. We should now 

consider how the PDF of the edit activity changes when we move from Period 

1 to Period 2. Let’s fi rst write out the PDF for the random variable r, the number rr
of revisions a user makes, because this is the PDF we’re going to work with. If 

U1 denotes the total number of users in Period 1 such that1 U U i
i1 1 1 , then 

the PDF in Period 1 for instance is approximated by

f r
U r
UR
1

1

( )
. ( 1.9)

We know that according to our assumption (Equation 1.5) we need to mul-

tiply the number of revisions for every user by R21, to arrive at the number of 

revisions r2 they make in Period 2; our ultimate goal is to compare the product-

distribution with the actual distribution that we can measure and see if they 

match up. Now when we multiply the random variable argument r of fR by R21,

we should be able to deduce what the new PDF will be. Using Equation  1.8:

f r
R

U
r
R

U
R R21

1

21

1
21

1

. (1.10)

Notice that, more importantly, we did not simply write U1 in the denomina-

tor of this equation. Instead, we have U1 there. The reason we do this is that the 

normalization factor will also change when we multiply the random variable 

as in Equation 1.9: The proper sum for the normalization again runs through 

all integers from 1 to ∞ as

U U
r
R

r
1

1
1

21

’
. (1.11)

We have a challenge now. The arguments of U1 in the sum are not going to

be integers, and also for r R21, the argument of U1 is less than 1, which is not

possible. This we can interpret, though, as referring to users who “did not show 

up” in Period 1 because their activity rate was so low that we could not observe 

even one revision from them. However, we can still think of them as having had 

a strictly positive, but less than 1, activity rate, which, after being multiplied by 
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R21, became measurable in the longer Period 2. But because we could not count 

their numbers (given that they did not show up in Period 1!), how are we going 

to determine what U1 has to be?

We can also have a different approach to calculating U1: It must be the sum

of all user counts over all possible activity buckets in Period 2, because it was 

exactly our purpose with multiplying the revision counts r1 by R21 to arrive at

the revision counts r2 in Period 2. This sum, we know, is exactly U2, the num-

ber of users who had any activity in Period 2; therefore U U1 2. Seeing this we

can fi nally complete the expression for the probability density function for the 

rescaled argument in Equation 1.10 as

f r
R

U
r
R

UR R21

1

21

1
21

2

. (1 .12)

Why is it good, though, that we know this? We can use our other empirical 

observation now about the probability distribution functions being unchanged 

over observation periods, as described by Equation 1.3. What we recovered, 

then, when we multiplied the revision counts for all users in Period 1 by R21
(Equation 1.7), is the probability distribution of the number of revisions in 

Period 2. Combining this and Equation 1.12, we get

U r
U

U r
U R

U
r
R

U
1

1

2

2 21

1
21

2

1( ) ( ) . (1.13)

Because we would like to say something about U1(r), let’s just focus on the r
fi rst and third terms in this equation. Slightly reorganizing the constants,

U
r
R

U
U

R U r1
21

2

1
21 1( ). (1 .14)

Remember though that our ultimate goal is to fi gure out why U1(r(( ) (and r U2U (r(( ),r
and U3U (r(( )) have the particular shape they have, which could help us understandr
several further properties of user behavior down the line. For this, let’s simplify 

for a moment the notations in Equation 1.12 to see the problem more clearly. 

By pulling the constants together and using the simpler notation g, instead of gg
U1(r) for the unknown function, we can say that what we’re looking for is ar
function g that satisfi es:

Ag x g Bx( ) ( ), (1 .15)

with A and B being constants. In other words, if we multiply the argument of 

the function by a given constant, we get back almost exactly the function value 

as we would otherwise have for the argument, except that this value is also 
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multiplied by another, different constant. This looks simple, but what kind of 

functions will satisfy this condition? We can use a theorem called Euler’s homo-
geneous function theorem to fi nd a solution for g. Euler’s theorem states that if the gg
following is true for a given constant γ and any other constant C: 

g Cx C g x( ) ( ), (1 .16)

then g should also satisfy

 xg’(x) = γgγγ (x). (1.17)

g’, as usual, is the derivative of g with respect to x. It must be also true then that

g x
g x x
’( )
( )

. (1.18)

Because the left side is equal to lng x a( ) , and the right side to ln kx b
with arbitrary, new constants k,k a, and b (it’s easy to see knowing the basic rules 

of derivation), we come to

ln lng x a kx b( ) ’ ’

ln lng x a kx b c( )

g x Kx( ) . (1.19)

(We introduced K, which is just another constant, and could be expressedK
with k, k a, b, andb c.) This result is rather simple and elegant, and we used two 

facts only: (1) that the probability distribution functions for user activities over 

time are unchanged (Figure 1.4); and (2) that the number of user actions between 

two time frames changes proportionally, no matter how active the users were in 

the fi rst place (Figure 1.6). With this we can go back and rename our variables 

again. Our fi nal result is that the number of users U having a certain number of U
revisions, r, should follow a so-called rr power law (because we raise the variable 

in the formula to a constant power)

U r Kr( ) , (1 .20)

with some constant γ and a scaling factor K. Seeing this, it’s indeed surprising 

how compactly we can express our user activity distribution: Our hunch at the 

beginning of the chapter that the distribution could be some sort of a smooth 

function was indeed right. Now that we have a closed form for this, we can 

analyze some of its properties.

We can also check directly whether we can observe a power law for the user 

activities: Let’s see if we can show that this is the case for Wikipedia editors as 

well! If our assumptions along the way were correct, we should fi nd that the 
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number of editors making a certain number of revisions follows Equation 1.20 

to a large degree. The easiest way to proceed with this is by noticing that if we 

take the logarithms of both sides of this equation, we get 

ln ln ln lnU r Kr r K. (1 .21)

In other words, the logarithm of the number of users with r revisions, U(r),r
is a linear function of the logarithm of the number of revisions, r. ln rr K is just a K
constant, and so is γ, so we can see how the linearity arises between ln U and U
ln r. We can now take the exact same data as we did for Figure 1.3, transformrr
the variables both on the horizontal and vertical axes, and plot them against 

each other. The result is shown in Figure 1.7.

Figure 1 .7: Similar to Figure 1.3, we show the number of users who made a certain number of 
revisions in the three time periods. However, in this figure, we rescaled both axes logarithmically, 
so we can now clearly observe the power law relationships.

We can notice a few things:

■ Whereas the horizontal axis of Figure 1.3 shows a limited range only (it

goes only up to 20 because otherwise we would not see anything inter-

esting due to the fast decay of the power-law function), the logarithmic 

rescaling lets us see a much more detailed and complete picture of the 

relationships well beyond this restricted range. Although the distance 

between neighboring data points becomes shorter and shorter on paper as 

we go toward larger x values, it’s exactly this gradual increase in density

that allows us to also discern how the functions behave at the far ends 

of their ranges.

■ The logarithmic axes also make comparisons between the three distribu-

tions easier. In this fi gure, we can clearly follow through the functions’ 
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differences across the entire horizontal domain, and we can discern both

large differences (on the order of tens of thousands of revisions, on the left 

side) and small differences (on the order of 1–10, right side) in the same

plot. This is because the vertical, y axis is logarithmically rescaled as well.

■ What we can observe is that the functions seem to remain “parallel” with 

each other. What this means is that the ratios of their y values at every 

point are constant: A ln lny y C1 2  constant difference can be expressed

as y y e constC
1 2/ ; therefore, a parallel shift on a logarithmic axis means 

a multiplication by a constant on the original scale. Alternatively, if we 

multiply a function by a constant, on a logarithmic y axis, it will appear 

as a shift upward or downward, depending on whether the multiplier 

constant was greater or less than 1, respectively.

■ Now we can immediately see the linear relationships on the logarithmic

scales between the log-transformed number of revisions and the log-

transformed number of users, apparent from the fact that all three curves 

follow (approximate) straight lines on the log-log scales. Equation 1.21 

already expressed this, and now we can see that it is indeed the case. In

fact, if any function is a straight line on a double logarithmic plot, we 

can be assured that it’s a power law of the form given by Equation 1.19.

■ We can also observe a “fanning out” of the y values at the high end of the 

horizontal scale. This is a result of the higher variances at smaller sample 

sizes: You can see that at approximately 1,000 revisions per user, we fi nd 

only a few users per revision bucket (fewer than 10). Although we still 

expect that a power-law model reasonably approximates the user counts, 

our observations, which can be considered a sample drawn with a small

size from a random process, will have considerable variation around the 

expected mean (which is given by the power law). A remedy for this can

be to use increasing bin sizes to pool several buckets into one, and aver-

age out the user counts, as we’ll see in the “Logarithmic Binning” section 

of this chapter.

■ In contrast to our usual experience with linear plots, moving one “unit” 

to the right or toward the top in the log-log plot means that we are step-

ping decades (in the case of base-10 logarithmic scales), or in other words 

we are multiplying our values by 10. So, as we move from the origin to 

the right, for example, we are moving on the x axis from 1, to 10, to 100, to 

1,000, and so on, so making linearly displaced steps in the plot will result 

in exponential changes in the values on the axes they represent.

Furthermore, we can make one more prediction for the power-law exponent 

as a validation of our assumptions, realizing that Equation 1.14 for u1 has the
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same shape as Equation 1.16. Comparing these two equations, we can see that 

C R1 21/ , and so what we need to determine is, n, the exponent of C, on the

right side of Equation 1.16. But this we can calculate easily:

C
U
U

R2

1
21

log
log

log

log

logC
U
U

R

U
U

R

R

U
U
R

2

1
21

2

1
21

21

2

1

211
1. (1.22)

We know all the actual values in this expression for Periods 1 and 2: the mea-

sured total number of active users happens to be U1 134 804,  and U2 219 604, .

R21 is the slope of the linear fi t to the data points represented by the “square” 

symbols in Figure 1.6: R21 1 75. . Substituting these for the exponent γ into 

Equation 1.22, we will get γ=−1.87. So, our expectation is that the number of 

users with a given number of revisions will go as 

U r
U

U r
U

U r
U

r1

1

2

2

3

3

1 87( ) ( ) ( ) . . (1.23)

(We neglected the normalizing constant, and this proportionality is indicated 

by the commonly used “∝” sign.) We obviously have the chance to check this 

statement for the exponent, using real data; we will do this momentarily, after 

inspecting some more properties of the power-law relationship found for user 

activities.

The Consequences of the Power Law

What are the further consequences of this law that we just found for the user 

activities? Let’s fi rst look at the cumulative distribution function of the probability 

distribution function that is shown in Figure 1.4. The cumulative distribution 

function gives the probability that the value of the random variable is no greater
than a given threshold. In our specifi c case, it means that we are looking for 

the fraction of our users that make less than or equal to a certain number of 

revisions in the time period. Let’s call this upper limit ρ.

CDF P r
U

U i
i

1
1

( ). (1.24)

Here, as before, U(i) is the number of users making i edits, and U is the total U
number of users. To calculate this, we can use Listing 1.5. (For Period 1, as we 
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can see in the subset statement, however all periods have the same PDF so this

should not matter.)

Listing 1.5: Approximate the cumulative distribution function of the user activities—the
fraction of users who have no more than a certain number of edits in a given time period.
(user_edits_in_timeframes.R)

 rev.buckets = ddply(subset(revs.in.periods, range1 > 0,
                       select='range1'), .(range1), summarise,
           count=length(range1))
names(rev.buckets)[1] = 'revisions'

# Make sure we have an increasing ordering of the revision buckets.
rev.buckets = rev.buckets[order(rev.buckets$revisions),]
total.users = sum(rev.buckets$count)
rev.buckets = within(rev.buckets, {
                 cdf = cumsum(count) / total.users
           })

The result of this simple calculation is shown in Figure 1.8. Again, we res-

caled the horizontal axis, the number of edits, logarithmically. We have every 

reason to do so, as we by now know that this value spans a vast range, from 

1 to 10,000; if we used linear scale, we could not have discerned the sharp rise 

of the function at the beginning of the scale. This lets us observe surprising 

facts about our activity distribution: 40% of the active users have only one edit 

for that one month, and approximately 85% or so have at most 10! Apparently, 

most of our users are not that active compared to the most frequent editors, and 

only a small fraction makes a large number of edits.

Figure 1.8:  The cumulative distribution function of the number of users with a given number of 
edits. The CDF is the fraction of users with no greater than a specific number of edits. We rescaled 
the horizontal axis for better visibility.
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We have now looked at what fraction of our users have made no more than a 

certain number of edits, or in other words what fraction of the users are making 

the least number of revisions. Can we also look at the inverse of the problem, the 

fraction of users who are making the most number of edits? This is certainly

not much harder than what we just did, and this is called the complementary
cumulative distribution function or the tail distribution of the activities:

CCDF P r
U

U i CDF
i

1
1

1
( ). (1.25)

Similar to Listing 1.5, we can also calculate the tail distribution of the user 

activities as shown in Listing 1. 6. Note that we use a trick to calculate this using 

the built-in cumsum function: We reversed the frequency vector twice to simulatem

a cumulative sum from the end to the beginning of the vector. 

Listing 1.6: Calculating the tail distribution of the fraction of users with more than a given 
number of edits. (user_edits_in_timeframes.R)

 rev.buckets = within(rev.buckets, {
            # We reverse the vector twice since 'cumsum' adds up
            # from the beginning, and discard the very first bucket
            # since the CCDF is defined as a strict "greater". Finally,
            # we append a 0.0 value for the last element since there are
            # no users with more than the maximum number of edits.
            ccdf = c(rev(cumsum(rev(tail(count, -1)))) / total.users,
                       0.0)
      })

Figure 1.9 displays the tail distribution as we calculated it on Wikipedia edits. 

Again, we can notice a few consequences of the long-tailed distribution of the 

revisions: Only 15% of the users have more than 10 revisions in a month, and 

this drops to below 5% for 100 revisions. To inspect how many users have a 

large number of edits, it would make sense to also rescale the vertical axis so 

that we can see the smaller fractions as well, as we did in Figure 1.10.

When we perform this rescaling, we can notice something interesting: The 

tail distribution seems to follow a power law as well, just like the original prob-

ability distribution did (Figure 1.7). Can we fi nd a reason for why this should be 

so? For this let’s fi rst recall that our power-law PDF for the number of revisions 

r can be described by the following relationship: 

P r Ar( ) , (1.26)
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Figure 1.9:  The tail distribution of the users’ revisions: This shows what fraction of users had 
more revisions than a threshold. Comparing this with Figure 1.8, we can immediately see that the 
two functions add up to 1.

Figure 1.10:  The tail distribution of the users’ revisions again as in Figure 1.9, but this time 
on double-logarithmic axes. We can now see that, similar to the PDF, this tail distribution also
follows a power law (or two power laws, given the slightly faster decay at the end as we can 
recognize by the steeper linear section of the plot starting at approximately 102 5.  revisions).

with an appropriate constant A that normalizes the area of the function to 1, 

and γ being the exponent of the power law. Then the tail distribution can be 

expressed as the tail sum over all values above the threshold:CCDF P r
r

( ) ( ).
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Let’s try to express this in a closed form by approximating this discrete sum 

with a continuous integral of the same function. This we can do assuming 

the function does not change too quickly because the integral is nothing else

but an infi nitely refi ned box covering of the integrand, and the discrete sum 

can be thought of as a rough covering of the continuous function. This trick is 

illustrated by Figure 1.11. 

CCDF r P i Az dz
A

z
A

r

A

rri r
( ) ( ) ( )

1 1
01 1

1
1r .  (1.27)

 Figure 1.11:  Imagine that we are summing up the values of a function indicated by the five 
white dots. This is the same as the sum of the areas of the white (unfilled) rectangles. However, 
we can approximate this area by taking the integral of the underlying continuous function as

well (shaded by gray): f(i) f(x)dx
xi 2

7

2

6

. Although we cover a slightly smaller area as can 

be seen from the figure, the error we’re making is negligible compared to the actual differences 
between our model and the actual social media system.

You may have noticed that there was one bold assumption in the previous 

calculation: that 1 0. This is, however, true, as long as 1 because in this 

case we raise  (think of it as a very large number) to a negative power, which is 

the same as 1 1/ ( ). For this to converge to 0, −(γ(( + 1) > 0 is required, hence our

stipulation that γ < −1. (Otherwise, if this is not the case, the theoretical power

law would not have a fi nite area under it, and we could not have assumed the 

power law extends up to infi nity. It must have been “truncated” so that we can 

have a fi nite area under the probability density function.)

To summarize Equation 1.27 in plain terms: If we can assume that our 

probability distribution function for user activities follows a power law with 

an exponent γ, then the tail distribution will also follow a power law, with an

exponent γ + 1.
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There is moreover one more thing we can read from Figure 1.10, which is that 

the tail end of the CCDF decays with a steeper exponent beyond approximately 

2.5 decades (10 3162 5. ≈ ) than the earlier part of the distribution. This means 

that the original PDF of Figure 1.7 also drops faster at the end than earlier, but

we could not really have seen this fact from that plot. This is immediately one 

benefi t of transforming the PDF into a tail distribution: For a power law, we 

essentially “smoothed” out that function, as here we obviously do not observe 

the spreading out of the tail as happened for the original PDF due to the small 

sample sizes at the end.

However, we can discover a further non-obvious fact of the tail of the PDF. If 

we plot the tail distributions of Periods 2 and 3 separately, we notice that where 

this regime of faster decay starts is dependent on which period we are look-

ing at: For this period, Period 1, it was 102 5. , whereas if we had taken Period 3, 

which is about three times longer than Period 1, we would have seen it begin 

later, at 103. (We leave it to the reader to check this.) The point of onset of this 

faster decay is sometimes called a cutoff, especially if it’s even more pronounced ff
than what we see in this example. This phenomenon is called the fi nite size effect,t
which arises because we can observe only a constrained snapshot, instead of 

an infi nitely long period as it would be for the “ideal” system. However, as we 

noted, the threshold where the fi nite size starts to show up keeps shifting to 

higher activity values as we increase the length of the observation period.

The Long Tail in Human Activities

Over the last few pages we saw that the power-law distribution that describes 

users’ activities reveals a large diversity among the users, showing that most 

of them are rather inactive, but there are a few who are immensely more active 

than the rest. Another question that comes up frequently for characterizing 

user contributions is the following: If we rank users by increasing activities, 

what percentage of actions comes from the most active users? Conversely, what 

percentage of contributions can be attributed to the least active users?

To answer these questions we’ll order users by the number of revisions they 

have, and will look at what fraction of all edits have the most active 10% of users 

made. Obviously, we can look at any percentage of users, but for this example 

we’ve chosen 10%. What we need to do, therefore, is to order the revision counts 

of users from highest to lowest, so we will get the most active users in the begin-

ning of the vector, and the least active ones at the end. We call the position of a 

user in this vector a user’s rank, so the user ranked 1 is the user with the largest k
number of revisions, the user ranked 2 is the second most active user, and so 

on. Then we can calculate the cumulative sum over this vector, arriving at the 

number of edits users made up to a certain rank (Listing 1.7).
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Listing 1.7: To calculate the number of edits that the most active users make, we fi rst order
the users by decreasing activity counts so that we can cumulatively sum up their number of 
revisions. (user_edits_in_timeframes.R)

range.considered = subset(revs.in.periods, range1 > 0, select='range1')
names(range.considered)[1] = 'revisions'
ordered.activities = range.considered[order(range.considered$revisions,
                decreasing=TRUE),]
total.revisions = sum(ordered.activities)
tail.fractions = data.frame(user.rank=(1 : length(ordered.activities)),
        fraction=cumsum(ordered.activities) / total.revisions)

The plot for the fraction of edits made by the most active users is shown in 

Figure 1.12: It’s surprising that only a few of the users seem to be responsible 

for most of the edits. In fact, it looks like only 10 users make approximately 12% 

of all edits; and the top 100 users make approximately 29%. This is tremen-

dous; of the 134.8k users active in this period, only 0.07% is making nearly 

one-third of all revisions!

Figure 1.12:  The  fraction of all edits made by users up to a certain rank. We rescaled the axis for 
the user rank logarithmically.

At this point we should realize that it’s humanly impossible to have as many 

edits in only one month as the top users have. For instance, Table 1.1 lists the 

heaviest “users” and their revision counts. It’s apparent from this table that the 

users with the most edits are “bots” (an abbreviation for “robots”): Wikipedia 

agent programs that perform some automatic maintenance or fi x on the encyclo-

pedia pages. “CLueBot NG,” the most active bot, is for instance a bot that tries to 

detect and prevent vandalism to pages, whereas “Addbot” is a bot that performs a 

diverse set of clean-up and maintenance tasks on pages. In the case of Wikipedia, 
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we may have an idea which accounts are bots, but this is not always possible in 

every social media service. (A list of registered bots can be found here: http://

en.wikipedia.org/wiki/Wikipedia:Bots/Status.) In many cases, automated

accounts may appear as legitimate users; on Twitter, for instance, it’s often the 

case that Internet-connected appliances, news headline relays, or algorithmic 

accounts replying to or quoting other users are also present on the service as 

legitimate (and useful) accounts. At other times, these active accounts belong to 

spammers, in which case it’s doubtful we can call the account useful.

Table 1.1:  The Most Active Wikipedia Accounts in Our Period 1, January 2013

 ACCOUNT 
NAME

PERIOD 1 
EDITS AVERAGE SECONDS BETWEEN TWO EDITS

ClueBot NG 80003 33

EmausBot 79357 34

Addbot 63136 42

BG19bot 47897 56

WP 1.0 bot 46910 57

Cydebot 46067 58

Yobot 39489 68

Makecat-bot 31228 86

ZéroBot 30351 88

AnomieBOT 30122 89

Xqbot 30111 89

BD2412 25710 104

The list in Table 1.1 was generated by the (UNIX) shell command: zcat

data/wikipedia/user_edits_in_timeframes.tsv.gz | sort -n -r -k 2 -t

"$(printf '\t ')" | head -12. Often it saves time to run these “one-liners” 

in a terminal window.

There’s usually no obvious way to know what accounts are automated, unless 

the service whose data we’re analyzing provides a way to identify them. To 

see the effect of removing these bot accounts from Wikipedia, we can simply 

exclude all known accounts listed as bots from our activity data. Because even 

after this we found accounts that were apparently bots, we examined the top 

accounts by hand and also removed these from among the top 100 most active 

users (Listing 1.8 ).
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Listing 1.8: This simple piece of code removes all known (and assumed) bot accounts from our 
data frame. (user_edits_in_timeframes.R)

 bots = read.table(gzfile('wikipedia_robots.txt.gz'),
         col.names=c('account'))
revs.in.periods =
         revs.in.periods[!(revs.in.periods$account %in% bots$account), ]

 We can also generate a plot similar to Figure 1.12 with the bot accounts removed; 

however, we will not repeat that in print because it looks similar to this fi gure. 

With the bots removed, the top 10 users have 6% of the edits, and the top 100 

have 18% (cf. 12% and 29% before removing the bots, respectively). This is a 

signifi cant change in the percentages, but the proportions are still huge for 

such a small number of users. Only a vanishingly small fraction of the users is 

responsible for a majority of all activities on the service. We can also describe 

this surprisingly unbalanced split more generally. What could we expect in 

other social media systems, for which the activity distribution is also a power 

law, similarly to Wikipedia?

Long Tails Everywhere: The 80/20 Rule (p/q//  Rule)

You have seen that there’s a strong imbalance in the engagements of users: A 

few of them are very active, whereas the majority of them have relatively low 

engagement counts. Can we fi nd a way to describe this observation quantita-

tively as well?

In 1906, the Italian economist Vilfredo Pareto recognized that (in his time) 

80% of the land in Italy was owned by only 20% of the population: 20% seems 

to be a relatively low number, whereas 80% is high. Later, this observation was 

generalized and was called the Pareto principle. In the original incarnation of 

the Pareto principle it is posited that 80% of the consequences are attributable to 

20% of the causes. (Note that the 80% and 20% in this phrasing don’t have to add 

up to 100%, because they refer to different entities; it’s just a slightly misleading 

“coincidence” that the principle was formulated in this way.) In a more general 

setting, you could say that a fraction p of the consequences are coming from a 

fraction q of the effects, where p is relatively close to 1, and q is relatively close 

to 0. We already know that applying it to the metrics we have considered for 

our social media services, this will certainly be the case. The question is now 

how large p and how small q will be for our typical cases.

What we would like to do, then, is fi nd the relationship between the fraction of 
the most active users and the fraction of activities they are responsible for. The infor-rr
mation we have available for each user, which should be enough for us, is how 

many activities they have for a given period. We already know that the number 

of users with r revisions follows a power law: U r r . The trick we will use,
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as before, is to approximate the sums of discrete variables by integrals over 

the functions of their expected values. Although strictly speaking the discrete 

sums are not equal to the integral of the approximating function (a graphical 

illustration can be seen in Figure 1.11), the difference is small, especially for 

ranges of a function where it changes slowly (such as at the tail end of the power 

law function). Also, these calculations are always going to be a well-informed 

model of reality, so as long as we can fi nd a reasonably good description of 

online user behavior, we’re fi ne with making good numerical approximations 

such as this as well.

So to repeat: We will express the total number of edits made by the most 

active users. The most active users are those whose number of revisions are 

the highest; let’s say they have more than R number of revisions. Because the 

number of users having r revisions is U r U r( ) 0  (as before with a normalizing

constant U ), and because we can approximate the discrete distribution by a

continuous one and the sum of users by an integral over the continuous dis-

tribution function, the number of users having more than R revisions will be

N Ru( ) as shown in Equation 1.28:

N R U r dr
U

r
U

Ru

r R R

( ) .
1 1

1 1  ( 1.28)

We had to assume again that when we evaluate the antiderivative at ∞, we 

get 0. The condition for this, again, is that γ < −1, which holds for our case, and 

this is what we also see in practice for social media services in general.

Now, what can we say about the total number of edits that these most active 

users make? For one given revision count, r, the number of edits made by allrr
the users who have exactly this many edits is rU(r( ). To calculate the total num-r
ber of edits made by users with more than R revisions is simple, and similar 

to the calculation we just performed. However, we will not immediately try to 

integrate up to infi nity, but only up to a maximum revision count, Rm. The rea-

son for this will become clear in a moment. N Ra ( ) will be the total number of 

activities (revisions) by these users:

N R r U r dr
U

r
U

R Ra

r R

R Rm

R
m

m

( ) .
2 2

1 2 2  ( 1.29)

We can see why we couldn’t automatically assume that we can integrate up to 

infi nity: having γ −1.8 for Wikipedia, γ + 2 > 0, so substituting Rm as the upper

limit would make N Ra ( ) grow without bounds if we did not stop at some point 

with it. However, how can we have a good model assumption for what Rm’s 

reasonable value is? Note that at this point we are slightly at the mercy of our 

assumptions, and instead of getting back exactly what we can measure in an 
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actual system (Wikipedia), what we would like to do is explain qualitatively 

why we are seeing such huge skews in the activities of the topmost users. Let’s 

therefore do our best, and say that Rm is the revision count beyond which we 

do not expect to see more than one user altogether; at this point the power-law 

model would tell us that there is “fewer” than one user expected with more 

than so many edits, so we can conveniently stop counting. Therefore, when we 

plug Rm into N ru( ), we expect to see 1 as the result: 

N R
U

Ru m m( ) .
1

11
 (1.30)

From this we can express Rm as

R
Um –

1
1
1
. (1.31)

We are almost fi nished; we just need to put Rm back into Equation 1.29. Before 

we do that, let’s revise our original goal: to express the number of edits made 

by the topmost users. This means that we need to get rid of R because this was

just a “helper” parameter for us to express both Nu and Na. We can then invert

Equation 1.28 to get R: 

R
U

N
U

Nu u– –
1 1

1
1

1
1

1
1 . (1.32)

This way we have now both Rm and R to complete Equation 1.29 so that we

can get Na as a function of Nu. In the end, what we’ll get is the following:

N N
U

U
Na u u( ) .

2
1

1

1
1

2
1–  (1.33)

This is the relationship we wanted to derive. We can see that the fi rst terms 

are just a constant. This constant, according to this model, should be the total 
number edits, as setting Nu  guarantees that we get back all the activities. 

(Setting Nu  intuitively means that we’re taking all the users.) (γ (( + 2)/(γ (( + 1) < 0, 

so raising a large number to a negative power will make it small. Therefore, for 

the sake of our discussion, we can simplify this expression to show only the 

salient term that depends on the variable Nu: 

N N Na u u( ) .1
2
1
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Nu is the exact same user rank that we used to plot Figure 1.12 because what we 

just calculated is the number of edits made altogether by the most active Nu users.

The reason we went through these lengthy calculations was to expose the 

reader to the oft-cited long tail of human behavior, where only a small fraction of rr
the participants is responsible for most of the actions. To recap what you saw 

earlier in this chapter, we realize that this is the consequence of two simple 

factors in social media:

■ That the user activity distribution is unchanged over time.

■ That users make proportionally more edits by the same constant multiplier 

between two sampling windows, independently of how active they are.

We know that any time we observe similar regularities in any social media 

system (or for that matter, any other kind of a natural system whose statistical 

properties are similar to what we have seen in Wikipedia), the rules for the 

skewed activity distribution should apply.

What are the consequences of the relationship we discovered in Equation 

1.34? To see this more clearly, we can plot this function for some choices of γ, γγ
as we did in Figure 1.13. One thing we can immediately see is that the function 

is rather sensitive to the value of γ. Slight changes in the exponent yield vastly 

different results, even when we consider the top 100 users or so only. γ, in real-γγ
ity, means the exponent that can be fi tted to the tail end of the user–activity 

distribution: According to Figure 1.10, this exponent for Wikipedia is greater (by 

absolute value) at the end of the distribution than in the body. Remember, the 

tail distribution of Figure 1.10 is closely related to the original U(r(( ) distributionr
with a γ exponent: The slope of the locally fi tted straight line to the function 

in Figure 1.10 yields γ + 1. So, as we include more and more users from among 

the most active ones, any small local change in the γ exponent will cause strong 

deviations from the pure model that assumed a constant for γ. 

Figure 1.13 shows that none of the theoretical curves with a fi xed γ is a great 

fi t to the actual measurement (which for Wikipedia is shown by the line with a 

lighter shade). But it’s expected that when we have so few users to fi t a model 

to (we are talking about the top 100 or 1,000 most active users!), the changes in 

the “local value” (at a given user rank) of the γ exponent will be amplifi ed by 

the N Na u( ) function, which is extremely sensitive to it. Actually, consider that

just by removing the most active 10 (about 0.01% of all) users we could have 

erased one-tenth of all edit activities! It’s hard to overstate this fact, and therefore

it is understandable that at this minuscule scale any prediction will have large 

uncertainties. To put it in a different way, we are trying to predict how many 

edits only 10 or 100 users will have; although these are the most active users, 

any slight relative change in their individual production rates will show up in 

the total number of activities.
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Figure 1.13: The expectation for the fraction of activities generated by the most active users, 
in a hypothetical system whose user activity distribution perfectly follows theU r r  law. 
The horizontal axis shows how many of the most active users we consider, and the vertical 
axis is the proportion of activities attributable to them. We show three examples with different 
γ exponents. The lighter unmarked line shows the real measurements for Wikipedia, which 
happens to be the initial part of the line in Figure 1.12.

The lesson we learned is far-reaching when we are designing or provisioning 

for a social media service. Due to this general characteristic that we can observe 

in systems affected by human behavior, it is always true that there will be vast 

differences in activity levels between individuals.

Online Behavior on Twitter

Do our conclusions hold more generally for other kinds of online social sys-

tems? What we have seen until now is strictly speaking only true for Wikipedia. 

However, you will learn shortly that, at least in terms of large-scale trends, 

you should expect to fi nd similar behavior in most social media systems. It is 

nevertheless the users who generate activities on the online services, so it is the 

statistical properties of the underlying human behavior that you can measure 

with most of these metrics exhibited through the different services.

For this reason, let’s turn to a different kind of social sharing service, Twitter. 

In Twitter, users can send out status updates of at most 280 characters in length, 

and other users, who “follow” the sender, will receive these short messages 

in their so-called timeline. The service provides an API (https://developer

.twitter.com/en/docs.html)for third-party applications that can read and 

manipulate timelines and various Twitter objects on behalf of the user. Due to 

this easy extensibility and API access, we can also download example datasets 

that we can analyze for user activity.



 Chapter 1 ■ Users: The Who of Social Media 33

c01.indd 12:24:16:PM  09/10/2018 Page 33

Similarly, as the number of edits characterize the activity of Wikipedia users, 

we would like to measure the activity of Twitter users in the example in this 

section by the number of Tweets that they have sent in a given period of time. 

The API lets us download all the Tweets that a given user has sent in the recent 

past; therefore, if we have a list of valid IDs for users we can query the API in 

a loop to return all their most recent Tweets. Courtesy of Twitter, we have a 

list of randomly chosen user IDs belonging to normal users that we can continue

working with in this chapter. (A normal account is one that has not been deleted 

by the user or has not been suspended for violating any terms of the service, 

such as spamming.)

Retrieving Tweets for Users

W e need to iterate through the list of user IDs and ask the API for their most 

recent Tweets. We would like to work with 4 weeks of data, and because Twitter 

returns only a limited number of the most recent Tweets for each request to keep 

the response size under control (this count is 200), we may need to issue more 

than one request to retrieve all the Tweets for a user for the last 28 days. We also 

must watch out for rate limiting, which is the maximum number of requests in gg
a service-specifi c time window. Rate limiting is employed by virtually every 

popular Web service’s API to maintain a predictable quality of service level for 

everyone. Without this, we could reasonably expect that there would be a few 

API applications or users who would consume most of the bandwidth or server 

capacity. In fact, by now you might expect that the query activities of these apps 

could likely have a long tail, having learned about the presence of a strong 

skew in activity distributions from the previous sections, so a few of the most 

aggressive clients would dominate resource usage in the absence of such limits.

Since response throttling, retry fallbacks, and rate limiting are common 

notions in third-party API access patterns, we list the corresponding Python 

code in Listing 1.9 that implements these to download the Twitter data. This 

script fetches and records the Tweet IDs for the last 4 weeks for a predefi ned 

list of users. The longer we let the script run, the more users we will cover, and 

the more data we will have as well. This is a bare minimum example for how 

to connect to and download data from a Web service that provides API access 

and rate limiting. To simplify the OAuth authentication and response handling, 

we utilize the tweepy external library.

Listing 1.9: The Python code to consume the Twitter API to get the latest Tweets for a list of 
valid users. (get_users_tweets.py)

 import sys, gzip, time, tweepyfrom datetime import datetime, timedelta

# The consumer and access keys & secrets for the Twitter application.
# See https://developer.twitter.com/en/docs/basics/authentication
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# /overview/oauth
# on how to access these credentials.
CONSUMER_KEY = '<consumer key from the Twitter dev site>'
CONSUMER_SECRET = '<consumer secret from the Twitter dev site>'
ACCESS_KEY = '<access key from the Twitter dev site>'
ACCESS_SECRET = '<access secret from the Twitter dev site>'

# The maximum number of Tweets we can ask for in one request.
# See https://developer.twitter.com/en/docs/tweets/timelines
# /api-reference/get-statuses-user_timeline.html
MAX_ITEMS_PER_REQUEST = 200

# The file where we store a list of valid Twitter user IDs.
USER_LIST = 'data/twitter/user_handles_sample.gz'
# The result file
OUTPUT_FILE = 'data/twitter/tweets_per_user.tsv'

auth = tweepy.OAuthHandler(CONSUMER_KEY, CONSUMER_SECRET)
auth.set_access_token(ACCESS_KEY, ACCESS_SECRET)
api = tweepy.API(auth)

# The start date and time of our data collection; 28 days before now.
start_day = datetime.utcnow() - timedelta(days=28)

user_list_file = gzip.open(USER_LIST, 'r')
output_file = open(OUTPUT_FILE, 'w')
for user_id in user_list_file:
    user_id = user_id.rstrip()
    # The ID of the earliest Tweet in the result batch.
    earliest_tweet_id = None
    while True:
        try:
            if earliest_tweet_id is None:
                # The first request for the user
                timeline = api.user_timeline(
                    id=user_id, include_rts=True,
                    count=MAX_ITEMS_PER_REQUEST)
            else:
                # There are possibly more recent Tweets than
                # MAX_ITEMS_PER_REQUEST.
                timeline = api.user_timeline(
                    id=user_id, include_rts=True,
                    count=MAX_ITEMS_PER_REQUEST,
                    max_id=earliest_tweet_id)
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        except Exception as e:
            if e.response.status == 429:
                # If we are rate limited, wait 60 seconds before
                # retrying. See https://developer.twitter.com/en/docs
                # /basics/response-codes.html
                time.sleep(60)
                continue
            else:
                # In any other case do not retry to load user data.
                # This may be changed to cover other error conditions.
                print 'Could not access', user_id
                break
        tweet_count = 0
        found_early_tweets = False
        for tweet in timeline:
            if tweet.created_at >= start_day:
                output_file.write('\t'.join( \
                    [str(f) for f in [user_id, tweet.id,
                                      tweet.created_at]]))
                output_file.write('\n')
                output_file.flush()
            else:
                found_early_tweets = True
            if earliest_tweet_id is None or \
            tweet.id < earliest_tweet_id:
                earliest_tweet_id = tweet.id
            tweet_count += 1
        if tweet_count < MAX_ITEMS_PER_REQUEST or found_early_tweets:
            # Finished with this user's Tweets if no more to download
            # or we got back before start_day.
            break
user_list_file.close()
output_file.close()

When we have collected enough users, we can look at their activity distri-

butions. We have retrieved the Tweet counts for the random set of users for a 

one-week (Period 1), a two-week (Period 2), and a three-week period (Period 3). 

Again, we chose overlapping periods starting on the same day, like we did 

for Wikipedia. Figure 1.14 shows the probability distribution functions for the 

number of users who tweeted a given number of times in the three periods.
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Figure 1.14: The probability distribution function for the number of users with a given number 
of Tweets sent, for a one-week, a two-week, and a three-week period, respectively.

Logarithmic Binning

Comparing Figure 1.14 to its Wikipedia counterpart in Figure 1.7, the fi rst thing 

to notice is that the data points appear to be sparser, more spaced out, and posi-

tioned more equally from each other than in the previous plot. The reason for this 

is that in this case, to illustrate a common way of aggregating and smoothing a 

distribution that is being plotted on a logarithmically rescaled horizontal axis, 

we used logarithmic binning. Where previously our buckets were the naturally gg
occurring integer activity counts (as in Figure 1.7), here we created buckets 

whose length is not uniform along the horizontal axis. However, if we carefully 

inspect any one of the three curves corresponding to a given period in Figure 

1.14, we see that the data points (corresponding to buckets) are equally spaced 

from each other. What this means on the logarithmic scale is that their distance 

in the log-space is equal; therefore, on a linear scale the positions of the bucket 

boundaries are constant multiples of each other. In R, it’s easy to create bucket 

boundaries that satisfy this condition: First, we create equidistant bins in log-

space, and then transform them back to the natural scale with the exponential 

function (Listing 1.1 0).

Listing 1.10: Create bucket boundaries that we can use in hist to create histograms with
increasing bin sizes. The range is defi ned by from and to, and bucket.count is the
number of bins we want to create.

buckets = exp(seq(log(from), log(to), length.out=bucket.count + 1))

Figure 1.15 illustrates the relative sizes of these buckets on a linear scale. What 

this kind of binning means is that as we progress toward higher and higher 

activity counts, we will have buckets that are longer and longer, and therefore 
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able to capture an ever-increasing range of activities. However, we also know 

that if the distribution we are plotting is approximately a power law, we will 

have fewer and fewer users in the high activity ranges, so increasing the bucket 

sizes counteracts the diluting statistics, to the effect that we will also have a 

substantial number of data points in the buckets in the upper range. In fact, 

the challenge with not increasing the bucket sizes for Figure 1.7 was exactly

that the tail ends of the distributions became noisy because in many cases we 

found only one or two users with a given number of edits (in contrast to the 

head part of the distribution, where we have a large number of users with just 

one or two revisions).

1 25 50 75 100

Figure 1.15: Logarithmic binning illustrated. In this example our original range is 1 … 100, and 
we split this range up into six buckets that increase exponentially in size: The length of every 
bucket is a constant multiple of the previous one. You can see that in the beginning the buckets 
are short, whereas their size is growing rapidly on this natural, linear scale.

However, we would like to calculate the probability that a randomly selected 

user will fall into a given bucket. Obviously, the larger buckets we take, the 

more chances we will have to capture users within this bucket. So to arrive at 

an approximation for the probability distribution of the underlying random 

process, we need to divide the number of users that we empirically count into 

one bucket by the length of the bucket (as the hist R command does this auto-

matically when we consider the density fi eld in the result).

User Activities on Twitter

Turning back to user behavior on Twitter, it’s also apparent from Figure 1.14 

that, in contrast to Wikipedia, for the three different time windows the prob-

ability distribution functions do not overlap, at least not on the higher end of 

Tweet scale. The consequence of this is that the relationships on log-log scales 

between the Tweet counts and the corresponding user counts are not linear, 

and the distributions do not exactly follow power laws. We have seen that the

stability of the distribution functions over time was a requisite for us to see a 

power-law behavior—on Twitter, although our model approximately holds, there

are also measurable deviations from it. In this case, as we take longer and lon-

ger observation periods, we are seeing more of the high activity users as well, 

and the high end of the activity distribution shifts up. On this note, the second 
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benefi t of the logarithmic binning is that it lets us actually discern the differences 

among the high activity users: We can see in Figure 1.14 that even beyond 103

Tweets we can meaningfully explore the tails of the probability distributions 

and see their differences. In the case of linear binning, the smallest number 

of users we might get per bucket is one, and as such that is the lower bound 

for our estimated probability in a bucket (refer to Figure 1.7). For logarithmic 

binning the bucket sizes themselves grow, so we can estimate the likelihood of 

progressively smaller probability events as well.

Furthermore, we can check one more property of user activities for Twitter users: 

how many more Tweets they send if we increase the length of our observation 

period. Figure 1.16 is the counterpart of Figure 1.6, and it essentially implies what 

we have found previously: that as we consider another time window (Period 2 

and 3, respectively), the average number of Tweets sent by a user who sends q
number of Tweets in Period 1 is a constant multiple of q. (Again, this is almost
true; if we take a closer look, we can see that the data does have some curvature, 

and it is not increasing strictly monotonically for the fi rst few data points.)

Figure 1.16: The average number of Tweets that Twitter users sent in Periods 2 and 3, as a 
function of the number of Tweets they sent in Period 1, respectively.

In summary, we have seen that our model and quantitative explanations 

that fi t Wikipedia users well will not be unconditionally good descriptions 

for Twitter users with a high degree of accuracy; however, such idiosyncrasies 

are present in every kind of social media system. In fact, our point with the 

Twitter example was that while in general these model assumptions hold to 

a large degree, if we need more accurate descriptions, we need to refi ne the 

models. After all, certain product decisions or intentional limitations can very 

well change the user behavior that we can observe in the end. Think of for 

instance the upper bound on the number of social connections that certain 

social networks impose: In this case, obviously, we will not see anyone with 
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more than that many connections. However, the principles we have studied 

are general enough that notwithstanding these system-specifi c constraints, we 

will normally observe large variations among user activity levels that can be 

well described by the laws and regularities that we discovered in the previous 

sections of this chapter.

Summary

I n this chapter, we have talked about the large degree of diversity that we can 

observe in the activities of users. Understanding that they can be character-

ized by general statistical laws across different types of social media systems 

suggests that these are the consequences of more universal human behavioral 

traits. Specifi cally, this chapter discussed the following:

■ You saw that although most users use online social media rather infre-

quently, a few are very avid users. The counts of activities within a given 

time frame follow power-law distributions.

■ When we consider the distributions across different time windows, they

are similar to each other in the head of the distributions (characterized by 

the exponent of the power law). The cutoff where they diverge depends

on the length of the time window. This is, of course, only true if there’re

no major changes to how users use the service over time (no major site 

redesigns, competing service, or rapidly increasing growth).

■ The long-tail activity distributions give rise to surprising facts for the user 

metrics. We cannot say that there’s an “average” or “typical” user behavior: 

The averages of the activity metrics are subject to large variances when-

ever we measure them, and we must be mindful about the strong effect

on the means of the outliers in the distributions that are always present.

■ In practice, a small fraction of the most active users can infl uence our 

averages strongly. If for some reason these users don’t come back, we 

could see a signifi cant drop in our metrics, even though the behavior of 

most of the users may stay unchanged, for example.

■ Therefore, if our goal is concentrated on measuring total activities, we 

should focus on understanding how our most active users behave. Because 

there are relatively few of these, even going through them “by hand” can 

give insights.

■ If we want to focus on describing how active user counts change for a time 

window, it’s most useful to understand the behavior of the least active 

users. Namely, these are the users who are likely to be the most numerous 

in our social media service.
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The focus of this chapter is to understand and describe the most important 

features of the user activity statistics. We did this by thinking of the users in 

isolation from each other, as if each individual acts independently of each other. 

This is certainly true to a large degree; however, the next chapter explores another 

defi ning function of social media systems: The networks that users create to 

express their interest in each other’s activities.


