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1
Molecular Vibrational Motion

The atoms in matter – be it in gaseous, liquid, or condensed phases – are in constant motion. The amplitude
of this motion increases with increasing temperature; however, even at absolute zero temperature, it never
approaches zero or perfect stillness. Furthermore, the amplitude of the atomic motion is a measure of the
thermodynamic heat content as measured by the product of the specific heat times the absolute temperature.
If one could observe the motion in real time – which is not possible because the motions occur at a timescale
of about 1013 Hz – one would find that it is completely random and that the atoms are most likely to be found
in ellipsoidal regions in space, such as the ones depicted in X-ray crystallographic structures. Yet, the random
motion can be decomposed into distinct “normal modes of vibration.” These normal modes can be derived
from classical physical principles (see Section 1.2) and are defined as follows: in a normal mode, all atoms
vibrate, or oscillate, at the same frequency and phase, but with different amplitudes, to produce motions that
are referred as symmetric and antisymmetric stretching, deformation, twisting modes, and so on. In general,
a molecule with N atoms will have 3N− 6 normal modes of vibrational normal modes.
At this point, a discrepancy arises between the classical (Newtonian) description of the motion of atoms

in a molecule and the quantum mechanical description. While in the classical description the amplitude of
the motion, and thereby the kinetic energy of the moving atoms, can increase in arbitrarily small increments,
the quantum mechanical description predicts that the increase in energy is quantized, and that infrared (IR)
photons can be absorbed by a vibrating molecular system to increase the energy along one of the normal
modes of vibration.
In the discussion to follow, the concepts of normal modes of vibration will be introduced for a system of

spring-coupled masses, as shown in Figure 1.1, a typical mechanical model for a molecular system. Through
a series of mathematical steps, the principle of normal modes will be derived from Newtonian laws of motion.
Once this set of “normal modes” is defined, it is relatively trivial to extend these coordinates to a quantum
mechanical description that results in the basic formalism for stationary vibrational states in molecules, and
the transitions between these stationary states that are observed in IR and Raman spectroscopies.
Sections 1.1–1.7 are aimed at presenting a summary of the physical principles required for understanding the

principles of vibrational spectroscopy. They do not present the subject with the mathematical rigor presented
in earlier treatments, for example, in Wilson et al. [1] for the classical description of normal modes nor the
quantum mechanical detail found in typical texts such as those by Kauzman [2] or Levine [3]. However,
sufficient detail is provided to expose the reader to the necessary physical principles such as normal modes
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Figure 1.1 “Mass-and-spring” model of Cartesian displacement vectors for a triatomic molecule. The gray cylin-
ders represent springs obeying Hook’s law

of vibration and normal coordinates, the basic quantum mechanics of vibrating systems, and the transition
moment, but in addition to the aforementioned texts, it will introduce the reader to many practical aspects of
vibrational spectroscopy, as well as branches of vibrational spectroscopy that were not included in the earlier
treatments.
For the remainder of this book, a standard convention for expressing vibrational energies in wavenumber

units will be followed. Although energies should be expressed in units of Joule (1 J= kgm2 s−2), these num-
bers are unyielding, and wavenumber units are used throughout. The following energy unit conversions apply:

E = h𝜈 = hc
𝜆

= h c𝜈̃

Here, h has the value of 6.6× 10−34 J s. Using h𝜈 = hc𝜈̃, one finds that 1 cm−1 ≈ 30GHz= 2× 10−23 J (see
also the table in the introduction and comments after Eqs. 1.31 and 1.63). Herewith, the author categorically
apologizes for referring to transitions, expressed in wavenumber units, as “energies.”

1.1 The concept of normal modes of vibration

Consider a set of masses connected by springs that obey Hook’s law, as shown in Figure 1.1. Two of these
springs act as restoring force when the “bonds” between atoms 1 and 2 and between atoms 1 and 3 are elon-
gated or compressed, whereas one spring acts to restore the bond angle between atoms 2–1–3. Furthermore,
we assume that the force required to move one atom along a coordinate depends on the momentary position of
all other atoms: the force required to extend bond 1–2 may decrease if bond 1–3 is elongated. In a mechanical
system, this situation is referred to as a coupled spring ensemble, where the stiffness of a spring depends on
all coordinates. In a molecular system, this corresponds to electron rearrangement when the molecular shape
changes, with a concomitant change in bond strength. In order to describe the atomic motions in a vibrating
system, one attaches a system of Cartesian displacement coordinates to every atom, as shown in Figure 1.1.
A normal mode of vibration then can be described as a combination of properly scaled displacement vector
components.

1.2 The separation of vibrational, translational, and rotational coordinates

Based on Figure 1.1, one may expect a system of N atoms to exhibit 3N degrees of vibrational freedom: a
degree of freedom for all three Cartesian displacement coordinates of each atom, or any linear combinations
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of them. However, vibrational spectroscopy depends on a restoring force to bring the atoms of a molecule back
to their equilibrium position. If, for example, all atoms in a molecule move simultaneously in the x-direction,
by the same amount, no bonds are being compressed or elongated. Thus, this motion is not that of an internal
vibrational coordinate but that of a translation. There are three translational degrees of freedom, corresponding
to amotion of all atoms along the x, y, or z axes by the same amount. Another view of the same fact is that these
modes have zero frequencies as there is no restoring force acting during the atomic displacements. This view
will be favored in the derivation of the concepts of normal modes presented in Section 1.3, which is carried out
in (mass-weighted) Cartesian displacement coordinates. Later on, a different and simpler coordinate system
will be introduced as well.
Similarly, one can argue that certain combinations of Cartesian displacements correspond to a rotation of the

entire molecule, where there is no change in the intermolecular potential of the atoms. There are three degrees
of rotational freedom of a molecule, corresponding to rotations about the three axes of inertia. Subtracting
these from the remaining number of degrees of freedom, one arrives at 3N− 6 degrees of vibrational freedom
for a polyatomic, nonlinearmolecule. Linearmolecules have onemore (3N− 5) degree of vibrational freedom,
because they have only two moments of inertia. This is because one assumes a zero moment of inertia for a
rotation about the longitudinal axis.
Mathematically, the separation of rotation and translation from the vibration of a molecule proceeds as fol-

lows: in order for the translational energy of the molecule to be zero at all times, one defines a coordinate
system that translates with the molecule. In this coordinate system, the translational energy is zero by defini-
tion. The translating coordinate system is defined such that the center of mass of the molecule is at the origin
of the coordinate system at all times. This leads to the condition∑N

𝛼=1
m𝛼𝜉𝛼 = 0 (1.1)

where 𝜉 denotes the X, Y, and Z coordinates of the 𝛼’th atom of a molecule with N atoms. Similarly, the
rotational energy can be reduced to zero by defining a coordinate system that rotates with the molecule. This
requires that the angular moments of the molecule in the rotating coordinate frame are zero, which leads to
three more equations of zero frequencies. These six equations are needed to define a coordinate system in
which both translational and rotational energies are zero. Details of this derivation can be found in Wilson
et al. [1, Chapters 2 and 11].

1.3 Classical vibrations in mass-weighted Cartesian displacement coordinates

The concept of normal modes of vibration, necessary for understanding the quantum mechanical description
of vibrational spectroscopy and obtaining a pictorial description of the atomic motions, can be introduced by
the previously described classical model of a molecule consisting of a number of point masses, held in their
equilibrium positions by springs. This kind of discussion is treated in complete detail in the classic books on
vibrational spectroscopy, for example, in Chapter 2 of Wilson et al. [1].
The treatment starts with Lagrange’s equation of motion:

d
dt
𝜕T
𝜕ẋi

+ 𝜕V
𝜕xi

= 0 (1.2)

where T and V are the kinetic and potential energies, respectively, the xi are the Cartesian displacement coor-
dinates, and the dot denotes the derivative with respect to time. Equation 1.2 is another statement of Newton’s
equation of motion (Eq. 1.3) expressed in terms of the kinetic and potential energies, rather than terms of
force and acceleration:

Fi = mi
d2xi
dt2

(1.3)
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In Eq. 1.3, F represents the force, which is related to the potential energy by

Fi = −dV
dxi

= kxi (1.4)

Equation 1.4 is Hook’s law, which states that the force F needed to elongate or compress a spring depends
on the spring’s stiffness, expressed by the force constant k, multiplied by the elongation of the spring, x. The
acceleration (d2xi/dt

2) in Eq. 1.3 can be related to the kinetic energy as follows:

T = 1
2

(∑
i
miẋ

2
i

)
(1.5)

Thus,
dT
dẋi

= miẋi (1.6)

Substituting Eqs. 1.4 and 1.6 into Eq. 1.3 yields Lagrange’s equation of motion in which the expressions for
kinetic and potential energies appear separately. This formulation is advantageous for writing the quantum
mechanical Hamiltonian, cf. the following section.
Next, one rewrites Eq. 1.2 in terms of mass-weighted displacement coordinates, qi. The reason for this

is that the amplitude of a particle’s oscillation depends on its mass. When mass-weighted coordinates are
used, all amplitudes are properly adjusted for the different masses of the particles. In addition, the use of
mass-weighted coordinates simplifies the formalism quite a bit. Let

qi =
√
mixi (1.7)

Then, the kinetic energy can be written as

2T =
∑3N

i
(q̇i)2 (1.8)

Note that Eq. 1.8 contains only “diagonal terms”; that is, no cross terms qij appear in the summation. (The
term “diagonal” here refers to a matrix notation to be introduced shortly.) Next, the potential energy of the
particles needs to be defined. For masses connected by springs obeying Hook’s law, one may assume that
the potential energy along each Cartesian displacement coordinate is given by

V = 1
2

∑3N

i=1

∑3N

j=1

(
𝜕2V
𝜕qi𝜕qj

)
dqidqj (1.9)

or
V = 1

2

∑3N

i=1

∑3N

j=1
fijdqidqj (1.10)

with

fij =
(

𝜕2V
𝜕qi𝜕qj

)
(1.11)

The fij are known as mass-weighted Cartesian force constants and differ from the force constant k defined in
Eq. 1.4 by the fact that latter does not explicitly contain the masses of the atoms. The constants fij express the
change in potential energy as an atom or group is moved along the directions given by qi and qj. For small
displacements about the equilibrium positions, Eq. 1.10 can be written as

2V =
∑3N

i=1

∑3N

j=1
fij qiqj (1.12)

In contrast to the kinetic energy expression in mass-weighted Cartesian coordinates (Eq. 1.8), the potential
energy depends on diagonal (fiiqi

2) and off-diagonal (fijqiqj) terms as pointed out earlier. Taking the required



Trim Size: 189mm x 246mm Diem c01.tex V3 - 05/21/2015 8:54 P.M. Page 9

Molecular Vibrational Motion 9

derivatives and substituting the expressions for d
dt
𝜕T
𝜕q̇i

and 𝜕V
𝜕qi

into Lagrange’s equation of motion (Eq. 1.2)
yields

q̈i +
∑3N

j=1
fij qj = 0 (1.13)

Here, q̈ denotes the second derivative of q with respect to time. Equation 1.13 is a short form for a set of 3N
simultaneous differential equations, with the index i running from 1 to 3N. Note that the double summation in
Eq. 1.12 disappears when the derivative with respect to one of the displacements, 𝜕V/𝜕qi, is taken. In expanded
form, Eq. 1.13 can be presented as:

d2q1
dt2

+ f11q1 + f12q2 + f13q3 + · · · + f1,3Nq3N = 0

d2q2
dt2

+ f21q1 + f22q2 + f23q3 + · · · + f2,3Nq3N = 0

d2q3N
dt2

+ f3N,1q1 + f3N,2q2 + f3N,3q3 + · · · + f3N,3Nq3N = 0 (1.14)

In each equation, only one term in the summation
∑

fijqj has the same index as the term containing the time
derivative. Thus, these equations can be simplified to read

q̈i + fiiqi + C = 0 (1.15)

where C is a constant. There are 3N solutions to these simultaneous, linear differential equations:

qi = Ai sin(
√
𝜆t + 𝜀 ) (1.16)

where the Ai are amplitude factors, 𝜀 are phase angles, and 𝜆 is a quantity related to the frequency and deter-
mined by the force constants (cf. below). Following standard practice in solving linear differential equations,
one takes the solution given by Eq. 1.16, differentiates twice with respect to time,

d2qi
dt2

= −𝜆qi (1.17)

and substitutes Eq. 1.15 back into Eq. 1.14. One obtains, after canceling the terms sin(
√
𝜆t + 𝜀) from each

equation:

−A1𝜆 + f11A1 + f12A2 + f13A3 + · · · + f1,3NA3N = 0

f21A1 − A2𝜆 + f22A2 + f23A3 + · · · + f2,3NA3N = 0

f31A1 + f32A2 − A3𝜆 + f33A3 + · · · + f3,3NA3N = 0

. . . (1.18)

or

(f11 − 𝜆)A1 + f12A2 + f13A3 + · · · + f1,3NA3N = 0

f21A1 + (f22 − 𝜆)A2 + f23A3 + · · · + f2,3NA3N = 0

f31A1 + f32A2 + (f33 − 𝜆)A3 + · · · + f3,3NA3N = 0

. . . (1.19)
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Thus, 3N simultaneous homogeneous linear equations were obtained from 3N simultaneous linear differential
equations. Homogeneous equations have two kinds of solutions. One of them is the so-called trivial solution
in which all coefficient Ai are zero. This condition indeed fulfills Eq. 1.19 but is of no interest here because it
implies that all particles are at rest; that is, there is no vibrational motion at all. The other solution for Eq. 1.19
is obtained when the determinant of the coefficients of A is zero in order for the left-hand side of Eq. 1.19 to
be zero:

∣ (fij − 𝛿ij𝜆) ∣= 0 (1.20)

This is called the nontrivial solution, which requires

f11 − 𝜆 + f12 + f13 + · · · + f1,3N = 0

f21 + f22 − 𝜆 + f23 + · · · + f2,3N = 0

f31 + f32 + f33 − 𝜆 + · · · + f3,3N = 0

. . . (1.21)

Equation 1.21 is known as the vibrational secular equation. The solution of this equation gives the eigenvalues
𝜆, which are related to the vibrational frequencies for each of the normal modes. The amplitude factors Ai in
Eq. 1.19 are not determined, but the relative magnitude of the displacement vectors can provide a view of the
relative amplitudes of all atoms during a normal mode of vibration.
A normal mode of vibration is defined to by one of the 3N solutions of Eq. 1.21, where all atoms oscil-

late with the same frequency and in-phase but with different amplitudes. This definition is one of the most
important ones in vibrational spectroscopy. It implies that all atoms are in motion during a normal mode of
vibration, which is required to maintain the center of mass of the molecule. If 3N mass-weighted Cartesian
displacement coordinates are defined, six rotational and translational modes will appear in these calculations
as eigenvalues with zero frequencies, as discussed earlier. The displacement vectors will confirm that these
motions are, indeed, translations and rotations.
Before continuing the discussion of the normal modes in polyatomic molecules, the simpler case of the

vibration of diatomic molecules will be presented. For a diatomic molecule (which, of course, must be linear),
Eq. 1.21 described a set of six equations, five of which have zero frequencies (namely the three translational
and the two rotational coordinates). That leaves one equation,

f11 − 𝜆 = 0 (1.22)

or 𝜆= f11. Next, it is instructive to visualize that Eq. 1.22 actually represents a vibrational frequency. For a
diatomic molecule, the vibrational frequency can also be derived, starting with Newton’s second law,

F = m
d2 x
dt2

(1.3)

and assuming a harmonic restoring force obeying Hook’s law:

F = −kx (1.23)

Thus, one can write the equation of motion for a diatomic molecule as

d2x
dt2

+ k
m

x = 0 (1.24)
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Here, k is the spring’s (bond’s) force constant, as discussed earlier (Eq. 1.4) that corresponds to the terms fij
in Eq. 1.19, and m is the reduced mass defined as

m =
m1m2

m1 + m2
(1.25)

with m1 and m2 the individual masses of the two atoms.
One valid solution of the differential equation of motion (Eq. 1.24) is

x(t) = A sin(𝜔t + 𝜀) (1.26)

where

𝜔 = 2𝜋 =
√

k
m

(1.27)

where 𝜔 is the angular frequency and 𝜀 is a phase angle. Note that for a classical vibrational problem, the
amplitude A is arbitrary, but that the frequency is defined by Eq. 1.25. This implies that for larger amplitudes,
the velocity of the motion of the particles increases, but the frequency remains constant.
Rewriting Eq. 1.27 as

k = m𝜔2 (1.28)

and comparing Eqs. 1.22 and 1.28, one finds that√
𝜆 = 𝜔 (1.29)

when using mass-weighted Cartesian displacement coordinates. This relationship is true for diatomic and
polyatomic molecules. At this point, a quick analysis of magnitudes and units is appropriate. The force
constant k acting in a diatomic molecule such as gaseous H—Cl typically is about 500Nm−1 = 500 kg s−2,
corresponding to a relatively stiff spring in classical mechanics. The reduced mass of an H—Cl molecule is,
according to Eq. 1.25, approximately

m = 1.56 × 10−27 kg (1.30)

and thus, the vibrational frequency for the H—Cl molecule is found to be

ν = 1
2𝜋

√
k
m

= 1
2𝜋

√
5.0 × 102

1.56 × 10−27
= 1

2𝜋
5.67 × 1014

= 9.0 × 1013((kg s−2)∕kg)1∕2 = Hz (1.31)

Using the frequency/wavenumber conversion c𝜈̃ = 𝜈 gives a value close to the observed stretching frequency
for gaseous H—Cl of 3× 103 cm−1. When working in mass-weighted Cartesian displacement coordinates, the
reduced mass in Eq. 1.27 disappears, and the frequency of the vibration is given by

𝜔 =
√
𝜆 =

√
f11 or 𝜈 =

√
𝜆

2𝜋
(1.32)

Thus, Eq. 1.22, indeed, denotes the vibrational frequency of diatomic or polyatomic molecules.
Returning to the secular equation 1.21 for a triatomic molecule, one finds that one needs 81 force con-

stants to describe the problem. Of these 81 force constants, only 9 are nonzero, because there are 3N− 6,
or 3 degrees of vibrational freedom. However, it is clear that even this reduced problem cannot be solved,



Trim Size: 189mm x 246mm Diem c01.tex V3 - 05/21/2015 8:54 P.M. Page 12

12 Modern Vibrational Spectroscopy and Micro-Spectroscopy

because there are three equations with nine unknowns. Symmetry arguments reduce this number of unknown
force constants even further, but the number of unknowns still exceeds the number of equations. In the past,
this problem was alleviated by transferring the diagonal force constants, that is, those with common indexes
(fii) from similar molecules or from isotopic species, assuming that the diagonal force constants should not
depend on isotopic substitution. Off-diagonal force constants were fitted to reproduce observed frequencies.
More recently, all force constants – diagonal and off-diagonal – are determined computationally via ab initio
methods (cf. Chapter 6). However, the meaning of the off-diagonal force constants needs to be pointed out in
more detail. Referring to Figure 1.1, the diagonal force constants f11, f22, and f33 refer to the force required
to move atom 1 in the x, y, and z directions, respectively. The off-diagonal constant f12 describes the force
required to move atom 1 in the y direction after displacement in the x-direction.
To obtain vibrational frequencies and a depiction of the normal modes, the system of simultaneous homo-

geneous linear equations (Eq. 1.21) needs to be solved. As described earlier, values for force constants are
substituted into the force constant matrix (also referred to potential energy matrix) that is subsequently diag-
onalized numerically according to:

LT F L = Λ (1.33)

Here, the matrix F corresponds to the Cartesian force constant defined in Eq. 1.21, and the eigenvector matrix
L that diagonalizes the potential energy matrix is also the matrix that transforms from the mass-weighted
Cartesian coordinate system to a new coordinate systemQ, known as the “normal coordinates.” These normal
coordinates are defined such that each of the 3N− 6 normal modes of vibration is associated with one and
only one normal coordinate Q. For the discussion of the relationship between mass-weighted displacement
coordinates q and the normal coordinates Q, it is advantageous to cast the previously obtained equations into
matrix notation. In the following discussion, bold quantities imply matrices or vectors. The two relationships
derived earlier, expressing the potential and kinetic energies in terms of mass-weighted Cartesian coordinates,
are written in matrix notations as

2T =
∑3N

i
(q̇i)2 or 2T = q̇Tq̇ (1.8)

and
2V =

∑3N

i=1

∑3N

j=1
fij qiqj or 2V = qT Fq (1.12)

Here, the superscript T denotes the transpose of a matrix; thus, the column vector q̇ becomes a row vector
upon transposition. The dot implies, as before, the time derivative of the coordinates. F denotes the matrix of
mass-weighted Cartesian force constants, as defined in Eq. 1.33.
Normal coordinates are defined such that

2T = Q̇T Q̇

and 2V = QTΛQ (1.34)

In normal coordinate space, both the kinetic and potential energy matrices are diagonal. As the kinetic
energy is diagonal in both q and Q space, the problem simplifies to finding the transformation (eigenvector)
matrix L that diagonalizes the potential energy matrix F. This matrix also transforms from the mass-weighted
Cartesian displacement space into normal coordinate space according to

Q = L q (1.35)

Thus, the diagonalization of the potential energy matrix provides the vibrational frequencies of the system,
according to

𝜔k =
√
𝜆k (1.36)
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Q1(B1) Q2(A1) Q3(A1)

Figure 1.2 Display of the atomic displacement vectors and the symmetries (see Chapter 2) for the three normal
modes of the water molecule. The magnitude of the displacement vectors is not known, but the relative displace-
ments are drawn approximately to scale. The terms A1, and B1 refer to the symmetry species of the coordinates
(see Chapter 2).

as well as the transformation to visualize each normal mode of vibration in terms of a normal coordinate and
therewith, in terms of the displacement vectors. The displacement vectors for the normal modes of vibration
of the water molecule are shown in Figure 1.2.

1.4 Quantum mechanical description of molecular vibrations

1.4.1 Transition from classical to quantum mechanical description

Next, a connection between the classical normal mode picture and the quantum mechanical description will
be presented. The approach here starts with a simple case of a diatomic molecule for which the classical
equation of motion was derived earlier (Eqs. 1.23–1.27) and for which the solution of the Schrödinger
equation is relatively straightforward. Once the (one-dimensional) situation of the diatomic molecule has
been introduced, the transition to polyatomic molecules is fairly simple because the concept of the normal
coordinates can be used. As pointed out earlier, the classical description of the vibrations of a diatomic or
polyatomic molecule predicts the vibrational coordinates (the normal modes) and their frequency, but not
the transitions that are observed in IR absorption or Raman spectroscopy. In order to explain the observed
spectra, quantum mechanics has to be invoked.
Quantum mechanics presents an approach to the behavior of microscopic particles very different from that

in classical mechanics. While, in classical mechanics, the position and momentum of a moving particle can
be established simultaneously, Heisenberg’s uncertainty principle prohibits the simultaneous determination
of those two quantities. This is manifested by Eq. 1.37 for the one-dimensional case:

ΔpxΔx ≥ ℏ

2
(1.37)

which implies that the uncertainty in the momentum and position always exceeds ℏ/2. Mathematically,
Eq. 1.37 follows from the fact that the operators responsible for defining position and momentum, x̂ and p̂x,
do not commutate; that is, [x̂, p̂x] ≠ 0. The incorporation of this uncertainty into the picture of the motion of
microscopic particles leads to discrepancies between classical and quantum mechanics: classical physics has
a deterministic outcome, which implies that if the position and velocity (trajectory) of a moving body are
established, and it is possible to predict with certainty where it is going to be found in the future. Quantum
mechanical systems obey a probabilistic behavior. As the position and momentum can never be determined
at the starting point, the position (or momentum) in the future cannot be precisely predicted, only the
probability of either of them. This is manifested in the postulate that all properties, present or future, of a
particle are contained in a quantity known as the wavefunction Ψ of a system. This function, in general,
depends on spatial coordinates and time; thus, for a one-dimensional motion (to be discussed first), the
wavefunction is written as Ψ(x, t). The probability of finding a quantum mechanical system is given by the
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integral of the square of this wavefunction: ∫ Ψ(x, t)2 dx. Any property ⟨o⟩ one wishes to observe for the

system is expressed as the “expectation value” of the operator Ô associated with the property, where the
expectation value is defined as

⟨o⟩ = ∫ Ψ(x, t) Ô Ψ(x, t)dx

∫ Ψ(x, t) Ψ(x, t)dx
(1.38)

As discussed earlier, a diatomic molecule possesses only one degree of vibrational freedom, the periodic
elongation and compression of the bond connecting the two atoms that will be designated the x coordinate
in the following discussion. Thus, the total energy, in analogy to Eq. 1.2, of an oscillating diatomic molecule
can be written as the sum of kinetic energy T and potential energy V:

E = T + V (1.39)

The kinetic energy is written in terms of classical physics as

T = 1
2
m𝑣2 or 2T =

p2

2m
(1.40)

where the momentum is given by p=mv. Here, v is the velocity and m is the reduced mass of the oscillating
diatomic molecule, defined earlier (Eq. 1.25). In quantum mechanics, the classical momentum is substituted
by the momentum operator p̂,

p̂ = ℏ

i
d
dx

(1.41)

where ℏ is Planck’s constant, divided by 2𝜋, and i is the imaginary unit, defined by
√
−1 = i. This substitu-

tion of the classical momentum by a differential operator is often considered the central postulate of quantum
mechanics because it cannot be derived, although it can be visualized from the classical wave equation.
Equation 1.41 is a mathematical instruction that requires taking the spatial derivative of the wavefunction p̂
is operating on, and multiplying the results by ℏ/i=−iℏ to obtain the equivalent of the classical momentum.
Examples of the use of such an operator are given in the following sections.

1.4.2 Diatomic molecules: harmonic oscillator

The potential energy for a diatomic vibrating system is discussed next. This potential function is shown
schematically in Figure 1.3, and can be obtained by detailed quantum mechanical calculations, in which
the electronic energy is computed as a function of the internuclear distance. This potential energy can be
approximated by the Morse potential, given by

V(x) = De {1 − e−a(x−x0)}2 (1.42)

with

a =
√

k
2De

[(Nm−1∕J)1∕2 = m−1]

The function has aminimum at the bond equilibrium distance x0.When compressing the bond beyond x0, the
potential energy rises sharply because of the repulsion of the two atoms. When the bond is elongated toward
large interatomic distances, the potential function eventually levels out, and the bond breaks. One normally
defines the potential energy at very large interatomic distances as the zero energy (no bonding interaction takes
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Figure 1.3 Graph of the potential energy function for a diatomic molecule. Parameters are specified in Eq. 1.58

place at large distances); thus, the potential energy of the bond is at a negative minimum at the equilibrium
distance. The energy difference between zero potential energy and the minimum potential energy at point x0
is referred as the bond dissociation energy, De.
Solving the quantum mechanical equations for the vibrations of a diatomic molecule with the potential

function shown in Figure 1.3 would be difficult. Thus, one approximates the shape of the potential function in
the vicinity of the potential energy minimum by a more simplistic function by expanding the potential energy
V(x) in a power series about the equilibrium distance:

V(x) = V(x0) + (x − x0)
(dV
dx

)
x=x0

+ 1
2!

(x − x0)2
(
d2V
dx2

)
x=x0

+ 1
3!

(x − x0)3
(
d3V
dx3

)
x=x0

+ · · · (1.43)

V(x0) is an offset along the Y-axis and does not affect the curvature of the potential energy. The term con-
taining the first derivative of the potential energy with respect to x is zero because the equilibrium geometry
corresponds to an energy minimum. Terms higher than the quadratic expression in Eq. 1.43 are ignored at
this point. Thus, one approximates the potential energy V(x) by

V = (x − x0)2
(
d2V
dx2

)
x=x0

≈ 1
2
kx2 (1.44)

which also could have been obtained by integrating

F = −kx (1.23)

for a system obeying Hook’s law.
Thus, to a first approximation, one assumes that the chemical bond in a diatomic molecule obeys Hook’s

law, just as the motion of two spring-coupled masses. Combining Eqs. 1.39, 1.41, and 1.43, the vibrational
Schrödinger equation for a two-particle system with one degree of freedom (x) is then:{

− ℏ
2

2m
d2

dx2
+ 1

2
kx2

}
𝜓(x) = E𝜓(x) (1.45)

This differential equation is known as “Hermite’s” differential equation, in which the wavefunctions 𝜓(x) are
the time-independent (stationary-state) vibrational wavefunctions, and E denotes the vibrational eigenvalues.
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Equation 1.45 is a typical operator – eigenvalue equation notation commonly used in linear algebra. This
formalism is an instruction to operate with an operator, here, the vibrational Hamiltonian Ĥvib

Ĥvib =
{
− ℏ

2

2m
d2

dx2
+ 1

2
kx2

}
(1.46)

on a set of (yet unknown) functions to obtain the eigenvalues. Substituting the eigenvalues into a trial solution
and considering the boundary conditions yields the eigenfunctions 𝜓(x). In Appendix A, a much simpler sys-
tem, the so-called particle-in-a-box, is discussed in detail to show the process of obtaining the eigenvalues and
eigenfunctions in a model system. Detailed procedures for solving the vibrational Schrödinger equation 1.46
can be found in most quantum chemistry textbooks, and are summarized in Appendix B. Here, only the results
of the mathematical solution are presented.
The vibrational wavefunctions resulting from the discussion in Appendix B are of the form

𝜓n(x) = NHn (
√
𝛼 x) e−

𝛼x2

2 (1.47)

where N is a normalization constant, N =
(
𝛼

𝜋

)1∕4
and Hn(x) are the Hermite polynomials of order n in the

variable x, n is an integer, the vibrational quantum number, which may take values from zero to infinite, and

𝛼 = 2𝜋𝜈m
ℏ

(1.48)

All other symbols have their usual meaning. Setting z = (
√
𝛼 x), the Hermite polynomials in the variable z

are

H0(z) = 1

H1(z) = 2z

H2(z) = 4z2 − 2

H3(z) = 8z3 − 12z (1.49)

The order n of the Hermite polynomial determines the highest power in which the variable z occurs in each
polynomial. Thus, more highly excited states (i.e., those with higher quantum number n) correspond to Her-
mite polynomials with higher power of z. This aspect is important because the power of z determines the
shape of the wavefunctions.
The higher members of the Hermite polynomials can be derived from the recursion formula:

z Hn(z) = nHn−1(z) +
1
2
Hn+1(z) (1.50)

Thus, the Hermite polynomial of degree n is related to the previous and subsequent polynomials. The first
few vibrational wavefunctions thus are:

𝜓0(x) =
(
𝛼

𝜋

)1∕4
e−

𝛼x2

2

𝜓1(x) =
(
𝛼

𝜋

)1∕4
2 (

√
𝛼x) e−

𝛼x2

2

𝜓2(x) =
(
𝛼

𝜋

)1∕4
(4𝛼x2 − 2) e−

𝛼x2

2

. . . (1.51)
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Figure 1.4 Plot of the first three vibrational wavefunctions, which are products of a polynomial function that
becomes very large with increasing x and a Gaussian function that decreases exponentially with x, resulting in
the depicted curves for n= 0 (black), n= 1 (dark gray), and n=2 (light gray)

These functions, which are shown in Figure 1.4, form an orthonormal vector space. Orthonormality implies
that

∫
∞

−∞
𝜓i(x)𝜓j(x) dx = 𝛿ij =

{
1 if i = j

0 if i ≠ j
(1.52)

Here, 𝛿ij represents the Kronecker delta, which equals to one if i= j and zero otherwise.
For example,

∫
∞

−∞
𝜓0(x)𝜓0(x) dx =

√
𝛼

𝜋 ∫
∞

−∞
e−𝛼x

2
dx =

√
𝛼

𝜋

√
𝜋

𝛼
= 1 and

∫
∞

−∞
𝜓0(x)𝜓1(x) dx =

√
𝛼

𝜋 ∫
∞

−∞
2 (

√
𝛼x)e−2𝛼x2dx = 0 (1.53)

In Eq. 1.53, the integral relationship ∫
∞

−∞
e−𝛼x

2
dx =

√
𝜋

𝛼
was used.

The orthogonality of the vibrational wavefunctions can also be demonstrated by graphical integration, as
demonstrated in Section 1.5.
The eigenvalues of the vibrational Schrödinger equation (Eq. 1.46) are given by

En =
(
n + 1

2

)
h𝜈 (1.54)

In Eq. 1.54, the frequency 𝜈 is written in units of s−1 such that the term h𝜈 has units of energy (J). Vibrational
spectroscopists, however, prefer to use wavenumber as a unit of energy; thus, in the remainder of the book
the vibrational energy is expressed as

En =
(
n + 1

2

)
hc𝜈̃ (1.55)
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and the expressions h𝜈, hc𝜈̃, andℏ𝜔 are used to denote the energy of photons, where𝜔 is the angular frequency,
defined by

𝜔 = 2𝜋𝜈 (1.56)

The harmonic oscillator wavefunctions and energy eigenvalues are shown in Figure 1.5, along with the
quadratic potential energy function used to define the vibrational Schrödinger equation, and the energy levels
corresponding to Eq. 1.54. There are several interesting facets about the wavefunctions and energy level plot.
First of all, Eq. 1.54 and Figure 1.5 demonstrate that even in the vibrational ground state with n= 0, the system
is not at zero energy, but rather, at energy

E0 =
1
2
h𝜈 (1.57)

which is referred to as the zero-point energy. This zero-point energy accounts for the fact that even in its
vibrational ground state, the atoms in a molecule undergo continuous vibrational motion along the normal
modes derived earlier. Photons may cause a transition into more highly excited states of these vibrational
coordinates. This zero-point vibrational energy also accounts for the third law of thermodynamics, which
states that absolute zero temperature is unattainable. This is because atomic “stand-still” is impossible
because of the residual vibrational energy. This is also in line with Heisenberg’s uncertainty principle
(Eq. 1.37), because a vibrational amplitude of zero would define both position and momentum simultane-
ously. Figure 1.5 also indicates some degree of “tunneling,” or a finite probability of the oscillating system to
be found outside the potential energy curve. Furthermore, the wavefunctions are symmetric (n= 0, 2, 4, . . . )
or antisymmetric (n= 1, 3, 5, . . . ) with respect to the X0 line. This aspect will become particularly important
in the discussion of the allowed and forbidden transitions in the harmonic oscillator approximation.
Finally, the quadratic potential depicted in Figure 1.5 would not explain bond breakage at sufficiently
high energy, because the potential function – the restoring force between the oscillating energy increases
steadily in the “harmonic approximation.” Therefore, the concept of an anharmonic potential needs to be
introduced.

Xo

n = 0

n = 1

n = 2

n = 3

Figure 1.5 Quadratic potential energy function V= 1/2kx2 for a diatomic molecule and the resulting quantum
mechanical vibrational wavefunctions
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1.4.3 Diatomic molecules: anharmonicity

The potential energy function used so far, V = 1
2
k x2 (Eq. 1.44), is a gross approximation of the real potential

energy function shown in Figure 1.3, and therefore, needs to be modified. The next level of approximation
involves the inclusion of higher terms in the original expression (Eq. 1.43) for the potential energy:

V(x) = 1
2!

(x − x0)2
(
d2V
dx2

)
x=x0

+ 1
3!

(x − x0)3
(
d3V
dx3

)
x=x0

(1.58)

Using the same simplification of the series expansion of the potential energy and setting the cubic force
constant

k′ =
(
d3V
dx3

)
x=x0

(1.59)

one can write the anharmonic vibrational Schrödinger equation as{
− ℏ2

2m
d2

dx2
+ 1

2
kx2 + 1

6
k′x3

}
𝜓(x) = E𝜓(x) (1.60)

Equation 1.60 is solved by perturbation methods and yields the perturbed energy eigenvalues for a diatomic
molecule

En =
(
n + 1

2

)
h𝜈 −

(
n + 1

2

)2
h𝜈𝜒 =

(
n + 1

2

)
h𝜈 −

(
n + 1

2

)2
h2𝜈2

4De
(1.61)

with
𝜒 = h𝜈

4De
(1.62)

As 𝜒 always is a positive number, the energy levels of the anharmonic case are always lowered as compared
to the harmonic oscillator; this lowering increases with the square of the quantum number n. This is depicted
in Figure 1.6, which shows a comparison between harmonic and anharmonic oscillator energy levels.
In addition to lowering the energy values, the wavefunctions will be shifted toward longer internuclear

distances; consequently, the symmetry of the wavefunctions changes and they are no longer symmetric or
antisymmetric with respect to the x0 position. This fact changes the selection rules that determine which
transitions are allowed for diatomic molecules.
At this point, some calculations and examples are presented in order to transmit a feeling for magnitudes

involved. For a common chemical moiety, the bond energy is typically around 1000 kJmol−1. Expressing
this quantity in molecular, rather than molar units (dividing by Avogadro’s number), one finds that the bond
dissociation energy De used in Eq. 1.42 is

De = 1.5 × 10−18 J∕molecule = 75, 000 cm−1 (1.63)

In Eq. 1.63, the energy conversion E = hc𝜈̃ or 1 J = 6.6 × 10−34 × 3 × 1010 ≈ 2 × 10−23 cm−1 was
used with the velocity of light c expressed in cm s−1. Vibrational force constants, as defined in Eq. 1.31, are
found to be around 500Nm−1 for a typical chemical bond. Equation 1.42 was used with

a = 1 × 1010 m−1 and x0 = 100 pm = 10−10 m

to calculate the potential energy curve shown in Figure 1.3. As pointed out earlier, a typical vibrational
energy for a diatomic molecules with a force constant of 500Nm−1 is about 3000 cm−1; thus, one finds that
the spacing between (harmonic) vibrational energy levels is only about 1/25th of the depth of the potential
well for a strong bond. Thus, many vibrational quanta of light are necessary to raise the energy of a bond
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Figure 1.6 Comparison of energy levels for harmonic and anharmonic oscillators

stretching vibration such that bond dissociation occurs. However, bond breakage virtually never happens
through consecutive absorption of IR photons because of several factors, among them are the short lifetime
of vibrational states and the fast (nonradiative) dissipation of the vibrational energy into other vibrational
modes. In addition, because the spacing between vibrational levels gets smaller for real molecular systems
owing to the anharmonicity of the potential function, photons of different energy would be needed to raise
the energy to the higher levels through consecutive absorption processes. On the other hand, the process of
raising the vibrational energy from the ground state directly to an excited state near the dissociation limit is
low because of the small transition moment. Thus, one concludes that bond breakage occurs mostly through
mechanisms different from direct vibrational excitation.
In summary, diatomic molecules were described in both the harmonic and anharmonic approximations. The

vibrational wavefunctions defined in Eq. 1.51, and depicted in Figure 1.5, represent the time-independent or
stationary-state vibrational wavefunctions for a diatomic molecule. The stationary-state wavefunctions of
the particle-in-a-box, discussed in Appendix A, have similar appearance and symmetries, albeit completely
different equations. The symmetry of wavefunctions plays an important role determining whether transitions
from one to another state are allowed or forbidden. It was pointed out earlier that the unperturbed harmonic
oscillator wavefunctions are symmetric with respect to X0 (cf. Figure 1.5) for even quantum numbers n and
antisymmetric for odd numbers of n. Therefore, one often refers to “even” and “odd” parity when describing
these wavefunctions, and it is easy to see that the particle-in-a-box wavefunctions follow a similar even/odd
pattern as do the harmonic oscillator wavefunctions. Furthermore, as the symmetry of the wavefunctions is
distorted in the anharmonic approximation, the selection rules will change drastically.

1.4.4 Polyatomic molecules

Section 1.3 demonstrated how the treatment of diatomic molecules could be extended toward poly-
atomic molecules, and introduced the concepts of normal modes of vibration and normal coordinates for
the classical description of the vibrations of polyatomic molecules. In complete analogy, the quantum
mechanical treatment can be extended from the case of diatomic molecules toward polyatomic molecules.



Trim Size: 189mm x 246mm Diem c01.tex V3 - 05/21/2015 8:54 P.M. Page 21

Molecular Vibrational Motion 21

For a diatomic molecule, the vibrational Schrödinger equation was found to be{
− ℏ2

2m
d2

dx2
+ 1

2
kx2

}
𝜓(x) = E𝜓(x) (1.45)

In analogy, the vibrational Schrödinger equation for a polyatomic molecule, written in terms of the normal
coordinates (cf. Eq. 1.34), is

−ℏ
2

2

d2𝜓vib

dQ2
+ 1

2
ΛQ2𝜓vib = Evib𝜓vib (1.64)

where 𝜓vib is the total vibrational wavefunction of the molecule. Next, one writes 𝜓vib as a product of the
wavefunctions along each of the 3N− 6 normal coordinates:

𝜓vib = 𝜓1 (Q1) ⋅ 𝜓2 (Q2) ⋅ 𝜓3 (Q3) ⋅ · · · (1.65)

This definition of the total vibrational wavefunction as products of wavefunctions associated with one and
only one normal coordinate succeeds because the expressions for kinetic and potential energies are both
diagonal in normal coordinate space (cf. Eqs. 1.33 and 1.34). Substitution of Eq. 1.65 into Eq. 1.64 yields the
Schrödinger equation in terms of the 3N− 6 normal coordinates:

− ℏ2

2

∑3N−6
k=1

d2𝜓k

dQ2
k

+ 1
2

∑3N−6
k=1

ΛkQ
2
k𝜓k = Evib𝜓k (1.66)

As the normal coordinatesQk are orthogonal functions, and because – in normal coordinate space – the kinetic
and potential energies are in diagonal form (see Eqs. 1.33 and 1.34), Eq. 1.66 can be separated into 3N− 6
individual differential equations of the form

−ℏ
2

2

d2𝜓k

dQ2
k

+ 1
2
ΛkQ

2
k𝜓k = Ek𝜓k (1.67)

with the energy eigenvalues (in wavenumber units) given by

Ek(n) =
(
nk +

1
2

)
hc𝜈̃k (1.68)

and
Evib =

∑3N−6

k=1
Ek (1.69)

In analogy with the diatomic molecules, one writes the solutions of Eq. 1.67 as the eigenfunctions

𝜓n(Qk) = NHn(
√
𝛼 Qk) e

−
𝛼Q2

k
2 (1.70)

The results of this quantum mechanical discussion are shown in Figure 1.7 for a triatomic molecule, such
as water. Here, the vibrational frequencies associated with each normal coordinate are approximately given
by

𝜈̃1(Q1) = 3750 cm−1 𝜈̃2(Q2) = 3650 cm−1 𝜈̃3(Q3) = 1620 cm−1

The energy level diagram, in the harmonic approximation, consists of three energy ladders (see Figure 1.7),
one for each normal coordinate. Note that each ladder starts at

Ek(0) =
(1
2

)
hc𝜈̃k (1.71)

that is, at approximately 1875, 1825, and 810 cm−1 for Q1, Q2, and Q3, respectively.
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Figure 1.7 Energy ladder diagram for a triatomic molecule within the harmonic oscillator approximation

Thus, the total zero-point vibrational energy of water is given by ET
0 = E0(Q1) + E0(Q2) + E0(Q3) =

1875 + 1825 + 810 or approximately 4510 cm−1. In any of the energy ladders, a transition to the more
highly excited vibrational state may occur if a photon of proper wavenumber (3750, 1650, or 1620 cm−1)
interacts with the sample and certain requirements are fulfilled. Whether or not a transition occurs does not
solely depend on the presence of photons with the correct energy, but also on some symmetry considerations.
In the following section, the basic formalism is introduced that describe the interaction of light with
molecular systems in their stationary energy states. This interaction is based on time-dependent processes
and requires the use of time-dependent wavefunctions and the time-dependent Hamiltonian.

1.5 Time-dependent description and the transition moment

1.5.1 Time-dependent perturbation of stationary states by electromagnetic radiation

Time-independent quantum mechanics introduced in the previous sections describes the energy expressions
and wavefunctions of stationary states, that is, states that do not change with time. Stationary-state wavefunc-
tions and energies were obtained by solving the appropriate Schrödinger equations for the given system. Next,
a description is needed that describes how a system can transition from one stationary state to another when a
perturbation, typically electromagnetic radiation, is applied. For this, one needs to invoke the time-dependent
Schrödinger equation, which for the one-dimensional case is

iℏ
𝜕𝚿(x, t)

t
= H𝚿(x, t) (1.72)

Equation 1.72 is solved by perturbation methods in which a perturbation operator H′ is introduced

H = H + H′ (1.73)

One assumes that there exist exact eigenfunctions for the operator H, and that the perturbation due to H′

is small. If the perturbation applied to the system is due to electromagnetic radiation, one may write the
perturbation operator as

H′(t) = −E0
x

∑
i
eixi

{
cos

(
2𝜋𝜈t + 2𝜋z

𝜆

)}
(1.74)
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In Eq. 1.74, electromagnetic radiation propagating in the z-direction is assumed, with the electric vector along
the x-direction. The electric field

Ex = E0
x

{
cos

(
2𝜋𝜈t + 2𝜋z

𝜆

)}
(1.75)

will exert a force
F = eE (1.76)

on particles with charge e. If the molecular system consists of i charged particles found at positions xi, one
defines the “electric dipole operator” 𝛍 according to

𝛍 =
∑

i
eixi (1.77)

and rewrites Eq. 1.75 as

H′(t) = −E0
x 𝛍

{
cos

(
2𝜋𝜈t + 2𝜋z

𝜆

)}
(1.78)

The time-dependent Schrödinger equation

iℏ
𝜕𝚿(x, t)
𝜕t

=
[
H − E0

x𝛍
{
cos

(
2𝜋𝜈t + 2𝜋z

𝜆

)}]
𝚿(x, t) (1.79)

subsequently is solved with the unperturbed eigenfunctions 𝜓 of the H operator

H𝜓(x) = E𝜓(x) (1.80)

which may be, for example, the time-independent (unperturbed) wavefunctions of the harmonic oscillator.
The time dependence of each of the wavefunctions 𝜓(x) is introduced as follows:

Ψ(x, t) = 𝜑(t)𝜓(x) (1.81)

where
𝜑(t) = ei𝜔t (1.82)

Equation 1.81 is the general definition of a time-dependent wavefunction that consists of a stationary,
time-independent part, 𝜓(x) and the time evolution of this wavefunction, given by 𝜑(t) = ei𝜔t.
The time-dependent wavefunctions𝚿(x, t) of the system undergoing a transition subsequently are expressed

in terms of time-dependent coefficients ck(t) and the time-dependent wavefunctions 𝚿(x, t) according to

𝚿(x, t) =
∑

k
ck(t)Ψ(x, t) =

∑
k
ck(t)𝜑(t)𝜓(x) (1.83)

The coefficients ck(t) describe the time-dependent response of the quantum mechanical system to the pertur-
bation; in particular, the change in population of the excited state in response to the perturbation. An example
may serve to illustrate the procedure invoked so far. Consider a two-state system in the absence of a perturba-
tion, where the splitting between the ground-state energy level 𝜓g(x) and the excited-state energy level 𝜓e(x)
is much larger than thermal energy (see Eqs. 1.101–1.103).
Thus, the system is in the ground state, and can be described by cg(t) = 1 and ce(t) = 0 or

𝚿(x, t) = 1 𝜑g(t) 𝜓g(x) + 0 𝜑e(t) 𝜓e(x) (1.84)

After a perturbation is applied, the coefficients cg(t) and ce(t) change to account for the system undergoing
a transition into the excited state that can be described by

𝚿(x, t) = 0 𝜑g(t) 𝜓g(x) + 1 𝜑e(t) 𝜓e(x) (1.85)
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Thus, the overall time-dependent Schrödinger equation that accounts for the response of the system is

iℏ
𝜕

[∑
k
ck (t) 𝜑(t)𝜓(x)

]
𝜕t

=
[
H − E0

x𝛍
{
cos

(
2𝜋𝜈t + 2𝜋z

𝜆

)}] [∑
k
ck (t)𝜑(t) 𝜓(x)

]
(1.86)

The solution of this equation can be found inmany texts on quantummechanics (cf. Ref. [3, vol. II, Chapter 2]),
and it proceeds by taking the necessary derivatives and integrating the resulting terms dck

dt
between time 0 and

the duration of the perturbation. This procedure yields an expression for the time evolution of the expansion
coefficients cm(t):

cm(t) = 𝛿nm + iE0

2ℏ
⟨𝜓n| 𝜇|𝜓m⟩ [

ei(𝜔nm+𝜔)t − 1
(𝜔nm + 𝜔)

+ ei(𝜔nm−𝜔)t − 1
(𝜔nm − 𝜔)

]
(1.87)

Equation 1.87 is one of the most important equations for understanding spectroscopic processes because it
outlines three major features of the response of a molecule when exposed to electromagnetic radiation. First,
it implies that the term ⟨𝜓n|𝜇|𝜓m⟩, known as the transition moment, must be nonzero. The transition moment
describes the action of the dipole operator 𝜇 defined in Eq. 1.77 on the stationary-state wavefunctions 𝜓n
and 𝜓n between which the transition is induced. The transition moment, in general, determines the selection
rules, depending on the exact nature of the wavefunctions and their symmetries. This aspect is discussed in
the following section. Second, the term containing the amplitude of the electric field, E0, indicates that the
“light must be on” for a transition to occur. Third, the part in the square brackets in Eq. 1.87 describes how
the system responds to electromagnetic radiation of different frequency or wavelength. Thus, it is this term
that prescribes that the frequency of the light must match the energy difference between the molecular energy
levels. This can be seen from the following discussion. The second term in the square bracket becomes very
large at the resonance condition,

𝜔nm = 𝜔 (1.88)

which implies that when the frequency 𝜔 of the incident radiation is equal to, or very close to, the energy
difference 𝜔nm between states n and m, a transition between these states may occur and a photon with the
corresponding energy ℏ𝜔 may be absorbed, if the transition moment is nonzero.
Similarly, the first term in the square bracket in Eq. 1.87 becomes very large if

𝜔nm = − 𝜔 (1.89)

This case corresponds to the situation of stimulated emission, where a photon of the proper energy impinges
onto a molecular or atomic system in the excited state and causes this state to emit a photon, thereby returning
to the lower energy state. This time-dependent part of Eq. 1.87 also contains explicitly the expressions needed
to explain certain off-resonance phenomena, such as molecular polarizability, to be discussed in Section 1.6
and Chapter 4. The magnitude of resonance vs. off-resonance effects can be estimated from the expression in
square brackets as well.
Equation 1.87 holds for one-photon absorption and emission situations that include standard IR

(vibrational), microwave (rotational), and visible/ultraviolet (electronic) absorption spectroscopies. The
time-dependent part in the square bracket of Eq. 1.87 can be summarized as

ΔEmolecule = (h𝜈)photon (1.90)

This equation was first mentioned in the introduction, and it corresponds exactly to the condition as
described in Eqs. 1.88 and 1.89:

(𝜔nm = ± 𝜔) (1.91)
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1.5.2 The vibrational transition moment for absorption: harmonic diatomic molecules

The previous section demonstrated that three conditions are necessary for a transition to occur in an atomic
or a molecular system under the influence of a perturbation by electromagnetic radiation. First, radiation
must impinge on the molecular system (E0 ≠ 0); second, the radiation must possess the proper energy, or
frequency, corresponding to the energy difference between the molecular or atomic states. This part is fulfilled
by the conditions listed in Eqs. 1.88–1.91. The third condition that must be fulfilled is that the dipole transition
moment must be nonzero: ⟨𝛍⟩nm = ∫ 𝜓n𝜇𝜓md𝜏 = ⟨𝜓n|𝜇|𝜓m⟩ (1.92)

In Eq. 1.92, the integration extends over all space, as indicated by the differential d𝜏. Here, as pointed out
earlier,𝜓n and𝜓m are the stationary-state wavefunctions associated with energy levels n andm. For IR absorp-
tion spectroscopy, these wavefunctions are the vibrational wavefunctions defined in Eq. 1.51; furthermore,
as given in Eqs. 1.102–1.104, the lower energy state and wavefunction normally correspond to the ground
state, 𝜓0. Thus, one may rewrite Eq. 1.92 as

⟨𝛍⟩e0 = ⟨𝜓e|𝜇 |𝜓0⟩ ≠ 0 (1.93)

where𝜓e represents a vibrationally excited state. For a transition to occur, the transitionmoment ⟨𝛍⟩e0 must be
nonzero. Whether the transition moment for a vibrational transition is zero or not depends on the geometry of
the molecule and on the polarity of the atoms, which will be discussed later in detail. However, it is instructive
even at this early point in this text to point out that certain vibrational modes have a zero transitionmoment and
cannot be observed in the IR absorption spectrum. A typical example for this is the symmetric stretchingmode
of CO2, where both oxygen atoms move away from the central C atom in phase and with equal amplitudes
(see Chapter 2). Although the energy of this vibrational mode is well known (from the Raman spectrum),
irradiation of CO2 molecules with IR radiation of this energy does not produce a transition, because the
transition moment is zero for symmetry reasons.
Next, the transition moment ⟨𝛍⟩e0 = ⟨𝜓e|𝜇|𝜓0⟩ ≠ 0 (1.93)

for harmonic oscillator wavefunctions is presented, with particular emphasis of the transition between the
ground and first excited states, for which Eq. 1.93 can be written as

⟨𝛍⟩10 =⟨𝜓1|𝜇|𝜓0⟩ = ∫
∞

−∞
𝜓1(x)𝜇𝜓0(x) dx

=e∫
∞

−∞
𝜓1(x) x𝜓0(x) dx (1.94)

because the dipole operator for a single charged particle is just 𝜇 = ex.
First, the orthogonality of the vibrational wavefunctions is demonstrated graphically in Figure 1.8(a) and (b),

which demonstrates by graphical integration that the integrals ∫
∞

−∞
𝜓1(x)𝜓0(x) dx and ∫

∞

−∞
𝜓2(x)𝜓1(x) dx are,

indeed, zero and that the vibrational wavefunctions are orthogonal. Next, it will be shown by graphical inte-
gration that the transition moment between the ground and first excited states is nonzero. When evaluating
the transition moment defined by Eq. 1.94, the two wavefunctions are multiplied by the transition operator,
shown by the straight line in Figure 1.8(c). This makes the product function 𝜓1(x) 𝜇𝜓0(x) positive for both
positive and negative values of x; thus, integration along the x-axis yields a nonzero value. This result could
also have been obtained by analytical integration. At this point, it is also advantageous to introduce the concept
of parity. The wavefunctions shown in Figure 1.5 were previously referred to as “symmetric” or “antisym-
metric” with respect to the dashed line corresponding to the equilibrium position of the harmonic oscillator.
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x
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(c) (d)

x
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Figure 1.8 Graphical representation of the orthogonality of vibrational wavefunctions and the vibrational tran-
sition moment. (a) Product of 𝜓0⋅𝜓1. The light and dark gray regions under the curves have equal areas; thus,
integration along x results in zero net area, and the functions are orthogonal. (b) Product of 𝜓1⋅𝜓2. The same
argument demonstrates that the functions are orthogonal. (c) Plot of 𝜓0 (gray), 𝜓1 (light gray), and the dipole
operator 𝜇= ex (black). (d) Integration of ⟨𝜓1|𝜇|𝜓0⟩ along x-axis yields a nonzero transition moment

Similar, one can argue that the wavefunctions with quantum numbers n= 0, 2, 4, . . . have “even” parity, that
is, f (x) = f (−x), whereas the wavefunctions with n= 1, 3, 5, . . . have “odd” parity with f (x) = −f (−x). The
multiplication table for parity is

even × even = odd × odd = even

even × odd = odd × even = odd (1.95)

These relationships can be useful to intuitively evaluate whether or not transition moments are zero.
Figure 1.8(c) and (d) demonstrates that the product of two odd functions and one even function produces an
even function, as indicated by the fact that the shaded areas in (d) both are above the x-axis.
Next, the proper mathematical derivation of the selection rule for a one-photon emission or absorption for

the harmonic oscillator will be presented. This derivation establishes that

∫
∞

−∞
𝜓n(x)𝜇 𝜓m(x) dx ≠ 0 if n = m ± 1 (1.96)

This proof proceeds as follows. As established earlier, the vibrational wavefunctions are of the form

𝜓n(x) =
(
𝛼

𝜋

) 1
4
Hn(

√
𝛼 x) e−

𝛼x2

2 (1.47)
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The Gaussian function e−
𝛼x2

2 has even parity; thus, it does not affect the integral described by Eq. 1.96, and
the following discussion can concentrate on the parity of the Hermite polynomials alone. Thus, the transition
moment given in Eq. 1.96 can be simplified to

⟨𝛍⟩nm = ∫ Hn(x) x Hm(x) dx (1.97)

where the factor
√
𝛼 was set to 1. Recalling the recursion formula for the Hermite polynomials,

xHm(x) = mHm−1(x) +
1
2
Hm+1(x) (1.50)

the term xHm(x) in Eq. 1.97 can be substituted by the right-hand side of Eq. 1.50 to yield

⟨𝛍⟩nm = ∫ Hn(x)
[
mHm−1 (x) +

1
2
Hm+1(x)

]
dx (1.98)

= m∫ Hn(x)Hm−1(x)dx + 1
2 ∫ Hn(x) Hm+1(x) dx (1.99)

As the vibrational wavefunctions, as well as the Hermite polynomials, are orthogonal (see Eq. 1.52 and
Figure 1.8(a) and (b)), the two integrals in Eq. 1.99 are nonzero if and only if

∫ Hn(x) Hm−1(x)dx = 𝛿n,m−1 =

{
1 if n = m − 1

0 if i ≠ m − 1

∫ Hn(x)Hm+1(x) dx = 𝛿n,m+1 =

{
1 if n = m + 1

0 if i ≠ m + 1
(1.100)

Equation 1.100 implies that transitions are allowed only if the vibrational quantum number n changes by one
unit, that is,

Δn = ±1 (1.101)

This selection rule implies that only transitions between adjacent energy levels are allowed for the harmonic
oscillator. This is shown schematically in Figure 1.9, where solid arrows indicate allowed transitions and
dashed arrows indicate forbidden transitions.

1.5.3 The vibrational transition moment for absorption: anharmonic diatomic molecules

Inspection of Figure 1.6 suggests that different selection rules may hold for anharmonic diatomic molecules,
because the symmetry of the wavefunctions is distorted and they cannot be classified in terms of odd/even
functions with respect to the equilibrium position (or the energy minimum). Consequently, transitions that are
forbidden in the harmonic oscillator, for example, transitions with Δn=±2,±3, . . . become weakly allowed
for the anharmonic oscillator. Furthermore, as the energy levels are no longer equally spaced by h𝜈 or hc𝜈̃,
the transition from n= 1 to n= 2 will have a lower energy (lower wavenumber) than the transition from
n= 0 to n= 1. Thus, the vibrational spectrum of an anharmonic diatomic molecule is characterized by the
presence of higher harmonics; that is, the transitions with Δn=±2,±3. This is shown in Figure 1.10 for
gaseous bromine, Br2. This homonuclear diatomic molecule is nonpolar; therefore, it does not exhibit an
IR absorption spectrum; consequently, Figure 1.10 depicts the gas phase Raman spectra. The principles of
vibrational energies of higher harmonics hold equally for IR and Raman spectra; however, the selection rules
are different, which will be discussed later.
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n = 0

n = 1

n = 2

n = 3

Figure 1.9 Schematic of allowed (solid arrows) and forbidden (dashed arrows) transitions for the harmonic
oscillator

The spectra shown in Figure 1.10 further demonstrate a number of important features of vibrational spec-
troscopy. The inset shows an expanded region of the fundamental transition that is split into several peaks.
These are, in part, due to the fact that Br2 is a mixture of isotopic species (isotopic effects are discussed in
the following section): 79Br2,

79Br–81Br, and 81Br2 with an abundance ratio of 1:2:1. Thus, the fundamental
transitions exhibit these peaks at 322, 320, and 318 cm−1 (features f, e, and d in the inset of Figure 1.10).
Furthermore, the spectrum will contain “hot bands,” namely the transitions arising from states higher than
the vibrational ground state. The name “hot bands” refers to the fact that these transitions are observed pre-
dominantly at elevated temperatures, to be discussed next.
So far in the discussion, it was assumed that the molecular systems are in their vibrational ground state at

room temperature. This assumption is based on the Boltzmann distribution, which can be stated as

n2
n1

=
g2
g1

e−
ΔE21
kT (1.102)

In Eq. 1.102, n2 and n1 refer to the populations of a higher and a lower energy states, respectively, and g2
and g1 to their degeneracy (see Chapter 2). ΔE21 refers to the energy difference between the states, with
E2 >E1, T is the absolute temperature, and k is Boltzmann’s constant, defined as the gas constant R divided
by Avogadro’s number, N:

k = R
N

(1.103)

k has the value of 1.38× 10−23 J K−1 or 0.695 cm−1 K−1. The effect of the Boltzmann distribution on the
population of ground and first vibrational states is best illustrated by two examples. For HCl, the vibrational
transition between the ground and first excited states occurs at about 2990 cm−1; that is, ΔE21 in Eq. 1.102 is
2990 cm−1. Thus, the ratio of first excited to ground state populations is given at room temperature (298K) by

n2
n1

= e
−2990

0.695⋅298 = e−14.44 ≈ 5.4 × 10−7 (1.104)
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Figure 1.10 Gas phase Raman spectrum of Br2 with overtones and hot bands. See text for details. Baierl and
Kiefer, 1975, [4]. Reproduced with permission from AIP

Thus, for HCl at room temperature, one finds that the population of the ground state exceeds that of the
excited state by a factor of more than 1 million to 1. The situation is markedly different for a heavy diatomic
molecule, such as Br2, for which the vibrational stretching frequency is much lower, namely 320 cm−1:

n2
n1

= e
−320

0.695⋅298 = e−1.545 ≈ 0.21 (1.105)

Here, the ratio of populations between the first excited and ground states is on the order of 20%.
Raising the temperature of a sample, of course, has a similar effect than lowering the vibrational energy
difference between states because the exponent gets smaller, and the ratio of population gets larger.
This explains the “hot band” designation of the low-frequency shoulder of the stretching fundamental
absorption as the temperature is raised. As indicated earlier, the frequency of the “hot band” is lower
than that of the fundamental because the spacing between the n= 1 and n= 2 states is smaller than
that of the n= 0 and n= 1 states. Some of the hot bands observed in the vibrational spectrum of Br2
are shown in Figure 1.10 as well. These features are marked a, b, and c in the inset. As expected,
their transition wavenumbers are lower than those of the n= 0 to n= 1 transition; their intensities
here are exaggerated by the fact that several hot bands of several isotopomers occur at the same
wavenumber [4].
In principle, one could also observe transitions from the n= 1 to n= 2 state from species that were not

excited thermally (by collisional energy transfer) but rather by prior absorption of a photon that promoted
the system into the excited state. Such cases are, however, extremely rare, because the lifetime of vibrational
states, in general, is quite short (on the order of 10−12–10−14 s); thus, to induce successive transitions, a very
high photon flux is required.
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1.5.4 The vibrational transition moment for absorption: polyatomic molecules

Within the harmonic oscillator approximation (nonlinear) polyatomic molecules exhibit 3N− 6 normal coor-
dinates along which they vibrate. Transitions occur, as shown by the solid arrows in Figure 1.11(a), within
each energy ladder, and transitions between different vibrational coordinates do not occur. As discussed ear-
lier, the transition will originate in all likelihood from the vibrational ground states of each normal coordinate,
because they are, by far, the most populated states at room temperature.
Thus, within the harmonic oscillator formalism, the vibrational spectrum should consist of 3N− 6 spectral

bands, each one associated with the n= 0 to n= 1 transition along each normal coordinate. In reality, the
situation is much more complicated. Anharmonicity, as discussed earlier for diatomic molecules, reduces the
spacing of energy levels and makes the wavefunctions asymmetric with respect to the equilibrium distance
position. Thus, not only are there overtones (Δn=±2) weakly allowed in the spectra of anharmonic, poly-
atomic molecules (gray arrows in Figure 1.11(b)), but the so-called “combination bands” are weakly allowed
as well. These transitions occur between different normal coordinates, for example, the n= 0 to n= 1 transi-
tion along coordinate Q1 in Figure 1.11 that occurs at wavenumber 𝜈̃1 and the n= 0 to n= 1 transition along
coordinate Q2 that occurs at wavenumber 𝜈̃2 can interact. Thus, a “combination transition” that occurs at
𝜈̃1 + 𝜈̃2 may be observed. In addition to combination bands, “difference bands” at 𝜈̃1 − 𝜈̃2 may be observed as
well. Combination and difference bands, generally, are very weak but can be enhanced by Fermi resonance
(see Chapter 5) if their frequency is approximately equal to that of a fundamental transition of the same sym-
metry species. Fermi resonance is a process that mixes both the fundamental and the combination or overtone
band and can result in more than 3N− 6 bands in a spectrum.
On the other hand, in highly symmetric molecules, the number of observed bands in a spectrum can be

reduced substantially as discussed in Chapter 2. This reduction of observed bands has two causes: first, the
transition moment for absorption for highly symmetric moments may be zero, and the transition is not allowed
in IR absorption. The symmetric stretching vibration formethane, CH4, is a typical example: as this mode does
not change the dipole transition moment, it is “infrared forbidden,” although it is allowed in Raman scattering.
This demonstrates that the vibration along the symmetric stretching coordinate certainly does occur, but that
this vibration cannot interact with the electromagnetic field to cause absorption. The second reason for reduced
number of observed bands in a vibrational spectrum is the possibility of degeneracy. Degenerate vibrations
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Figure 1.11 (a) Allowed transitions (solid black arrows) for a polyatomic molecule within the harmonic oscillator
approximation. (b) Additional overtone transitions (gray arrows) for an anharmonic polyatomic molecule
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may be visualized as certain vibrational displacements (normal modes) that occur at exactly the same energy.
Doubly degenerate (E symmetry) and triply degenerate (T symmetry) modes, to be discussed in more detail
in Chapter 2, will account for two or three degrees of freedom, respectively, and will reduce the number of
bands observed in a spectrum.

1.5.5 Isotopic effects: diatomic molecules

The dependence of the vibrational frequency on the reduced mass was discussed earlier for (harmonic)
diatomic molecules:

𝜔 = 2𝜋𝜈 =
√

k
m

(1.27)

with the reduced mass given by
m =

m1m2

m1 + m2
(1.25)

When one substitutes an H atom in a diatomic molecule, such as HCl by a deuterium atom with a mass
of 2.0 amu, and assumes the same potential energy function (force constant), one finds that the vibrational
frequency𝜔 is reduced by a factor of about 1.4 or

√
2. This statement is discussed in detail next. First of all, the

assumption that the potential energy curve (see Figure 1.6) is independent of the mass makes sense because
the additional neutron in the nucleus of deuterium, as compared to hydrogen, is not expected to influence the
potential the electron pair binding the two atoms together.
Second, a comparison of the reduced masses of HCl and DCl yields for the 35Cl isotopic species:

mHCl =
1 × 35
1 + 35

= 0.972 (1.106)

mDCl =
2 × 35
2 + 35

= 1.892 (1.107)

which allows an estimate of the vibrational frequency of DCl as follows:

νDCl
νHCl

=

√
k

mDCl√
k

mHCl

=
√

mHCl

mDCl
=
√

0.972
1.892

= 0.717 ≈ 1√
2

(1.108)

𝜈DCl = 2990 × 0.717 = 2144 cm−1 (1.109)

This frequency agrees reasonably well with the observed frequency of 2091 cm−1. The transition wavenum-
ber for HCl, in Eq. 1.109, was introduced earlier (see Eqs. 1.103 and 1.104).
Third, the lowered vibrational frequency of the isotopic species causes the ground-state vibrational energy,

E0, to be at 1045 cm−1 vs 1495 cm−1 (for HCl). As for anharmonic species, the vibrational potential energy
function is slightly asymmetric (see Figure 1.6) and the DCl species is at a lower energy level than HCl, its
bond length is slightly lower and its dissociation energy is higher than that of HCl. These findings account for
the kinetic isotope effect that states that the rates of chemical reactions that involve the exchange of hydrogen
in the transition state may be significantly slower for deuterated species.
The arguments presented here for a diatomic molecule can be applied to polyatomic molecules, such as

chloroform and deuterochloroform (HCCl3 and DCCl3, see Section 2.6) by assuming that the—CCl3 moiety,
to a first approximation, acts as a pseudo-atom of mass 117, and that its vibrations do not couple strongly
with the C—H stretching vibration. This rather crude assumption actually produces reasonably good results.
Similarly, a deuterated methyl group, —CD3, exhibits stretching vibrations that are shifted by approximately
a factor of 0.71 as compared to a —CH3 group (see Section 2.6).
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1.6 Basic infrared and Raman spectroscopies

In this section, the fundamental principles of IR and Raman spectroscopies, the two most common modalities
of vibrational spectroscopy, are explored. Both these techniques are commonplace in research and teaching
laboratories and in quality control in industrial environments. Furthermore, these techniques can now be found
in forensic applications because they both provide highly specific spectral fingerprints for the identification
of contraband materials. In this section, a very basic view of the two techniques is presented, emphasizing
the differences and commonalities between the methods and introducing some of the instrumental aspects. A
more detailed view is presented after the discussion of symmetry and group theoretical aspects (Chapter 2)
in Chapters 3 and 4.

1.6.1 Infrared absorption spectroscopy

As pointed out in Section 1.5, IR absorption spectra are observed mostly between the ground and first excited
vibrational states; the transitions observed are dipole-mediated, which implies that the normal coordinate
along which the transition occurs must change at least one of the Cartesian components of the electric dipole
moment (see Chapter 2) for a transition to take place. As the name implies, this modality is observed in
“transmission” mode (and converted into absorbance units, see below) where the attenuation (absorption) of
IR radiation passing through the sample is observed. According to the condition that the photon energy must
match the energy difference between the vibrational states, that is,

ΔEmolecule = Ephoton (1.90)

only certain “colors” (wavelengths or wavenumbers) of the exciting light will be absorbed, and a spectrum
is obtained that is lacking these “colors,” or has these colors at reduced intensities. Thus, IR absorption
spectroscopy is observed by ratioing the intensity of the incident IR radiation with the intensity of the light
transmitted by the sample. This ratio is generally referred as the “transmittance” of the sample. Thus, obtaining
an IR absorption spectrum really involves the collection of two separate spectral patterns, the “background”
and the “sample” spectra. A typical background spectrum is shown in Figure 1.12(a). Given that the output
of an IR source as well as the response of an IR detector generally vary gently with wavelength, the intensity
variations in the background spectrum may appear as a surprise. The overall shape of this curve depends
on the intensity distribution of the source, typically a black-body (cf. Chapter 3) operating at temperatures
between 1200 and 2000 ∘C. The radiance of such a source increases toward the visible part of the electro-
magnetic spectrum and, therefore, should be higher at 4000 cm−1 than at 1000 cm−1. However, the detector
used to collect the background spectrum shown in Figure 1.12 was a typical cryogenic HgCdTe detector (see
Chapter 3). The peak sensitivity of such a detector occurs at about 1200 cm−1 and gradually decreases toward
higher wavenumber. Thus, the overall shape of the background curve depends on the source emission profile
convoluted with the detector sensitivity profile and the response of the optical components in the beam path,
and it is represented in Figure 1.12(a). Frequently, sharp spectral features are observed in the background
spectrum between 1300 and 1900 cm−1, and between 3600 and 3900 cm−1; these features are rot-vibrational
transitions of atmospheric water vapor, which can present a major problem (see Section 5.4.3). Similarly, a
broader feature around 2300 cm−1 is due to the rot-vibrational spectrum of carbon dioxide. Both these spectral
interferences are discussed later.
In principle, the background spectral features will disappear from the observed IR spectra because of the

ratioing between sample and background spectra. However, if there are any changes in the concentration of
water andCO2 between the time the sample and background spectra were collected, their spectral featuresmay
be contained in the observed IR spectra of the sample. Thus, it is advantageous to purge the entire instrument
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Figure 1.12 Example of background, sample, and absorption spectra in infrared spectroscopy. (a) Single-beam
background spectrum measured in transmission of a single CaF2 window. The weak features around 2900 and
1500 cm−1 are due to a coating on the beam splitter. Note the absence of water vapor and CO2 features in a
well-purged instrument. (b) Single-beam sample spectrum. The intensity scale in (a) and (b) is in arbitrary units.
(c) Absorbance spectrum calculated from traces (a) and (b) according to Eq. 1.111. The upward slope of the
absorbance spectrum below 1100 cm−1 is due to the CaF2 cutoff

with dry, CO2-free air for high-quality data acquisition. Once the background spectrum has been collected,
the sample is inserted into the optical beam, and the sample transmission spectrum is collected.
Samples for IR spectroscopy can be gaseous, liquid, or solid. Detailed sampling methodologies are pre-

sented in Chapter 3; for the time being, the collection of IR spectra for a neat liquid is discussed. Molar
extinction coefficients (see below) for vibrational transitions typically are in the range 10–1000 L (mol cm)−1,
which requires that neat liquids bemeasured as thin layers, typically between 10 and 100 μm thick. To this end,
the sample is introduced into a liquid cell made of IR transparent windows separated by a spacer of appropri-
ate thickness. The choice of IR transparent window materials is by no means trivial. While ultraviolet–visible
(UV–vis) spectroscopy can be carried out in glass or quartz cells, both these materials do not transmit mid-IR
radiation and are unsuitable for us in IR spectroscopy. This is because both materials contain Si—O bonds
whose vibrations occur, like those of most other molecules, in the mid-IR spectral region. Thus, materials for
windows (and, for that matter, for all other optical components such as lenses or substrates) must be found that
are devoid of molecular bonds. This leaves a fairly restricted choice based mostly on ionic salts such as NaCl,
KCl, KBr, AgCl, AgBr, and CaF2 and a few more esoteric materials. Many of these window materials exhibit
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rather undesirable properties, such as solvent incompatibility, toxicity, sensitivity to visible light, restricted
optical transmission, or high refractive index. Table 3.2 summarizes many of the window materials com-
monly used in IR spectroscopy and their optical properties. In most IR spectrometers, the beam diameter at
the sample is about 3–4mm; combined with the required sample thickness (path length), the necessary sample
volume is typically about 1mm3 or 1 μL.
A typical “sample” spectrum is shown in Figure 1.12(b). The changes between the background trace, I0(ν̃),

and the sample trace, I(ν̃), are readily apparent. Subsequently, the two traces are ratioed to yield the transmit-
tance spectrum T as a function of wavenumber (or wavelength):

T(𝜈̃) = I(𝜈̃)
I0(𝜈̃)

(1.110)

The ordinate values for the transmittance spectrum vary between 0 and 1. Often, the transmittance is mul-
tiplied by 100, and the spectra are reported in “percent transmission” ordinate values.
Taken the negative (decadic) logarithm of the transmittance, the “absorbance” A(ν̃) of the sample as a func-

tion of wavenumber or (wavelength) is obtained:

A(𝜈̃) = −log10 T(𝜈̃) = −log10
I(𝜈̃)
I0(𝜈̃)

(1.111)

The absorbance is a unitless (logarithmic) quantity and often is equated to the optical density (OD). Thus, it
is common to find the absorbance reported using expressions such as “ . . . the sample had an absorbance of 1.5
OD units.” As absorbance is a logarithmic quantity, one absorbance unit corresponds to 90% of all photons
incident on the sample being absorbed, whereas two absorbance units correspond to 99% of all photons being
absorbed. The absorbance spectrum obtained by converting the two traces shown in Figure 1.12(a) and (b)
according to Eq. 1.111 is shown in Figure 1.12(c).
An absorbance spectrum is an experimental manifestation of the interaction of light with the molecular

transitions in the sample. It can be related to the theoretical quantities derived in Section 1.5 according to the
Lambert–Beer equation:

A(𝜈̃) = 𝜖(𝜈̃) C l (1.112)

where 𝜀 (ν̃) is the molar extinction coefficient (with units of (Lmol−1 cm−1)), C the concentration of the
sample (mol L−1), and l the length the light beam travels through the sample (the path length or thickness of
the sample), expressed in centimeters. As discussed earlier, the sample thickness is typically between 10 and
100 μm or 0.001 and 0.01 cm. The molar extinction coefficient is related directly to the transition moment
according to

D01 ∝ ⟨𝜓1| 𝜇|𝜓0⟩2 = 1
ν̃0 ∫band

𝜀(ν̃) dν̃ (1.113)

Here, D01 is known as the dipole strength of the transition, 𝜈̃0 is the center of the band position, and the inte-
gration is over the entire band profile that is assumed to follow Gaussian (Eq. 1.114), Lorentzian (Eq. 1.115),
or mixed Gaussian/Lorentzian profiles, shown in Figure 1.13. These band envelopes are given by

f (x) = Ie−
(x−x0)2

2a (1.114)

for Gaussian and
f (x) = I

2a
(x − x0)2 − a2

(1.115)

for Lorentzian bands.
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Figure 1.13 Gaussian (a) and Lorentzian (b) line profiles. Note that the areas under the line profiles are unequal;
however, both bands have a full width “a” at half maximum (FWHM) of 5 and an intensity I= 1.0

Before about 1970, nearly all IR spectroscopy was carried out using dispersive instruments; that is, spec-
trometers that incorporated a monochromator to separate the broadband radiation from the IR source into
narrow wavenumber bands that were tuned in time to expose the sample to the different IR “colors.” These
monochromators utilized gratings or prisms to disperse the light and slits of appropriate widths to select
an appropriate wavenumber band to irradiate the sample. As only one spectral element (band) was sam-
pled at a time, acquisition of spectral data took minutes to hours. These instruments generally operated in
“double-beam” mode were a chopper alternatingly directed the beam of light through a reference (back-
ground) and sample optical path. Such, the two spectra shown in Figure 1.12(a) and (b) were acquired
quasi-simultaneously and ratioed by analog electronics.
Since the advent of laboratory minicomputers, such as the PDP8 by the Digital Equipment Corporation

in the mid-1970s, or personal computers in the 1980s, nearly all IR spectroscopy is being carried out by
Fourier transform methods, and the techniques is referred to Fourier transform infrared (FTIR) spectroscopy.
In FTIR, the light is not encoded sequentially into different colors by a monochromator but simultaneously
by an interferometer to yield an interferogram. Fourier transform of the interferogram reveals the IR spec-
trum. In general, FTIR spectrometers are not operated in dual-beam mode; thus, the sample and background
spectra shown in Figure 1.12 were collected consecutively. A more detailed discussion of the principles of
the instrumentation, data acquisition, and many other aspects of IR spectroscopy are presented in Chapter 3.

1.6.2 Raman (scattering) spectroscopy

In Raman scattering, a totally different mechanism of excitation from the ground state to the excited state
occurs, which is discussed in more detail in Chapter 4. Here, a qualitative approach is taken to introduce the
differences and similarities between Raman and IR spectroscopies.
Although the vibrational excitation results in the same final state in both Raman and IR spectroscopies, the

excitation process is a result of a two-photon process in the former: a “momentary absorption” into a “virtual
state” of a photon with much higher energy than required for the vibrational transition, accompanied by a
simultaneous re-emission (scattering) of a photon from the virtual state into either the ground vibrational
state (Rayleigh scattering) or the vibrationally excited state (Stokes Raman scattering). These processes are
depicted schematically in Figure 1.14(a). Whereas the Rayleigh-scattered photon has the same energy as the
incident laser photon, the (inelastically) scattered Raman photon has lost part of its energy to the molecular



Trim Size: 189mm x 246mm Diem c01.tex V3 - 05/21/2015 8:54 P.M. Page 36

36 Modern Vibrational Spectroscopy and Micro-Spectroscopy

(a) (c)

(b)

1

2 3 4

g

e
LS

SA

SA

MC D

DIFS
v

Figure 1.14 (a) Comparison of infrared absorption and Raman process. g: ground vibrational state, e: excited
vibrational state, and v: virtual state. 1: infrared transition, 2: momentary absorption of (laser) photon into virtual
state, 3: Rayleigh scattering, and 4: Stokes Raman scattering. (b) Schematic of infrared absorption experiment: S:
source, IF: interferometer, SA: sample, and D: detector. The dashed arrows represent the light path. (c) Schematic
of Raman scattering experiment. LS: laser source, SA: sample, MC: monochromator, and D: detector

system, and, therefore, appears at a red-shifted (lower energy) frequency as compared to the incident photon.
A comparison of the processes occurring in IR and Raman spectroscopies is shown in Figure 1.14, along with
schematic representations of the instruments used for their observation. A third scattering possibility, known
as anti-Stokes Raman scattering, is introduced in Chapter 4.
Both Rayleigh and Raman scatterings are extremely weak processes: the Rayleigh scattering process occurs

with a likelihood of about 1 in a million; the (nonresonant) spontaneous Stokes Raman process with a like-
lihood of about 1:1010 to 1:1012, whereas in IR spectroscopy, the chance of a photon incident on the sample
to be absorbed can be quite high (in a band with an intensity of one absorbance unit, 90% of the photons are
being absorbed). Thus, effective excitation of Stokes Raman spectra is possible only with laser sources that
can produce 1015–1018 visible photons per second. This fact explains why Raman spectroscopy was a field of
very limited applicability before the availability of commercial lasers that occurred in the mid-1970s. Both
FTIR and Raman spectroscopies experienced a rebirth at that point in time, and a still ongoing exponential
growth ever since.
Raman-scattered light can be collected along the propagation direction of the laser (0∘ scattering),

perpendicular to the propagation direction (90∘ scattering), or in backscattering (180∘ scattering). As
explained in Chapter 4, 90∘ scattering was the preferred way to collect Raman spectra until holographic
cut-off filters were commercially available to separate the Rayleigh scattering from the Raman scatter-
ing; thus, the 90∘ scattering geometry used prior to this point in time will be used here to explain the
collection of Raman spectra data. Similar to fluorescence spectra that are often observed at right angle,
the light emitted (scattered) by the sample is collected through a low f-number (large aperture) lens and
focused onto the entrance slit of a monochromator that separates it into its different color components.
For the observation of Raman spectra, the collected light also contains the Rayleigh scattering at the laser
wavelength, as well as the much weaker and red-shifted Raman scattering. Within the monochromator,
the light is dispersed spatially by a grating, and the intensities of the different, red-shifted Raman com-
ponents are measured by a solid-state detector such as a charge-coupled device (CCD) camera. Using
high-quality detectors and excitation powers between 10 and 100mW, a good quality Raman spectrum
can be collected in about 1 s over the entire spectral range, from about 300 to 3600 cm−1 shift from the
Rayleigh line.
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While IR spectroscopy is caused by direct absorption of a photon to promote the molecule into a vibra-
tionally excited state and requires a change of the dipole moment along a vibrational coordinate, Raman
spectra require the polarizability of a molecule to change along a vibrational coordinate. The polarizability
of a molecule is its response to the incident radiation far from an electronic transition. This can be visualized
as follows. In a clear, colorless liquid, for example, there are no electronic transitions between about 400 and
750 nm, or about 25,000 and 13,000 cm−1 (hence the material is colorless). Visible electromagnetic radiation,
however, still can interact with the molecule by setting in motion the electron clouds, particularly those in
multiple bonds. This phenomenon is referred to as molecular polarization, mediated by the polarizability.
Thus, even far from resonance, the light causes an induced dipole moment 𝜇ind, which is proportional to the
field strength E of the electromagnetic field:

𝜇ind = 𝛼E (1.116)

where the proportionality constant 𝛼 is referred to as the polarizability. As both the induced dipole moment
and the electric field are vectors, the polarizability is actually a tensor. This is an important aspect that is
discussed in detail in Chapter 4.
This polarizability varies as the molecule oscillates along its normal coordinates, Qk, because the polariz-

ability (i.e., the easewithwhich electrons can bemoved around) depends verymuch on the nuclear coordinates
and thereby on the vibrational modes of the molecule. Thus, one may expand the polarizability in a Taylor
series about the equilibrium position according to

𝛼 = 𝛼0 +
(
𝜕𝛼

𝜕Qk

)
Qk cos(𝜔kt) + · · · (1.117)

where 𝜔k is the vibrational frequency of normal mode Qk.
As the exciting electric field of the incident laser radiation can be represented by

E = E0 cos(𝜔Lt) (1.118)

and as the molecule modulates the polarizability according to Eq. 1.117, it is obvious that the induced dipole
moment emits radiation that contains the product of the two cosine functions that is, according to awell-known
trigonometric identity

cos(𝜔Lt) cos(𝜔kt) =
1
2
[cos(𝜔L + 𝜔k)t + cos(𝜔L − 𝜔k)t] (1.119)

The beat frequencies 𝜔L + 𝜔k and 𝜔L − 𝜔k are the aforementioned anti-Stokes and Stokes Raman fre-
quencies, respectively. Thus, a simple, classical description of the (off-resonance) interaction of light with a
polarizable molecular system can explain some aspects of Raman scattering.
One important aspect of Raman spectroscopy is that the scattered photon generally still is a visible photon.

If laser radiation at 488 nm wavelength or 20,491 cm−1 (the strong, blue laser emission of an Argon ion laser)
is scattered from a molecule that has one vibrational mode, such as CO (with a stretching wavenumber of
ν̃ = 2145 cm−1), the Stokes-scattered photon occurs at 20,491− 2145= 18,346 cm−1 or 545 nm, which
is a green, visible photon. If the sample was illuminated by the output of a He—Ne laser (632.8 nm or
15,803 cm−1), the scattered photon would occur at 15,803− 2145= 13,658 cm−1 or 732 nm, which is at
the end of the visible (red) range of the spectrum. Visible light is more easily detected and requires no
special optical materials; thus, one of the big advantages of Raman spectroscopy is the use of visible optical
detectors, and optical components. This example also shows that the incident photon interacts with the
sample regardless of its color: blue and red photons equally create their own virtual states, although the blue
photons are scattered with much higher efficiency.
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In both IR and Raman spectroscopies, the observed spectrum of CO should consist of one single band at
2145 cm−1; however, in gaseous CO, a more complex spectrum that includes rot-vibrational transitions is
observed (see Chapter 5).

1.7 Concluding remarks

In the preceding sections, the classical and quantum mechanical formulation of molecular vibrations was
reviewed. This review introduced the concept of normal modes of vibration, which is based strictly on a
classical mechanical model. In order to explain the observed vibrational spectra, a transition to quantum
mechanical models needs to be made. However, these models also invoke the concept of normal coordinates,
because the observed transitions are associated with the normal modes of vibration. This description explains
the vibrational (absorption or emission) spectra that consist of spectral “bands” at given frequencies. Each of
these absorption bands corresponds to a transition along one normal coordinate.
Thus, at least two pieces of information may be extracted from a spectral band: its position (frequency,

wavelength, or wavenumber) and intensity. The intensities of each transition are determined by their transition
moments, whereas the frequencies are determined by the energy eigenvalues of the vibrational Hamiltonian
(Eq. 1.64) that are based on the energy eigenvalues of the “mass-and-spring” secular determinant (Eq. 1.34).
The square of the transition moment is the actual observable in IR absorption spectroscopy: the integrated

intensity of an absorption band is the dipole strengthD of a transition, which can be determined experimentally
as the area under an IR band, plotted in units of the molar extinction coefficient 𝜀 vs. wavenumber (see
Eq. 1.108) and shown in Figure 1.13(a) and (b). Both the intensity and the energy of a transition can be
calculated from quantummechanical principles if the wavefunctions of the system are known to a high degree
of accuracy. In fact, ab initio quantum mechanical calculations of vibrational frequencies and intensities now
are practical for molecules with up to 50 heavy (not hydrogen) atoms (see Chapter 9).

References

1. Wilson, E.B., Decius, J.C., and Cross, P.C. (1955) Molecular Vibrations: The Theory of Infrared and Raman vibra-
tional Spectra, McGraw-Hill co., New York

2. Kauzman, W. (1957) Quantum Chemistry, Academic Press, New York.
3. Levine, I. (1970) Quantum Chemistry, vol. 1 and 2., Allyn & Bacon, Boston.
4. Baierl, P. and Kiefer, W. (1975) Hot band and isotopic structure in the resonance Raman spectra of bromine vapor.

J. Chem. Phys., 62, 306–308.


