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Introduction

Chemistry is the science dealing with construction, transformation and properties of molecules. The-
oretical chemistry is the subfield where mathematical methods are combined with fundamental laws
of physics to study processes of chemical relevance.1–7

Molecules are traditionally considered as “composed” of atoms or, in a more general sense, as a col-
lection of charged particles, positive nuclei and negative electrons. The only important physical force
for chemical phenomena is the Coulomb interaction between these charged particles. Molecules dif-
fer because they contain different nuclei and numbers of electrons, or because the nuclear centers are
at different geometrical positions. The latter may be “chemically different” molecules such as ethanol
and dimethyl ether or different “conformations” of, for example, butane.

Given a set of nuclei and electrons, theoretical chemistry can attempt to calculate things such as:
� Which geometrical arrangements of the nuclei correspond to stable molecules?
� What are their relative energies?
� What are their properties (dipole moment, polarizability, NMR coupling constants, etc.)?
� What is the rate at which one stable molecule can transform into another?
� What is the time dependence of molecular structures and properties?
� How do different molecules interact?

The only systems that can be solved exactly are those composed of only one or two particles, where
the latter can be separated into two pseudo one-particle problems by introducing a “center of mass”
coordinate system. Numerical solutions to a given accuracy (which may be so high that the solutions
are essentially “exact”) can be generated for many-body systems, by performing a very large number
of mathematical operations. Prior to the advent of electronic computers (i.e. before 1950), the num-
ber of systems that could be treated with a high accuracy was thus very limited. During the 1960s and
1970s, electronic computers evolved from a few very expensive, difficult to use, machines to become
generally available for researchers all over the world. The performance for a given price has been
steadily increasing since and the use of computers is now widespread in many branches of science.
This has spawned a new field in chemistry, computational chemistry, where the computer is used as
an “experimental” tool, much like, for example, an NMR (nuclear magnetic resonance) spectrometer.

Computational chemistry is focused on obtaining results relevant to chemical problems, not
directly at developing new theoretical methods. There is of course a strong interplay between tradi-
tional theoretical chemistry and computational chemistry. Developing new theoretical models may
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enable new problems to be studied, and results from calculations may reveal limitations and suggest
improvements in the underlying theory. Depending on the accuracy wanted, and the nature of the
system at hand, one can today obtain useful information for systems containing up to several thou-
sand particles. One of the main problems in computational chemistry is selecting a suitable level of
theory for a given problem and to be able to evaluate the quality of the obtained results. The present
book will try to put the variety of modern computational methods into perspective, hopefully giving
the reader a chance of estimating which types of problems can benefit from calculations.

. Fundamental Issues

Before embarking on a detailed description of the theoretical methods in computational chemistry,
it may be useful to take a wider look at the background for the theoretical models and how they relate
to methods in other parts of science, such as physics and astronomy.

A very large fraction of the computational resources in chemistry and physics is used in solving
the so-called many-body problem. The essence of the problem is that two-particle systems can in
many cases be solved exactly by mathematical methods, producing solutions in terms of analytical
functions. Systems composed of more than two particles cannot be solved by analytical methods.
Computational methods can, however, produce approximate solutions, which in principle may be
refined to any desired degree of accuracy.

Computers are not smart – at the core level they are in fact very primitive. Smart programmers,
however, can make sophisticated computer programs, which may make the computer appear smart,
or even intelligent. However, the basics of any computer program consist of doing a few simple tasks
such as:

� Performing a mathematical operation (adding, multiplying, square root, cosine, etc.) on one or two
numbers.

� Determining the relationship (equal to, greater than, less than or equal to, etc.) between two
numbers.

� Branching depending on a decision (add two numbers if N > 10, else subtract one number from
the other).

� Looping (performing the same operation a number of times, perhaps on a set of data).
� Reading and writing data from and to external files.

These tasks are the essence of any programming language, although the syntax, data handling and
efficiency depend on the language. The main reason why computers are so useful is the sheer speed
with which they can perform these operations. Even a cheap off-the-shelf personal computer can
perform billions (109) of operations per second.

Within the scientific world, computers are used for two main tasks: performing numerically inten-
sive calculations and analyzing large amounts of data. The latter can, for example, be pictures
generated by astronomical telescopes or gene sequences in the bioinformatics area that need to be
compared. The numerically intensive tasks are typically related to simulating the behavior of the real
world, by a more or less sophisticated computational model. The main problem in simulations is
the multiscale nature of real-world problems, often spanning from subnanometers to millimeters
(10−10−10−3) in spatial dimensions and from femtoseconds to milliseconds (10−15−10−3) in the time
domain.
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Figure . Hierarchy of building blocks for describing a chemical system.

. Describing the System

In order to describe a system we need four fundamental features:
� System description. What are the fundamental units or “particles” and how many are there?
� Starting condition. Where are the particles and what are their velocities?
� Interaction. What is the mathematical form for the forces acting between the particles?
� Dynamical equation. What is the mathematical form for evolving the system in time?

The choice of “particles” puts limitations on what we are ultimately able to describe. If we
choose atomic nuclei and electrons as our building blocks, we can describe atoms and molecules,
but not the internal structure of the atomic nucleus. If we choose atoms as the building blocks, we
can describe molecular structures, but not the details of the electron distribution. If we choose amino
acids as the building blocks, we may be able to describe the overall structure of a protein, but not the
details of atomic movements (see Figure 1.1).

The choice of starting conditions effectively determines what we are trying to describe. The com-
plete phase space (i.e. all possible values of positions and velocities for all particles) is huge and we will
only be able to describe a small part of it. Our choice of starting conditions determines which part
of the phase space we sample, for example which (structural or conformational) isomer or chemical
reaction we can describe. There are many structural isomers with the molecular formula C6H6, but
if we want to study benzene, we should place the nuclei in a hexagonal pattern and start them with
relatively low velocities.

The interaction between particles in combination with the dynamical equation determines how
the system evolves in time. At the fundamental level, the only important force at the atomic level is
the electromagnetic interaction. Depending on the choice of system description (particles), however,
this may result in different effective forces. In force field methods, for example, the interactions are
parameterized as stretch, bend, torsional, van der Waals, etc., interactions.

The dynamical equation describes the time evolution of the system. It is given as a differential
equation involving both time and space derivatives, with the exact form depending on the particle
masses and velocities. By solving the dynamical equation the particles’ position and velocity can be
predicted at later (or earlier) times relative to the starting conditions, that is how the system evolves
in the phase space.

. Fundamental Forces

The interaction between particles can be described in terms of either a force (F) or a potential (V).
These are equivalent, as the force is the derivative of the potential with respect to the position r:

F(r) = −𝜕V
𝜕 r

(1.1)
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Table . Fundamental interactions.

Name Particles Range (m) Relative strength

Strong interaction Quarks <10−15 100
Weak interaction Quarks, leptons <10−15 0.001
Electromagnetic Charged particles ∞ 1
Gravitational Mass particles ∞ 10−40

Current knowledge indicates that there are four fundamental interactions, at least under normal con-
ditions, as listed in Table 1.1.

Quarks are the building blocks of protons and neutrons, and lepton is a common name for a
group of particles including the electron and the neutrino. The strong interaction is the force hold-
ing the atomic nucleus together, despite the repulsion between the positively charged protons. The
weak interaction is responsible for radioactive decay of nuclei by conversion of neutrons to protons
(β decay). The strong and weak interactions are short-ranged and are only important within the
atomic nucleus.

Both the electromagnetic and gravitational interactions depend on the inverse distance between
the particles and are therefore of infinite range. The electromagnetic interaction occurs between all
charged particles, while the gravitational interaction occurs between all particles with a mass, and
they have the same overall functional form:

Velec(rij) = Celec
qiqj

rij

Vgrav(rij) = −Cgrav
mimj

rij

(1.2)

In SI units Celec = 9.0 × 109 N m2/C2 and Cgrav = 6.7 × 10−11 N m2/kg2, while in atomic units
Celec = 1 and Cgrav = 2.4 × 10−43. On an atomic scale, the gravitational interaction is completely
negligible compared with the electromagnetic interaction. For the interaction between a proton and
an electron, for example, the ratio between Velec and Vgrav is 1039. On a large macroscopic scale, such
as planets, the situation is reversed. Here the gravitational interaction completely dominates and the
electromagnetic interaction is absent.

On a more fundamental level, it is believed that the four forces are really just different manifes-
tations of a single common interaction, because of the relatively low energy regime we are living in.
It has been shown that the weak and electromagnetic forces can be combined into a single unified
theory, called quantum electrodynamics (QED). Similarly, the strong interaction can be coupled with
QED into what is known as the standard model. Much effort is being devoted to also include the
gravitational interaction into a grand unified theory, and string theory is currently believed to hold
the greatest promise for such a unification.

Only the electromagnetic interaction is important at the atomic and molecular level, and in the
large majority of cases, the simple Coulomb form (in atomic units) is sufficient:

VCoulomb(rij) =
qiqj

rij
(1.3)

Within QED, the Coulomb interaction is only the zeroth-order term and the complete interaction can
be written as an expansion in terms of the (inverse) velocity of light, c. For systems where relativistic
effects are important (i.e. containing elements from the lower part of the periodic table) or when
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high accuracy is required, the first-order correction (corresponding to an expansion up to 1/c2) for
the electron–electron interaction may be included:

Velec(r12) = 1
r12

[
1 − 1

2

(
α1 ⋅ α2 +

(α1 ⋅ r12)(α2 ⋅ r12)
r2

12

)]
(1.4)

The first-order correction is known as the Breit term, and α1 and α2 represent velocity operators.
The first term in Equation (1.4) can be considered as a magnetic interaction between two electrons,
but the whole Breit correction describes a “retardation” effect, since the interaction between distant
particles is “delayed” relative to interactions between close particles, owing to the finite value of c (in
atomic units, c ∼ 137).

. The Dynamical Equation

The mathematical form for the dynamical equation depends on the mass and velocity of the particles
and can be divided into four regimes (see Figure 1.2).

Newtonian mechanics, exemplified by Newton’s second law (F = ma), applies for “heavy”, “slow-
moving” particles. Relativistic effects become important when the velocity is comparable to the speed
of light, causing an increase in the particle mass m relative to the rest mass m0. A pragmatic border-
line between Newtonian and relativistic (Einstein) mechanics is ∼1/3c, corresponding to a relativistic
correction of a few percent.

Light particles display both wave and particle characteristics and must be described by quantum
mechanics, with the borderline being approximately the mass of a proton. Electrons are much lighter
and can only be described by quantum mechanics, while atoms and molecules, with a few exceptions,
behave essentially as classical particles. Hydrogen (protons), being the lightest nucleus, represents a
borderline case, which means that quantum corrections in some cases are essential. A prime example
is the tunnelling of hydrogen through barriers, allowing reactions involving hydrogen to occur faster
than expected from transition state theory.

Velocity

Mass

Relativistic

Non-relativistic

Quantum Classical

~ 1/3 c
~ 108 m/s

~ 10-27 kg 
~ 1 amu

Dirac
HΨ = idΨ/dt

Schrödinger 
HΨ = idΨ/dt

Einstein 
F = ma

Newton
F = ma

Figure . Domains of dynamical equations.



JWST769-c01 JWST769-Jensen November 23, 2016 13:3 Printer Name: Trim: 246mm × 189mm

 Introduction to Computational Chemistry

A major difference between quantum and classical mechanics is that classical mechanics is
deterministic while quantum mechanics is probabilistic (more correctly, quantum mechanics is also
deterministic, but the interpretation is probabilistic). Deterministic means that Newton’s equation
can be integrated over time (forward or backward) and can predict where the particles are at a
certain time. This, for example, allows prediction of where and when solar eclipses will occur many
thousands of years in advance, with an accuracy of meters and seconds. Quantum mechanics, on the
other hand, only allows calculation of the probability of a particle being at a certain place at a certain
time. The probability function is given as the square of a wave function, P(r,t) = Ψ2(r,t), where the
wave function Ψ is obtained by solving either the Schrödinger (non-relativistic) or Dirac (relativistic)
equation. Although they appear to be the same in Figure 1.2, they differ considerably in the form of
the operator H.

For classical mechanics at low velocities compared with the speed of light, Newton’s second law
applies:

F =
dp
dt

(1.5)

If the particle mass is constant, the derivative of the momentum p is the mass times the acceleration:

p = mv

F =
dp
dt

= m dv
dt

= ma (1.6)

Since the force is the derivative of the potential (Equation (1.1)) and the acceleration is the second
derivative of the position r with respect to time, it may also be written in a differential form:

− 𝜕V
𝜕 r

= m 𝜕2r
𝜕 t2 (1.7)

Solving this equation gives the position of each particle as a function of time, that is r(t).
At velocities comparable to the speed of light, Newton’s equation is formally unchanged, but the

particle mass becomes a function of the velocity, and the force is therefore not simply a constant
(mass) times the acceleration:

m =
m0√

1 − v2∕c2
(1.8)

For particles with small masses, primarily electrons, quantum mechanics must be employed. At low
velocities, the relevant equation is the time-dependent Schrödinger equation:

HΨ = i𝜕Ψ
𝜕 t

(1.9)

The Hamiltonian operator is given as a sum of kinetic and potential energy operators:

HSchrödinger = T + V

T =
p2

2m
= − 1

2m
∇2

(1.10)

Solving the Schrödinger equation gives the wave function as a function of time, and the probability
of observing a particle at a position r and time t is given as the square of the wave function:

P(r, t) = Ψ2(r, t) (1.11)
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For light particles moving at a significant fraction of the speed of light, the Schrödinger equation is
replaced by the Dirac equation:

HΨ = i𝜕Ψ
𝜕 t

(1.12)

Although it is formally identical to the Schrödinger equation, the Hamiltonian operator is signifi-
cantly more complicated:

HDirac = (cα ⋅ p + βmc2) + V (1.13)

The α and β are 4 × 4 matrices and the relativistic wave function consequently has four components.
Traditionally, these are labelled the large and small components, each having an 𝛼 and 𝛽 spin function
(note the difference between the α and β matrices and 𝛼 and 𝛽 spin functions). The large component
describes the electronic part of the wave function, while the small component describes the positronic
(electron antiparticle) part of the wave function, and the α and β matrices couple these components.
In the limit of c → ∞, the Dirac equation reduces to the Schrödinger equation, and the two large
components of the wave function reduce to the 𝛼 and 𝛽 spin-orbitals in the Schrödinger picture.

. Solving the Dynamical Equation

Both the Newton/Einstein and Schrödinger/Dirac dynamical equations are differential equations
involving the derivative of either the position vector or wave function with respect to time. For two-
particle systems with simple interaction potentials V, these can be solved analytically, giving r(t) or
Ψ(r,t) in terms of mathematical functions. For systems with more than two particles, the differential
equation must be solved by numerical techniques involving a sequence of small finite time steps.

Consider a set of particles described by a position vector ri at a given time ti. A small time step
Δt later, the positions can be calculated from the velocities, acceleration, hyperaccelerations, etc.,
corresponding to a Taylor expansion with time as the variable

ri+1 = ri + vi(Δt) + 1
2 ai(Δt)2 + 1

6 bi(Δt)3 + ⋅ ⋅ ⋅ (1.14)

The positions a small time step Δt earlier were (replacing Δt with −Δt)

ri−1 = ri − vi(Δt) + 1
2 ai(Δt)2 − 1

6 bi(Δt)3 + ⋅ ⋅ ⋅ (1.15)

Addition of these two equations gives a recipe for predicting the positions a time stepΔt later from the
current and previous positions, and the current acceleration, a method known as the Verlet algorithm:

ri+1 = (2ri − ri−1) + ai(Δt)2 + ⋅ ⋅ ⋅ (1.16)

Note that all odd terms in the Verlet algorithm disappear, that is the algorithm is correct to third order
in the time step. The acceleration can be calculated from the force or, equivalently, the potential:

a = F
m

= − 1
m

𝜕V
𝜕 r

(1.17)

The time step Δt is an important control parameter for a simulation. The largest value of Δt is deter-
mined by the fastest process occurring in the system, typically being an order of magnitude smaller
than the fastest process. For simulating nuclear motions, the fastest process is the motion of hydro-
gens, being the lightest particles. Hydrogen vibrations occur with a typical frequency of 3000 cm−1,
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corresponding to ∼1014 s−1, and therefore necessitating time steps of the order of one femtosecond
(10−15 s).

. Separation of Variables

As discussed in the previous section, the central problem is solving a differential equation with respect
to either the position (classical) or wave function (quantum) for the particles in the system. The stan-
dard method of solving differential equations is to find a set of coordinates where the differential
equation can be separated into less complicated equations. The first step is to introduce a center of
mass coordinate system, defined as the mass-weighted sum of the coordinates of all particles, which
allows the translation of the combined system with respect to a fixed coordinate system to be sepa-
rated from the internal motion. For a two-particle system, the internal motion is then described in
terms of a reduced mass moving relative to the center of mass, and this can be further transformed
by introducing a coordinate system that reflects the symmetry of the interaction between the two
particles. If the interaction only depends on the interparticle distance (e.g. Coulomb or gravitational
interaction), the coordinate system of choice is normally a polar (two-dimensional) or spherical polar
(three-dimensional) system. In these coordinate systems, the dynamical equation can be transformed
into solving one-dimensional differential equations.

For more than two particles, it is still possible to make the transformation to the center of mass
system. However, it is no longer possible to find a set of coordinates that allows a separation of the
degrees of freedom for the internal motion, thus preventing an analytical solution. For many-body
(N > 2) systems, the dynamical equation must therefore be solved by computational (numerical)
methods. Nevertheless, it is often possible to achieve an approximate separation of variables based
on physical properties, for example particles differing considerably in mass (such as nuclei and elec-
trons). A two-particle system consisting of one nucleus and one electron can be solved exactly by
introducing a center of mass system, thereby transforming the problem into a pseudo-particle with a
reduced mass (𝜇 = m1m2/(m1 + m2)) moving relative to the center of mass. In the limit of the nucleus
being infinitely heavier than the electron, the center of mass system becomes identical to that of the
nucleus. In this limit, the reduced mass becomes equal to that of the electron, which moves relative
to the (stationary) nucleus. For large, but finite, mass ratios, the approximation 𝜇 ≈ me is unnecessary
but may be convenient for interpretative purposes. For many-particle systems, an exact separation
is not possible, and the Born–Oppenheimer approximation corresponds to assuming that the nuclei
are infinitely heavier than the electrons. This allows the electronic problem to be solved for a given
set of stationary nuclei. Assuming that the electronic problem can be solved for a large set of nuclear
coordinates, the electronic energy forms a parametric hypersurface as a function of the nuclear coor-
dinates, and the motion of the nuclei on this surface can then be solved subsequently.

If an approximate separation is not possible, the many-body problem can often be transformed into
a pseudo one-particle system by taking the average interaction into account. For quantum mechanics,
this corresponds to the Hartree–Fock approximation, where the average electron–electron repulsion
is incorporated. Such pseudo one-particle solutions often form the conceptual understanding of the
system and provide the basis for more refined computational methods.

Molecules are sufficiently heavy that their motions can be described quite accurately by classical
mechanics. In condensed phases (solution or solid state), there is a strong interaction between
molecules, and a reasonable description can only be attained by having a large number of individual
molecules moving under the influence of each other’s repulsive and attractive forces. The forces in
this case are complex and cannot be written in a simple form such as the Coulomb or gravitational
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interaction. No analytical solutions can be found in this case, even for a two-particle (molecular) sys-
tem. Similarly, no approximate solution corresponding to a Hartree–Fock model can be constructed.
The only method in this case is direct simulation of the full dynamical equation.

1.6.1 Separating Space and Time Variables

The time-dependent Schrödinger equation involves differentiation with respect to both time and
position, the latter contained in the kinetic energy of the Hamiltonian operator:

H(r, t)Ψ(r, t) = i𝜕Ψ(r, t)
𝜕 t

H(r, t) = T(r) + V(r, t)
(1.18)

For (bound) systems where the potential energy operator is time-independent (V(r,t) = V(r)), the
Hamiltonian operator becomes time-independent and yields the total energy when acting on the
wave function. The energy is a constant, independent of time, but depends on the space variables.

H(r, t) = H(r) = T(r) + V(r)

H(r)Ψ(r, t) = E(r)Ψ(r, t)
(1.19)

Inserting this in the time-dependent Schrödinger equation shows that the time and space variables
of the wave function can be separated:

H(r)Ψ(r, t) = E(r)Ψ(r, t) = i𝜕Ψ(r, t)
𝜕 t

Ψ(r, t) = Ψ(r)e−iEt
(1.20)

The latter follows from solving the first-order differential equation with respect to time, and shows
that the time dependence can be written as a simple phase factor multiplied by the spatial wave func-
tion. For time-independent problems, this phase factor is normally neglected, and the starting point
is taken as the time-independent Schrödinger equation:

H(r)Ψ(r) = E(r)Ψ(r) (1.21)

1.6.2 Separating Nuclear and Electronic Variables

Electrons are very light particles and cannot be described by classical mechanics, while nuclei are
sufficiently heavy that they display only small quantum effects. The large mass difference indicates
that the nuclear velocities are much smaller than the electron velocities, and the electrons therefore
adjust very fast to a change in the nuclear geometry.

For a general N-particle system, the Hamiltonian operator contains kinetic (T) and potential (V)
energy for all particles:

H = T + V

T =
N∑

i=1
Ti ; V =

N∑
i>j

Vij
(1.22)
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The potential energy operator is the Coulomb potential (Equation (1.3)). Denoting nuclear coordi-
nates with R and subscript n, and electron coordinates with r and subscript e, this can be expressed
as follows:

HtotΨtot(R, r) = EtotΨtot(R, r)
Htot = He + Tn ; He = Te + Vne + Vee + Vnn

Ψtot(R, r) = Ψn(R)Ψe(R, r)
HeΨe(R, r) = Ee(R)Ψe(R, r)

(Tn + Ee(R))Ψn(R) = EtotΨn(R)

(1.23)

The above approximation corresponds to neglecting the coupling between the nuclear and electronic
velocities, that is the nuclei are stationary from the electronic point of view. The electronic wave func-
tion thus depends parametrically on the nuclear coordinates, since it only depends on the position
of the nuclei, not on their momentum. To a good approximation, the electronic wave function thus
provides a potential energy surface upon which the nuclei move, and this separation is known as the
Born–Oppenheimer approximation.

The Born–Oppenheimer approximation is usually very good. For the hydrogen molecule (H2) the
error is of the order of 10−4 au, and for systems with heavier nuclei the approximation becomes better.
As we shall see later, it is possible only in a few cases to solve the electronic part of the Schrödinger
equation to an accuracy of 10−4 au, that is neglect of the nuclear–electron coupling is usually only a
minor approximation compared with other errors.

1.6.3 Separating Variables in General

Assume that a set of variables can be found where the Hamiltonian operator H for two parti-
cles/variables can be separated into two independent terms, with each only depending on one parti-
cle/variable:

H = h1 + h2 (1.24)

Assume furthermore that the Schrödinger equation for one particle/variable can be solved (exactly
or approximately):

hi𝜙i = 𝜀i𝜙i (1.25)

The solution to the two-particle problem can then be composed of solutions of one-variable
Schrödinger equations:

Ψ = 𝜙1𝜙2 ; E = 𝜀1 + 𝜀2 (1.26)

This can be generalized to the case of N particles/variables:

H =
∑
i

hi

Ψ =
∏

i
𝜙i ; E =

∑
i
𝜀i

(1.27)

The properties in Equation (1.27) may be verified by inserting the entities in the Schrödinger Equa-
tion (1.21).
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. Classical Mechanics

1.7.1 The Sun–Earth System

The motion of the Earth around the Sun is an example of a two-body system that can be treated by
classical mechanics. The interaction between the two “particles” is the gravitational force:

V (r12) = −Cgrav
m1m2

r12
(1.28)

The dynamical equation is Newton’s second law, which in differential form can be written as

− 𝜕V
𝜕 r

= m 𝜕2r
𝜕 t2 (1.29)

The first step is to introduce a center of mass system, and the internal motion becomes motion of a
“particle” with a reduced mass given by

𝜇 =
MSunmEarth

MSun + mEarth
=

mEarth
(1 + mEarth∕MSun)

≅ mEarth (1.30)

Since the mass of the Sun is 3 × 105 times larger than that of the Earth, the reduced mass is essentially
identical to the Earth’s mass (𝜇 = 0.999997mEarth). To a very good approximation, the system can
therefore be described as the Earth moving around the Sun, which remains stationary.

The motion of the Earth around the Sun occurs in a plane, and a suitable coordinate system is a
polar coordinate system (two-dimensional) consisting of r and 𝜃 (Figure 1.3).

The interaction depends only on the distance r, and the differential equation (Newton’s equation)
can be solved analytically. The bound solutions are elliptical orbits with the Sun (more precisely, the
center of mass) at one of the foci, but for most of the planets, the actual orbits are close to circular.
Unbound solutions corresponding to hyperbolas also exist and could, for example, describe the path
of a (non-returning) comet (see Figure 1.4).

Each bound orbit can be classified in terms of the dimensions (largest and smallest distance to the
Sun), with an associated total energy. In classical mechanics, there are no constraints on the energy
and all sizes of orbits are allowed. If the zero point for the energy is taken as the two particles at rest
infinitely far apart, positive values of the total energy correspond to unbound solutions (hyperbolas,
with the kinetic energy being larger than the potential energy) while negative values correspond to
bound orbits (ellipsoids, with the kinetic energy being less than the potential energy). Bound solutions
are also called stationary orbits, as the particle position returns to the same value with well-defined
time intervals.

θ 

r
x = rcosθ 
y = rsinθ 

y

x

Figure . A polar coordinate system.
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Figure . Bound and unbound solutions to the classical two-body problem.

1.7.2 The Solar System

Once we introduce additional planets in the Sun–Earth system, an analytical solution for the motions
of all the planets can no longer be obtained. Since the mass of the Sun is so much larger than the
remaining planets (the Sun is 1000 times heavier than Jupiter, the largest planet), the interactions
between the planets can to a good approximation be neglected. For the Earth, for example, the second
most important force is from the Moon, with a contribution that is 180 times smaller than that from
the Sun. The next largest contribution is from Jupiter, being approximately 30 000 times smaller (on
average) than the gravitational force from the Sun. In this central field model, the orbit of each planet
is determined as if it was the only planet in the solar system, and the resulting computational task is a
two-particle problem, that is elliptical orbits with the Sun at one of the foci. The complete solar system
is the unification of eight such orbits and the total energy is the sum of all eight individual energies.

A formal refinement can be done by taking the average interaction between the planets into
account, that is a Hartree–Fock type approximation. In this model, the orbit of one planet (e.g. the
Earth) is determined by taking the average interaction with all the other planets into account. The
average effect corresponds to spreading the mass of the other planets evenly along their orbits.

The Hartree–Fock model (Figure 1.5) represents only a very minute improvement over the inde-
pendent orbit model for the solar system, since the planetary orbits do not cross. The effect of a planet
inside the Earth’s orbit corresponds to adding its mass to the Sun, while the effect of the spread-out
mass of a planet outside the Earth’s orbit is zero. The Hartree–Fock model for the Earth thus con-
sists of increasing the Sun’s effective mass with that of Mercury and Venus, that is a change of only
0.0003%. For the solar system there is thus very little difference between totally neglecting the plan-
etary interactions and taking the average effect into account.

Figure . A Hartree–Fock model for the solar system.
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Figure . Modeling the solar system with actual interactions.

The real system, of course, includes all interactions, where each pair interaction depends on the
actual distance between the planets (Figure 1.6). The resulting planetary motions cannot be solved
analytically, but can be simulated numerically. From a given starting condition, the system is allowed
to evolve for many small time steps, and all interactions are considered constant within each time step.
By sufficiently small time steps, this yields a very accurate model of the real many-particle dynamics,
and will display small wiggles of the planetary motion around the elliptical orbits calculated by either
of the two independent-particle models.

Since the perturbations due to the other planets are significantly smaller than the interaction with
the Sun, the “wiggles” are small compared with the overall orbital motion, and a description of the
solar system as planets orbiting the Sun in elliptical orbits is a very good approximation to the true
dynamics of the system.

. Quantum Mechanics

1.8.1 A Hydrogen-Like Atom

A quantum analog of the Sun–Earth system is a nucleus and one electron, that is a hydrogen-like
atom. The force holding the nucleus and electron together is the Coulomb interaction:

V(r12) =
q1q2
r12

(1.31)

The interaction again only depends on the distance, but owing to the small mass of the elec-
tron, Newton’s equation must be replaced with the Schrödinger equation. For bound states, the
time-dependence can be separated out, as shown in Section 1.6.1, giving the time-independent
Schrödinger equation:

HΨ = EΨ (1.32)

The Hamiltonian operator for a hydrogen-like atom (nuclear charge of Z) can in Cartesian coordinates
and atomic units be written as follows, with M being the nuclear and m the electron mass (m = 1 in
atomic units):

H = − 1
2M

∇2
1 − 1

2m
∇2

2 − Z√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

(1.33)
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The Laplace operator is given by

∇2
i = 𝜕2

𝜕x2
i
+ 𝜕2

𝜕y2
i
+ 𝜕2

𝜕z2
i

(1.34)

The two kinetic energy operators are already separated, since each only depends on the three coordi-
nates for one particle. The potential energy operator, however, involves all six coordinates. The center
of mass system is introduced by the following six coordinates:

X =
(Mx1 + mx2)

(M + m)
; x = x1 − x2

Y =
(My1 + my2)

(M + m)
; y = y1 − y2

Z =
(Mz1 + mz2)

(M + m)
; z = z1 − z2

(1.35)

Here the X, Y, Z coordinates define the center of mass system and the x, y, z coordinates specify the
relative position of the two particles. In these coordinates the Hamiltonian operator can be rewritten
as

H = − 1
2∇

2
XYZ − 1

2𝜇
∇2

xyz − Z√
x2 + y2 + z2

(1.36)

The first term only involves the X, Y and Z coordinates, and the ∇2
XYZ operator is obviously sepa-

rable in terms of X, Y and Z. Solution of the XYZ part gives translation of the whole system in three
dimensions relative to the laboratory-fixed coordinate system. The xyz coordinates describe the rel-
ative motion of the two particles in terms of a pseudo-particle with a reduced mass 𝜇 relative to the
center of mass:

𝜇 =
Mnucmelec

Mnuc + melec
=

melec(
1 + melec∕Mnuc

) ≅ melec (1.37)

For the hydrogen atom, the nucleus is approximately 1800 times heavier than the electron, giving
a reduced mass of 0.9995melec. Similar to the Sun–Earth system, the hydrogen atom can therefore
to a good approximation be considered as an electron moving around a stationary nucleus, and
for heavier elements the approximation becomes better (with a uranium nucleus, for example, the
nucleus/electron mass ratio is ∼430 000). Setting the reduced mass equal to the electron mass corre-
sponds to making the assumption that the nucleus is infinitely heavy and therefore stationary.

The potential energy again only depends on the distance between the two particles, but in contrast
to the Sun–Earth system, the motion occurs in three dimensions, and it is therefore advantageous to
transform the Schrödinger equation into a spherical polar set of coordinates (Figure 1.7).

r

φ

θ 

x

y

z

x = rsinθ cosφ
y = rsinθ sinφ 
z = rcosθ  

Figure . A spherical polar coordinate system.
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The potential energy becomes very simple, but the kinetic energy operator becomes complicated:

H = − 1
2𝜇

∇2
r𝜃𝜑 − Z

r

∇2
r𝜃𝜑 = 1

r2
𝜕

𝜕 r
r2 𝜕

𝜕 r
+ 1

r2 sin 𝜃
𝜕

𝜕𝜃
sin 𝜃 𝜕

𝜕𝜃
+ 1

r2 sin2 𝜃

𝜕2

𝜕𝜑2

(1.38)

The kinetic energy operator, however, is almost separable in spherical polar coordinates, and the
actual method of solving the differential equation can be found in a number of textbooks. The bound
solutions (negative total energy) are called orbitals and can be classified in terms of three quantum
numbers, n, l and m, corresponding to the three spatial variables r, 𝜃 and 𝜑. The quantum numbers
arise from the boundary conditions on the wave function, that is it must be periodic in the 𝜃 and 𝜑

variables and must decay to zero as r → ∞. Since the Schrödinger equation is not completely sepa-
rable in spherical polar coordinates, there exist the restrictions n > l ≥ |m|. The n quantum number
describes the size of the orbital, the l quantum number describes the shape of the orbital, while the
m quantum number describes the orientation of the orbital relative to a fixed coordinate system. The
l quantum number translates into names for the orbitals:
� l = 0 : s-orbital
� l = 1 : p-orbital
� l = 2 : d-orbital
� l = 3 : f-orbital, etc.

The orbitals can be written as a product of a radial function, describing the behavior in terms of the
distance r between the nucleus and electron, and spherical harmonic functions Ylm, representing
the angular part in terms of the angles 𝜃 and 𝜑. The orbitals can be visualized by plotting three-
dimensional objects corresponding to the wave function having a specific value (e.g. Ψ2 = 0.10) (see
Table 1.2).

The orbitals for different quantum numbers are orthogonal and can be chosen to be normalized:⟨
Ψn,l,m ||Ψn′,l′,m′

⟩
= 𝛿n,n′𝛿l,l′𝛿m,m′ (1.39)

Table . Hydrogenic orbitals obtained from solving the Schrödinger equation.

n l m Ψn,l,m(r,𝜃,𝜑) Shape and size

1 0 0 Y0,0(𝜃,𝜑)e−Zr

2 0 0 Y0,0(𝜃,𝜑)(2 − Zr)e−Zr/2

1 ±1, 0 Y1,m(𝜃,𝜑)Zre−Zr/2

3 0 0 Y0,0(𝜃,𝜑)(27 − 18Zr + 2Z2r2)e−Zr/3

1 ±1, 0 Y1,m(𝜃,𝜑)Zr(6 − Zr)e−Zr/3

2 ±2, ±1, 0 Y2,m(𝜃,𝜑)Z2r2e−Zr/3
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The orthogonality of the orbitals in the angular part (l and m quantum numbers) follows from the
shape of the spherical harmonic functions, as these have l nodal planes (points where the wave func-
tion is zero). The orthogonality in the radial part (n quantum number) is due to the presence of (n–l–1)
radial nodes in the wave function.

In contrast to classical mechanics, where all energies are allowed, wave functions and associated
energies are quantized, that is only certain values are allowed. The energy only depends on n for a
given nuclear charge Z and is given by

E = − Z2

2n2 (1.40)

Unbound solutions have a positive total energy and correspond to scattering of an electron by the
nucleus.

1.8.2 The Helium Atom

Like the solar system, it is not possible to find a set of coordinates where the Schrödinger equation
can be solved analytically for more than two particles (i.e. for many-electron atoms). Owing to the
dominance of the Sun’s gravitational field, a central field approximation provides a good description
of the actual solar system, but this is not the case for an atomic system. The main differences between
the solar system and an atom such as helium are:

1. The interaction between the electrons is only a factor of two smaller than between the nucleus and
electrons, compared with a ratio of at least 1000 for the solar system.

2. The electron–electron interaction is repulsive, compared with the attraction between planets.
3. The motion of the electrons must be described by quantum mechanics owing to the small electron

mass, and the particle position is determined by an orbital, the square of which gives the probability
of finding the electron at a given position.

4. Electrons are indistinguishable particles having a spin of 1/2. This fermion character requires the
total wave function to be antisymmetric, that is it must change sign when interchanging two elec-
trons. The antisymmetry results in the so-called exchange energy, which is a non-classical correc-
tion to the Coulomb interaction.

The simplest atomic model would be to neglect the electron–electron interaction and only take the
nucleus–electron attraction into account. In this model each orbital for the helium atom is deter-
mined by solving a hydrogen-like system with a nucleus and one electron, yielding hydrogen-like
orbitals, 1s, 2s, 2p, 3s, 3p, 3d, etc., with Z = 2. The total wave function is obtained from the resulting
orbitals subject to the aufbau and Pauli principles. These principles say that the lowest energy orbitals
should be filled first and only two electrons (with different spin) can occupy each orbital, that is the
electron configuration becomes 1s2. The antisymmetry condition is conveniently fulfilled by writing
the total wave function as a Slater determinant, since interchanging any two rows or columns changes
the sign of the determinant. For a helium atom, this would give the following (unnormalized) wave
function, with the orbitals given in Table 1.2 with Z = 2:

Φ =
|||||𝜙1s𝛼(1)
𝜙1s𝛼(2)

𝜙1s𝛽 (1)
𝜙1s𝛽 (2)

||||| = 𝜙1s𝛼(1)𝜙1s𝛽 (2) − 𝜙1s𝛽 (1)𝜙1s𝛼(2) (1.41)

The total energy calculated by this wave function is simply twice the orbital energy, −4.000 au, which
is in error by 38% compared with the experimental value of −2.904 au. Alternatively, we can use the
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wave function given by Equation (1.41), but include the electron–electron interaction in the energy
calculation, giving a value of −2.750 au.

A better approximation can be obtained by taking the average repulsion between the electrons into
account when determining the orbitals, a procedure known as the Hartree–Fock approximation. If
the orbital for one of the electrons was somehow known, the orbital for the second electron could
be calculated in the electric field of the nucleus and the first electron, described by its orbital. This
argument could just as well be used for the second electron with respect to the first electron. The goal
is therefore to calculate a set of self-consistent orbitals, and this can be done by iterative methods.

For the solar system, the non-crossing of the planetary orbitals makes the Hartree–Fock approxi-
mation only a very minor improvement over a central field model. For a many-electron atom, how-
ever, the situation is different since the position of the electrons is described by three-dimensional
probability functions (square of the orbitals), that is the electron “orbits” “cross”. The average nucleus–
electron distance for an electron in a 2s-orbital is larger than for one in a 1s-orbital, but there is a finite
probability that a 2s-electron is closer to the nucleus than a 1s-electron. If the 1s-electrons in lithium
were completely inside the 2s-orbital, the latter would experience an effective nuclear charge of 1.00,
but owing to the 2s-electron penetrating the 1s-orbital, the effective nuclear charge for an electron
in a 2s-orbital is 1.26. The 2s-electron in return screens the nuclear charge felt by the 1s-electrons,
making the effective nuclear charge felt by the 1s-electrons less than 3.00. The mutual screening of
the two 1s-electrons in helium produces an effective nuclear charge of 1.69, yielding a total energy of
−2.848 au, which is a significant improvement relative to the model with orbitals employing a fixed
nuclear charge of 2.00.

Although the effective nuclear charge of 1.69 represents the lowest possible energy with the func-
tional form of the orbitals in Table 1.2, it is possible to further refine the model by relaxing the
functional form of the orbitals from a strict exponential. Although the exponential form is the exact
solution for a hydrogen-like system, this is not the case for a many-electron atom. Allowing the
orbitals to adopt best possible form, and simultaneously optimizing the exponents (“effective nuclear
charge”), gives an energy of −2.862 au. This represents the best possible independent-particle model
for the helium atom, and any further refinement must include the instantaneous correlation between
the electrons. By using the electron correlation methods described in Chapter 4, it is possible to
reproduce the experimental energy of −2.904 au (see Table 1.3).

The equal mass of all the electrons and the strong interaction between them makes the Hartree–
Fock model less accurate than desirable, but it is still a big improvement over an independent orbital
model. The Hartree–Fock model typically accounts for ∼99% of the total energy, but the remain-
ing correlation energy is usually very important for chemical purposes. The correlation between the
electrons describes the “wiggles” relative to the Hartree–Fock orbitals due to the instantaneous inter-
action between the electrons, rather than just the average repulsion. The goal of correlated methods

Table . Helium atomic energies in various approximations.

Wave function Zeff Energy (au)

He+ exponential orbital, no electron–electron repulsion 2.00 −4.000
He+ exponential orbital, including electron–electron repulsion 2.00 −2.750
Optimum single exponential orbital 1.69 −2.848
Best orbital, Hartree–Fock limit −2.862
Experimental −2.904



JWST769-c01 JWST769-Jensen November 23, 2016 13:3 Printer Name: Trim: 246mm × 189mm

 Introduction to Computational Chemistry

for solving the Schrödinger equation is to calculate the remaining correction due to the electron–
electron interaction.

. Chemistry

The Born–Oppenheimer separation of the electronic and nuclear motions is a cornerstone in
computational chemistry. Once the electronic Schrödinger equation has been solved for a large
number of nuclear geometries (and possibly also for several electronic states), the potential energy
surface (PES) is known. The motion of the nuclei on the PES can then be solved either classically
(Newton) or by quantum (Schrödinger) methods. If there are N nuclei, the dimensionality of the
PES is 3N, that is there are 3N nuclear coordinates that define the geometry. Of these coordinates,
three describe the overall translation of the molecule and three describe the overall rotation of the
molecule with respect to three axes. For a linear molecule, only two coordinates are necessary for
describing the rotation. This leaves 3N − 6(5) coordinates to describe the internal movement of the
nuclei, which for small displacements may be chosen as “vibrational normal coordinates”.

It should be stressed that nuclei are heavy enough that quantum effects are almost negligible, that
is they behave to a good approximation as classical particles. Indeed, if nuclei showed significant
quantum aspects, the concept of molecular structure (i.e. different configurations and conforma-
tions) would not have any meaning, since the nuclei would simply tunnel through barriers and end
up in the global minimum. Dimethyl ether, for example, would spontaneously transform into ethanol.
Furthermore, it would not be possible to speak of a molecular geometry, since the Heisenberg uncer-
tainty principle would not permit a measure of nuclear positions with an accuracy smaller than the
molecular dimension.

Methods aimed at solving the electronic Schrödinger equation are broadly referred to as “electronic
structure calculations”. An accurate determination of the electronic wave function is very demand-
ing. Constructing a complete PES for molecules containing more than three or four atoms is virtually
impossible. Consider, for example, mapping the PES by calculating the electronic energy for every
0.1 Å over, say, a 1 Å range (a very coarse mapping). With three atoms, there are three internal coor-
dinates, giving 103 points to be calculated. Four atoms already produce six internal coordinates, giving
106 points, which is possible to calculate, but only with a determined effort. Larger systems are out
of reach. Constructing global PESs for all but the smallest molecules is thus impossible. By restrict-
ing the calculations to the “chemically interesting” part of the PES, however, it is possible to obtain
useful information. The interesting parts of a PES are usually nuclear arrangements that have low
energies. For example, nuclear movements near a minimum on the PES, which corresponds to a sta-
ble molecule, are molecular vibrations. Chemical reactions correspond to larger movements, and
may in the simplest approximation be described by locating the lowest energy path leading from one
minimum on the PES to another.

These considerations lead to the following definition:

Chemistry is knowing the energy as a function of the nuclear coordinates.

The large majority of what are commonly referred to as molecular properties may similarly be
defined as:

Properties are knowing how the energy changes upon adding a perturbation.

In the following chapters we will look at some aspects of solving the electronic Schrödinger equa-
tion or otherwise construct a PES, how to deal with the movement of nuclei on the PES and various
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technical points of commonly used methods. A word of caution here: although it is the nuclei that
move, and the electrons follow “instantly” (according to the Born–Oppenheimer approximation), it
is common also to speak of “atoms” moving. An isolated atom consists of a nucleus and some elec-
trons, but in a molecule the concept of an atom is not well defined. Analogously to the isolated atom,
an atom in a molecule should consist of a nucleus and some electrons. But how does one partition
the total electron distribution in a molecule such that a given portion belongs to a given nucleus?
Nevertheless, the words nucleus and atom are often used interchangeably.

Much of the following will concentrate on describing individual molecules. Experiments are rarely
done on a single molecule; rather they are performed on macroscopic samples with perhaps 1020

molecules. The link between the properties of a single molecule, or a small collection of molecules,
and the macroscopic observable is statistical mechanics. Briefly, macroscopic properties, such as tem-
perature, heat capacity, entropy, etc., are the net effect of a very large number of molecules having a
certain distribution of energies. If all the possible energy states can be determined for an individual
molecule or a small collection of molecules, statistical mechanics can be used for calculating macro-
scopic properties.
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