
 WHAT YOU WILL LEARN IN THIS CHAPTER:

➤ Creating a new AngularJS application from scratch

➤ Creating custom controllers, directives, and services

➤ Communicating with an external API server

➤ Storing data client-side using HTML5 LocalStorage

➤ Creating a simple animation with ngAnimate

➤ Packaging your application for distribution and deployment using
GitHub Pages

 WROX.COM CODE DOWNLOADS FOR THIS CHAPTER

 You can fi nd the wrox.com code downloads for this chapter at http://www.wrox.com/go/
proangularjs on the Download Code tab. For added clarity, the code downloads contain an
individual directory for each step of the application building guide. The README.md fi le located
in the root directory of the companion code contains additional information for properly
utilizing the code for each step of the guide. Those who prefer to use GitHub can fi nd the
repository for this application, which includes Git tags for each step of the guide and detailed
documentation, by visiting http://github.com/diegonetto/stock-dog.

WHAT YOU ARE BUILDING

 The best way to learn AngularJS is to jump directly into a real‐world, hands‐on application that
leverages nearly all key components of the framework. Over the course of this chapter, you will
build StockDog, a real‐time stock watchlist monitoring and management application. For the

 1

c01.indd 1c01.indd 1 8/31/2015 12:33:46 PM8/31/2015 12:33:46 PM

CO
PYRIG

HTED
 M

ATERIA
L

2 ❘ CHAPTER 1 BUILDING A SIMPLE ANGULARJS APPLICATION

unfamiliar, a watchlist in this context is simply an arbitrary grouping of desired stocks that are to be
tracked for analytical purposes. The Yahoo Finance API (application programming interface) will be
utilized to fetch real‐time stock quote information from within the client. The application will not
include a dynamic back end, so all information will be fetched from the Yahoo Finance API directly
or, in the case of company ticker symbols, be contained within a static JSON (JavaScript Object
Notation) fi le. By the end of this chapter, users of your application will be able to do the following:

➤ Create custom‐named watchlists with descriptions

➤ Add stocks from the NYSE, NASDAQ, and AMEX exchanges

➤ Monitor stock price changes in real time

➤ Visualize portfolio performance of watchlists using charts

 StockDog will consist of two main views that can be accessed via the application’s navigation bar.
The dashboard view will serve as the landing page for StockDog, allowing users to create new
watchlists and monitor portfolio performance in real time. The four key performance metrics
displayed in this view will be Total Market Value, Total Day Change, Market Value by Watchlist
(pie chart), and Day Change by Watchlist (bar graph). A sample dashboard view containing three
watchlists is shown in Figure 1-1 .

FIGURE 1-1

c01.indd 2c01.indd 2 8/31/2015 12:33:48 PM8/31/2015 12:33:48 PM

What You Will Learn ❘ 3

 Each watchlist created in StockDog has its own watchlist view containing an interactive table
of stock price information as well as a few basic calculations that assist in monitoring an equity
position. Here, users of your application can add new stocks to the selected watchlist, monitor
stock price changes in real time (during market hours), and perform in‐line editing of the number of
shares owned. A sample watchlist view tracking seven stocks is shown in Figure 1-2 .

FIGURE 1-2

 The process of building this application will be described over a series of 12 steps. Each step will
focus on developing a key feature of StockDog, with AngularJS components introduced along the
way, because they are needed to fulfi ll requirements defi ned by the application. Before beginning
the construction of StockDog, it is important to establish a high‐level overview of what you will be
learning.

 WHAT YOU WILL LEARN

 The step‐by‐step guide included in this chapter will go beyond basic AngularJS usage. By
implementing practical, real‐world examples using the main building blocks of this framework, you
will be exposed to most of the components provided by AngularJS, which will then be expanded
upon in detail in subsequent chapters. It is important to keep this in mind because some of the
features required by StockDog will utilize advanced concepts of the framework. In these cases,
specifi c details on how the underlying AngularJS mechanism works will be omitted, but a high‐
level explanation will always be provided so that you can understand how the component is being

c01.indd 3c01.indd 3 8/31/2015 12:33:49 PM8/31/2015 12:33:49 PM

4 ❘ CHAPTER 1 BUILDING A SIMPLE ANGULARJS APPLICATION

utilized in the context of implementing the feature at hand. By the end of this chapter, you will have
learned how to do the following:

➤ Structure a multiview single‐page application

➤ Create directives, controllers, and services

➤ Confi gure $routeProvider to handle routing between views

➤ Install additional front‐end modules

➤ Handle dynamic form validation

➤ Facilitate communication between AngularJS components

➤ Utilize HTML5 LocalStorage from within a service

➤ Communicate with external servers using $http

➤ Leverage the $animate service for cascading style sheet (CSS) animations

➤ Build application assets for production

➤ Deploy your built application to GitHub Pages

 Now that the scope and high‐level overview for StockDog have been discussed, you should have enough
background and context to begin building the application. For those interested in viewing a working
demonstration of StockDog immediately, you can fi nd the completed application at http://stockdog.io .

STEP 1: SCAFFOLDING YOUR PROJECT WITH YEOMAN

 Starting a brand new web application from scratch can be a hassle because it usually involves
manually downloading and confi guring several libraries and frameworks, creating an intelligent
directory structure, and wiring your initial application architecture by hand. However, with
major advancements in front‐end tooling utilities, this no longer needs to be such a tedious
process. Throughout this guide, you will utilize several tools to automate various aspects of
your development workfl ow, but detailed explanations of how these tools work will be saved
for discussion in Chapter 2, “Intelligent Workfl ow and Build Tools.” Before getting started with
scaffolding your project, you need to verify that you have the following prerequisites installed as
part of your development environment:

➤ Node.js — http://nodejs.org/

➤ Git — http://git-scm.com/downloads

 All the tools used in this chapter were built using Node.js and can be installed from the Node
Packaged Modules (NPM) registry using the command‐line tool npm that is included as part of your
Node.js installation. Git is required for one of these tools, so please ensure that you have properly
confi gured both it and Node.js on your system before continuing.

 Installing Yeoman
 Yeoman is an open source tool with an ecosystem of plug‐ins called generators that can be used
to scaffold new projects with best practices. It is composed of a robust and opinionated client-side

c01.indd 4c01.indd 4 8/31/2015 12:33:50 PM8/31/2015 12:33:50 PM

Step 1: Scaffolding Your Project with Yeoman ❘ 5

stack that promotes effi cient workfl ows which, coupled with two additional utilities, can help you
stay productive and effective as a developer. Following are the tools Yeoman uses to accomplish this
task:

➤ Grunt —A JavaScript task runner that helps automate repetitive tasks for building and testing
your application

➤ Bower —A dependency management utility so you no longer have to manually download and
manage your front‐end scripts

 You can fi nd an in‐depth discussion of Yeoman, its recommended workfl ow, and associated tooling
in Chapter 2 , “Intelligent Workfl ow and Build Tools.” For now, all you need to do to get started is
to install Grunt, Bower, and the AngularJS generator by running the following from your command
line:

 npm install –g grunt-cli
 npm install –g bower
 npm install –g generator-angular@0.9.8

NOTE Specifying the -g fl ag when invoking npm install ensures that the
desired package will be available globally on your machine. When you’re
installing generator-angular , the offi cial AngularJS generator maintained
by the Yeoman team, version 0.9.8 is specifi ed. This should allow you
to easily follow along with the rest of the guide, regardless of the current
version. For any subsequent projects, it’s highly recommended that you
update to the latest version. You can do this by simply running
npm install -g generator-angular once you have completed this chapter.

 Scaffolding Your Project
 With all the prerequisite tools installed on your machine, you are ready to get started scaffolding
your project. Thankfully, Yeoman makes this process quick and painless. Go ahead and create a
new directory named StockDog , and then navigate into it using your command‐line application of
choice. From within your newly created project directory, run the following from the command
line:

 yo angular StockDog

 This fi res up the AngularJS Yeoman generator, which asks you a few questions regarding how
you want to set up your application. The fi rst prompt asks if you want to use Sass with Compass.
Although these are both incredibly useful tools for managing your style sheets, their usage is outside
the scope of this chapter, so please answer no by typing n and then pressing Enter:

 [?] Would you like to use Sass (with Compass)? (Y/n)

 The next prompt asks if you want to include Bootstrap, the front‐end framework created by Twitter.
StockDog makes heavy use of the Hypertext Markup Language (HTML) and CSS assets that

c01.indd 5c01.indd 5 8/31/2015 12:33:50 PM8/31/2015 12:33:50 PM

6 ❘ CHAPTER 1 BUILDING A SIMPLE ANGULARJS APPLICATION

Bootstrap provides, so you need to include this as part of your application. Because the default
response to this prompt is yes, as expressed by the capitalized Y , simply pressing the Enter key
allows you to continue with Bootstrap included:

 [?] Would you like to include Bootstrap? (Y/n)

 The fi nal prompt asks which optional AngularJS modules you want to include in your application.
Although you won’t necessarily be utilizing all the ones listed in Figure 1-3 for this specifi c project,
it’s recommended that you go ahead and include them anyway. You can learn more by visiting
https://docs.angularjs.org/api and scrolling down to see what services and directives are
made available for each respective module. Simply press the Enter key to continue with all the
default modules and have Yeoman begin scaffolding your project, as shown in Figure 1-3 .

FIGURE 1-3

 After pressing Enter on the fi nal prompt and waiting for Yeoman to fi nish running all the relevant
scaffolding tasks, which will take a few brief moments, the foundation for StockDog will be ready
for exploration. In the following section, you will take a closer look at the important parts of the
directory structure and workfl ow tasks that Yeoman confi gured as part of the scaffolding process.

 Exploring the Application
 Now that your project setup is complete, take a few minutes to explore what the AngularJS Yeoman
generator has provided for you. Your project’s directory should be structured as follows:

 StockDog/
 ├── .bowerrc
 ├── .editorconfig
 ├── .gitattributes

c01.indd 6c01.indd 6 8/31/2015 12:33:50 PM8/31/2015 12:33:50 PM

Step 1: Scaffolding Your Project with Yeoman ❘ 7

 ├── .jshintrc
 ├── .travis.yml
 ├── bower.json
 ├── package.json
 ├── Gruntfile.js
 ├── app/
 │ ├── 404.html
 │ ├── favicon.ico
 │ ├── robots.txt
 │ ├── index.html
 │ ├── images/
 │ ├── styles/
 │ │ └── main.css
 │ ├── views/
 │ │ └── main.html
 │ │ └── about.html
 │ ├── scripts/
 │ │ └── app.js
 │ │ └── controllers/
 │ │ │ └── main.js
 │ │ │ └── about.js
 ├── node_modules/
 ├── bower_components/
 ├── test/

 Upon fi rst glance, this directory structure may seem overwhelming, but many of the generated fi les
created by Yeoman are meant to help enforce best practices and can be completely ignored for the
remainder of this chapter. The fi les and directories that you will be focusing on have been bolded for
emphasis, so for now you only need to pay attention to those.

NOTE Depending on how you are viewing your project’s directory, your
operating system may automatically hide the fi les prefi xed by a dot. These fi les
are meant for confi guring various tools such as Git, Bower, and JSHint.

 As you have probably guessed, the bulk of your application is contained inside the app/
directory. Here you can fi nd the main index.html fi le, which serves as the entry point for your
entire application, as well as the styles/ , / views/ , and / scripts/ directories, which contain
CSS, HTML, and JavaScript fi les, respectively. Grunfile.js is also of particular interest
because it confi gures several Grunt tasks that support your workfl ow during the development of
StockDog. Go ahead and fi re up your terminal application of choice and run the following from
the command line:

 grunt serve

 This launches the local development server confi gured by Yeoman during the scaffolding process
and opens the current skeleton application within a new tab inside your default browser. At
this point, your browser should be pointed at http://localhost:9000/#/ and displaying an
application page that looks identical to Figure 1-4 .

c01.indd 7c01.indd 7 8/31/2015 12:33:50 PM8/31/2015 12:33:50 PM

8 ❘ CHAPTER 1 BUILDING A SIMPLE ANGULARJS APPLICATION

 Congratulations! You have successfully fi nished scaffolding your project and are almost ready to
begin building the fi rst component of the StockDog application. Throughout your development
process, be sure to keep the terminal session where you ran the grunt serve command open
because it is responsible for serving all your application assets for use in your browser. Before
moving onto the next section, take a minute to modify the app/views/main.html fi le by removing
all its contents. Upon saving your modifi cation, you should notice that your browser tab is refreshed
with your changes instantly, which in this case should consist of a mostly empty view. Yeoman
set up this automation magic when it confi gured your Gruntfile.js with tasks that watch for
modifi cations in your application’s fi les and refresh your browser accordingly. This functionality
alone will prove to be quite helpful as you begin building components of the StockDog application.

 Cleaning Up
 So far in this chapter, you have seen how to use Yeoman to scaffold a new project from scratch,
explored the generated project structure, and gotten a glimpse of how the provided workfl ow can
help you stay productive during development. The last thing you need to do before moving onto the
next step of this guide is to delete a few generated fi les that StockDog won’t need and clean up any
associated references. Please locate and delete the following fi les from your project:

 app/views/main.html
 app/views/about.html

FIGURE 1-4

c01.indd 8c01.indd 8 8/31/2015 12:33:50 PM8/31/2015 12:33:50 PM

Step 2: Creating Watchlists ❘ 9

 app/scripts/controllers/main.js
 app/scripts/controllers/about.js

 Next, remove the routes Yeoman created by opening the app/scripts/app.js fi le and deleting
the two .when() confi gurations of the $routeProvider . You can accomplish this by removing the r

following lines of code:

 .when('/', {
 templateUrl: 'views/main.html',
 controller: 'MainCtrl'
 })
 .when('/about', {
 templateUrl: 'views/about.html',
 controller: 'AboutCtrl'
 })

 Finally, remove the references to the previously deleted main.js and about.js controller scripts by
deleting the following lines from within the app/index.html fi le:

 <script src="scripts/controllers/main.js"></script>
 <script src="scripts/controllers/about.js"></script>

 With these modifi cations of the generated skeleton application complete, you are now ready to begin
building the Watchlist component of StockDog. To access the completed code for this step of the
guide in its entirety, please refer to the step-1 directory inside the companion code for this chapter
or check out the corresponding tag of the GitHub repository.

 STEP 2: CREATING WATCHLISTS

 In this section, you will be implementing stock watchlists, the fi rst major component of the
StockDog application. As previously mentioned, a watchlist is simply an arbitrary grouping of
desired stocks that are to be tracked for analytical purposes. Users of your application will create
new watchlists in StockDog by fi lling out a small form, presented inside a modal, which prompts
them for a name and brief description to identify the watchlist. All watchlists registered with the
application have their data saved client‐side in the browser using HTML5 LocalStorage. Finally,
watchlists will be presented by name within a small panel in the user interface. Armed with a high‐
level understanding of the component’s desired functionality, you will now learn how to implement
watchlists using AngularJS.

 The Application Module
 The main entry point for all AngularJS applications is the top‐level app module. So what exactly is
a module? As mentioned in the offi cial documentation, you can think of a module as a container
for the different parts of your application. Although most applications have a main method that
instantiates and wires together various components, AngularJS modules declaratively specify how
your components should be bootstrapped. Some advantages to this approach are that modules can
be loaded asynchronously in any order, and code readability and reusability are enhanced. The
main application module is defi ned by invoking the .module() function, which accepts a name

c01.indd 9c01.indd 9 8/31/2015 12:33:51 PM8/31/2015 12:33:51 PM

10 ❘ CHAPTER 1 BUILDING A SIMPLE ANGULARJS APPLICATION

and array of dependencies, located inside the app/scripts/app.js fi le. Make note of the module
name, which in this case should be stockDogApp , because you will be referencing it shortly. For
those who have used RequireJS in the past, this method of declaring module dependencies should
look familiar.

 Installing Module Dependencies
 Currently, the only modules your application depends on should be ngAnimate , ngCookies ,
ngResource , ngRoute , ngSanitize , and ngTouch , all of which Yeoman installed based on your
response to the third prompt of the initial scaffolding process. Later in this section, you will
be using the $modal service exposed by AngularStrap, a third‐party module containing native
AngularJS bindings for various components provided by the Bootstrap framework. You can
learn more about AngularStrap by visiting its documentation site located at http://mgcrea
.github.io/angular-strap/ . Because the workfl ow set up by Yeoman uses Bower for managing/

front‐end scripts, installing AngularStrap is as simple as running the following from your
command line:

 bower install angular-strap#v2.1.0 –save

 This downloads the AngularStrap library and saves it as a dependency inside your bower.json fi le.
If you have left your application server running, which was launched using grunt serve , Grunt
will have seen the modifi cation to bower.json and automatically updated your index.html fi le to
reference the CSS and JavaScript fi les that AngularStrap provides. Not bad for a simple one‐line
command! Now all that is left is to register the AngularStrap module, which is named mgcrea
.ngStrap , as a dependency for your stockDogApp module by adding it to the array of dependencies,
as shown in Listing 1‐1.

 LISTING 1-1: app/scripts/app.js

 angular
 .module('stockDogApp', [
 'ngAnimate',
 'ngCookies',
 'ngResource',
 'ngRoute',
 'ngSanitize',
 'ngTouch',
 'mgcrea.ngStrap'
]);

NOTE Another commonly used AngularJS companion library that exposes
directives for various Bootstrap components is UI Bootstrap, a project that
the AngularUI organization maintains. To learn more about UI Bootstrap,
please visit the documentation site located at http://angular-ui.github.io/
bootstrap/ .

c01.indd 10c01.indd 10 8/31/2015 12:33:51 PM8/31/2015 12:33:51 PM

Step 2: Creating Watchlists ❘ 11

 Bootstrapping the Application
 Now that you have seen how to defi ne an application module and register dependencies, the next
and fi nal step in bootstrapping StockDog is to reference the stockDogApp module from within your
HTML. Conveniently enough, Yeoman has already done this for you. Take a look inside your app/
index.html fi le; on line 19, you should see the following code:

 <body ng-app="stockDogApp">

 The ng-app attribute that has been attached to the page’s <body> tag is an AngularJS directive that
fl ags the HTML element, which should be considered the root of your application. Directives will be
defi ned shortly, but for now, the takeaway is that to bootstrap your AngularJS application module,
you must add the ng-app attribute to your application’s HTML. Also worth mentioning is that
because ng-app is an element attribute, you have the freedom to move it around and decide whether
the entire HTML page or only a portion of it should be treated as the Angular application. With the
bootstrapping of your application using the stockDogApp module out of the way, you will now be
exposed to AngularJS services, another crucial component of the framework.

 The Watchlist Service
 As defi ned in the AngularJS documentation, services are substitutable objects that are wired
together using dependency injection. Services provide a great way to organize and share
encapsulated code across your application. It is worth mentioning that AngularJS services are lazily
instantiated singletons, meaning that they are only instantiated when an application component
depends on it, with each dependent component receiving a single instance reference generated by
the service factory. For the purpose of building out the watchlists functionality for StockDog, you
will be creating a custom service that handles reading and writing the watchlists model to HTML5
LocalStorage. To get started, run the following from your command line:

 yo angular:service Watchlist-Service

 This uses the AngularJS Yeoman generator’s packaged subgenerator for scaffolding out a skeleton
service contained within the newly created watchlist-service.js fi le, which is located inside the app/
scripts/services directory. In addition, Yeoman adds a reference to this newly created script, which
can be seen by the addition of the following line of code at the bottom of your app/index.html fi le:

 <script src="scripts/services/watchlist-service.js"></script>

 Now that you have quickly wired up an entry point for your new service, you need to install
Lodash, a utility library that offers functional programming helpers for JavaScript, which will
be used throughout the remainder of this chapter. Use Bower to install Lodash by running the
following from your command line:

 bower install lodash ––save

 Lodash was initially a fork of the Underscore.js project but has since evolved to become a
highly confi gurable and performant library loaded with a plethora of additional helpers. The
WatchlistService implementation, which uses a couple of Lodash methods, is shown in Listing 1-2.

c01.indd 11c01.indd 11 8/31/2015 12:33:51 PM8/31/2015 12:33:51 PM

12 ❘ CHAPTER 1 BUILDING A SIMPLE ANGULARJS APPLICATION

 LISTING 1-2: app/scripts/services/watchlist-service.js

 'use strict';

 angular.module('stockDogApp')
 .service('WatchlistService', function WatchlistService() {
 // [1] Helper: Load watchlists from localStorage
 var loadModel = function () {
 var model = {
 watchlists: localStorage['StockDog.watchlists'] ?
 JSON.parse(localStorage['StockDog.watchlists']) : [],
 nextId: localStorage['StockDog.nextId'] ?
 parseInt(localStorage['StockDog.nextId']) : 0
 };
 return model;
 };

 // [2] Helper: Save watchlists to localStorage
 var saveModel = function () {
 localStorage['StockDog.watchlists'] = JSON.stringify(Model.watchlists);
 localStorage['StockDog.nextId'] = Model.nextId;
 };

 // [3] Helper: Use lodash to find a watchlist with given ID
 var findById = function (listId) {
 return _.find(Model.watchlists, function (watchlist) {
 return watchlist.id === parseInt(listId);
 });
 };

 // [4] Return all watchlists or find by given ID
 this.query = function (listId) {
 if (listId) {
 return findById(listId);
 } else {
 return Model.watchlists;
 }
 };

 // [5] Save a new watchlist to watchlists model
 this.save = function (watchlist) {
 watchlist.id = Model.nextId++;
 Model.watchlists.push(watchlist);
 saveModel();
 };

 // [6] Remove given watchlist from watchlists model
 this.remove = function (watchlist) {
 _.remove(Model.watchlists, function (list) {
 return list.id === watchlist.id;
 });
 saveModel();
 };

 // [7] Initialize Model for this singleton service

c01.indd 12c01.indd 12 8/31/2015 12:33:51 PM8/31/2015 12:33:51 PM

Step 2: Creating Watchlists ❘ 13

 var Model = loadModel();
 });

 The fi rst thing you should notice is the invocation of the .service() method on the stockDogApp
module, which registers this service with the top-level AngularJS application. This allows your
service to be referenced elsewhere by injecting WatchlistService into the desired component
implementation function. The loadModel() helper [1] requests the data stored in the browser’s
LocalStorage using keys that are namespaced under StockDog to avoid potential collisions. The
watchlists value retrieved from localStorage is an array, whereas nextId is simply an integer
used to uniquely identify each watchlist. The ternary operator guarantees that the initial value
of both these variables is properly set and correctly parsed. The saveModel() helper [2] simply
needs to stringify the watchlists array before persisting its contents to localStorage . Another
internal helper function, findById() [3] , uses Lodash to fi nd a watchlist by a given ID inside the
aforementioned array.

 With these internal helpers out of the way, you should now notice that the remaining functions
are attached directly to the service instance by using the keyword this . Although using this can
be error prone and is not always the best approach, in this case it is quite alright because Angular
instantiates a singleton by calling new on the function supplied to .service() . The service .query()
function [4] returns all watchlists in the model unless a listId is specifi ed. The .save() function
[5] increments nextId and pushes a new watchlist onto the watchlists array before delegating to the
saveModel() helper. Finally, .remove() uses a Lodash method to accomplish the exact opposite [6] .
To complete this service, a local Model variable is initialized using the loadModel() helper. At this
point, your WatchlistService is ready to be wired up from within an AngularJS directive, which
you will be creating in the following section.

NOTE If up until this point you have left your local development server running,
Grunt should be reporting warnings that ' _ ' is not defined . This is because
Lodash attaches itself to the global scope via an underscore, but the process in
charge of linting your JavaScript fi les (checking them for errors) is not aware of
this fact. Adding " _ ": false to the globals object located at the bottom of your
.jshintrc fi le makes these warnings go away.

 The Watchlist‐Panel Directive
 By now, you might have already heard about AngularJS directives and how versatile they can be if
used correctly. So what exactly is a directive? As defi ned in the offi cial documentation, directives
are markers on a Document Object Model (DOM) element (such as an attribute, element name,
comment, or CSS class) that tell AngularJS’s HTML compiler ($compile) to attach a specifi ed
behavior to, or even transform, the DOM element and its children. You will take a deeper look at
how directives work in Chapter 5 , “Directives.” For now, all you need to know is that not only can
you create your own custom directives, but AngularJS also comes with a set of built‐in directives
ready for use, like ng-app , ng-view , and ng-repeat , which are all prefi xed by ng . For the StockDog

c01.indd 13c01.indd 13 8/31/2015 12:33:51 PM8/31/2015 12:33:51 PM

14 ❘ CHAPTER 1 BUILDING A SIMPLE ANGULARJS APPLICATION

application, all your custom directives are prefi xed by stk so they are easily identifi able. You can
use Yeoman’s directive subgenerator to scaffold and wire up a skeleton directive by running the
following from your command line:

 yo angular:directive stk-Watchlist-Panel

 This creates the stk-watchlist-panel.js fi le inside the app/scripts/directives directory
and automatically adds a reference to the newly created script inside your index.html fi le. The
implementation of this directive is shown in Listing 1‐3.

 LISTING 1‐3: app/scripts/directives/stk‐watchlist‐panel.js

 'use strict';

 angular.module('stockDogApp')
 // [1] Register directive and inject dependencies
 .directive('stkWatchlistPanel', function ($location, $modal, WatchlistService) {
 return {
 templateUrl: 'views/templates/watchlist-panel.html',
 restrict: 'E',
 scope: {},
 link: function ($scope) {
 // [2] Initialize variables
 $scope.watchlist = {};
 var addListModal = $modal({
 scope: $scope,
 template: 'views/templates/addlist-modal.html',
 show: false
 });

 // [3] Bind model from service to this scope
 $scope.watchlists = WatchlistService.query();

 // [4] Display addlist modal
 $scope.showModal = function () {
 addListModal.$promise.then(addListModal.show);
 };

 // [5] Create a new list from fields in modal
 $scope.createList = function () {
 WatchlistService.save($scope.watchlist);
 addListModal.hide();
 $scope.watchlist = {};
 };

 // [6] Delete desired list and redirect to home
 $scope.deleteList = function (list) {
 WatchlistService.remove(list);
 $location.path('/');
 };
 }
 };
 });

c01.indd 14c01.indd 14 8/31/2015 12:33:51 PM8/31/2015 12:33:51 PM

Step 2: Creating Watchlists ❘ 15

 The .directive() method handles registering the stkWatchlistPanel directive with the
stockDogApp module [1] . This example illustrates the use of Angular’s dependency injection
mechanism, which is as simple as specifying parameters to the directive’s implementation function.
Note that the previously created WatchlistService has been injected as a dependency, along
with the $location and $modal services, because it will be needed to complete the directive’s
implementation. The implementation function itself returns an object containing confi guration
options and a link() function. Inside this function is where the directive’s scope variables
are initialized [2], which include creating a modal using AngularStrap’s $modal service. The
.query() method of the WatchlistService is invoked to bind the service’s model to the directive’s
scope [3] . Handler functions are then attached to the $scope and provide functionality for showing
the modal [4] , creating a new watchlist from the modal’s fi elds [5] , and deleting a watchlist [6] . The
implementations of these handler functions are straightforward and use the injected services.

 The confi guration options for the stkWatchlistPanel directive modify its behavior by restricting
it for use as an element via restrict: 'E' and isolating its scope so that anything attached to the
$scope variable is available only within the context of this directive. The templateUrl option can
reference a fi le that Angular loads and renders into the DOM. For this application, you will be
storing templates inside the app/views/templates directory, so go ahead and create that now. The
watchlist-panel.html template needed by this directive is shown in Listing 1‐4.

 LISTING 1‐4: app/views/templates/watchlist‐panel.html

 <div class="panel panel-info">
 <div class="panel-heading">

 Watchlists
 <!––[1] Invoke showModal() handler on click ––>
 <button type="button"
 class="btn btn-success btn-xs pull-right"
 ng-click="showModal()">

 </button>
 </div>
 <div class="panel-body">
 <!–– [2] Show help text if no watchlists exist ––>
 <div ng-if="!watchlists.length" class="text-center">
 Use to create a list
 </div>
 <div class="list-group">
 <!–– [3] Repeat over each list in watchlists and create link ––>
 <a class="list-group-item"
 ng-repeat="list in watchlists track by $index">
 {{list.name}}
 <!–– [4] Delete this list by invoking deleteList() handler ––>
 <button type="button" class="close"
 ng-click="deleteList(list)"> ×
 </button>

 </div>
 </div>
 </div>

c01.indd 15c01.indd 15 8/31/2015 12:33:51 PM8/31/2015 12:33:51 PM

16 ❘ CHAPTER 1 BUILDING A SIMPLE ANGULARJS APPLICATION

 The watchlist-panel.html template makes heavy use of the classes and icons provided by the
Bootstrap framework to create a simple, yet polished, interface. The built‐in AngularJS ng-click
directive is used to invoke the showModal() handler when the plus button is clicked [1] . The ng-if
directive conditionally inserts or removes a DOM element based on the evaluation of an expression,
which in this case displays instruction text when the watchlists array is empty [2] . To iterate
over the watchlists array, ng-repeat is used with the track by $index syntax so that Angular
doesn’t complain if the array contains identical objects [3] . Worth mentioning is the fact that
because ng-repeat is attached to an HTML <a> tag, a unique link is created for each object in the
array. The double curly braces, {{ }} , used to reference the current list’s name, are called a binding, g
while list.name itself is called an expression . The binding tells Angular that it should evaluate
the expression and insert the result into the DOM in place of the binding. A binding results in
effi cient continuous updates whenever the result of the expression evaluation changes. Finally, the
deleteList() handler is wired into the interface via another button, connected once again using the
ng-click directive [4] .

 Basic Form Validation
 The fi nal step in completing the implementation of the stkWatchlistPanel directive is to build
the form that allows users to create new watchlists. If you remember, inside the directive’s link()
function, the addListModal variable was initialized using the $modal service exposed by the
AngularStrap module. The $modal service accepts a template option, which renders the desired
HTML inside a Bootstrap modal. Create a new fi le inside the app/views/templates/ directory
named addlist-modal.html . The implementation of this template is shown in Listing 1‐5.

 LISTING 1‐5: app/views/templates/addlist‐modal.html

 <div class="modal" tabindex="-1" role="dialog">
 <div class="modal-dialog">
 <div class="modal-content">
 <div class="modal-header">
 <!–– [1] Invoke $modal.$hide() on click ––>
 <button type="button" class="close"
 ng-click="$hide()"> ×
 </button>
 <h4 class="modal-title">Create New Watchlist</h4>
 </div>

NOTE Upon saving this HTML fi le, you may have noticed that your browser
did not automatically refresh with the changes. That is because the current
Grunt workfl ow is only watching for changes to HTML fi les in the top‐level
app/views directory. To force Grunt to recursively watch for modifi cations of
any HTML fi les inside of app/views , change the regular expression on line 59 of
your Gruntfile.js to the following:

 '<%= yeoman.app %>/**/*.html',

c01.indd 16c01.indd 16 8/31/2015 12:33:51 PM8/31/2015 12:33:51 PM

Step 2: Creating Watchlists ❘ 17

 <!–– [2] Name this form for validation purposes ––>
 <form role="form" id="add-list" name="listForm">
 <div class="modal-body">
 <div class="form-group">
 <label for="list-name">Name</label>
 <!–– [3] Bind input to watchlist.name ––>
 <input type="text"
 class="form-control"
 id="list-name"
 placeholder="Name this watchlist"
 ng-model="watchlist.name"
 required>
 </div>
 <div class="form-group">
 <label for="list-description">Brief Description</label>
 <!–– [4] Bind input to watchlist.description ––>
 <input type="text"
 class="form-control"
 id="list-description"
 maxlength="40"
 placeholder="Describe this watchlist"
 ng-model="watchlist.description"
 required>
 </div>
 </div>
 <div class="modal-footer">
 <!–– [5] Create list on click, but disable if form is invalid ––>
 <button type="submit"
 class="btn btn-success"
 ng-click="createList()"
 ng-disabled="!listForm.$valid">Create</button>
 <button type="button"
 class="btn btn-danger"
 ng-click="$hide()">Cancel</button>
 </div>
 </form>
 </div>
 </div>
 </div>

 The fi rst thing you should notice with this template is that not only does it reference the handler
functions attached to the stkWatchlistPanel directive’s scope, it also leverages the $hide()
method exposed by the $moda l service [1] . Because inputs are required to gather the information
necessary to create a new watchlist, an HTML <form> is used [2] . Pay particular attention to the
name="listForm" attribute because this is how you reference the form to check its validity. The
two <input> tags are augmented with the ng-model directive, which binds the respective input
values to the $scope.watchlist variable ([3] & [4]) initialized in the directive’s link() function.
The HTML required attribute is also used for both inputs because you want to ensure the user
specifi es both a name and a description before creating a new watchlist. Finally, the directive’s
createList() handler is invoked when the Create button is clicked, but only when the form is valid.
The built‐in ng-disabled directive disables or enables the button based on the result of evaluating
the !listForm.$valid expression.

c01.indd 17c01.indd 17 8/31/2015 12:33:52 PM8/31/2015 12:33:52 PM

18 ❘ CHAPTER 1 BUILDING A SIMPLE ANGULARJS APPLICATION

 Using the Directive
 Now that you have completed creating the stkWatchlistPanel directive and its associated
templates, you will see how easy it is to reference it inside your HTML. Open the app/index.html
fi le and insert the following code before the <div> tag marked with the footer class:

 <stk-watchlist-panel></stk-watchlist-panel>

 At this point, you may be wondering why this directive was used as an HTML element tag instead
of an attribute. If you remember, the stkWatchlistPanel directive was created with the restrict
confi guration property set to E , which meant that the directive was to be used as an HTML element.
It may also initially seem strange that, although the directive was registered using camelCase , it
was referenced using spinal-case inside the HTML. This is because HTML is case insensitive, so
Angular normalizes your directive’s name using this convention. With the preceding modifi cation to
your index.html fi le saved, Grunt automatically triggers a browser refresh; your application should
look identical to the screenshot shown in Figure 1-5 .

FIGURE 1-5

 Clicking the green plus button inside the watchlist panel should launch the Bootstrap modal
containing the watchlist creation form, as shown in Figure 1-6 .

FIGURE 1-6

c01.indd 18c01.indd 18 8/31/2015 12:33:52 PM8/31/2015 12:33:52 PM

Step 3: Confi guring Client‐Side Routing ❘ 19

 Congratulations! You have successfully fi nished implementing the watchlists feature of the
StockDog application. In doing so, you have seen how to create an AngularJS service that uses
HTML5 LocalStorage as well as a directive that manipulates the DOM and wires together several
services. Take a minute to enjoy your handiwork thus far by creating a few watchlists, refreshing
your browser to confi rm that they were indeed persisted to LocalStorage, and then deleting them
from the watchlist panel to ensure that everything is working as expected. If you’ve gotten stuck at
any point during this step, take a moment to examine the completed code by referring to the step-2
directory inside the companion code for this chapter or checking out the corresponding tag of the
GitHub repository.

STEP 3: CONFIGURING CLIENT‐SIDE ROUTING

 Client‐side routing is a critical component of any single‐page application. Thankfully, AngularJS
makes the task of mapping URLs to various front‐end views extraordinarily simple. In its current
state, StockDog does not contain additional HTML views other than the index.html fi le, which
contains an embedded watchlist panel using the stk-watchlist-panel directive. In this section, you
will see how the routing mechanism brings together AngularJS controllers and HTML templates to
power the two main views of the StockDog application.

The Angular ngRoute Module
 During the initial process of scaffolding the StockDog application, Yeoman asked if you wanted to
install any supplemental AngularJS modules. One of these was angular-route , which exposes the
ngRoute module that can be listed as a dependency for your application. You can verify that this
module has been properly installed for StockDog by looking inside the app/scripts/app.js fi le
and locating the reference to ngRoute inside the array of dependencies for the main stockDogApp
module defi nition, as shown here:

 angular
 .module('stockDogApp', [
 'ngAnimate',
 'ngCookies',
 'ngResource',
 'ngRoute', // Include angular-route as dependency
 'ngSanitize',
 'ngTouch',
 'mgcrea.ngStrap'
])

NOTE Over the course of developing future AngularJS applications, you
will undoubtedly be exposed to, and utilize, several AngularJS modules. The
AngularJS team offi cially maintains some of these modules, like most of the ones
seen in the code in the “The Angular ngRoute Module” section, with several
others being created by the community. It is imperative that when you install a
new module, usually via Bower, you also look at its documentation and properly
include the corresponding module reference here as a dependency for your
application.

c01.indd 19c01.indd 19 8/31/2015 12:33:53 PM8/31/2015 12:33:53 PM

20 ❘ CHAPTER 1 BUILDING A SIMPLE ANGULARJS APPLICATION

 The ngRoute module exposes the $route service and can be confi gured using the associated
$routeProvider , which allows you to declare how your application’s routes map to view templatesr

and controllers. Providers are objects that create instances of services and expose confi guration APIs
that can be used to control the runtime behavior of a service. You will learn more about providers in
a Chapter 7, “Services, Factories, and Providers,” but for now, the takeaway is that you can use the
$routeProvider to defi ne your application routes and implement deep linking, which allows you to
utilize the browser’s history navigation and bookmark locations within your application.

Adding New Routes
 The process of adding a new route to your application consists of four distinct steps:

1. Defi ne a new controller.

2. Create an HTML view template.

3. Call the $routeProvider . when(path, route) method.

4. Include a <script> tag reference inside index.html if the new controller resides within its
own JavaScript fi le.

 The fourth step is only required if your project’s architecture mirrors that of the StockDog
application, where each new AngularJS component resides within its own JavaScript fi le. Although
these four steps are simple enough on their own, when working on large applications with many
routes, views, and controllers, it can become a tedious process. Thankfully, the AngularJS Yeoman
generator contains a subgenerator that can be used to entirely automate this four‐step process.
Go ahead and run the following commands from your terminal to scaffold out the AngularJS
controllers, HTML templates, and $routeProvider confi gurations for the dashboard and watchlist
views of the StockDog application:

 yo angular:route dashboard
 yo angular:route watchlist ––uri=watchlist/:listId

 With these two simple commands, you have instructed Yeoman to create the dashboard.js
and watchlist.js fi les inside the app/scripts/controllers/ directory. These fi les defi ne the
DashboardCtrl and WatchlistCtrl , respectively, as well as the dashboard.html and watchlist
.html views inside the app/views/ directory. Because Yeoman created two new JavaScript fi les for
the desired route controllers, it also took the liberty of inserting the two required <script> tag
references at the bottom of your index.html fi le. You may have noticed that the second command
invoked the route subgenerator with a ––uri fl ag. This instructs Yeoman to use an explicitly defi ned
path when confi guring the $routeProvider , which in this case was required because each watchlist r

created within StockDog will have its own unique view, generated from the listId , which will
be passed as a route parameter. Looking inside app/scripts/app.js , you should see the following
$routeProvider.when() confi gurations that Yeoman set up:

 .when('/dashboard', {
 templateUrl: 'views/dashboard.html',
 controller: 'DashboardCtrl'
 })
 .when('/watchlist/:listId', {

c01.indd 20c01.indd 20 8/31/2015 12:33:53 PM8/31/2015 12:33:53 PM

Step 3: Confi guring Client‐Side Routing ❘ 21

 templateUrl: 'views/watchlist.html',
 controller: 'WatchlistCtrl'
 })

 Before continuing onto the next section, take a moment to update the path used in the
$routeProvider.otherwise() function located at the bottom of this fi le. The redirectTo property
currently points to '/' , but in this case you will want to modify it to point to '/dashboard' because
that is the main page of the StockDog application.

 Using the Routes
 With all the required steps accomplished for adding new client‐side routes and wiring together
the skeleton dashboard and watchlist views, you can now begin linking together the pages within
 StockDog using the confi gured routes. Open the stkwatchlistpanel.js fi le containing the directive
that renders out the watchlist panel, and inject the AngularJS $routeParams service as a dependency
alongside the current $location , $modal , and WatchlistService dependencies. The call to
.directive() should now look something like this:

 .directive('stkWatchlistPanel',
 function ($location, $modal, $routeParams, WatchlistService) {

 Next, you will be adding a new $scope variable that will keep track of the current watchlist being
displayed, as well as a gotoList() function that will send users to the desired watchlist view. You
can accomplish this by adding the following code to the directive’s implementation:

 $scope.currentList = $routeParams.listId;
 $scope.gotoList = function (listId) {
 $location.path('watchlist/' + listId);
 };

 Once again, the $location service is used to route the user to the desired watchlist view, which
includes the listId . At this point, you might be asking yourself where this listId that is passed
into the gotoList() function is coming from. If you remember, when you fi rst created the
watchlist-panel.html template view, you used the built‐in ng-repeat directive to iterate over all the
watchlists fetched from the WatchlistService . To wire this function into the directive’s template, you
need to add the ng-click directive to the <a> tag, which contains a call to the gotoList() function
that will be evaluated whenever the DOM element is clicked. Because the stkWatchlistPanel is used
on both the main dashboard and individual watchlist views, you should also go ahead and add an
ng-class directive to the same element, which can be used to add the active class from Bootstrap to
the <a> tag for the list that the user is currently viewing. The modifi cations to the watchlist-panel.html
fi le located inside the app/view/templates/ directory are shown here:

 <a class="list-group-item"
 ng-class="{ active: currentList == list.id }"
 ng-repeat="list in watchlists track by $index"
 ng-click="gotoList(list.id)">

 Notice that the newly defi ned currentList variable that was attached to the $scope is used
to evaluate whether the active class should be present on the element. In the next section, you

c01.indd 21c01.indd 21 8/31/2015 12:33:53 PM8/31/2015 12:33:53 PM

22 ❘ CHAPTER 1 BUILDING A SIMPLE ANGULARJS APPLICATION

will be laying the foundation structure for the dashboard and watchlist views. Because the
<stk-watchlist-panel> element is used within the context of both views, take a moment to
delete its current reference from within the index.html fi le.

 Template Views
 At this point, you might be wondering how AngularJS knows to load the dashboard.html and
watchlist.html views specifi ed in the $routeProvider ’s template option for each confi gured
route. The key component behind this functionality is the ngView directive, which was included
in the index.html fi le when you initially scaffolded your project with Yeoman. This directive
requires the ngRoute module to be installed to function and handles inserting the view template
defi ned by the $route service into the layout template, which in this case is the index.html fi le. It
is important to note that the route’s template is inserted in the exact DOM location where the
<ng-view> element resides.

 In its current state, the StockDog application is devoid of any useful functionality, so go ahead
and modify your generated dashboard.html and watchlist.html fi les to resemble those shown in
Listing 1‐6 and Listing 1‐7, respectively.

 LISTING 1‐6: app/views/dashboard.html

 <div class="row">
 <!–– Left Column ––>
 <div class="col-md-3">
 <stk-watchlist-panel></stk-watchlist-panel>
 </div>

 <!–– Right Column ––>
 <div class="col-md-9">
 <div class="panel panel-info">
 <div class="panel-heading">

 Portfolio Overview
 </div>
 <div class="panel-body">
 </div>
 </div>
 </div>
 </div>

 LISTING 1‐7: app/views/watchlist.html

 <div class="row">
 <!–– Left Column ––>
 <div class="col-md-3">
 <stk-watchlist-panel></stk-watchlist-panel>
 </div>

 <!–– Right Column ––>

c01.indd 22c01.indd 22 8/31/2015 12:33:53 PM8/31/2015 12:33:53 PM

Step 4: Creating a Navigation Bar ❘ 23

 <div class="col-md-9">
 </div>
 </div>

 Both the dashboard.html and watchlist.html templates use Bootstrap’s grid system to create
two distinct columns, with the <stk-watchlist-panel> being included in the left column of
each view. Now that the modifi cations to both these fi les are complete, go ahead and navigate
to the Dashboard view in your browser by visiting http://localhost:9000/#/dashboard . For
testing purposes, take a moment to add a new watchlist to the panel and then click on the newly
created list item. The ngClick directive you added should evaluate the gotoList() function of
the stkWatchlistPanel directive, which will result in your application routing you to a uniquely
named view for that watchlist. You should now see something along the lines of http://
localhost:9000/#/watchlist/1 inside your browser’s URL bar. Pressing the Back button of your
browser should take you back to the main Dashboard view.

 Congratulations! You have successfully implemented the client‐side routing for both views of
the StockDog application. In doing so, you have seen how the ngRoute module can be used to
implement deep linking inside an AngularJS application, as well as learning how the ngView
directive can be used to load route templates. If you’ve gotten stuck at any point during this
step, take a moment to examine the completed code by referring to the step-3 directory inside
the companion code for this chapter or checking out the corresponding tag of the GitHub
repository.

 STEP 4: CREATING A NAVIGATION BAR

 With client‐side routing out of the way, you can now take a few moments to spruce up the
navigation bar of the StockDog application by using native Bootstrap components. In its current
state, your application’s navigation bar has yet to be modifi ed from what was initially scaffolded
for you by the Yeoman generator. In this section, you will replace this default navigation bar with
one that is more fl uid and allows for appropriate navigation between the two main views of the
StockDog application.

 Updating the HTML
 First, you need to delete a few lines of code from your current app/index.html fi le. Go ahead and
open that fi le and start by deleting the line containing the opening <body ng-app="stockDogApp">
tag, located around line 19, and only stop right before the HTML comment containing
<!–– build:js(.) scripts/vendor.js ––> , located around line 61. If you have been following
along with the example code, you should have deleted around 42 lines from this fi le.

NOTE It is critically important that you do not delete the HTML comment
containing <!–– build:js(.) scripts/vendor.js ––> because this inline
comment is used by the build system, discussed later in this chapter, to optimize
the fi nal distributable version of your application.

c01.indd 23c01.indd 23 8/31/2015 12:33:53 PM8/31/2015 12:33:53 PM

24 ❘ CHAPTER 1 BUILDING A SIMPLE ANGULARJS APPLICATION

 Now that you have deleted the necessary lines from your application’s index.html fi le, go ahead
and insert the markup shown next in place of the lines that were just deleted:

 <!–– [1] Load MainCtrl ––>
 <body ng-app="stockDogApp" ng-controller="MainCtrl">
 <nav class="navbar navbar-inverse" role="navigation" ng-cloak>
 <div class="container-fluid">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle"
 data-toggle="collapse" data-target="#main-nav">

 </button>
 Stock Dog
 </div>

 <!–– Collect the nav links and other content for toggling ––>
 <div class="collapse navbar-collapse" id="main-nav">
 <ul class="nav navbar-nav navbar-right">
 <!–– [2] Add active class to necessary item ––>
 <li ng-class="{active: activeView === 'dashboard'}">
 Dashboard

 <li ng-class="{active: activeView === 'watchlist'}"
 class="dropdown">

 Watchlists <b class="caret">

 <ul class="dropdown-menu">
 <li ng-if="!watchlists.length" class="dropdown-header">
 No lists found

 <!–– [3] Create a unique link for each watchlist ––>
 <li ng-repeat="list in watchlists track by $index">
 {{list.name}}

 </div><!–– /.navbar-collapse ––>
 </div><!–– /.container-fluid ––>
 </nav>

 <!–– Main container ––>
 <div class="container-fluid" id="main">
 <div ng-view=""></div>

 <div class="footer">
 <p>Built with </p>
 </div>
 </div>

 The fi rst difference you should notice in this block of HTML is the use of the ng-controller
directive on the body tag [1] . In the previous section, you discovered how the ngRoute module

c01.indd 24c01.indd 24 8/31/2015 12:33:53 PM8/31/2015 12:33:53 PM

Step 4: Creating a Navigation Bar ❘ 25

could be used to load the desired controllers and views for a specifi c route. However, in this
case, you want to force AngularJS to load the MainCtrl controller because it will be used
for logic that should be applied to your application regardless of the current evaluated route.
This approach demonstrates a simple way to encapsulate application‐wide logic into a single
controller.

 Another addition to this markup that is worth mentioning is the use of the ng-class directive
[2] to add the Bootstrap active class to the navigation menu links, depending on the value
of the activeView scope variable. The fi nal AngularJS component used in this markup for the
navigation bar is the ng-repeat directive. It is used here [3] to create a unique for each
list in the watchlist scope variable. This example shows how nav links can be dynamically
generated based on data that an AngularJS controller provides. In its current state, your
application should be displaying an error in your browser’s console because the MainCtrl has
yet to be defi ned. This issue will be resolved in the next section when you create and implement
the MainCtrl .

 Creating MainCtrl
 You have seen how to use the Yeoman subgenerators to scaffold out new services, directives, and
routes. Now you will be following the same process to have Yeoman scaffold out a new AngularJS
controller. To accomplish this, go ahead and run the following from your command line:

 yo angular:controller Main

 This instructs Yeoman to create a new controller named MainCtrl inside the app/scripts/
controllers/main.js fi le and add the appropriate <script> tag reference to your app/index
.html fi le. Open this newly created fi le and replace its entire contents with the code shown in
Listing 1‐8.

 LISTING 1‐8: app/scripts/controllers/main.js

 'use strict';

 angular.module('stockDogApp')
 .controller('MainCtrl', function ($scope, $location, WatchlistService) {
 // [1] Populate watchlists for dynamic nav links
 $scope.watchlists = WatchlistService.query();

 // [2] Using the $location.path() function as a $watch expression
 $scope.$watch(function () {
 return $location.path();
 }, function (path) {
 if (_.contains(path, 'watchlist')) {
 $scope.activeView = 'watchlist';
 } else {
 $scope.activeView = 'dashboard';
 }
 });
 });

c01.indd 25c01.indd 25 8/31/2015 12:33:53 PM8/31/2015 12:33:53 PM

26 ❘ CHAPTER 1 BUILDING A SIMPLE ANGULARJS APPLICATION

 The MainCtrl uses both the $location service, provided by AngularJS, as well as the
WatchlistService , created earlier in this chapter. The WatchlistService is used to populate
the $scope.watchlist variable [1] , which is used in the markup to dynamically create multiple
drop‐down links for the top‐level Watchlists navigation item. For this controller to fi gure out the
current application route, the $location service is used in conjunction with the $scope.watch()
function so that every time the value returned from the $location.path() function changes,
your callback function can appropriately update the $scope.activeView variable (using the
_ .contains() function from Lodash), which is used to add an active class to the navigation bar.
The $scope.$watch() function is covered in more detail later in this book. For now, all you need
to know is that it watches the value returned from the fi rst function for changes and invokes the
callback specifi ed as its second argument on each change.

 Your application’s navigation bar should now be fully functional. See Figure 1-7 . For testing
purposes, go ahead and create a new watchlist (if you haven’t already) and then navigate to it
by selecting the appropriate link from the Watchlists drop‐down in the nav bar. Then click the
Dashboard link to return to the initial view of the StockDog application. If you’ve gotten stuck at
any point during this step, take a moment to examine the completed code by referring to the step-4
directory inside the companion code for this chapter or checking out the corresponding tag of the
GitHub repository.

FIGURE 1-7

 STEP 5: ADDING STOCKS

 The next major piece of functionality that needs to be implemented for StockDog is the ability to
add stocks to a watchlist. In a similar fashion to the way users can add a new watchlist to their
portfolio, you will be creating a new modal that will be displayed after clicking a specifi c button
on the watchlist view. This modal will allow users to search for companies listed on the NYSE,
NASDAQ, and AMEX stock exchanges, and add them, along with a specifi ed number of shares, to
part of a desired watchlist. In this section, you will learn how to leverage the various mechanisms
provided by AngularJS to accomplish this task.

c01.indd 26c01.indd 26 8/31/2015 12:33:53 PM8/31/2015 12:33:53 PM

Step 5: Adding Stocks ❘ 27

 Creating the CompanyService
 The fi rst order of business is to create a new AngularJS service that will be in charge of fetching
a list of companies and relevant data for each of the three major exchanges. Normally, this
would be accomplished by communicating with a back-end service of some kind, but for the
purposes of this application, a JSON fi le has been created for your perusal. You can fi nd the
companies.json fi le inside the step-5/app/ directory of the associated companion code, as well
as inside the app/ directory of the GitHub repo https://github.com/diegonetto/stock-dog .
Once you’ve downloaded the fi le, go ahead and save it inside the app/ directory of your local
project. Next, run the following from your command line to scaffold out and wire up a new
AngularJS service:

 yo angular: service Company-Service

 This creates a company-service.js fi le inside your app/scripts/services directory. The
implementation for this service is shown in Listing 1‐9. Notice that the $resource service, which
creates a resource object that facilitates interaction with RESTful server‐side data sources and will
be covered in detail in a Chapter 8, “Server Communication,” is injected as a dependency. The
takeaway at this point is that the $resource service is taking care of fetching the companies.json
fi le from your local fi le system and returning an object that will allow you to query against the
provided list of publicly traded companies.

 LISTING 1‐9: app/scripts/services/company.js

 'use strict';

 angular.module('stockDogApp')
 .service('CompanyService', function CompanyService($resource) {
 return $resource('companies.json');
 });

 You will be making use of this newly created CompanyService shortly, but before continuing onto
the next section, take a moment to open the Gruntfile.js located in your project’s root directory
and fi nd the src property of the copy task, located around line 300. You will need to add json to
the src array so that the companies.json fi le will be copied into the built distributable when you
are preparing your application for production later in this chapter. The modifi cation should leave
the fi rst entry of the src array looking like this:

 '*.{ico,png,txt,json}',

 Creating the AddStock Modal
 With the CompanyService complete, it is time to create a new view that will serve as the modal for
allowing your users to add new stocks to the currently selected watchlist. Go ahead and create a
new fi le named addstock-modal.html inside your app/views/templates/ directory. You can see
the implementation for this view in Listing 1‐10.

c01.indd 27c01.indd 27 8/31/2015 12:33:54 PM8/31/2015 12:33:54 PM

28 ❘ CHAPTER 1 BUILDING A SIMPLE ANGULARJS APPLICATION

 LISTING 1‐10: app/views/templates/addstock‐modal.html

 <div class="modal" tabindex="-1" role="dialog">
 <div class="modal-dialog">
 <div class="modal-content">
 <div class="modal-header">
 <button type="button" class="close" ng-click="$hide()">×</button>
 <h4 class="modal-title">Add New Stock</h4>
 </div>

 <form role="form" id="add-stock" name="stockForm">
 <div class="modal-body">
 <div class="form-group">
 <label for="stock-symbol">Symbol</label>
 // [1] Use ng-options with label syntax and bs-typeahead directive
 <input type="text"
 class="form-control"
 id="stock-symbol"
 placeholder="Stock Symbol"
 ng-model="newStock.company"
 ng-options="company as company.label for company in companies"
 bs-typeahead
 required>
 </div>
 // [2] Only accept numbers for shares owned
 <div class="form-group">
 <label for="stock-shares">Shares Owned</label>
 <input type="number"
 class="form-control"
 id="stock-shares"
 placeholder="# Shares Owned"
 ng-model="newStock.shares"
 required>
 </div>
 </div>
 <div class="modal-footer">
 <button type="submit"
 class="btn btn-success"
 ng-click="addStock()"
 ng-disabled="!stockForm.$valid">Add</button>
 <button type="button"
 class="btn btn-danger"
 ng-click="$hide()">Cancel</button>
 </div>
 </form>

 </div>
 </div>
 </div>

 This should look fairly similar to the previous modal for adding new watchlists to StockDog. The
fi rst input [1] uses the bs-typeahead directive from the AngularStrap project, which utilizes the
native Angular ng-options directive for providing the data required for the typeahead mechanism to
function. The ng-options directive accepts multiple forms of syntax. In this case, you are forcing it to

c01.indd 28c01.indd 28 8/31/2015 12:33:54 PM8/31/2015 12:33:54 PM

Step 5: Adding Stocks ❘ 29

use the label property of each company object in the companies scope variable, which will be created
inside the WatchlistCtrl shortly, as the data to be displayed in the typeahead recommendations. The
second input [2] simply allows users to specify the number of shares owned of a particular stock.

 Updating the WatchlistService
 Before continuing on to developing the WatchlistCtrl and associated watchlist view, you need to
make a few modifi cations to the existing WatchlistService . To abstract the various calculations
and interactions between watchlists and their associated stocks, you will be creating two separate
objects to be used as models for the required behaviors. Inside the top of the service implementation
function of your watchlist-service.js fi le, located inside the app/scripts/services/ directory,
add the following lines of code to create a StockModel object with a save() function:

 // Augment Stocks with additional helper functions
 var StockModel = {
 save: function () {
 var watchlist = findById(this.listId);
 watchlist.recalculate();
 saveModel();
 }
 };

 Because watchlists are composed of many stocks, you will also need to create a WatchlistModel
with addStock() , removeStock() , and recalculate() functions, as shown here:

 // Augment watchlists with additional helper functions
 var WatchlistModel = {
 addStock: function (stock) {
 var existingStock = _.find(this.stocks, function (s) {
 return s.company.symbol === stock.company.symbol;
 });
 if (existingStock) {
 existingStock.shares += stock.shares;
 } else {
 _.extend(stock, StockModel);
 this.stocks.push(stock);
 }
 this.recalculate();
 saveModel();
 },
 removeStock: function (stock) {
 _.remove(this.stocks, function (s) {
 return s.company.symbol === stock.company.symbol;
 });
 this.recalculate();
 saveModel();
 },
 recalculate: function () {
 var calcs = _.reduce(this.stocks, function (calcs, stock) {
 calcs.shares += stock.shares;
 calcs.marketValue += stock.marketValue;
 calcs.dayChange += stock.dayChange;

c01.indd 29c01.indd 29 8/31/2015 12:33:54 PM8/31/2015 12:33:54 PM

30 ❘ CHAPTER 1 BUILDING A SIMPLE ANGULARJS APPLICATION

 return calcs;
 }, { shares: 0, marketValue: 0, dayChange: 0 });

 this.shares = calcs.shares;
 this.marketValue = calcs.marketValue;
 this.dayChange = calcs.dayChange;
 }
 };

 Finally, the method in which data is serialized and unserialized from LocalStorage needs to be
modifi ed because you will be extending the two previously created models to create the proper data
structure in memory required to power the application. Modify the existing loadModel() and
this.save() functions to look like those shown here:

 // Helper: Load watchlists from localStorage
 var loadModel = function () {
 var model = {
 watchlists: localStorage['StockDog.watchlists'] ?
 JSON.parse(localStorage['StockDog.watchlists']) : [],
 nextId: localStorage['StockDog.nextId'] ?
 parseInt(localStorage['StockDog.nextId']) : 0
 };
 _.each(model.watchlists, function (watchlist) {
 _.extend(watchlist, WatchlistModel);
 _.each(watchlist.stocks, function (stock) {
 _.extend(stock, StockModel);
 });
 });
 return model;
 };

 // Save a new watchlist to watchlists model
 this.save = function (watchlist) {
 watchlist.id = Model.nextId++;
 watchlist.stocks = [];
 _.extend(watchlist, WatchlistModel);
 Model.watchlists.push(watchlist);
 saveModel();
 };

Implementing WatchlistCtrl
 Next, you will be modifying the current WatchlistCtrl , which is still an empty skeleton that was
created by Yeoman during the scaffolding process. Open up the watchlist.js fi le, located inside the
app/scripts/controllers/ directory, and modify it to look like Listing 1‐11.

 LISTING 1‐11: app/scripts/controllers/watchlist.js

 'use strict';

 angular.module('stockDogApp')
 .controller('WatchlistCtrl', function ($scope, $routeParams, $modal,
 WatchlistService, CompanyService) {

c01.indd 30c01.indd 30 8/31/2015 12:33:54 PM8/31/2015 12:33:54 PM

Step 5: Adding Stocks ❘ 31

 // [1] Initializations
 $scope.companies = CompanyService.query();
 $scope.watchlist = WatchlistService.query($routeParams.listId);
 $scope.stocks = $scope.watchlist.stocks;
 $scope.newStock = {};
 var addStockModal = $modal({
 scope: $scope,
 template: 'views/templates/addstock-modal.html',
 show: false
 });

 // [2] Expose showStockModal to view via $scope
 $scope.showStockModal = function () {
 addStockModal.$promise.then(addStockModal.show);
 };

 // [3] Call the WatchlistModel addStock() function and hide the modal
 $scope.addStock = function () {
 $scope.watchlist.addStock({
 listId: $routeParams.listId,
 company: $scope.newStock.company,
 shares: $scope.newStock.shares
 });
 addStockModal.hide();
 $scope.newStock = {};
 };
 });

 You should notice that $routeParams , $modal , WatchlistService , and CompanyService
are all being injected as dependencies. The CompanyService ’s query() function, provided by
the object returned from using the $resource service as previously mentioned, is invoked to
populate the companies scope variable, which will be utilized in the watchlist view momentarily.
The rest of the code is straightforward, with the WatchlistService being used to initialize the
watchlist scope variable, which is in turn used to retrieve the current watchlist variable using
the listId passed along in the route parameters [1] . Next, the modal itself is instantiated, and
defi nitions are made for the [2] showStockModal() and [3] addStock() functions.

 Modifying the Watchlist View
 Because modifi cations were made to the way watchlists were saved and loaded, take a moment
to delete all current watchlists from your application before proceeding with the updates to the
watchlist view markup. Once that is complete, go ahead and modify the existing app/views/
watchlist.html fi le to include a Bootstrap panel where the list of stocks will be displayed. As it
stands, this fi le should only contain one row comprised of two columns, with the left column being
comprised of the stk-watchlist-panel directive. Modify the right column of this fi le to match the
HTML markup shown in Listing 1‐12.

 LISTING 1‐12: app/views/watchlist.html

 <div class="row">
 <!–– Left Column ––>

continues

c01.indd 31c01.indd 31 8/31/2015 12:33:54 PM8/31/2015 12:33:54 PM

32 ❘ CHAPTER 1 BUILDING A SIMPLE ANGULARJS APPLICATION

LISTING 1-12 (continued)

 <div class="col-md-3">
 <stk-watchlist-panel></stk-watchlist-panel>
 </div>

 <!–– Right Column ––>
 <div class="col-md-9">
 <div class="panel panel-info">
 <div class="panel-heading">

 {{watchlist.description}}
 <button type="button"
 class="btn btn-success btn-xs pull-right"
 ng-click="showStockModal()">

 </button>
 </div>
 <div class="panel-body table-responsive">
 <div ng-hide="stocks.length" class="jumbotron">
 <h1>Woof.</h1>
 <p>Looks like you haven't added any stocks to this watchlist yet!</p>
 <p>Do so now by clicking the
 located above.
 </p>
 </div>
 <!—[1] loop over all stocks and display company symbols ––>
 <p ng-repeat="stock in stocks">{{stock.company.symbol}}</p>
 </div>
 </div>
 </div>
 </div>

 By now, you should be comfortable using the ng-click , ng-hide , and ng-repeat directives, the
latter of which is currently being used for simply displaying the stock’s company ticker symbol. This
will be revisited in a later step when it comes time to build the stock table directives.

 At this point, you should be able to add new stocks to a selected watchlist by clicking the green plus
button in the panel heading, selecting a stock by searching for its company name or ticker symbol,
and clicking the desired typeahead recommendation. See Figure 1-8 . If your application is not
functioning properly, be sure to check your browser’s developer tools console for errors, and take a
moment to review the code included in this section. You can refer to the step-5 directory inside the
companion code for this chapter or check out the corresponding tag of the GitHub repository.

 STEP 6: INTEGRATING WITH YAHOO FINANCE

 Now that your StockDog application is able to manage manipulating watchlists and stocks, it is
time to begin fetching quote information from an external service provider—in this case Yahoo
Finance. In this section, you will create a new AngularJS service that will be responsible for making
asynchronous HTTP requests to the Yahoo Finance API and updating the in‐memory data structure
that powers the application.

c01.indd 32c01.indd 32 8/31/2015 12:33:54 PM8/31/2015 12:33:54 PM

Step 6: Integrating with Yahoo Finance ❘ 33

FIGURE 1-8

 Creating the QuoteService
 To encapsulate the HTTP requests and response parsing into a reusable component, you will be
creating a new AngularJS service. Run the following command from your terminal to have Yeoman
scaffold your new QuoteService :

 yo angular:service Quote-Service

 As seen several times in this chapter, this creates a skeleton implementation of, in this case, an
AngularJS service named QuoteService inside of a newly created quote-service.js fi le located
within your app/scripts/services directory. You can see the entire implementation for the
QuoteService in Listing 1‐13.

 LISTING 1‐13: app/scripts/services/quote‐service.js

 'use strict';

 angular.module('stockDogApp')
 .service('QuoteService', function ($http, $interval) {
 var stocks = [];
 var BASE = 'http://query.yahooapis.com/v1/public/yql';

 // [1] Handles updating stock model with appropriate data from quote
 var update = function (quotes) {
 console.log(quotes);
 if (quotes.length === stocks.length) {
 _.each(quotes, function (quote, idx) {
 var stock = stocks[idx];
 stock.lastPrice = parseFloat(quote.LastTradePriceOnly);
 stock.change = quote.Change;
 stock.percentChange = quote.ChangeinPercent;

continues

c01.indd 33c01.indd 33 8/31/2015 12:33:54 PM8/31/2015 12:33:54 PM

34 ❘ CHAPTER 1 BUILDING A SIMPLE ANGULARJS APPLICATION

LISTING 1-13 (continued)

 stock.marketValue = stock.shares * stock.lastPrice;
 stock.dayChange = stock.shares * parseFloat(stock.change);
 stock.save();
 });
 }
 };

 // [2] Helper functions for managing which stocks to pull quotes for
 this.register = function (stock) {
 stocks.push(stock);
 };
 this.deregister = function (stock) {
 _.remove(stocks, stock);
 };
 this.clear = function () {
 stocks = [];
 };

 // [3] Main processing function for communicating with Yahoo Finance API
 this.fetch = function () {
 var symbols = _.reduce(stocks, function (symbols, stock) {
 symbols.push(stock.company.symbol);
 return symbols;
 }, []);
 var query = encodeURIComponent('select * from yahoo.finance.quotes ' +
 'where symbol in (\'' + symbols.join(',') + '\')');
 var url = BASE + '?' + 'q=' + query + '&format=json&diagnostics=true' +
 '&env=http://datatables.org/alltables.env';
 $http.jsonp(url + '&callback=JSON_CALLBACK')
 .success(function (data) {
 if (data.query.count) {
 var quotes = data.query.count > 1 ?
 data.query.results.quote : [data.query.results.quote];
 update(quotes);
 }
 })
 .error(function (data) {
 console.log(data);
 });
 };

 // [4] Used to fetch new quote data every 5 seconds
 $interval(this.fetch, 5000);
 });

 Because the QuoteService is in charge of communicating with the Yahoo Finance API, you’ll
notice that the $http service was injected as a dependency. The $interval service that was also
injected is Angular’s wrapper for window.setInterval . Internally this service keeps track of an
array of stocks for which quote data should be retrieved. The update() function [1] handles
parsing the response from Yahoo Finance into the required stock model properties. This code

c01.indd 34c01.indd 34 8/31/2015 12:33:54 PM8/31/2015 12:33:54 PM

Step 6: Integrating with Yahoo Finance ❘ 35

also contains helper functions [2] for adding, removing, and clearing the internal array of
stocks being tracked. Finally, the fetch() function [3] generates the appropriate Yahoo Finance
query URL before invoking the $http service to make an asynchronous request to the desired
endpoint. The response from Yahoo is then passed into the update() function for processing as
previously described.

 Invoking Services from the Console
 Because your newly created QuoteService has not been injected and used anywhere in the
StockDog application at this time, the easiest way to quickly spot‐check this service is by typing a
few lines into the console of your browser developer tools. Go ahead and open that now and paste
the following lines directly into the browser console:

 Quote = angular.element(document.body).injector().get('QuoteService')
 Watchlist = angular.element(document.body).injector().get('WatchlistService')
 Quote.register(Watchlist.query()[0].stocks[0])

 This grabs a reference to the QuoteService and WatchlistService and then invokes the
QuoteService ’s register() function with the fi rst stock of the fi rst watchlist available. (So make
sure you have created at least one watchlist and added at least one stock.) Within fi ve seconds, you
should see an array containing a single object. Inspecting that object should show you all the data
provided by the Yahoo Finance API for that one particular stock, similar to Figure 1-9 .

 Now that you have fi nished creating the QuoteService and verifi ed that it is successfully pulling
data from the Yahoo Finance API, you are ready to move onto the next section and display that data
in a table on the watchlist view. If your application is not functioning properly, please refer to the
step-6 directory inside the companion code for this chapter or check out the corresponding tag of
the GitHub repository.

FIGURE 1-9

c01.indd 35c01.indd 35 8/31/2015 12:33:54 PM8/31/2015 12:33:54 PM

36 ❘ CHAPTER 1 BUILDING A SIMPLE ANGULARJS APPLICATION

 STEP 7: CREATING THE STOCK TABLE

 In this section, you will be exposed to a more sophisticated use of AngularJS directives. Specifi cally,
you will see how directives can communicate data between themselves as you build a table for
displaying information on a stock’s performance.

 Creating the StkStockTable Directive
 To get started, you will be creating a new directive for the stock table. As you’ve seen several times, you
can do this using the AngularJS Yeoman generator by running the following from your command line:

 yo angular:directive stk-Stock-Table

 This creates a stk-stock-table.js fi le inside of app/scripts/directives and links the new JavaScript
fi le inside of index.html . The implementation of the stkStockTable directive is shown in Listing 1‐14.

 LISTING 1‐14: app/scripts/directives/stk‐stock‐table.js

 'use strict';

 angular.module('stockDogApp')
 .directive('stkStockTable', function () {
 return {
 templateUrl: 'views/templates/stock-table.html',
 restrict: 'E',
 // [1] Isolate scope
 scope: {
 watchlist: '='
 },
 // [2] Create a controller, which serves as an API for this directive
 controller: function ($scope) {
 var rows = [];

 $scope.$watch('showPercent', function (showPercent) {
 if (showPercent) {
 _.each(rows, function (row) {
 row.showPercent = showPercent;
 });
 }
 });

 this.addRow = function (row) {
 rows.push(row);
 };

 this.removeRow = function (row) {
 _.remove(rows, row);
 };
 },

 // [3] Standard link function implementation

c01.indd 36c01.indd 36 8/31/2015 12:33:55 PM8/31/2015 12:33:55 PM

Step 7: Creating the Stock Table ❘ 37

 link: function ($scope) {
 $scope.showPercent = false;
 $scope.removeStock = function (stock) {
 $scope.watchlist.removeStock(stock);
 };
 }
 };
 });

 The fi rst thing you should notice is that this directive contains an object for its scope property [1] .
By isolating the scope of a directive in this way, you can bind an attribute of the directive’s DOM
element. You will explore this in more detail in Chapter 4 , “Data Binding,” but for now, know that
when you use the stkStockTable directive, you must include an attribute named watchlist and
assign it an expression to be evaluated. Also of note in this example is that this directive contains
a controller property [2] . This, in a more general sense, is how you expose an API for other
directives to use for communication. Because inside the controller property’s implementation both
the addRow() and removeRow() function are attached to the this object, they will be available for
external use. The concept here is that the stkStockTable directive keeps track, internally, of all
the rows in the table. This allows it to modify the rows if needed, as is the case, in this example,
for toggling the showPercent property of each row’s scope. Finally, this directive also includes the
link property [3] , which is typical for DOM manipulation, and in this case simply initializes the
showPercent scope variable and exposes a removeStock() function via the top‐level directive scope.

Creating the StkStockRow Directive
 Now that the main stkStockTable directive has been created, it’s time to create the directive that
will be repeated for each table row. Run the following from the command line to create a new
stkStockRow directive:

 yo angular:directive stk-Stock-Row

 This creates the stk-stock-row.js fi le inside the app/scripts/directives directory with a skeleton
for the stkStockRow directive. The implementation for this directive is shown in Listing 1‐15.

 LISTING 1‐15: app/scripts/directives/stk‐stock‐row.js

 'use strict';

 angular.module('stockDogApp')
 .directive('stkStockRow', function ($timeout, QuoteService) {
 return {
 // [1] Use as element attribute and require stkStockTable controller
 restrict: 'A',
 require: '^stkStockTable',
 scope: {
 stock: '=',
 isLast: '='
 },
 // [2] The required controller will be made available at the end

continues

c01.indd 37c01.indd 37 8/31/2015 12:33:55 PM8/31/2015 12:33:55 PM

38 ❘ CHAPTER 1 BUILDING A SIMPLE ANGULARJS APPLICATION

LISTING 1-15 (continued)

 link: function ($scope, $element, $attrs, stockTableCtrl) {
 // [3] Create tooltip for stock-row
 $element.tooltip({
 placement: 'left',
 title: $scope.stock.company.name
 });

 // [4] Add this row to the TableCtrl
 stockTableCtrl.addRow($scope);

 // [5] Register this stock with the QuoteService
 QuoteService.register($scope.stock);

 // [6] Deregister company with the QuoteService on $destroy
 $scope.$on('$destroy', function () {
 stockTableCtrl.removeRow($scope);
 QuoteService.deregister($scope.stock);
 });

 // [7] If this is the last 'stock-row', fetch quotes immediately
 if ($scope.isLast) {
 $timeout(QuoteService.fetch);
 }

 // [8] Watch for changes in shares and recalculate fields
 $scope.$watch('stock.shares', function () {
 $scope.stock.marketValue = $scope.stock.shares *
 $scope.stock.lastPrice;
 $scope.stock.dayChange = $scope.stock.shares *
 parseFloat($scope.stock.change);
 $scope.stock.save();
 });
 }
 };
 });

For this directive, only $timeout and QuoteService are injected as dependencies. Also, you
might have already noticed that the restrict property [1] has been set to A , which means that
stkStockRow is meant to be used as an attribute of a DOM element instead of as a DOM element
itself as was the case with the previously created directives. You should also make note of the use
of the require property. This is how you tell the directive that it needs a specifi c controller, which
in this case was defi ned inside the stkStockTable directive. The ^ prefi x instructs this directive
to search for controllers on its parent scopes, which is exactly what you want it to do in this case.
The required controller is then available via the last parameter of the link function, as seen in
[2] . Because each row has its own tooltip markup, this directive is a great location to put the
tooltip initialization code [3] . The rest of the code takes care of registering the $scope for each
row using the stkStockTable directive’s addRow() function [4] , registering the row’s stock with
the QuoteService on creation [5] and deregistering it when the row is destroyed [6] , as well as
immediately triggering a QuoteService.fetch() call if the currently created row is the last one in
the table [7] . Finally, a $watch() is used to monitor changes to the stock’s number of shares so that
the appropriate calculations can be made [8] .

c01.indd 38c01.indd 38 8/31/2015 12:33:55 PM8/31/2015 12:33:55 PM

Step 7: Creating the Stock Table ❘ 39

 Creating the Stock Table Template
 With both the stkStockTable and stkStockRow directives now complete, the next order of business
is to create a new HTML template view for the stock table. Go ahead and create a new fi le named
stock-table.html inside your app/views/templates/ directory and make it look like the markup
shown in Listing 1‐16.

 LISTING 1‐16: app/views/templates/stock‐table.html

 <table class="table">
 <thead>
 <tr>
 <td>Symbol</td>
 <td>Shares Owned</td>
 <td>Last Price</td>
 <td>Price Change
 (
 <!––[1] Toggle showPercent scope variable on click ––>

 <a ng-click="showPercent = !showPercent">$
 |

 <a ng-click="showPercent = !showPercent">%
)

 </td>
 <td>Market Value</td>
 <td>Day Change</td>
 </tr>
 </thead>
 <!–– [2] Only show footer if more than one stock exists ––>
 <tfoot ng-show="watchlist.stocks.length > 1">
 <tr>
 <td>Totals</td>
 <td>{{watchlist.shares}}</td>
 <td></td>
 <td></td>
 <td>{{watchlist.marketValue}}</td>
 <td>{{watchlist.dayChange}}</td>
 </tr>
 </tfoot>
 <tbody>
 <!–– [3] Use stk-stock-row to create row for each stock ––>
 <tr stk-stock-row
 ng-repeat="stock in watchlist.stocks track by $index"
 stock="stock"
 is-last="$last">
 <td>{{stock.company.symbol}}</td>
 <td>{{stock.shares}}</td>
 <td>{{stock.lastPrice}}</td>
 <td>
 {{stock.change}}
 {{stock.percentChange}}

continues

c01.indd 39c01.indd 39 8/31/2015 12:33:55 PM8/31/2015 12:33:55 PM

40 ❘ CHAPTER 1 BUILDING A SIMPLE ANGULARJS APPLICATION

LISTING 1-16 (continued)

 </td>
 <td>{{stock.marketValue}}</td>
 <td>{{stock.dayChange}}
 <button type="button" class="close"
 ng-click="removeStock(stock)">×</button>
 </td>
 </tr>
 </tbody>
 </table>

 Although the markup for stock-table.html is not overly complicated, there are a few things worth
pointing out. First, inside the <thead> , you should notice that the Price Change header cell contains
two spans with ng-click directives that assign a value to the showPercent scope variable [1] . This
is the fi rst example using this form of an expression and is a helpful way to accomplish simple tasks,
in this case toggling a Boolean without creating a scope function. You should also note the use of
ng-show to only display the table footer if there is more than one stock in the current watchlist [2]
because it contains calculated totals. Finally, although this view template is for the stkStockTable
directive, under the hood it uses an ng-repeat to create <tr> elements containing the stkStockRow
directive [3] . Using external directives inside another directive’s template is perfectly acceptable; just
take care in not overcomplicating your approach because you may run into situations in which you
have to manually compile child directive templates using the $compile service.

 Updating the Watchlist View
 The only remaining task in completing this step is to invoke the stkStockTable directive by
including it in StockDog’s watchlist view. Open your project’s app/views/watchlist.html fi le
and locate the <p> tag containing the ng-repeat directive. Instead of simply displaying the stock’s
company symbol, you want to render the entire interactive table. Replace that entire line with the
following code to accomplish this task:

 <stk-stock-table ng-show="stocks.length" watchlist="watchlist">

 Congratulations on successfully completing the fi rst pass over the stock table! See Figure 1-10 . You
might be thinking that it isn’t the most beautiful table you’ve ever created, but don’t fret. Over the
next three sections, you will be refi ning it into a more polished product. In the next section, you
will see how to make individual cells editable, adding even more interactivity to your table. If your
application is not functioning properly, please refer to the step-7 directory inside the companion
code for this chapter or check out the corresponding tag of the GitHub repository.

 STEP 8: INLINE FORM EDITING

 Now that StockDog has a functioning table that can display information on the various stocks
being tracked by a watchlist, the next step is to make the application more interactive by allowing
users to edit the number of shares owned for each stock. Because data is being displayed in a table,
a common paradigm for editing values is to modify them inline, much like a spreadsheet. In this

c01.indd 40c01.indd 40 8/31/2015 12:33:55 PM8/31/2015 12:33:55 PM

Step 8: Inline Form Editing ❘ 41

section, you will see how to create a directive that can be used in conjunction with HTML5’s
contenteditable attribute to accomplish this functionality.

FIGURE 1-10

Creating the Contenteditable Directive
 Because this new directive will be extending the contenteditable attribute’s functionality, it
must share the same name. Run the following command from your terminal to scaffold out a new
AngularJS directive using Yeoman:

 yo angular:directive contenteditable

 This creates a new fi le named contenteditable.js inside your app/scripts/directives/ directory.
The contenteditable directive is restricted to an attribute and performs sanitization and validation
of user‐inputted data. You can fi nd the full implementation of this new directive in Listing 1‐17.

 LISTING 1‐17: app/scripts/directives/contenteditable.js

 'use strict';

 var NUMBER_REGEXP = /^\s*(\-|\+)?(\d+|(\d*(\.\d*)))\s*$/;

 angular.module('stockDogApp')
 .directive('contenteditable', function ($sce) {
 return {
 restrict: 'A',
 require: 'ngModel', // [1] Get a hold of NgModelController

continues

c01.indd 41c01.indd 41 8/31/2015 12:33:55 PM8/31/2015 12:33:55 PM

42 ❘ CHAPTER 1 BUILDING A SIMPLE ANGULARJS APPLICATION

 link: function($scope, $element, $attrs, ngModelCtrl) {
 if(!ngModelCtrl) { return; } // do nothing if no ng-model

 // [2] Specify how UI should be updated
 ngModelCtrl.$render = function() {
 $element.html($sce.getTrustedHtml(ngModelCtrl.$viewValue || ''));
 };

 // [3] Read HTML value, and then write data to the model or reset the view
 var read = function () {
 var value = $element.html();
 if ($attrs.type === 'number' && !NUMBER_REGEXP.test(value)) {
 ngModelCtrl.$render();
 } else {
 ngModelCtrl.$setViewValue(value);
 }
 };

 // [4] Add custom parser-based input type (only 'number' supported)
 // This will be applied to the $modelValue
 if ($attrs.type === 'number') {
 ngModelCtrl.$parsers.push(function (value) {
 return parseFloat(value);
 });
 }

 // [5] Listen for change events to enable binding
 $element.on('blur keyup change', function() {
 $scope.$apply(read);
 });
 }
 };
 });

 As with the stkStockRow directive, the require property is once again used to grab a handle on an
external directive’s controller. In this case, ngModel is being required [1] because you want to take
advantage of Angular’s bidirectional data binding to trigger updates to the rest of the table based on
the user’s modifi cation. Next, the ngModelCtrl.$render() function is implemented, which is required
to inform the ngModel directive how the view should be updated. Here, the Strict Contextual Escaping
service $sce is used, which was the only injected dependency, to sanitize user input before updating
the view’s HTML [2] . A read() function is then defi ned that inspects the element’s current HTML
value and, if its type property is set to number , tests to see if the value is a number using a regularr

expression [3] . In this case, your contenteditable directive is only used for the Shares Owned cell,
so only a number type is supported, but you can easily extend this functionality to support other input
types and formats. If the current value is not a number, the ngModelCtrl.$render() function is called,
which updates the view with the previous value. However, if the user does in fact input a valid number,
the directive calls ngModelCtrl.$setViewValue() , which handles invoking $render() with the new
value and kicks off the ngModel $parsers pipeline. A custom parser is defi ned [4] to support number
input types. It parses the $viewValue into a number so that ngModel can update the $modelValue ,

LISTING 1‐17: (continued)

c01.indd 42c01.indd 42 8/31/2015 12:33:56 PM8/31/2015 12:33:56 PM

Step 8: Inline Form Editing ❘ 43

which can then be properly used to recalculate values for the stock table. Finally, the $element.on()
function is used to listen for the blur , r keyup , and change events so that read() can be invoked after
each modifi cation [5] .

 Updating the StkStockTable Template
 All that is left to do is update the stock-table.html fi le located in the app/views/templates
directory to utilize this newly created contenteditable directive. Find the line containing
<td>{{stock.shares}}</td> and replace it entirely with the following:

 <td contenteditable type="number" ng-model="stock.shares"></td>

 Notice that the type attribute is set to number , and r ng-model is used to bind to the shares value of
the row’s stock object. Because it might not be explicitly clear to your users that you can perform
inline edits on the Shares Owned cell, add the following line to the bottom of your stock-table
.html fi le:

 <div class="small text-center">Click on Shares Owned cell to edit.</div>

 With these two quick modifi cations complete, take a moment to test out the inline editing
functionality, an example of which is shown in Figure 1-11 . Attempting to type any characters
other than a number into a row’s Shares Owned cell immediately resets the value. However, after
each successful modifi cation that results in a valid number, the entire stock table is recalculated in
real time. If your application is not functioning properly, please refer to the step-8 directory inside
the companion code for this chapter or check out the corresponding tag of the GitHub repository.

FIGURE 1-11

c01.indd 43c01.indd 43 8/31/2015 12:33:56 PM8/31/2015 12:33:56 PM

44 ❘ CHAPTER 1 BUILDING A SIMPLE ANGULARJS APPLICATION

 STEP 9: FORMATTING CURRENCY

 At this point, StockDog’s watchlist view is fully functional. Watchlists can be created, and stocks
can be added, deleted, and edited using the stock table, but the way the data is being displayed
isn’t ideal. In this section you will be formatting the displayed numbers using Angular’s built‐in
currency fi lter, in addition to creating a new directive that changes the number’s color based on
whether it is refl ecting a positive or negative change.

 Creating the StkSignColor Directive
 The fi rst order of business is to create a new stkSignColor directive that you can apply to existing
elements to modify their displayed color to be either red or green. Go ahead and run the following
command from your terminal to scaffold out this directive:

 yo angular:directive stk-Sign-Color

 This creates a new fi le named stk-sign-color.js inside your app/scripts/directives/ directory. You
can see the full implementation of the stkSignColor directive in Listing 1‐18. The fi rst thing you may
notice is that instead of a $scope.$watch() , an $attrs.$observe() was used to listen to changes in the
expression assigned to stkSignColor [1] . Because $observe() is a function of the $attrs object, it can
only be used to observe/watch the value change of a DOM attribute, which in this case is exactly what
you want. The rest of this directive is incredibly simple because all it has to do is update the $element ’s
style.color property depending on whether the expression’s new value is positive or negative [2] .

 LISTING 1‐18: app/scripts/directives/stk‐sign‐color.js

 'use strict';

 angular.module('stockDogApp')
 .directive('stkSignColor', function () {
 return {
 restrict: 'A',
 link: function ($scope, $element, $attrs) {
 // [1] Use $observe to watch expression for changes
 $attrs.$observe('stkSignColor', function (newVal) {
 var newSign = parseFloat(newVal);
 // [2] Set element's style.color value depending on sign
 if (newSign > 0) {
 $element[0].style.color = 'Green';
 } else {
 $element[0].style.color = 'Red';
 }
 });
 }
 };
 });

 Updating the StockTable Template
 In addition to adding the stkSignColor directive to your stock-table.html template, you need to
use Angular’s built‐in currency fi lter. Although an in‐depth discussion of Angular fi lters is outside

c01.indd 44c01.indd 44 8/31/2015 12:33:57 PM8/31/2015 12:33:57 PM

Step 9: Formatting Currency ❘ 45

the scope of this chapter, all you need to know to move forward is that a fi lter formats the value
of an expression for display to the user. A fi lter can be used in view templates, controllers, and
services, and it is fairly straightforward to create your own custom fi lter. You can apply a fi lter to
an expression in a view template using this syntax: {{ expression | filter }} . To learn more
about what fi lters are available out of the box, visit the offi cial documentation located at https://
docs.angularjs.org/api/ng/filter . For this section, you will be using the currency fi lter, with
default parameters. The full syntax for the currency fi lter is as follows:

 {{ currency_expression | currency : symbol : fractionSize}}

 Because the symbol defaults to $ and the fractionSize to the current locale’s max fraction size,
using the currency fi lter is almost trivial. Go ahead and add | currency to the watchlist
.marketValue , watchlist.dayChange , stock.lastPrice , stock.marketValue , and stock
.dayChange expression bindings. Then you’ll want to add the stk-sign-color attribute, with a
binding to a value that should be watched for changes, to each <td> element that you want to color.
In this case, you’ll want to color the watchlist.dayChange cell in the footer, as well as the Price
Change and Day Change columns in the table. Here is an example of applying the stk-sign-color
directive to the watchlist.dayChange row in the footer:

 <td stk-sign-color="{{watchlist.dayChange}}">
 {{watchlist.dayChange | currency}}
 </td>

 The application of the stk-sign-color directive to the remaining two cells is left as an exercise for
you, the reader. Once the currency fi lters and stk-sign-color directives are properly in place, your
application should look something like Figure 1-12 . If you fi nd yourself struggling with applying the
directive and currency fi lters in the correct location of the markup, please refer to the y step-9 directory
inside the companion code for this chapter or check out the corresponding tag of the GitHub repository.

FIGURE 1-12

c01.indd 45c01.indd 45 8/31/2015 12:33:57 PM8/31/2015 12:33:57 PM

46 ❘ CHAPTER 1 BUILDING A SIMPLE ANGULARJS APPLICATION

STEP 10: ANIMATING PRICE CHANGES

 In this section, you will learn the basics of how to use Angular’s ngAnimate module to perform an
animation on StockDog’s watchlist view. To visually show your users the price action of a given
stock—that is, whether there has been a positive or a negative change in value—a red or green
crossfade on the entire cell is performed. Although a complete discussion on creating JavaScript and
CSS3 animations with Angular is outside the scope of this chapter, you can fi nd more information
by visiting the offi cial documentation at https://docs.angularjs.org/api/ngAnimate .

Creating the StkSignFade Directive
 Because the desired result is to crossfade an entire table cell, you need to create another directive
that will be used as an attribute so that it can be dropped onto existing elements. To get started, run
the following command from your terminal:

 yo angular:directive stk-Sign-Fade

 This creates a new stk-sign-fade.js fi le inside your app/scripts/directives/ directory. Just as with
the stkSignColor directive you created in the previous section, this directive will be fairly short and
straightforward. You can fi nd the complete implementation of the stkSignFade directive in Listing 1‐19.

 LISTING 1‐19: app/scripts/directives/stk‐sign‐fade.js

 'use strict';

 angular.module('stockDogApp')
 .directive('stkSignFade', function ($animate) {
 return {
 restrict: 'A',
 link: function ($scope, $element, $attrs) {
 var oldVal = null;
 // [1] Use $observe to be notified on value changes
 $attrs.$observe('stkSignFade', function (newVal) {
 if (oldVal && oldVal == newVal) { return; }

 var oldPrice = parseFloat(oldVal);
 var newPrice = parseFloat(newVal);
 oldVal = newVal;

 // [2] Add the appropriate direction class, and then remove it
 if (oldPrice && newPrice) {
 var direction = newPrice - oldPrice >= 0 ? 'up' : 'down';
 $animate.addClass($element, 'change-' + direction, function() {
 $animate.removeClass($element, 'change-' + direction);
 });
 }
 });
 }
 };
 });

c01.indd 46c01.indd 46 8/31/2015 12:33:58 PM8/31/2015 12:33:58 PM

Step 10: Animating Price Changes ❘ 47

 The only dependency that was injected into this directive was the $animate service, which is provided
by the ngAnimate module. As you saw with the stkSignColor directive, $attrs.$observe() is once
gain used to watch for changes to the expression assigned to stkSignFade [1]. A local reference is
kept to the oldVal so that on subsequent changes, it can be compared against the newVal and the
appropriate direction class can be computed [2] . For this example, the $animate service is used
to add, and then quickly remove, the change-up or change-down CSS classes from the directive’s
element. The $animate service takes an element, class name, and callback function as a parameter,
which is used to remove the class after the animation for adding it has been performed. Before
attempting to use this directive in the stock-table.html fi le, you must create a handful of CSS
classes using the syntax that Angular requires. Add the following lines of code to the top of your
app/styles/main.css fi le. A few other styles that polish up the stock table’s display are also
included here:

 /* Stock Table Styles */
 .table {
 text-align: center;
 margin-bottom: 5px;
 }
 tfoot {
 font-weight: bold;
 }
 a {
 cursor: pointer;
 }
 span[disabled="disabled"] a {
 text-decoration: none;
 color: black;
 }
 span[disabled="disabled"] {
 pointer-events: none;
 }

 /* Styles for ngAnimate animations */
 .change-up-add {
 transition: background-color linear 1.5s;
 background-color: green;
 }
 .change-up-add.change-up-add-active {
 background-color: white;
 }
 .change-down-add {
 transition: background-color linear 1.5s;
 background-color: red;
 }
 .change-down-add.change-down-add-active {
 background-color: white;
 }

 Angular expects you to defi ne *-add and *-add-active classes for each of your desired
animation classes. In the preceding example, change-up-add is applied immediately, which sets
the background to green. Then the change-up-add-active class is applied for the duration of
the animation. In this case, that sets the background color to white with a 1.5s CSS transition,

c01.indd 47c01.indd 47 8/31/2015 12:33:58 PM8/31/2015 12:33:58 PM

48 ❘ CHAPTER 1 BUILDING A SIMPLE ANGULARJS APPLICATION

ultimately creating a crossfade effect from green to white. The same approach is used for
change-down-add , which shows a negative price action in red.

 Updating the StockTable Template
 Now that you have completed the stkSignFade directive and created the appropriate CSS
classes expected by the ngAnimate module, it is time to modify your stock-table.html view
template. Locate the two lines with <td> elements that are displaying the watchlist.marketValue
and stock.lastPrice , and add the stk-sign-fade="{{watchlist.marketValue}}" and
stk-sign-fade="{{stock.lastPrice}}" directive to them, respectively.

NOTE Because the QuoteService is updating the stock.lastPrice as it
fetches data from Yahoo Finance, you may run into a situation in which the
market is closed and the price isn’t changing, making it diffi cult to see your new
stkSignFade directive in action. In this case, modify the update() function
inside your quote-service.js fi le to randomize the stock.lastPrice . You can
accomplish this with Lodash by adding + _.random(-0.5, 0.5) to the line that
parses the quote.LastTradePriceOnly . Just don’t forget to remove it when y
you’ve fi nished testing!

 Congratulations! You have completely fi nished StockDog’s watchlist view! See Figure 1-13 . If you fi nd
yourself struggling with getting your animations to properly run, please refer to the step-10 directory
inside the companion code for this chapter or check out the corresponding tag of the GitHub repository.

FIGURE 1-13

c01.indd 48c01.indd 48 8/31/2015 12:33:58 PM8/31/2015 12:33:58 PM

Step 11: Creating the Dashboard ❘ 49

 STEP 11: CREATING THE DASHBOARD

 The fi nal outstanding feature that remains to be implemented for the StockDog application is the
dashboard view. This view aggregates performance metrics across all created watchlists and reports
the analytics in four unique panels. These performance metrics are Total Market Value, Total
Day Change, Market Value by Watchlist, and Day Change by Watchlist. Because no dashboard is
complete without interactive graphs, you will be taking advantage of the Google Charts library to
render two distinct charts.

 Updating the Dashboard Controller
 To use the Google Charts library from within your AngularJS application, you need to wrap and
expose its functionality via directives. For the sake of simplicity, you will be using a preexisting
library that has done just that, whose documentation can be found here: https://github.com/
bouil/angular-google-chart . To get started with the angular-google-chart library, run the
following command from your terminal to install it using Bower:

 bower install angular-google-chart –save

 This downloads and installs the library. It also lists it as a project dependency inside your bower.json
fi le. Once that is complete, you must register this library’s module with your AngularJS application
by updating your stockDogApp module dependencies. You can do this by adding googlechart to the
end of the dependencies array found in your app/scripts/app.js fi le, in the same manner in which
the AngularStrap library was registered back in Listing 1-1 of Step 2 earlier in this chapter. Once that
is complete, open the dashboard.js fi le located in your app/scripts/controllers/ directory and
replace its contents with the fi nal implementation shown in Listing 1-20.

 LISTING 1-20: app/scripts/controllers/dashboard.js

 'use strict';

 angular.module('stockDogApp')
 .controller('DashboardCtrl', function ($scope, WatchlistService, QuoteService) {
 // [1] Initializations
 var unregisterHandlers = [];
 $scope.watchlists = WatchlistService.query();
 $scope.cssStyle = 'height:300px;';
 var formatters = {
 number: [
 {
 columnNum: 1,
 prefix: '$'
 }
]
 };

 // [2] Helper: Update chart objects
 var updateCharts = function () {
 // Donut chart

continues

c01.indd 49c01.indd 49 8/31/2015 12:33:58 PM8/31/2015 12:33:58 PM

50 ❘ CHAPTER 1 BUILDING A SIMPLE ANGULARJS APPLICATION

LISTING 1-20 (continued)

 var donutChart = {
 type: 'PieChart',
 displayed: true,
 data: [['Watchlist', 'Market Value']],
 options: {
 title: 'Market Value by Watchlist',
 legend: 'none',
 pieHole: 0.4
 },
 formatters: formatters
 };
 // Column chart
 var columnChart = {
 type: 'ColumnChart',
 displayed: true,
 data: [['Watchlist', 'Change', { role: 'style' }]],
 options: {
 title: 'Day Change by Watchlist',
 legend: 'none',
 animation: {
 duration: 1500,
 easing: 'linear'
 }
 },
 formatters: formatters
 };

 // [3] Push data onto both chart objects
 _.each($scope.watchlists, function (watchlist) {
 donutChart.data.push([watchlist.name, watchlist.marketValue]);
 columnChart.data.push([watchlist.name, watchlist.dayChange,
 watchlist.dayChange < 0 ? 'Red' : 'Green']);
 });
 $scope.donutChart = donutChart;
 $scope.columnChart = columnChart;
 };

 // [4] Helper function for resetting controller state
 var reset = function () {
 // [5] Clear QuoteService before registering new stocks
 QuoteService.clear();
 _.each($scope.watchlists, function (watchlist) {
 _.each(watchlist.stocks, function (stock) {
 QuoteService.register(stock);
 });
 });

 // [6] Unregister existing $watch listeners before creating new ones
 _.each(unregisterHandlers, function(unregister) {
 unregister();
 });
 _.each($scope.watchlists, function (watchlist) {

c01.indd 50c01.indd 50 8/31/2015 12:33:58 PM8/31/2015 12:33:58 PM

Step 11: Creating the Dashboard ❘ 51

 var unregister = $scope.$watch(function () {
 return watchlist.marketValue;
 }, function () {
 recalculate();
 });
 unregisterHandlers.push(unregister);
 });
 };

 // [7] Compute the new total MarketValue and DayChange
 var recalculate = function () {
 $scope.marketValue = 0;
 $scope.dayChange = 0;
 _.each($scope.watchlists, function (watchlist) {
 $scope.marketValue += watchlist.marketValue ?
 watchlist.marketValue : 0;
 $scope.dayChange += watchlist.dayChange ?
 watchlist.dayChange : 0;
 });
 updateCharts();
 };

 // [8] Watch for changes to watchlists.
 $scope.$watch('watchlists.length', function () {
 reset();
 });
 });

 For the implementation of this DashboardCtrl , both WatchlistService and QuoteService
are injected as dependencies. Next, some initializations are made to populate the $scope
.watchlists variable using the WatchlistService , with chart style and formatting options
also being defi ned [1] . An updateCharts() function is then created [2] that sets up both a
donutChart and a columnChart . The required properties and available confi guration options for
these objects are defi ned by the Google Chart library documentation, which can be found here
https://developers.google.com/chart/ . This function also handles looping over each watchlist/

being tracked by StockDog and adding the appropriate data onto the respective chart object [3]
before attaching both chart structures to the controller’s $scope . A reset() function [4] is then
defi ned that is used to clear the controller’s state. This function clears all tracked stocks from the
QuoteService before registering each stock for each existing watchlist [5] . It then unregisters all
existing $watch listeners, whose references are stored in a local array, before creating new $watch
targets on each watchlist’s marketValue [6] . This is used to invoke the recalculate() function
[7] , which handles computing new aggregate market value and day change metrics each time a
watchlist’s computed value changes.

 Each time recalculate is invoked, a call to updateCharts() is made so that the existing charts
can be redrawn by the Google Chart library with the newest data. Finally, a $watch target is set
on the watchlists.length property so that when a watchlist is created or deleted, the reset()
function can be triggered to appropriately rebuild the entire controller’s state [8] . It’s worth
mentioning that the watchlists.length expression is used instead of the entire watchlists
object because deep-watching large data structures can seriously degrade your application’s
performance.

c01.indd 51c01.indd 51 8/31/2015 12:33:59 PM8/31/2015 12:33:59 PM

52 ❘ CHAPTER 1 BUILDING A SIMPLE ANGULARJS APPLICATION

Updating the Dashboard View
 Now that the DashboardCtrl implementation is complete, the next order of business is to update
StockDog’s dashboard view to render the new data and chart objects that have been created. As it
stands, the app/views/dashboard.html fi le only contains a reference to the stkWatchlistPanel
directive and an empty Portfolio Overview panel. You can fi nd the missing markup for this panel in
the completed dashboard view, shown in Listing 1-21.

 LISTING 1-21: app/views/dashboard.html

 <div class="row">
 <!–– Left Column ––>
 <div class="col-md-3">
 <stk-watchlist-panel></stk-watchlist-panel>
 </div>

 <!–– Right Column ––>
 <div class="col-md-9">
 <div class="panel panel-info">
 <div class="panel-heading">

 Portfolio Overview
 </div>
 <div class="panel-body">
 <!–– [1] Display some helpful text to guide new users ––>
 <div ng-hide="watchlists.length && watchlists[0].stocks.length"
 class="jumbotron">
 <h1>Unleash the hounds!</h1>
 <p>
 StockDog, your personal investment watchdog, is ready
 to be set loose on the financial markets!
 </p>
 <p>Create a watchlist and add some stocks to begin monitoring.</p>
 </div>

 <div ng-show="watchlists.length && watchlists[0].stocks.length">
 <!–– Top Row ––>
 <div class="row">
 <!–– Left Column ––>
 <div class="col-md-6">
 <!–– [2] Use sign-fade directive on wrapper element ––>
 <div stk-sign-fade="{{marketValue}}" class="well">
 <h2>{{marketValue | currency}}</h2>
 <h5>Total Market Value</h5>
 </div>
 </div>

 <!–– Right Column ––>
 <div class="col-md-6">
 <!–– [3] Use sign-color directive on wrapper element ––>
 <div class="well" stk-sign-color="{{dayChange}}">
 <h2>{{dayChange | currency}}</h2>
 <h5>Total Day Change</h5>
 </div>

c01.indd 52c01.indd 52 8/31/2015 12:33:59 PM8/31/2015 12:33:59 PM

Production Deployment ❘ 53

 </div>
 </div>
 <!–– [4] Use google-chart directive and reference chart objects ––>
 <div class="row">
 <!–– Left Column ––>
 <div class="col-md-6">
 <div google-chart chart="donutChart" style="{{cssStyle}}"></div>
 </div>

 <!–– Right Column ––>
 <div class="col-md-6">
 <div google-chart chart="columnChart" style="{{cssStyle}}"></div>
 </div>
 </div>
 </div>
 </div>
 </div>
 </div>
 </div>

 The new markup inside the panel-body starts by including some helpful text to guide new users
when they fi rst open StockDog and have yet to create any watchlists [1] . You should also notice that
both columns of the top row contain references to the stkSignFade [2] and stkSignColor [3]
directives, but the directives have been applied to a wrapper element—in this case, Bootstrap wells.
Finally, the googleChart directive, exposed by the previously installed angular-google-chart
library, is used in both columns of the bottom row, with the chart objects created in the
DashboardCtrl being used as the value for each respective element’s chart attribute [4] . To polish
up the completed dashboard view, the only remaining modifi cation you’ll need to make is to add the
following CSS to the top of your app/styles/main.css fi le:

 /* Dashboard View Styles */
 .well {
 background-color: white;
 text-align: center;
 }

 Congratulations! If you have successfully made it through the entirety of this section, you have
fi nally fi nished building the entire StockDog application! See Figure 1-14 . Take a moment to
appreciate your hard work and play around with the application by creating several new watchlists,
adding new stocks, and monitoring your portfolio’s performance from the dashboard view. For the
completed application source code, please refer to the step-11 directory inside the companion code
for this chapter or check out the corresponding tag of the GitHub repository.

PRODUCTION DEPLOYMENT

 Now that you have fi nished building StockDog, the time has come to unleash the hounds and
package the distributable application before deploying it to the Internet so that your users around
the world can better manage their stock portfolios. Although an in-depth discussion of production
deployment and all the associated intricacies is outside the scope of this section, there are a few
simple tasks that can be accomplished to get your application ready for the masses.

c01.indd 53c01.indd 53 8/31/2015 12:33:59 PM8/31/2015 12:33:59 PM

54 ❘ CHAPTER 1 BUILDING A SIMPLE ANGULARJS APPLICATION

FIGURE 1-14

 Because your application was developed using the AngularJS Yeoman generator, your project
already includes a sophisticated build system. You will learn more about how this system works in
the Chapter 3, “Architecture,” but for now, just run the following command from your terminal to
run the build system:

 grunt build

 This concatenates, obfuscates, and minifi es all of StockDog’s source fi les and creates a new
dist/ directory in your project’s root folder with the optimized assets. The dist/ directory
contains everything needed for users to run your application, so deployment is as simple
as uploading this folder to your hosting service of choice. However, for the purpose of
this section, you will be deploying StockDog to GitHub Pages, a hosting service provided
free of charge for GitHub-based projects. If you haven’t already uploaded your project to
GitHub, take a few minutes to do so, consulting https://help.github.com/articles/
adding-an-existing-project-to-github-using-the-command-line/ if you need any
further assistance.

 Once your project has been uploaded to GitHub, open your .gitignore fi le and remove the line
containing dist . Out of the box, Yeoman has set up your project to follow best practices by
ignoring fi les generated by the automated build task. However, because you will be hosting your
dist/ directory on GitHub, it must be committed as part of your project. Go ahead and add the

c01.indd 54c01.indd 54 8/31/2015 12:33:59 PM8/31/2015 12:33:59 PM

Conclusion ❘ 55

dist/ directory to your repository, commit, and then push it upstream. Now you are ready to
deploy your application to GitHub using the git subtree command. Run the following command
from your terminal to create a new gh-pages branch for your project consisting of all the fi les
residing inside your dist/ directory:

 git subtree push ––prefix dist origin gh-pages

 Once that is complete, your application will be publicly available at http(s)://<username>
.github.io/<projectname> . For example, you can fi nd the StockDog application running at
http://diegonetto.github.io/stock-dog . One caveat to this approach is that your Dashboard
and Watchlist links must be prefi xed with your <projectname> because of the nature of the GitHub
Pages URL. Another approach is to set up a custom URL for your project by uploading a new
CNAME fi le to your dist/ directory that contains your custom domain. This is how http://
www.stockdog.io/ has been set up to point to http://diegonetto.github.io/stock-dog .
After uploading your CNAME fi le and redeploying your site using the git subtree command
shown earlier, all that is left is to modify the www CNAME record (assuming you want to use the
www subdomain) of your DNS provider to point to username.github.io . If you have successfully
followed these steps, congratulations! Your application should be live and ready to share with the
rest of the world.

NOTE GitHub recommends using a subdomain and not an apex domain when
confi guring custom URLs for hosted project pages. If you wish to use your
apex domain (http://stockdog.io in the above example) for your deployed
application, the best way to accomplish this is to use the www subdomain
CNAME DNS entry with your provider as described and then enable domain
forwarding from your apex domain to your www URL. In this case, http://
stockdog.io has been set up to forward to http://www.stockdog.io .

 CONCLUSION

 The journey through this chapter has exposed you to a real-world application of AngularJS by
building StockDog, an application that leverages nearly all-key components of the framework. From
scaffolding a starter project using the Yeoman AngularJS generator to deploying your application
using GitHub Pages, this step-by-step guide should have given you the confi dence and instant
gratifi cation to inspire a deeper dive into this elegant framework. Along the way, you learned how
to structure a multiview single-page application; created several controllers, directives, and services;
installed additional front-end modules; handled dynamic form validation; communicated with
an external API; and brought your application to life with a simple animation. In the following
chapters of this book, you will explore in detail how the various components of the AngularJS
framework function and be exposed to various tools, services, and technologies that can be used to
create robust, reliable, and maintainable projects for professional consumption.

c01.indd 55c01.indd 55 8/31/2015 12:34:00 PM8/31/2015 12:34:00 PM

c01.indd 56c01.indd 56 8/31/2015 12:34:00 PM8/31/2015 12:34:00 PM

