
JWST496-c01 JWST496-Munzert Printer: Yet to Come Trim: 244mm × 170mm October 8, 2014 11:17

1

Introduction

Are you ready for your first encounter with web scraping? Let us start with a small example
that you can recreate directly on your machine, provided you have R installed. The case study
gives a first impression of the book’s central themes.

1.1 Case study: World Heritage Sites in Danger

The United Nations Educational, Scientific and Cultural Organization (UNESCO) is an
organization of the United Nations which, among other things, fights for the preservation
of the world’s natural and cultural heritage. As of today (November 2013), there are 981
heritage sites, most of which of are man-made like the Pyramids of Giza, but also natural
phenomena like the Great Barrier Reef are listed. Unfortunately, some of the awarded places
are threatened by human intervention. Which sites are threatened and where are they located?
Are there regions in the world where sites are more endangered than in others? What are the
reasons that put a site at risk? These are the questions that we want to examine in this first
case study.

What do scientists always do first when they want to get up to speed on a topic? They Wikipedia—
information
source of choice

look it up on Wikipedia! Checking out the page of the world heritage sites, we stumble across
a list of currently and previously endangered sites at http://en.wikipedia.org/wiki/List_of_
World_Heritage_in_Danger. You find a table with the current sites listed when accessing the
link. It contains the name, location (city, country, and geographic coordinates), type of danger
that is facing the site, the year the site was added to the world heritage list, and the year it
was put on the list of endangered sites. Let us investigate how the sites are distributed around
the world.

While the table holds information on the places, it is not immediately clear where they
are located and whether they are regionally clustered. Rather than trying to eyeball the table,
it could be very useful to plot the locations of the places on a map. As humans deal well with

Automated Data Collection with R: A Practical Guide to Web Scraping and Text Mining, First Edition.
Simon Munzert, Christian Rubba, Peter Meißner and Dominic Nyhuis.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.

CO
PYRIG

HTED
 M

ATERIA
L

JWST496-c01 JWST496-Munzert Printer: Yet to Come Trim: 244mm ž 170mm October 8, 2014 11:17

2 AUTOMATED DATA COLLECTION WITH R

visual information, we will try to visualize results whenever possible throughout this book.
But how to get the information from the table to a map? This sounds like a difficult task, but
with the techniques that we are going to discuss extensively in the next pages, it is in fact
not. For now, we simply provide you with a first impression of how to tackle such a task with
R. Detailed explanations of the commands in the code snippets are provided later and more
systematically throughout the book.

To start, we have to load a couple of packages. While R only comes with a set of
basic, mostly math- and statistics-related functions, it can easily be extended by user-written
packages. For this example, we load the following packages using the library() function:1

R> library(stringr)
R> library(XML)
R> library(maps)

In the next step, we load the data from the webpage into R. This can be done easily using
the readHTMLTable() function from the XML package:

R> heritage_parsed <- htmlParse("http://en.wikipedia.org/wiki/
List_of_World_Heritage_in_Danger",

encoding = "UTF-8")
R> tables <- readHTMLTable(heritage_parsed, stringsAsFactors = FALSE)

We are going to explain the mechanics of this step and all other major web scraping
techniques in more detail in Chapter 9. For now, all you need to know is that we are telling R
that the imported data come in the form of an HTML document. R is capable of interpreting
HTML, that is, it knows how tables, headlines, or other objects are structured in this file format.
This works via a so-called parser, which is called with the function htmlParse(). In the next
step, we tell R to extract all HTML tables it can find in the parsed object heritage_parsed
and store them in a new object tables. If you are not already familiar with HTML, you will
learn that HTML tables are constructed from the same code components in Chapter 2. The
readHTMLTable() function helps in identifying and reading out these tables.

All the information we need is now contained in the tables object. This object is a list of
all the tables the function could find in the HTML document. After eyeballing all the tables,
we identify and select the table we are interested in (the second one) and write it into a new
one, named danger_table. Some of the variables in our table are of no further interest,
so we select only those that contain information about the site’s name, location, criterion of
heritage (cultural or natural), year of inscription, and year of endangerment. The variables in
our table have been assigned unhandy names, so we relabel them. Finally, we have a look at
the names of the first few sites:

R> danger_table <- danger_table <- tables[[2]]
R> names(danger_table)
[1] "NULL.Name" "NULL.Image" "NULL.Location"
[4] "NULL.Criteria" "NULL.Area.ha..acre." "NULL.Year..WHS."

1This assumes that the packages are already installed. If they are not, type the following into your console:
install.packages(c("stringr", "XML", "maps"))

JWST496-c01 JWST496-Munzert Printer: Yet to Come Trim: 244mm × 170mm October 8, 2014 11:17

INTRODUCTION 3

[7] "NULL.Endangered" "NULL.Reason" "NULL.Refs"
R> danger_table <- danger_table[, c(1, 3, 4, 6, 7)]
R> colnames(danger_table) <- c("name", "locn", "crit", "yins", "yend")

R> danger_table$name[1:3]
[1] "Abu Mena" "Air and Ténéré Natural Reserves"
[3] "Ancient City of Aleppo"

This seems to have worked. Additionally, we perform some simple data cleaning, a step
often necessary when importing web-based content into R. The variable crit, which contains
the information whether the site is of cultural or natural character, is recoded, and the two
variables y_ins and y_end are turned into numeric ones.2 Some of the entries in the y_end
variable are ambiguous as they contain several years. We select the last given year in the
cell. To do so, we specify a so-called regular expression, which goes [[:digit:]]4$—we
explain what this means in the next paragraph:

R> danger_table$crit <- ifelse(str_detect(danger_table$crit, "Natural") ==
TRUE, "nat", "cult")
R> danger_table$crit[1:3]
[1] "cult" "nat" "cult"

R> danger_table$yins <- as.numeric(danger_table$yins)
R> danger_table$yins[1:3]
[1] 1979 1991 1986

R> yend_clean <- unlist(str_extract_all(danger_table$yend, "[[:digit:]]4$"))
R> danger_table$yend <- as.numeric(yend_clean)
R> danger_table$yend[1:3]
2001 1992 2013

The locn variable is a bit of a mess, exemplified by three cases drawn from the data-set:

R> danger_table$locn[c(1, 3, 5)]
[1] "EgyAbusir, Egypt30◦50'30<U+2033>N 29◦39'50<U+2033>E<U+FEFF> /
<U+FEFF>30.84167◦N 29.66389◦E<U+FEFF> / 30.84167; 29.66389<U+FEFF>
(Abu Mena)"
[2] "Syria !Aleppo Governorate, Syria36◦14'0<U+2033>N 37◦10'0<U+2033
>E<U+FEFF> / <U+FEFF>36.23333◦N 37.16667◦E<U+FEFF> / 36.23333; 37.16667
<U+FEFF> (Ancient City of Aleppo)"
[3] "Syria !Damascus Governorate, Syria33◦30'41<U+2033>N 36◦18'23
<U+2033>E<U+FEFF> / <U+FEFF>33.51139◦N 36.30639◦E<U+FEFF> / 33.51139;
36.30639<U+FEFF> (Ancient City of Damascus)"

The variable contains the name of the site’s location, the country, and the geographic The first
regular
expression

coordinates in several varieties. What we need for the map are the coordinates, given by the
latitude (e.g., 30.84167N) and longitude (e.g., 29.66389E) values. To extract this information,
we have to use some more advanced text manipulation tools called “regular expressions”,

2We assume that you are familiar with the basic object classes in R. If not, check out the recommended readings
in the Preface.

JWST496-c01 JWST496-Munzert Printer: Yet to Come Trim: 244mm × 170mm October 8, 2014 11:17

4 AUTOMATED DATA COLLECTION WITH R

which are discussed extensively in Chapter 8. In short, we have to give R an exact description
of what the information we are interested in looks like, and then let R search for and extract
it. To do so, we use functions from the stringr package, which we will also discuss in detail
in Chapter 8. In order to get the latitude and longitude values, we write the following:

R> reg_y <- "[/][-]*[[:digit:]]*[.]*[[:digit:]]*[;]"
R> reg_x <- "[;][-]*[[:digit:]]*[.]*[[:digit:]]*"
R> y_coords <- str_extract(danger_table$locn, reg_y)
R> y_coords <- as.numeric(str_sub(y_coords, 3, -2))
R> danger_table$y_coords <- y_coords
R> x_coords <- str_extract(danger_table$locn, reg_x)
R> x_coords <- as.numeric(str_sub(x_coords, 3, -1))
R> danger_table$x_coords <- x_coords
R> danger_table$locn <- NULL

Do not be confused by the first two lines of code. What looks like the result of a monkey
typing on a keyboard is in fact a precise description of the coordinates in the locn variable.
The information is contained in the locn variable as decimal degrees as well as in degrees,
minutes, and seconds. As the decimal degrees are easier to describe with a regular expression,
we try to extract those. Writing regular expressions means finding a general pattern for
strings that we want to extract. We observe that latitudes and longitudes always appear
after a slash and are a sequence of several digits, separated by a dot. Some values start
with a minus sign. Both values are separated by a semicolon, which is cut off along with
the empty spaces and the slash. When we apply this pattern to the locn variable with the
str_extract() command and extract the numeric information with str_sub(), we get the
following:

R> round(danger_table$y_coords, 2)[1:3]
[1] 30.84 18.28 36.23

R> round(danger_table$x_coords, 2)[1:3]
[1] 29.66 8.00 37.17

This seems to have worked nicely. We have retrieved a set of 44 coordinates, corresponding
to 44 World Heritage Sites in Danger. Let us have a first look at the data. dim() returns the
number of rows and columns of the data frame; head() returns the first few observations:

R> dim(danger_table)
[1] 44 6
R> head(danger_table)

name crit yins yend y_coords x_coords
1 Abu Mena cult 1979 2001 30.84 29.66
2 Air and Ténéré Natural Reserves nat 1991 1992 18.28 8.00
3 Ancient City of Aleppo cult 1986 2013 36.23 37.17
4 Ancient City of Bosra cult 1980 2013 32.52 36.48
5 Ancient City of Damascus cult 1979 2013 33.51 36.31
6 Ancient Villages of Northern Syria cult 2011 2013 36.33 36.84

JWST496-c01 JWST496-Munzert Printer: Yet to Come Trim: 244mm × 170mm October 8, 2014 11:17

INTRODUCTION 5

Figure 1.1 Location of UNESCO World Heritage Sites in danger (as of March 2014).
Cultural sites are marked with triangles, natural sites with dots

The data frame consists of 44 observations and 6 variables. The data are now set up in a A first look at
the dataway that we can proceed with mapping the sites. To do so, we use another package named

“maps.” In it we find a map of the world that we use to pinpoint the sites’ locations with
the extracted y and x coordinates. The result is displayed in Figure 1.1. It was generated as
follows:

R> pch <- ifelse(danger_table$crit == "nat", 19, 2)
R> map("world", col = "darkgrey", lwd = 0.5, mar = c(0.1, 0.1, 0.1, 0.1))
R> points(danger_table$x_coords, danger_table$y_coords, pch = pch)
R> box()

We find that many of the endangered sites are located in Africa, the Middle East, and
Southwest Asia, and a few others in South and Central America. The endangered cultural
heritage sites are visualized as the triangle. They tend to be clustered in the Middle East and
Southwest Asia. Conversely, the natural heritage sites in danger, here visualized as the dots,
are more prominent in Africa. We find that there are more cultural than natural sites in danger.

R> table(danger_table$crit)

cult nat
26 18

We can speculate about the political, economic, or environmental conditions in the affected The UNESCO
behaves
politically

countries that may have led to the endangerment of the sites. While the information in the
table might be too sparse for firm inferences, we can at least consider some time trends
and potential motives of the UNESCO itself. For that purpose, we can make use of the two
variables y_ins and y_end, which contain the year a site was designated a world heritage
and the year it was put on the list of endangered World Heritage Sites. Consider Figure 1.2,
which displays the distribution of the second variable that we generated using the hist()

JWST496-c01 JWST496-Munzert Printer: Yet to Come Trim: 244mm × 170mm October 8, 2014 11:17

6 AUTOMATED DATA COLLECTION WITH R

Year when site was put on the list of endangered sites

F
re

q
u
en

cy

1980 1985 1990 1995 2000 2005 2010 2015

0
2

4
6

8
10

1
2

14

Figure 1.2 Distribution of years when World Heritage Sites were put on the list of endan-
gered sites

command. We find that the frequency with which sites were put on the “red list” has risen in
recent decades—but so has the number of World Heritage Sites:

R> hist(danger_table$yend,
R> freq = TRUE,
R> xlab = "Year when site was put on the list of endangered sites",
R> main = "")

Even more interesting is the distribution of time spans between the year of inscription
and the year of endangerment, that is, the time it took until a site was put on the “red list”
after it had achieved World Heritage Site status. We calculate this value by subtracting the
endangerment year from the inscription year. The result is plotted in Figure 1.3.

Years it took to become an endangered site

F
re

q
u
en

cy

0 5 10 15 20 25 30 35

0
2

4
6

8
10

1
2

Figure 1.3 Distribution of time spans between year of inscription and year of endangerment
of World Heritage Sites in danger

JWST496-c01 JWST496-Munzert Printer: Yet to Come Trim: 244mm × 170mm October 8, 2014 11:17

INTRODUCTION 7

R> duration <- danger_table$yend - danger_table$yins
R> hist(duration,
R> freq = TRUE,
R> xlab = "Years it took to become an endangered site",
R> main = "")

Many of the sites were put on the red list only shortly after their designation as world
heritage. According to the official selection criteria for becoming a cultural or natural heritage,
it is not a necessary condition to be endangered. In contrast, endangered sites run the risk
of losing their status as world heritage. So why do they become part of the List of World
Heritage Sites when it is likely that the site may soon run the risk of losing it again? One
could speculate that the committee may be well aware of these facts and might use the list as
a political means to enforce protection of the sites.

Now take a few minutes and experiment with the gathered data for yourself! Which is the
country with the most endangered sites? How effective is the List of World Heritage Sites in
Danger? There is another table on the Wikipedia page that has information about previously
listed sites. You might want to scrape these data as well and incorporate them into the map.

Using only few lines of code, we have enriched the data and gathered new insights, which
might not have been obvious from examining the table alone.3 This is a variant of the more
general mantra, which will occur throughout the book: Data are abundant—retrieve them,
prepare them, use them.

1.2 Some remarks on web data quality

The introductory example has elegantly sidestepped some of the more serious questions that
are likely to arise when approaching a research problem. What type of data is most suited to
answer your question? Is the quality of the data sufficiently high to answer your question?
Is the information systematically flawed? Although this is not a book on research design or
advanced statistical methods to tackle noise in data, we want to emphasize these questions
before we start harvesting gigabytes of information.

When you look at online data, you have to keep its origins in mind. Information can be What is the
primary source
of secondary
data?

firsthand, like posts on Twitter or secondhand data that have been copied from an offline
source, or even scraped from elsewhere. There may be situations where you are unable to
retrace the source of your data. If so, does it make sense to use data from the Web? We think
the answer is yes.

Regarding the transparency of the data generation, web data do not differ much from
other secondary sources. Consider Wikipedia as a popular example. It has often been debated
whether it is legitimate to quote the online encyclopedia for scientific and journalistic pur-
poses. The same concerns are equally valid if one cares to use data from Wikipedia tables or
texts for analysis. It has been shown that Wikipedia’s accuracy varies. While some studies
find that Wikipedia is comparable to established encyclopedias (Chesney 2006; Giles 2005;
Reavley et al. 2012), others suggest that the quality might, at times, be inferior (Clauson
et al. 2008; Leithner et al. 2010; Rector 2008). But how do you know when relying on one
specific article? It is always recommended to find a second source and to compare the content.

3The watchful eye has already noticed a link on the site that leads to a map visualizing the locations as we did
in Figure 1.1. We acknowledge the work, but want to be able to generate such output ourselves.

JWST496-c01 JWST496-Munzert Printer: Yet to Come Trim: 244mm × 170mm October 8, 2014 11:17

8 AUTOMATED DATA COLLECTION WITH R

If you are unsure whether the two sources share a common source, you should repeat the
process. Such cross-validations should be standard for the use of any secondary data source,
as reputation does not prevent random or systematic errors.

Besides, data quality is nothing that is stuck to the data like a badge, but rather dependsData quality
depends on the
user’s purposes

on the application. A sample of tweets on a random day might be sufficient to analyze the
use of hash tags or gender-specific use of words, but is less useful for predicting electoral
outcomes when the sample happens to have been collected on the day of the Republican
National Convention. In the latter case, the data are likely to suffer from a bias due to the
collection day, that is, they lack quality in terms of “representativeness.” Therefore, the only
standard is the one you establish yourself. As a matter of fact, quality standards are more alike
when dealing with factual data—the African elephant population most likely has not tripled
in the past 6 months and Washington D.C., not New York, is the capital of the United States.

To be sure, while it is not the case that demands on data quality should be lower whenWhy web data
can be of

higher quality
for the user

working with online data, the concerns might be different. Imagine you want to know what
people think about a new phone. There are several standard approaches to deal with this
problem in market research. For example, you could conduct a telephone survey and ask
hundreds of people if they could imagine buying a particular phone and the features in
which they are most interested. There are plenty of books that have been written about the
pitfalls of data quality that are likely to arise in such scenarios. For example, are the people
“representative” of the people I want to know something about? Are the questions that I pose
suited to solicit the answers to my problem?

Another way to answer this question with data could be to look for “proxies,” that is,
indicators that do not directly measure the product’s popularity itself, but which are strongly
related. If the meaning of popularity entails that people prefer one product over a competing
one, an indirect measurement of popularity could be the sales statistics on commercial
websites. These statistics usually contain rankings of all phones currently on sale. Again,
questions of representativeness arise—both with regard to the listed phones (are some phones
not on the list because the commercial website does not sell them?) and the customers (who
buy phones from the Web and from a particular site?). Nevertheless, the ranking does provide
a more comprehensive image of the phone market—possibly more comprehensive than any
reasonably priced customer survey could ever hope to be. The availability of entirely new
information is probably the most important argument for the use of online data, as it allows
us to answer new questions or to get a deeper understanding of existing questions. Certainly,
hand in hand with this added value arise new questions of data quality—can phones of
different generations be compared at all, and can we say anything about the stability of such
a ranking? In many situations, choosing a data source is a trade-off between advantages and
disadvantages, accuracy versus completeness, coverage versus validity, and so forth.

To sum up, deciding which data to collect for your application can be difficult. We propose
five steps that might help to guide your data collection process:

1. Make sure you know exactly what kind of information you need. This can be
specific (“the gross domestic product of all OECD countries for the last 10 years”) or
vague (“peoples’ opinion on company X’s new phone,” “collaboration among members
of the US senate”).

2. Find out whether there are any data sources on the Web that might provide direct
or indirect information on your problem. If you are looking for hard facts, this is
probably easy. If you are interested in rather vague concepts, this is more difficult.

JWST496-c01 JWST496-Munzert Printer: Yet to Come Trim: 244mm × 170mm October 8, 2014 11:17

INTRODUCTION 9

A country’s embassy homepage might be a valuable source for foreign policy action
that is often hidden behind the curtain of diplomacy. Tweets might contain opinion
trends on pretty much everything, commercial platforms can inform about customers’
satisfaction with products, rental rates on property websites might hold information
on current attractiveness of city quarters....

3. Develop a theory of the data generation process when looking into potential
sources. When were the data generated, when were they uploaded to the Web, and by
whom? Are there any potential areas that are not covered, consistent or accurate, and
are you able to identify and correct them?

4. Balance advantages and disadvantages of potential data sources. Relevant aspects
might be availability (and legality!), costs of collection, compatibility of new sources
with existing research, but also very subjective factors like acceptance of the data
source by others. Also think about possible ways to validate the quality of your data.
Are there other, independent sources that provide similar information so that random
cross-checks are possible? In case of secondary data, can you identify the original
source and check for transfer errors?

5. Make a decision! Choose the data source that seems most suitable, document your
reasons for the decision, and start with the preparations for the collection. If it is
feasible, collect data from several sources to validate data sources. Many problems
and benefits of various data collection strategies come to light only after the actual
collection.

1.3 Technologies for disseminating, extracting, and storing
web data

Collecting data from the Web is not always as easy as depicted in the introductory example.
Difficulties arise when data are stored in more complex structures than HTML tables, when
web pages are dynamic or when information has to be retrieved from plain text. There are
some costs involved in automated data collection with R, which essentially means that you
have to gain basic knowledge of a set of web and web-related technologies. However, in
our introduction to these fundamental tools we stick to the necessary basics to perform web
scraping and text mining and leave out the less relevant details where possible. It is definitely
not necessary to become an expert in all web technologies in order to be able to write good
web scrapers.

There are three areas that are important for data collection on the Web with R. Figure 1.4
provides an overview of the three areas. In the remainder of this section, we will motivate
each of the subfields and illustrate their various linkages. This might help you to stay on top
of things when you study the fundamentals in the first part of the book before moving on to
the actual web scraping tasks in the book’s second part.

1.3.1 Technologies for disseminating content on the Web

In the first pillar we encounter technologies that allow the distribution of content on the Web.
There are multiple ways of how data are disseminated, but the most relevant technologies in
this pillar are XML/HTML, AJAX, and JSON (left column of Figure 1.4).

JWST496-c01 JWST496-Munzert Printer: Yet to Come Trim: 244mm × 170mm October 8, 2014 11:17

10 AUTOMATED DATA COLLECTION WITH R

Technologies for

disseminating content

on the Web

HTTP

XML/HTML

JSON

AJAX

Plain text

Technologies for

information extraction

R

XPath

JSON parsers

Selenium

Regular expressions

Technologies for data

storage

R

SQL

Binary formats

Plain-text formats

Figure 1.4 Technologies for disseminating, extracting, and storing web data

For browsing the Web, there is a hidden standard behind the scenes that structures howHTML

information is displayed—the Hypertext Markup Language or HTML. Whether we look for
information on Wikipedia, search for sites on Google, check our bank account, or become
social on Twitter, Facebook, or YouTube—using a browser means using HTML. Although
HTML is not a dedicated data storage format, it frequently contains the information that we
are interested in. We find data in texts, tables, lists, links, or other structures. Unfortunately,
there is a difference between the way data are presented in a browser on the one side and how
they are stored within the HTML code on the other. In order to automatically collect data
from the Web and process them with R, a basic understanding of HTML and the way it stores
information is indispensable. We provide an introduction to HTML from a web scraper’s
perspective in Chapter 2.

The Extensible Markup Language or XML is one of the most popular formats for exchang-XML

ing data over the Web. It is related to HTML in that both are markup languages. However,
while HTML is used to shape the display of information, the main purpose of XML is to store
data. Thus, HTML documents are interpreted and transformed into pretty-looking output by
browsers, whereas XML is “just” data wrapped in user-defined tags. The user-defined tags
make XML much more flexible for storing data than HTML. In recent years, XML and its
derivatives—so-called schemes—have proliferated in various data exchanges between web
applications. It is therefore important to be familiar with the basics of XML when gathering
data from the Web (Chapter 3). Both HTML and XML-style documents offer natural, often
hierarchical, structures for data storage. In order to recognize and interpret such structures,
we need software that is able to “understand” these languages and handle them adequately.
The necessary tools—parsers—are introduced in Chapters 2 and 3.

Another standard data storage and exchange format that is frequently encountered on theJSON

Web is the JavaScript Object Notation or JSON. Like XML, JSON is used by many web
applications to provide data for web developers. Imagine both XML and JSON as standards
that define containers for plain text data. For example, if developers want to analyze trends
on Twitter, they can collect the necessary data from an interface that was set up by Twitter

JWST496-c01 JWST496-Munzert Printer: Yet to Come Trim: 244mm × 170mm October 8, 2014 11:17

INTRODUCTION 11

to distribute the information in the JSON format. The main reason why data are preferably
distributed in the XML or JSON formats is that both are compatible with many programming
languages and software, including R. As data providers cannot know the software that is
being used to postprocess the information, it is preferable for all parties involved to distribute
the data in formats with universally accepted standards. The logic of JSON is introduced in
the second part of Chapter 3.

AJAX is a group of technologies that is now firmly integrated into the toolkit of modern AJAX

web developing. AJAX plays a tremendously important role in enabling websites to request
data asynchronously in the background of the browser session and update its visual appearance
in a dynamic fashion. Although we owe much of the sophistication in modern web apps to
AJAX, these technologies constitute a nuisance for web scrapers and we quickly run into a
dead end with standard R tools. In Chapter 6 we focus on JavaScript and the XMLHttpRequest,
two key technologies, and illustrate how an AJAX-enriched website departs from the classical
HTML/HTTP logic. We also discuss a solution to this problem using browser-integrated Web
Developer Tools that provide deep access to the browser internals.

We frequently deal with plain text data when scraping information from the Web. In a Plain text

way, plain text is part of every HTML, XML, and JSON document. The crucial property we
want to stress is that plain text is unstructured data, at least for computer programs that simply
read a text file line by line. There is no introductory chapter to plain text data, but we offer a
guide on how to extract information from such data in Chapter 8.

To retrieve data from the Web, we have to enable our machine to communicate with HTTP

servers and web services. The lingua franca of communication on the Web is the Hypertext
Transfer Protocol (HTTP). It is the most common standard for communication between web
clients and servers. Virtually every HTML page we open, every image we view in the browser,
every video we watch is delivered by HTTP. Despite our continuous usage of the protocol
we are mostly unaware of it as HTTP exchanges are typically performed by our machines.
We will learn that for many of the basic web scraping applications we do not have to care
much about the particulars of HTTP, as R can take over most of the necessary tasks just fine.
In some instances, however, we have to dig deeper into the protocol and formulate advanced
requests in order to obtain the information we are looking for. Therefore, the basics of HTTP
are the subject of Chapter 5.

1.3.2 Technologies for information extraction from web documents

The second pillar of technologies for web data collection is needed to retrieve the information
from the files we gather. Depending on the technique that has been used to collect files,
there are specific tools that are suited to extract data from these sources (middle column of
Figure 1.4). This section provides a first glance at the available tools. An advantage of using
R for information extraction is that we can use all of the technologies from within R, even
though some of them are not R-specific, but rather implementations via a set of packages.

The first tool at our disposal is the XPath query language. It is used to select specific XPath

pieces of information from marked up documents such as HTML, XML or any variant of
it, for example SVG or RSS. In a typical data web scraping task, calling the webpages is an
important, but usually only intermediate step on the way toward well-structured and cleaned
datasets. In order to take full advantage of the Web as a nearly endless data source, we have
to perform a series of filtering and extraction steps once the relevant web documents have
been identified and downloaded. The main purpose of these steps is to recast information that

JWST496-c01 JWST496-Munzert Printer: Yet to Come Trim: 244mm × 170mm October 8, 2014 11:17

12 AUTOMATED DATA COLLECTION WITH R

is stored in marked up documents into formats that are suitable for further processing and
analysis with statistical software. This task consists of specifying the data we are interested
in and locating it in a specific document and then tailoring a query to the document that
extracts the desired information. XPath is introduced in Chatper 4 as one option to perform
these tasks.

In contrast to HTML or XML documents, JSON documents are more lightweight andJSON parsers

easier to parse. To extract data from JSON, we do not draw upon a specific query language,
but rely on high-level R functionality, which does a good job in decoding JSON data. We
explain how it is done in Chapter 3.

Extracting information from AJAX-enriched webpages is a more advanced and complexSelenium

scenario. As a powerful alternative to initiating web requests from the R console, we present
the Selenium framework as a hands-on approach to getting a grip on web data. Selenium
allows us to direct commands to a browser window, such as mouse clicks or keyboard inputs,
via R. By working directly in the browser, Selenium is capable of circumventing some of
the problems discussed with AJAX-enriched webpages. We introduce Selenium in one of
our scraping scenarios of Chapter 9 in Section 9.1.9. This section discusses the Selenium
framework as well as the RWebdriver package for R by means of a practical application.

A central task in web scraping is to collect the relevant information for our researchRegular
expressions problem from heaps of textual data. We usually care for the systematic elements in textual

data—especially if we want to apply quantitative methods to the resulting data. Systematic
structures can be numbers or names like countries or addresses. One technique that we
can apply to extract the systematic components of the information are regular expressions.
Essentially, regular expressions are abstract sequences of strings that match concrete, recurring
patterns in text. Besides using them to extract content from plain text documents we can also
apply them to HTML and XML documents to identify and extract parts of the documents that
we are interested in. While it is often preferable to use XPath queries on markup documents,
regular expressions can be useful if the information is hidden within atomic values. Moreover,
if the relevant information is scattered across an HTML document, some of the approaches
that exploit the document’s structure and markup might be rendered useless. How regular
expressions work in R is explained in detail in Chapter 8.

Besides extracting meaningful information from textual data in the form of numbers orText mining

names we have a second technique at our disposal—text mining. Applying procedures in this
class of techniques allows researchers to classify unstructured texts based on the similarity
of their word usages. To understand the concept of text mining it is useful to think about the
difference between manifest and latent information. While the former describes information
that is specifically linked to individual terms, like an address or a temperature measurement,
the latter refers to text labels that are not explicitly contained in the text. For example, when
analyzing a selection of news reports, human readers are able to classify them as belonging
to particular topical categories, say politics, media, or sport. Text mining procedures provide
solutions for the automatic categorization of text. This is particularly useful when analyzing
web data, which frequently comes in the form of unlabeled and unstructured text. We elaborate
several of the available techniques in Chapter 10.

1.3.3 Technologies for data storage

Finally, the third pillar of technologies for the collection of web data deals with facilities for
data storage (right column of Figure 1.4). R is mostly well suited for managing data storage

JWST496-c01 JWST496-Munzert Printer: Yet to Come Trim: 244mm × 170mm October 8, 2014 11:17

INTRODUCTION 13

technologies like databases. Generally speaking, the connection between technologies for
information extraction and those for data storage is less obvious. The best way to store data
does not necessarily depend on its origin.

Simple and everyday processes like online shopping, browsing through library catalogues, SQL

wiring money, or even buying a couple of sweets at the supermarket all involve databases. We
hardly ever realize that databases play such an important role because we do not interact with
them directly—databases like to work behind the scenes. Whenever data are key to a project,
web administrators will rely on databases because of their reliability, efficiency, multiuser
access, virtually unlimited data size, and remote access capabilities. Regarding automated
data collection, databases are of interest for two reasons: One, we might occasionally be
granted access to a database directly and should be able to cope with it. Two, although, R has
a lot of data management facilities, it might be preferable to store data in a database rather
than in one of the native formats. For example, if you work on a project where data need to
be made available online or if you have various parties gathering specific parts of your data,
a database can provide the necessary infrastructure. Moreover, if the data you need to collect
are extensive and you have to frequently subset and manipulate the data, it also makes sense
to set up a database for the speed with which they can be queried. For the many advantages
of databases, we introduce databases in Chapter 7 and discuss SQL as the main language for
database access and communication.

Nevertheless, in many instances the ordinary data storage facilities of R suffice, for
example, by importing and exporting data in binary or plain text formats. In Chapter 11, we
provide some details on the general workflow of web scraping, including data management
tasks.

1.4 Structure of the book

We wrote this book with the needs of a diverse readership in mind. Depending on your
ambition and previous exposure to R, you may read this book from cover to cover or choose
a section that helps you accomplish your task.

� If you have some basic knowledge of R but are not familiar with any of the scripting
languages frequently used on the Web, you may just follow the structure as is.

� If you already have some text data and need to extract information from it, you might
start with Chapter 8 (Regular expressions and string functions) and continue with
Chapter 10 (Statistical text processing).

� If you are primarily interested in web scraping techniques, but not necessarily in
scraping textual data, you might want to skip Chapter 10 altogether. We recommend
reading Chapter 8 in either case, as text manipulation basics are also a fundamental
technique for web scraping purposes.

� If you are a teacher, you might want to use the book as basic or supplementary
literature. We provide a set of exercises after most of the chapters in Parts I and II for
this purpose. Solutions are available on the book’s website www.r-datacollection.com
for about half the exercises, so you can assign them as homework or use them for test
questions.

JWST496-c01 JWST496-Munzert Printer: Yet to Come Trim: 244mm × 170mm October 8, 2014 11:17

14 AUTOMATED DATA COLLECTION WITH R

For all others, we hope you will find the structure useful as well. The following is a short
outline of the book’s three parts.

Part I: A primer on web and data technologies In the first part, we introduce the fun-
damental technologies that underlie the communication, exchange, storage, and display of
information on the World Wide Web (HTTP, HTML, XML, JSON, AJAX, SQL), and provide
basic techniques to query web documents and datasets (XPath and regular expressions). These
fundamentals are especially useful for readers who are unfamiliar with the architecture of
the Web, but can also serve as a refresher if you have some prior knowledge. The first part
of the book is explicitly focused on introducing the basic concepts for extracting the data
as performed in the rest of the book, and on providing an extensive set of exercises to get
accustomed quickly with the techniques.

Part II: A practical toolbox for web scraping and text mining The book’s second part
consists of three core chapters: The first covers several scraping techniques, namely the use
of regular expressions, XPath, various forms of APIs, other data types and source-specific
techniques. We present a set of frequently occurring scenarios and apply popular R packages
for these tasks. We also address legal aspects of web scraping and give advice on how to
behave nicely on the Web. The second core chapter deals with techniques for statistical text
processing. Data are frequently available in the form of text that has to be further analyzed to
make it fit for subsequent analyses. We present several techniques of the two major methods for
statistically processing text—supervised and unsupervised text classification—and show how
latent information can be extracted. In the third chapter, we provide insights into frequently
occurring topics in the management of data projects with R. We discuss how to work with the
file system, how to use loops for more efficient coding, how to organize scraping procedures,
and how to schedule scraping tasks that have to be executed on a regular basis.

Part III: A bag of case studies In the third part of the book, we provide a set of applications
that make use of the techniques introduced in the previous parts. Each of the case studies
starts out with a short motivation and the goal of the analysis. The case studies go into more
detail than the short examples in the technical chapters and address a wide range of problems.
Moreover, they provide a practical insight into the daily workflow of data scraping and text
processing, the pitfalls of real-life data, and how to avoid them. Additionally, this part comes
with a tabular overview of the case studies’ contents’ with a view of the main techniques to
retrieve the data from the Web or from texts and the main packages and functions used for
these tasks.

