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Chapter 1
From finite to incremental strain: Insights into heterogeneous 
shear zone evolution

Stefano Vitale and Stefano Mazzoli

Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse (DiSTAR), Università degli studi di Napoli ‘Federico II’, 
Largo San Marcellino 10, 80138, Napoli, Italy

1.1  Introduction

Heterogeneous ductile shear zones are very common in 
the Earth’s lithosphere and are particularly well exposed 
in mountain belts (e.g. Iannace and Vitale 2004; Yonkee 
2005; Vitale et al. 2007a,b; Okudaira and Beppu 2008; 
Alsleben et al. 2008; Sarkarinejad et al. 2010; Kuiper et al. 
2011; Dasgupta et al. 2012; Zhang et al. 2013; Samani 
2013; Mukherjee 2013, 2014; also see Chapter 9), where 
they provide useful tools for a better understanding of 
the processes and parameters controlling strain locali­
zation, type of deformation, and rock rheology. The 
occurrence of strain markers such as fossils, ooids and 
ellipsoidal clasts in sedimentary rocks, or equant minerals, 
deflected veins and dykes in igneous rocks, allows one to 
quantify the finite strain by means of various methods 
(e.g. Dunnet 1969; Fry 1979; Lisle 1985; Erslev 1988; 
Vitale and Mazzoli 2005, 2010).

Finite strains are all quantities, directly measured or 
derived, related to the final state of deformation. These 
finite quantities, such as strain ratio, effective shear 
strain (sensu Fossen and Tikoff 1993), and angle θ’ 
between the shear plane and oblique foliation in hetero­
geneous ductile shear zones, cannot furnish unequivocal 
information about the temporal strain evolution (i.e. 
strain path; Flinn 1962). This is because there are several 
combinations of deformation types such as simple shear, 
pure shear and volume change, that can act synchro­
nously or at different times, leading to the same final 
strain configuration (Tikoff and Fossen 1993; Fossen and 
Tikoff 1993; Vitale and Mazzoli 2008, 2009; Davis and 
Titus 2011). Appropriate constraints are needed to 
obtain a unique solution – or at least reduce the under‐
determination. This also implies introducing some 
assumptions in the definition of the strain model. The 
strain path may be envisaged as a temporal accumulation 
of small strain increments, and the final strain arrange­
ment as the total addition (Ramsay 1967). A possible 
relationship between final strain configuration and tem­
poral evolution (i.e. incremental strains) was suggested 

by different authors, such as Hull (1988), Mitra (1991) and 
Means (1995). The latter author envisaged strain softening/
hardening as the main rheological control on shear zone 
evolution: shear zones characterized by a thickness 
decreasing with time (Type II) result from strain soften­
ing, whereas shear zones characterized by increasing 
thickness (Type I) are produced by strain hardening 
(Means 1995). Based on this view, each part of a heteroge­
neous ductile shear zone is the result of a different strain 
evolution, and taken all together, the various shear zone 
sectors may be able to record the whole strain history.

During the last few years, several papers dealt with 
the possibility of calculating the incremental strain 
knowing the temporal and spatial evolution of the defor­
mation. Provost et al. (2004) reconstruct the deformation 
history by means of the n times iteration of the trans­
forming equation characterizing the incremental strain, 
where n is the number of deformation stages. Horsman 
and Tikoff (2007) focus the opportunity of separating, 
by  previous method, the strain related to the shear 
zone  margins, where according to Ramsay (1980) the 
deformation is weak, and that associated with the more 
deformed shear zone sectors. The authors consider 
heterogeneous shear zones as consisting of sub‐zones, 
each characterized by a roughly homogeneous deforma­
tion. Based on their temporal and spatial evolution, 
shear zones are then classified into three main groups: 
(i) constant‐volume deformation, (ii) localizing, and 
(iii) delocalizing deformation. In the first case, the shear 
zone boundaries remain fixed (Type III shear zone of 
Hull (1988); Mitra (1991); Means (1995)), whereas for the 
latter two groups the shear zone boundaries migrate 
with time, leading to decreasing (group ii) or increasing 
(group iii) thickness of the actively deforming zone 
(respectively Type II and Type I shear zones of Hull 
(1988); Mitra (1991); Means (1995).

Following Means (1995), Vitale and Mazzoli (2008) 
provide a mathematical forward model of strain accumu­
lation within an ideal heterogeneous shear zone by subdi­
viding it into n homogenously deformed layers, each one 
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bound by shear planes (C‐planes: Passchier and Trouw 
2005) and characterized by a specific evolution, this 
being related to that of adjacent layers within the frame­
work of a defined temporal succession. In the case of 
strain hardening, the strain evolution starts with a homo­
geneous deformation affecting originally a specific 
volume of rock (being represented by a single layer in the 
model). As the original “single layer” is able to accumu­
late only a specific amount of strain (due to strain hard­
ening), further shearing involves new material located 
along the shear zone margins (Mazzoli and Di Bucci 
2003; Mazzoli et al. 2004), thereby increasing the active 
shear zone volume (delocalizing zone of Horsman and 
Tikoff 2007). On the contrary, in the strain softening case, 
the deformation – originally homogeneous and affecting 
an ideal “multilayer” – progressively abandons the layers 
located at the shear zone margins due to easier strain 
accumulation in the central sector (localizing zone of 
Horsman and Tikoff 2007). The difference between the 
approach of Horsman and Tikoff (2007) and that of Vitale 
and Mazzoli (2008) is  that the latter authors relate the 
temporal and spatial evolution of the shear zone to strain 
softening/hardening, whereas the former authors avoid 
any genetic implication.

Building on the results obtained by Vitale and Mazzoli 
(2008), and following the mathematical approach of 
Provost et al. (2004) and Horsman and Tikoff (2007), 
a technique is proposed in this paper, which is able to 
provide information on the incremental strain path 
based on measured finite strains. The incremental strain 
analysis is then applied to a heterogeneous wrench zone 

characterized by no stretches along the shear direction 
and no volume change.

1.2  Incremental strain

To obtain a mathematical relationship between incre­
mental and finite strain, consider the general case of 
deformation being localized within a heterogeneous duc­
tile shear zone with synchronous deformation in the host 
rock. The shear zone is composed of n deformed layers, 
each characterized by homogeneous strain. The strain 
evolution is illustrated in Fig.  1.1 when strain softens 
(localizing shear zone) and hardens (delocalizing shear 
zone), where matrices Bi and Cfin represent finite strain 
within the shear zone and in the host rock in the last 
configuration, respectively, whereas matrices Ai and C 
are related to incremental strain.

In the case of a localizing shear zone, indicating with 
Bi the finite strain matrix of the i‐th layer in the last con­
figuration (n), the finite strain matrix is related to the 
incremental matrices by the following relationships 
(with i ranging between 2 to n – 1):
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Fig. 1.1.  Examples of strain evolution along the xy plane of the coordinate reference frame for heterogeneous shear zones consisting of seven 
homogeneously deformed layers and characterized by transtension in the active shear zone and synchronous pure shear elsewhere. 
(a) Localizing shear zone. (b) Delocalizing shear zone.

0002567511.indd   4 8/31/2015   2:18:10 PM



From finite to incremental strain 5

In the case of a delocalizing shear zone the relation­
ship is:

	 a B C C B B C Bi
n i n i

i i ii .
1 1

1
1

1
1 	 (2)

1.2.1 S pecial case of no deformation in the host rock

In the case of C = 1 (identity matrix), i.e. no deformation 
in the host rock, Equations (1) and (2) are always substi­
tuted by the equation:

	 a B Bi i i 1
1 .	 (3)

In this circumstance, the relationships between 
incremental and finite strain quantities (stretches and 
effective shear strains) may be directly obtained by 
rewriting Equation 3 in an explicit form. Consider a 
wrench zone in which each i‐th layer is characterized 
by finite strain represented by the matrix (Tikoff and 
Fossen 1993):

	

Bi

k

k

k

fin

i i
fin

fin

i

fin

i

1

2

3

0

0 0

0 0

,	 (4)

where

	

i
fin

i
fin

fin

i

fin

i
fin

i
fin

i

k k

k

k

1 2

1

2

ln

	
(5)

is the i‐th finite effective shear strain.
Applying Equation 3 this yields:
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where Ai is the incremental matrix referred to the i‐th 
step.

The relationships between incremental and finite 
quantities are obtained:
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and
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In the case of a transpressional/transtensional wrench 
zone with k1 = 1 and k2k3 = 1, equation (8) becomes:
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Note that, for a deformation characterized by simple 
shear only (k1 = k2 = k3 = 1), the incremental shear strain 
corresponds to the finite shear strain increment.

In the case of no synchronous pure shear deformation 
in the host rock (i.e. C = 1), the final strain configurations 
of localizing and delocalizing shear zones (Fig. 1.1) are 
indistinguishable. However, according to Means (1995), 
useful information may be obtained by the analysis of the 
shear strain across the shear zone. In the case of strain 
softening, which is assumed to control the development 
of localizing shear zones, the finite shear strain profile 
displays a peaked shape. On the contrary, in the case of 
strain hardening (i.e. in the case of delocalizing shear 
zones) the profile is flat‐shaped. Therefore an accurate 
study of the shear strain gradient across the shear zone 
may effectively unravel the type of rheological behaviour 
(strain hardening/softening) characterizing the analysed 
structure.

1.3  Finite strain

It is generally very difficult to obtain all four parameters 
of the finite matrix (Equation 4) by analyzing naturally 
deformed shear zones. However, in some cases, it is pos­
sible to determine all derived strain parameters starting 
from measured ones. Among these, the case of a shear 
zone characterized by no volume variation and nor 
stretch along the x direction (k1 = 1).

Consider a wrench zone (Fig. 1.2) where each i‐th layer 
is characterized by synchronous simple and pure shear 
represented by the finite strain matrix (in order to sim­
plify the formulae, the label i is omitted and all quanti­
ties have to be considered as finite values):

	

B

1 0

0 0

0 0
2

3

k

k

.	 (10)

Generally one can directly measure only the (R, θ’) 
and/or (Γ, θ’) values, where R is the aspect ratio of the 
finite strain ellipse (e.g. Ramsay and Huber 1983) and 
θ’ is the angle between the finite strain ellipsoid XY plane 
and the shear plane xy (e.g. Vitale and Mazzoli 2008, 
2010). R and Γ can be obtained using the Rf /ϕ method 
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(Dunnet 1969) and the cotangent rule (Ramsay and Huber 
1983; Vitale and Mazzoli 2010), respectively. Starting 
from the values of R and θ’, let us try to find other strain 
parameters such as shear strain and stretches. To obtain 
a relationship between k and Γ, let us calculate the math­
ematical expression of the principal strain ratios RXZ, RYZ 
and RXY starting from the magnitudes of the strain ellip­
soid axes (λ1,2,3), corresponding to the eigenvalues of the 
matrix BBT (where BT is the transposed matrix of B):
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where e is the eigenvector and I is the identity matrix.
The solution is:
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Indicating with λ1, λ2 and λ3 the maximum, intermedi­
ate and minimum value, respectively (i.e. λ1>λ2>λ3), the 
strain ratios of the principal finite strain ellipses are:

	
R R RXZ YZ XY
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; ; .	 (13)

In order to find the angle θ’ between the xz plane of the 
reference coordinate system (parallel to the shear plane) 
and the XY plane of the finite strain ellipsoid (parallel to 

the foliation) from the first equation of the system 
(Equation 11) and choosing the appropriate value of λ*, 
the angle θ’ is obtained as follows:
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*
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k
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The X‐axis of the strain ellipsoid (the maximum 
stretching) can lie in the xz plane (Fig. 1.2b) or be paral­
lel to the y‐axis (Fig.  1.2c) of the reference coordinate 
system. In both cases the value of λ* in the Equation 14 is

* 1
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substituting the value of λ* of Equation 15 in the formula 
(Equation 14), the resulting equation is

	

tan k

k k k k

3
2

3
2 2

3
4

3
2 2

3
2 4 2

1
1
2

1 2 2 2 1 0,
	

which simplifies to

	 tan tan tank k3
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Solving for k3 yields
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and
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The solution for k3 in Equation 18 provides negative 
values (k3 must be 0), and hence has to be eliminated.

In order to find a suitable equation to join with 
Equation 17 in the variables k3 and Γ, let us consider the 
strain ratio relationship
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If the direction of the maximum lengthening (x‐axis of 
the strain ellipsoid) lies in the xy plane of the reference 
coordinate system (Fig. 1.2a) than the second value of λ 
in the Equation 12 is the maximum one and R = RXZ, 
else if the X‐axis is parallel to the z‐axis (Fig. 1.2b), the 
second value of λ is the intermediate one and R = RYZ. 
Solving for k3 yields

y
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z

x

Y

Y

X

Z

X

Z

Fig. 1.2.  (a) Cartoon showing a homogeneous wrench zone. (b) Finite 
strain ellipsoid geometry in case the x‐axis lies in the xy plane of the 
coordinate reference frame. (c) Finite strain ellipsoid geometry in case 
the x‐axis is parallel to the z‐axis of the coordinate reference frame.
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k
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In order to obtain real solutions the argument of the 
square root must be zero or positive, hence

	 1 4 02 4 2 2R R R ,	

with R 1 and 0. These inequalities hold only when 
R 2 1. Under this condition, the solutions that 
furnish positive values are

	
k

R R R R
R3

2 2 4 2 21 1 4
2

.	 (21)

Combining Equations 21 and 17 yields
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Solving for Γ gives the only positive and real solution
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To find k3 we can substitute the formula (Equation 23) 
into Equation 17. Furthermore k2 = k3

–1 and for the oth­
ers strain quantities, such as shear strain and kinematic 
vorticity number, we can use the following equations, 
respectively:

	

log k

k
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and
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Summarizing, in the special case of k1 = k2k3 = 1, starting 
from the strain ratio (RXZ if the strain ellipsoid X‐axis lies in 
the xz plane, or RYZ if the strain ellipsoid x‐axis is parallel 
to the y‐axis) and the angle θ’ that the foliation forms with 
the shear plane, it is possible to obtain the values of k3 (and 
k2), γ and Wk by means of Equations 16, 23, 24, and 25.

1.4  Practical application of 
incremental and finite strain 
analyses

The technique proposed in this study is applied to a het­
erogeneous ductile wrench zone (Fig. 1.3a), previously 
analyzed by Vitale and Mazzoli (2010), exposed in a 

low‐strain domain of an elsewhere extensively deformed 
and mylonitized pre‐Alpine intrusive granitoid body 
included within the amphibolite facies Zentralgneiss 
(Penninic units exposed within the Tauern tectonic 
window, Eastern Alps; Fig.  1.3c; Mancktelow and 
Pennacchioni 2005; Pennacchioni and Mancktelow 
2007). Shear zone nucleation was controlled by the pres­
ence of precursor joints, and occurred by a widespread 
reactivation process that characterizes solid‐state defor­
mation of granitoid plutons also elsewhere (e.g. 
Pennacchioni 2005; Mazzoli et al. 2009). Wrench zones 
are characterized by a well‐developed foliation and 
deformed quartz veins that are intersected by the shear 
zone themselves (Fig.  1.3a). Wrench zones are sub‐
vertical and characterized by sub‐horizontal slip vectors, 
and sinistral and dextral sense of shear. Geochemical 
analyses of major and trace elements of deformed and 
undeformed rocks (Pennacchioni 2005), indicate no geo­
chemical changes occurred during deformation and 
hence suggesting that the deformation involved no vol­
ume variation (Grant 1986).

1.4.1  Finite strain

The analyzed wrench zone is characterized by localized 
synchronous simple shear and pure shear. The main 
finite strain parameters of the shear zone were evaluated 
by analyzing deformed planar markers (Vitale and 
Mazzoli 2010). In this case, the shear zone was divided 
into layers characterized by a roughly homogeneous 
internal deformation (Fig.  1.3b). For each layer, finite 
quantities of θ’ and Γ were measured and plotted in a 
scatter diagram (Fig. 1.4). The latter also includes a k2–γ 
grid that was constructed considering the known condi­
tions of no volume change (Δ = 0) and assuming k1 = 1 
(i.e. transpressional/transtensional deformation sensu 
Sanderson and Marchini 1984) by varying the stretch k2 
and the shear strain γ in the equations:

	

1 2

3

k

klog
	 (26)

and

	
tan max1

2

2

1
k

	 (27)

The obtained data plot along a general path involving 
increasing shear strain γ and decreasing values of the 
stretch k2 moving from the margin toward the shear zone 
centre. Using Equations 24 and 27 one can obtain the 
exact value of the stretch k3 (and hence k2 = k3

–1) and of 
the shear strain γ. The finite values of the strain ratios 
RXZ, RYZ and RXY and the kinematic vorticity number Wk 
are obtained by applying Equations 19 and 25.

In order to smooth out the data in the incremental 
strain analysis that will be carried out in the following 
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section, best‐fit power‐law curves are determined for the 
finite values of effective shear strain Γ (Fig. 1.5a), shear 
strain γ (Fig. 1.5b), strain ratio RXZ (Fig. 1.5c), and stretch 
k2 (Fig. 1.5d) as a function of the angle θ’. A power‐law 
curve is used to fit the scatter data because it provides 
the best values of the coefficient of determination R2 
(which is a measure of how well the data fit the adopted 
statistical model).

The finite kinematic vorticity number Wk increases lin­
early for θ’, ranging from the maximum observed value 
(about 70°) to about 30°, becoming constant (and close to 

unity) for angles between about 30° and the minimum 
observed θ’ values (<5°; Fig. 1.5e). Note that if the increase 
in effective shear strain, shear strain and strain ratio with 
decreasing θ’ are somewhat expected, much less obvious 
is the decrease in elongation k2. To evaluate finite strain in 
the host rock, the normalized‐Fry method (Fry 1979; 
Erslev 1988) was applied to the rock areas surrounding 
the structure. The obtained values of ellipticity on the XZ 
plane (RXZ

host) are of about 1, indicating no strain (Fig. 1.3d).
Summarizing, the ductile wrench zone is character­

ized by: (i) non‐constant finite values of the stretches 
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k2 and k3, with k2 values mostly larger than unity (having 
assumed k1 = 1); (ii) localized deformation occurring 
within the shear zone only (i.e. undeformed host rock); 
and (iii) no volume variation. These features point out 
the occurrence of material flow along the z‐axis of the 
reference frame (i.e. in the vertical direction). This effect 
is dominant in the low‐strain parts of the shear zone (i.e. 
for high values of the angle θ’) characterized by k2 values 
above unity (transtensional deformation), becoming 
negligible for the simple shear‐dominated (Wk ≈ 1) cen­
tral sector of localized high strain.

1.4.2  Incremental strain

The incremental strain analysis of the studied shear zone 
was carried out considering a total number of n = 20 
steps forthe application of the inverse method. For each 

step, discrete values of k2 and Γ were obtained from the 
best‐fit equations (Fig. 1.5). Equation 3 has been used to 
calculate the incremental strain because this shear zone 
displays no deformation outside of it (Fig. 1.3a, d).

Figure 1.6 displays the profiles of finite and incremen­
tal values for effective shear strain Γ, shear strain γ, 
stretch k2, strain ratio RXZ and kinematic vorticity number 
Wk versus number of steps, whereas in Fig. 1.7(a,b) finite 
and incremental strain paths are plotted on: (i) Γ− θ’ and 
(ii) logarithmic Flinn diagrams (Flinn 1962; Ramsay 
1967), respectively. It must be stressed that the first incre­
mental strain step corresponds to the first step of finite 
strain (transtension); on the contrary, the subsequent 
incremental strain values (from 2 to 20) indicate a 
transpressional deformation, although the finite strain is 
of dominantly transtensional type. For example, the first 
incremental value of k2 is 2.23 (transtension), whereas 
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the following incremental k2 path (from 2 to 20 steps, 
Fig. 1.7a) is generally characterized by values lower than 1, 
decreasing toward the center of the shear zone.

Finite and incremental profiles of effective shear strain Γ, 
shear strain γ and strain ratio RXZ show similar peaked 
shapes, pointing out a non‐linear increase during shear 
zone evolution (Fig.  1.6a–c). The peaked shape of the 
curve confirms the interpretation, already suggested, 
based on finite strain analysis, that shear zone rheology 
was characterized by strain softening, involving both 
simple shear and the pure shear components of the defor­
mation. However, both finite and incremental kinematic 
vorticity numbers increase, up to unity, for increasing 
deformation (Fig.  1.6e). Therefore, the partitioning 
between simple shear and pure shear changed during 
shear zone evolution from prevailing pure shear (Wk ≈ 0.4) 
to dominant simple shear, eventually reaching condi­
tions of simple shear alone (Wk ≈ 1) for the latest stages of 
highly localized deformation in the softened central sec­
tor of the shear zone.

The incremental strain paths plotted on the Γ− θ’ 
diagram (Fig. 1.7a) and in the logarithmic Flinn diagram 
(Fig. 1.7b) confirm that the incremental strain from steps 
2 to 20 consistently lies in the transpressional oblate 
field. Also, note that none of the incremental strain 
parameters holds a constant value during the temporal 
evolution; therefore the incremental deformation evolu­
tion is non‐steady state.

As previously mentioned, the first increment points 
out a transtensional deformation whereas the subsequent 
strain increments are of transpressional type. In the case 
of no synchronous deformation in the host rock, the final 
strain configuration does not provide information about 

the temporal evolution of the shear zone. However, the 
suggested strain evolution is more consistent with a 
localizing shear zone (Fig. 1.1a, with C = 1) characterized 
by: (i) an early homogeneous transtensional deformation 
affecting the whole shear zone; and (ii) a following local­
ization of the transpressional strain in the central part, 
probably driven by strain softening processes, with 
respect to a delocalizing shear zone (Fig. 1.1b, with C = 1) 
where an initial transtension affects the central part and 
subsequently migrates outward, with synchronous 
transpression affecting the inner sectors.

1.5  Conclusions

According to the Means hypothesis (Means 1975) and as 
suggested by Provost et al. (2004) and Horsman and 
Tikoff (2007), information on the incremental strain his­
tory may be obtained from the analysis of the final strain 
configuration in a heterogeneous shear zone. In particu­
lar, in case the structural evolution was characterized by 
strain softening or hardening – which are assumed to 
control the development of localizing and delocalizing 
shear zones, respectively – one can unravel the relation­
ship between finite strain across the shear zone and 
incremental strains. Based on this assumption, an inverse 
method was derived which is able to evaluate the incre­
mental strain matrices starting from measured finite 
strain quantities in a heterogeneous ductile shear zone. 
The proposed technique uses the finite values of the 
effective shear strain Γ and the finite angle θ’ (angle 
between the foliation, i.e. the xy plane of the finite strain 
ellipsoid, and the shear plane) obtained for n layers, in 
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which a shear zone may be subdivided according to 
homogeneity criteria. Shear zone deformation may then 
be described in terms of n finite strain matrices, each rep­
resenting homogeneous deformation of the related layer. 
Starting from these matrices, it is possible to derive the 
incremental strain matrices. For simple cases, the pro­
posed method furnishes symbolic formulae relating 
finite and incremental values of the main strain parame­
ters, such as shear strain and stretches. The inverse 
method requires knowing the strain parameters k1, k2, k3, 
and Γ. In particular instances such as that analyzed in 
this paper, it is possible to derive all of the required 
strain parameters from simple formulae. For the ana­
lyzed wrench zone, characterized by no stretches along 
the x direction and no volume change, the incremental 
strain path suggests a localizing shear zone evolution 
characterized by an initial homogeneous transtensional 
deformation in the whole shear zone and a subsequent 
incremental transpression driven by strain softening pro­
cesses affecting progressively inner sectors.
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