
Part I
The C# Ecosystem

 ▶ ChapTEr 1: The C# Environment

 ▶ ChapTEr 2: Writing a First Program

 ▶ ChapTEr 3: Program and Code File Structure

CO
PYRIG

HTED
 M

ATERIA
L

The C# Environment
WhaT’s in This ChapTEr

➤➤ IL and the CLR

➤➤ JIT compiling

➤➤ Programs and assemblies

➤➤ The .NET Framework

Wrox.Com DoWnloaDs for This ChapTEr

Please note that all the code examples for this chapter are available as a part of this chapter’s
code download on the book’s website at www.wrox.com/go/csharp5programmersref on the
Download Code tab.

A C# program cannot exist in isolation. You can’t write C# programs without using other tools.
You can’t even run a compiled C# program without libraries that provide runtime support.

This chapter describes the tools that you need in the Windows environment to write, compile,
and execute C# programs. Most of the time those tools work smoothly behind the scenes, so
you don’t need to be aware of their presence. It’s still worth knowing what they are, however,
so you know how all the pieces of the C# environment fit together.

Visual sTuDio

You can write a C# program in a text editor and then use a command-line interface to com-
pile the program. (For example, see “Working with the C# 2.0 Command Line Compiler”
at http://msdn.microsoft.com/library/ms379563.aspx for more information.)

That approach is a lot of work, however, so most C# programmers use Visual Studio.

1

4 ❘ ChapTEr 1 The C# environmenT

Visual Studio is a powerful integrated development environment (IDE) that includes code editors,
form and window designers, and flexible debugging tools. Some versions also include testing, profil-
ing, team programming, and other tools.

The Visual Studio code editors provide IntelliSense help, which displays prompts and descriptions
of items you need to enter into the code. The code editor’s features such as IntelliSense make writing
correct C# programs much easier than it is with a simple text editor.

If you haven’t already installed Visual Studio, you should probably do it now. It takes a while, so be
sure you have a fast Internet connection.

To learn about and download one of the Visual Studio Express Editions, go to www.visualstudio
.com/products/visual-studio-express-vs.

To learn about the other Visual Studio editions, go to www.microsoft.com/visualstudio/eng/
products/compare.

While Visual Studio is downloading and installing, you can read further.

The most important tool integrated into Visual Studio is the compiler, which turns C# code into a
compiled executable program—well, sort of.

ThE C# CompilEr

The C# compiler doesn’t actually compile code into a truly executable program. Instead it translates
your C# code into an assembly-like language called Intermediate Language (IL).

WhaT’s in a namE?

While under development, the intermediate language was called Microsoft
Intermediate Language (MSIL). When .NET was released, the name was changed
to IL.

The international standards organization Ecma created the Common Language
Infrastructure (CLI) standard that defines a Common Intermediate Language (CIL).

To summarize the alphabet soup, MSIL is the old name for Microsoft’s intermediate
language; IL is the current name; and CIL is the name for the non-Microsoft standard.
There are some differences between IL and CIL but many .NET developers use MSIL,
IL, and CIL interchangeably.

programs anD assEmbliEs

The C# compiler doesn’t compile only programs; it can also compile other kinds of
assemblies. An assembly is the smallest possible piece of compiled code. Assemblies
include programs, code libraries, control libraries, and anything else you can compile.
An executable program consists of one or more assemblies.

The C# Compiler ❘ 5

Consider the following C# code.

static void Main(string[] args)
{
 foreach (string arg in args) Console.WriteLine(arg);
 Console.WriteLine("Press Enter to continue");
 Console.ReadLine();
}

The C# compiler translates this into the following IL code.

.method private hidebysig static void Main(string[] args) cil managed
{
 .entrypoint
 // Code size 51 (0x33)
 .maxstack 2
 .locals init ([0] string arg,
 [1] string[] CS$6$0000,
 [2] int32 CS$7$0001,
 [3] bool CS$4$0002)
 IL_0000: nop
 IL_0001: nop
 IL_0002: ldarg.0
 IL_0003: stloc.1
 IL_0004: ldc.i4.0
 IL_0005: stloc.2
 IL_0006: br.s IL_0017
 IL_0008: ldloc.1
 IL_0009: ldloc.2
 IL_000a: ldelem.ref
 IL_000b: stloc.0
 IL_000c: ldloc.0
 IL_000d: call void [mscorlib]System.Console::WriteLine(string)
 IL_0012: nop
 IL_0013: ldloc.2
 IL_0014: ldc.i4.1
 IL_0015: add
 IL_0016: stloc.2
 IL_0017: ldloc.2
 IL_0018: ldloc.1
 IL_0019: ldlen
 IL_001a: conv.i4
 IL_001b: clt
 IL_001d: stloc.3
 IL_001e: ldloc.3
 IL_001f: brtrue.s IL_0008
 IL_0021: ldstr "Press Enter to continue"
 IL_0026: call void [mscorlib]System.Console::WriteLine(string)
 IL_002b: nop
 IL_002c: call string [mscorlib]System.Console::ReadLine()
 IL_0031: pop
 IL_0032: ret
} // end of method Program::Main

6 ❘ ChapTEr 1 The C# environmenT

Displaying il

You can use the ildasm program to view a compiled program’s IL code. (Ildasm is
pronounced “eye-ell-dazm” so it rhymes with “chasm.” The name stands for “IL
disassembler.”) For information about ildasm, see http://msdn.microsoft.com/
library/f7dy01k1.aspx.

The IL code is fairly cryptic; although, if you look closely you can see the method’s declaration and
calls to Console.WriteLine and Console.ReadLine.

IL code looks a lot like assembly language but it’s not. Assembly language is a (barely) human-readable
version of machine code that can run on a specific kind of computer. If the program were translated
into assembly or machine code, it could run only on one kind of computer. That would make sharing
the program on different computers difficult.

To make sharing programs on multiple computers easier, IL provides another layer between C# code
and machine code. It’s like a virtual assembly language that still needs to be compiled into executable
machine code. You can copy the IL code onto different computers and then use another compiler to
convert it into machine code at run time. In .NET, the Common Language Runtime (CLR) performs
that compilation.

ThE Clr

CLR is a virtual machine component of the .NET Framework that translates IL into native machine
code when you run a C# program. When you double-click a C# program’s compiled executable pro-
gram, the CLR translates the IL code into machine code that can be executed on the computer.

The CLR uses a just-in-time compiler (JIT compiler) to compile pieces of the IL code only when
they are needed. When the program is loaded, the loader creates a stub for each method. Initially,
that stub points to the method’s IL code.

When the program invokes the method, the JIT compiler translates its IL code into machine code,
makes the stub point to it, and then runs the machine code. If the program calls the method again
later, its stub already points to the machine code, so the method doesn’t need to be compiled again.

Figure 1-1 shows the process graphically.

Usually, the time needed to compile a method is small, so you don’t notice the tiny bits of extra time
used as each method is called for the first time. After a method is compiled, it runs a tiny bit faster
when it is called later.

If a method is never called by the program, it is never compiled by the JIT compiler, so the compiler
saves some time.

The CLR ❘ 7

C#
Program

Visual Basic
Program

Other Language
Program

IL

Native
Method

Native
Method

Native
Method

Program

C# Compiler Other CompilerVisual Basic
Compiler

JIT
Compiler

JIT
Compiler

JIT
Compiler

figurE 1-1: Compilers translate C# code (and code in other
languages) into IL code. At run time, the JIT compiler translates
methods from IL code into machine code as needed.

ahEaD-of-TimE Compiling

Normally .NET programs use the JIT compiler, but if you want to, you can use the
NGen.exe program to precompile a program into native code. Then when you run
the program, it is already compiled, so each method doesn’t need to be compiled
just in time.

This might not save you as much time as you would think. Hard drives are slow
compared to operations performed in memory, so loading the compiled methods
from disk may take much longer than the time saved precompiling the program.

You can speed things up if you give an assembly a strong name and install it in the
system’s Global Assembly Cache (GAC, pronounced “gack”). In that case, multiple
programs that share the assembly may not need to load the compiled assembly from
disk. The whole process is rather involved and only useful under specialized condi-
tions, so it’s not described in any greater detail here. For more information about
NGen and the JIT compiler, see “Compiling MSIL to Native Code” at http://
msdn.microsoft.com/library/ht8ecch6.aspx. For more information about
using NGen and the GAC to improve performance, see “The Performance Benefits
of NGen” at http://msdn.microsoft.com/magazine/cc163610.aspx.

In addition to providing JIT compilation, the CLR also provides some low-level services used by
programs such as memory management, thread management, and exception handling. (Chapter 12,
“Classes and Structures,” describes the .NET memory management model. Chapter 6, “Methods,”

8 ❘ ChapTEr 1 The C# environmenT

and Chapter 22, “Parallel Programming,” discuss using multiple threads. Chapter 9, “Error
Handling,” describes exception handling in C#.)

ThE .nET framEWork

The .NET Framework includes the CLR and a large library of powerful tools that make C# pro-
gramming simpler. Those tools include just about everything you normally use in a C# program that
isn’t part of the C# language itself. Some of the tools included in the .NET Framework enable you to

➤➤ Add attributes to classes and their members to give extra information to runtime tools.

➤➤ Use collections such as lists, dictionaries, and hash tables.

➤➤ Work with databases.

➤➤ Find the computer’s physical location using methods such as GPS, Wi-Fi triangulation, and
cell tower triangulation.

➤➤ Interact with system processes, event logs, and performance data.

➤➤ Create sophisticated two-dimensional drawings.

➤➤ Interact with Active Directory.

➤➤ Provide globalization so that programs use appropriate text and images in different locales.

➤➤ Use LINQ (described in Chapter 8, “LINQ”).

➤➤ Create and use message queues.

➤➤ Work with the filesystem.

➤➤ Play audio and video.

➤➤ Get information about and manage devices.

➤➤ Interact with networks and the Internet.

➤➤ Print documents.

➤➤ Examine the code entities defined by the program or another compiled assembly.

➤➤ Serialize and deserialize objects.

➤➤ Control program security.

➤➤ Support speech recognition.

➤➤ Run multiple threads of execution simultaneously.

➤➤ Process XML and JSON files.

➤➤ Encrypt and decrypt files.

➤➤ Much more.

Summary ❘ 9

By using all of these tools, you can build standalone programs to run on desktop systems, phone or
tablet applications, websites, networked applications, and all sorts of other programs.

A compiled C# program needs the CLR to execute, and most programs also need the .NET Framework.
That means to run a program, a computer must have the .NET Framework installed.

If Visual Studio is installed on the computer, the .NET Framework is also installed. That means you
can usually copy a compiled C# application onto the computer and it will run. (Of course, you should
never copy a compiled program from a source you don’t trust! This method works if you want to
share a program with your friends, but don’t just grab any old compiled C# program off the Internet.)

Most installers also install the .NET Framework if needed, so if you use an installer, the .NET
Framework will be installed if it’s not already on the machine. For example, ClickOnce deployment
installs the .NET Framework if necessary.

You can also install the .NET Framework manually by downloading an installer or by using a web
installer. To find the latest installers, go to Microsoft’s Download Center at www.microsoft.com/
download/default.aspx and search for .NET Framework.

CliCkonCE

To use ClickOnce deployment, select Build ➪ Publish, and let the Publish Wizard
guide you through the process. The wizard enables you to determine

➤➤ The location where the distribution package should be built

➤➤ Whether the user will install from a website, a file, or a CD or DVD

➤➤ Whether the application should check for updates when it runs

For more information on ClickOnce deployment, see http://msdn.microsoft
.com/library/142dbbz4.aspx.

Most of the .NET Framework features are backward compatible, so usually you can install the most
recent version, and programs built with older versions will still run. If you do need a particular version
of the .NET Framework, search the Download Center for the version you need.

summary

A C# program cannot stand completely alone. To create, compile, and run a C# program, you need
several tools. You can create a C# program in a text editor, but it’s much easier to use Visual Studio
to write and debug programs. After you write a program, the C# compiler translates the C# code
into IL code. At run time, the CLR (which is part of the .NET Framework) uses JIT compilation to
translate the IL code into native machine code for execution.

You can use NGen to precompile assemblies and install them in the GAC, so they don’t need to be
compiled at run time by the JIT compiler. In many cases, however, that won’t save much time. If the

10 ❘ ChapTEr 1 The C# environmenT

program’s methods are called when the user performs actions such as clicking buttons and invoking
menu items, the small additional overhead probably won’t be noticeable.

All that happens behind the scenes when you build and execute a C# program. The next
chapter explains how you can start to build C# programs. It explains the most common types
of C# projects and explains how you can use several of them to test C# code as you work
through the rest of this book.

ExErCisEs

 1. Draw a diagram showing the major steps that Visual Studio performs when you write a
C# program and press F5 to run it.

 2. Suppose you have two applications. The first uses 50 methods to perform tasks as the user
selects them. The second uses the same 50 methods to perform all the tasks when it starts.
How will the performance of the two applications differ? How do NGen and the GAC apply
to this situation?

 3. For which of the following scenarios would NGen and the GAC be most useful?

 a. An interactive application that displays forms on the screen

 b. A code library that defines methods for performing tasks that your other programs use

 c. A control library that defines custom buttons, scroll bars, and other controls

 d. A console application that writes output to a console window

 4. Suppose your program uses 100 methods as the user performs various actions. You add a
parameter to each method, so you can tell it to return without doing anything. Then when
the program starts (while the splash screen displays), the code calls every method telling it to
return without doing anything. How would the CLR handle those methods?

