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INTRODUCTION

Once you get the physics right, the rest is mathematics.
—Rudolf E. Kalman

Kailath Lecture, Stanford University, May 11, 2009

1.1 CHAPTER FOCUS

This chapter presents a preview of where we are heading, some history of how others
got there before us, an overview showing how all the material fits together, and a
common notation and nomenclature to make it more apparent.

1.2 ON KALMAN FILTERING

1.2.1 First of All: What Is a Kalman Filter?

Theoretically, it has been called the linear least mean squares estimator (LLMSE)
because it minimizes the mean-squared estimation error for a linear stochastic sys-
tem using noisy linear sensors. It has also been called the linear quadratic esti-
mator (LQE) because it minimizes a quadratic function of estimation error for a
linear dynamic system with white measurement and disturbance noise. Even today,
more than half a century after its discovery, it remains a unique accomplishment in
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2 INTRODUCTION

the history of estimation theory. It is the only practical finite-dimensional solution
to the real-time optimal estimation problem for stochastic systems, and it makes
very few assumptions about the underlying probability distributions except that they
have finite means and second central moments (covariances). Its mathematical model
has been found to represent a phenomenal range of important applications involv-
ing noisy measurements for estimating the current conditions of dynamic systems
with less-than-predictable disturbances. Althoughmany approximationmethods have
been developed to extend its application to less-than-linear problems, and despite
decades of dedicated research directed at generalizing it for nonlinear applications,
no comparable general solution1 for nonlinear problems has been found.

Practically, the Kalman filter is one of the great discoveries ofmathematical engi-
neering, which uses mathematical modeling to solve engineering problems—in the
much same way that mathematical physics is used to solve physics problems, or
computational mathematics is used for solving efficiency and accuracy problems in
computer implementations.

Its early users would come to consider the Kalman filter to be the greatest dis-
covery in practical estimation theory in the twentieth century, and its reputation has
continued to grow over time. As an indication of its ubiquity, a Google®; web search
for “Kalman filter” or “Kalman filtering” produces more than a million hits. One rea-
son for this is that the Kalman filter has enabled human kind to do many things that
could not have been done without it, and it has become as indispensable as silicon in
the makeup of many electronic systems. Its most immediate applications have been
for the monitoring and control of complex dynamic systems such as continuous man-
ufacturing processes, aircraft, ships, or spacecraft. To control a dynamic system, you
must first know what it is doing. For these applications, it is not always possible or
desirable to measure every variable that you want to control, and the Kalman filter
provides the mathematical framework for inferring the unmeasured variables from
indirect and noisy measurements. The Kalman filter is also used for predicting the
likely future courses of dynamic systems that people are not likely to control, such
as the flow of rivers during flood, the trajectories of celestial bodies, or the prices
of traded commodities and securities. It has become a universal tool for integrating
different sensor and/or data collection systems into an overall optimal solution.

As an added bonus, the Kalman filter model can be used as a tool for assessing the
relative accuracy of alternative sensor system designs for likely scenarios of dynamic
system trajectories. Without this capability, development of many complex sensor
systems (including Global Navigation Satellite Systems) may not have been possible.

From a practical standpoint, the following are the perspectives that this book will
present:

1. It is only a tool. It does not solve any problem all by itself, although it can
make it easier for you to do it. It is not a physical tool, but a mathematical
one. Mathematical tools make mental work more efficient, just as mechanical
tools make physical work more efficient. As with any tool, it is important to

1However, a somewhat limited finite-dimensional nonlinear solution has been found [1].



ON KALMAN FILTERING 3

understand its use and function before you can apply it effectively. The purpose
of this book is to make you sufficiently familiar with and proficient in the use
of the Kalman filter that you can apply it correctly and efficiently.

2. It is a computer program. It has been called “ideally suited to digital computer
implementation” [2], in part because it uses a finite representation of the estima-
tion problem—by a finite number of variables. It does, however, assume that
these variables are real numbers—with infinite precision. Some of the prob-
lems encountered in its use arise from the distinction between finite dimension
and finite information and the distinction between “finite” and “manageable”
problem sizes. These are all issues on the practical side of Kalman filtering that
must be considered along with the theory.

3. It is a consistent statistical characterization of an estimation problem. It is
much more than an estimator, because it propagates the current state of knowl-
edge of the dynamic system, including the mean-squared uncertainties arising
from random dynamic perturbations and sensor noise. These properties are
extremely useful for statistical analysis and the predictive design of sensor
systems.

If these answers provide the level of understanding that you were seeking, then
there is no need for you to read the rest of the book. If you need to understand Kalman
filters well enough to use them effectively, then please read on!

1.2.2 How It Came to Be Called a Filter

It might seem strange that the term filter would apply to an estimator. More com-
monly, a filter is a physical device for removing unwanted fractions of mixtures.
(The word felt comes from the same Medieval Latin stem and was used to denote
the material that was used as a filter for liquids.) Originally, a filter solved the prob-
lem of separating unwanted components of liquid–solidmixtures. In the era of crystal
radios and vacuum tubes, the term was applied to analog circuits that “filter” elec-
tronic signals. These signals are mixtures of different frequency components, and
these physical devices preferentially attenuate unwanted frequencies.

This concept was extended in the 1930s and 1940s to the separation of “signals”
from “noise,” both of which were characterized by their power spectral densities.
Kolmogorov and Wiener used this statistical characterization of their probability dis-
tributions in forming an optimal estimate of the signal, given the sum of the signal
and noise.

With Kalman filtering, the term assumed ameaning that is well beyond the original
idea of separation of the components of a mixture. It has also come to include the
solution of an inversion problem, in which one knows how to represent themeasurable
variables as functions of the variables of principal interest. In essence, it inverts this
functional relationship and estimates the independent variables as inverted functions
of the dependent (measurable) variables. These variables of interest are also allowed
to be dynamic, with dynamics that are only partially predictable.
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Figure 1.1 Foundational concepts in Kalman filtering.

1.2.3 Its Mathematical Foundations

Figure 1.1 depicts the essential subjects forming the foundations for Kalman filtering
theory. Although this shows Kalman filtering as the apex of a pyramid, it is itself but
part of the foundations of another discipline, “modern” control theory, and a proper
subset of statistical decision theory.

We will examine only the top three layers of the pyramid in this book, and a little
of the underlying mathematics2 (matrix theory, in Appendix B on the Wiley web
site).

1.2.4 What It Is Used for

The applications of Kalman filtering encompass many fields, but its use as a tool
is almost exclusively for two purposes: estimation and performance analysis of
estimators.

1. Estimating the State of Dynamic Systems. What is a dynamic system? Almost
everything, if you are picky about it. Except for a few fundamental physi-
cal constants, there is hardly anything in the universe that is truly constant.
The orbital parameters of the dwarf planet Ceres are not constant, and even
the “fixed” stars and continents are moving. Nearly all physical systems are
dynamic to some degree. If one wants very precise estimates of their char-
acteristics over time, then one has to take their dynamics into consideration.
The problem is that one does not always know their dynamics very precisely
either. Given this state of partial ignorance, the best one can do is expressing
our ignorance more precisely—using probabilities. The Kalman filter allows
us to estimate the state of dynamic systems with certain types of random behav-
ior by using such statistical information. A few examples of such systems are
listed in the second column of Table 1.1.

2It is best that one not examine the bottommost layers of these mathematical foundations too carefully,
anyway. They eventually rest on human intellect, the foundations of which are not as well understood.
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TABLE 1.1 Examples of Estimation Problems

Application Dynamic System Sensor Types

Process control Chemical plant Pressure
Temperature
Flow rate
Gas analyzer

Flood prediction River system Water level
Rain gauge
Weather radar

Tracking Spacecraft Radar
Imaging system

Navigation Ship Sextant
Log
Gyroscope
Accelerometer
GNSSa receiver

aAbbreviation: GNSS, Global Navigation Satellite System.

2. Performance Analysis of Estimation Systems. The third column of Table 1.1
lists some possible sensor types that might be used in estimating the state of
the corresponding dynamic systems. The objective of design analysis is to
determine how best to use these sensor types for a given set of performance
criteria. These criteria are typically related to estimation accuracy and system
cost.

The Kalman filter uses a parametric characterization of the probability distri-
bution of its estimation errors in determining the optimal filtering gains, and these
parameters may be used in assessing its performance as a function of the “design
parameters” of an estimation system, such as

1. the types of sensors to be used,

2. the locations and orientations of the various sensor types with respect to the
system to be estimated,

3. the allowable noise characteristics of the sensors,

4. the prefiltering methods for smoothing sensor noise,

5. the data sampling rates for the various sensor types, and

6. the level of model simplification to reduce implementation requirements.

The analytical capability of the Kalman filter formalism also allows a system
designer to assign an “error budget” to subsystems of an estimation system and to
trade off the budget allocations to optimize cost or other measures of performance
while achieving a required level of estimation accuracy.
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1.3 ON OPTIMAL ESTIMATION METHODS

The Kalman filter is the result of an evolutionary process of ideas from many creative
thinkers over many centuries. We present here some of the seminal ideas in this pro-
cess, the discoverers of which are listed in historical perspective in Figure 1.2. This
list is by no means exhaustive. There are far too many people involved to show them
all, but the figure should give some idea of the time periods involved. The figure cov-
ers only half a millennium, and the study and development of mathematical concepts
goes back beyond history. Readers interested in more detailed histories of optimal
estimation are referred to the survey articles by Kailath [8, 30], Lainiotis [3], Mendel
and Gieseking [4], and Sorenson [55, 56] and the personal accounts of Battin [5] and
Schmidt [6]. More recent contributions from the last five discoverers on this list are
discussed in Chapters 7 and 8.

1.3.1 Beginnings of Optimal Estimation Theory

The first method for forming an optimal estimate from noisy data is the method
of least squares. Its discovery is generally attributed to Carl Friedrich Gauss
(1777–1855) in 1795. The inevitability of measurement errors had been recognized
since the time of Galileo (1564–1642), but this was the first formal method for deal-
ing with them. Although it is more commonly used for linear estimation problems,
Gauss first used it for a nonlinear estimation problem in mathematical astronomy,
which was part of an interesting event in the history of astronomy. The following

16001500

Cardano

Galileo

Fermat

Pascal

Huygens

Newton

Bernoulli

Riccati

Bayes

Laplace

Legendre

Gauss

Maxwell

Thiele

Markov Julier

Uhlmann

Carlson

Bierman

Potter

Bucy

Stratonovich

Kalman

Swerling

Schmidt

Kolmogorov

Wiener

Fisher

Cholesky

Itô

Kailath

De  Moivre

1700 1800 1900 2000

16001500 1700 1800 1900 2000

Figure 1.2 Lifelines of some important contributors to estimation technology.
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account was put together from several sources, including the account by Baker and
Makemson [7].

On January 1, 1801, the first day of the nineteenth century, the Italian astronomer
Giuseppe Piazzi was checking an entry in a star catalog. Unbeknown to Piazzi,
it included an error by the printer. While searching for the “missing” star, Piazzi
discovered, instead, something that moved. It was the “dwarf planet” Ceres—the
largest body in the asteroid belt and the first to be discovered—but Piazzi did not
know that yet. He was able to track and measure its apparent motion against the
“fixed” star background during 41 nights before it moved too close to the sun and
disappeared.

On January 24, Piazzi had written of his discovery to Johann Bode. Bode is best
known for Bode’s law, which states that the distances of the planets from the sun, in
astronomical units, are given by the sequence

dn =
1
10

(4 + 3 × 2n) for n = −∞, 0, 1, 2, ?, 4, 5, … . (1.1)

Actually, it was not Bode, but Johann Tietz who first proposed this formula, in
1772. At that time, there were only six known planets. In 1781, Friedrich Herschel
discovered Uranus, which fit nicely into this formula for n = 6. No planet had
been discovered for n = 3. Spurred on by Bode, an association of European
astronomers had been searching for the “missing” eighth planet for nearly 30 years.
Piazzi was not part of this association, but he did inform Bode of his unintended
discovery.

Piazzi’s letter did not reach Bode until March 20. (Electronic mail was discov-
ered much later.) Bode suspected Piazzi’s discovery might be the missing planet, but
there was insufficient data for determining its orbital elements by the methods then
available. It is a problem in nonlinear equations that Newton, himself, had declared
as being among the most difficult in mathematical astronomy. Nobody had solved it
and, as a result, Ceres was lost in space again.

Piazzi’s discoveries were not published until the autumn of 1801. The possible
discovery—and subsequent loss—of a new planet, coinciding with the beginning of
a new century, was exciting news. It contradicted a philosophical justification for there
being only seven planets—the number known before Ceres and a number defended
by the respected philosopher Georg Hegel, among others. Hegel had recently pub-
lished a book inwhich he chastised the astronomers for wasting their time in searching
for an eighth planet when there was sound philosophical justification for there being
only seven. The new celestial object became a subject of conversation in intellec-
tual circles nearly everywhere. Fortunately, the problem caught the attention of a
24-year-old mathematician at Góttingen named Carl Friedrich Gauss.

Gauss had toyed with the orbit determination problem a few weeks earlier but
had set it aside for other interests. He now devoted most of his time to the problem,
produced an estimate of the orbit of Ceres in December, and sent his results to Piazzi.
The new “planet” (later reclassified as an asteroid), which had been sighted on the
first day of the year, was found again—by its discoverer—on the last day of the year.
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Gauss did not publish his orbit determination methods until 1809.3 In this publi-
cation, he also described the method of least squares that he had discovered in 1795,
at the age of 18, and had used it in refining his estimates of the orbit of Ceres.

Although Ceres played a significant role in the history of discovery and it still
reappears regularly in the nighttime sky, it had faded into obscurity as an object of
intellectual interest until the 2007 launch of scientific probe Dawn for a 2015 ren-
dezvous with Ceres. The method of least squares, on the other hand, has been an
object of continuing interest and benefit to generations of scientists and technologists
ever since its introduction. It has had a profound effect on the history of science. It was
the first optimal estimation method, and it provided an important connection between
the experimental and theoretical sciences: it gave experimentalists a practical method
for estimating the unknown parameters of theoretical models.

1.3.2 Method of Least Squares

The following example of a least-squares problem is the onemost often seen, although
the method of least squares may be applied to a much greater range of problems.

Example 1.1 (Least-Squares Solution for Overdetermined Linear Systems)
Gauss discovered that if he wrote a system of equations in matrix form, as

⎡⎢⎢⎢⎢⎣
h11 h12 h13 … h1n
h21 h22 h23 … h2n
h31 h32 h33 … h3n
⋮ ⋮ ⋮ ⋱ ⋮
hl1 hl2 hl3 … hln

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
x1
x2
x3
⋮
xn

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
z1
z2
z3
⋮
zl

⎤⎥⎥⎥⎥⎦
(1.2)

or
Hx = z, (1.3)

then he could consider the problem of solving for that value of an estimate x̂ (pro-
nounced “x-hat”) that minimizes the “estimatedmeasurement error”Hx̂ − z. He could
characterize that estimation error in terms of its Euclidean vector norm |Hx̂ − z|, or,
equivalently, its square:

𝜀2(x̂) = |Hx̂ − z|2 (1.4)

=
m∑
i=1

[
n∑
j=1

hijx̂j − zi

]2

, (1.5)

3In the meantime, the method of least squares had been discovered independently and published by
Andrien-Marie Legendre (1752–1833) in France and Robert Adrian (1775–1855) in the United States
[8]. It had also been discovered and used before Gauss was born by the German-Swiss physicist
Johann Heinrich Lambert (1728–1777). Such Jungian synchronicity (i.e., the phenomenon of multiple,
near-simultaneous discovery) was to be repeated for other breakthroughs in estimation theory, as well—for
the Wiener–Kolmogorov filter and the Kalman filter.
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which is a continuously differentiable function of the n unknowns x̂1, x̂2, x̂3, … , x̂n.
This function 𝜀2(x̂) → ∞ as any component x̂k → ±∞. Consequently, it will achieve
its minimum value where all its derivatives with respect to the x̂k are zero. There are
n such equations of the form

0 = 𝜕𝜀2

𝜕x̂k
(1.6)

= 2
m∑
i=1

hik

[
n∑
j=1

hijx̂j − zi

]
(1.7)

for k = 1, 2, 3, … , n. Note that in this last equation, the expression

n∑
j=1

hijx̂j − zi = {Hx̂ − z}i, (1.8)

the ith row of Hx̂ − z, and the outermost summation are equivalent to the dot product
of the kth column of H with Hx̂ − z. Therefore, Equation 1.7 can be written as

0 = 2HT[Hx̂ − z] (1.9)

= 2HTHx̂ − 2HTz (1.10)

or

HTHx̂ = HTz,

where the matrix transpose HT is defined as

HT =

⎡⎢⎢⎢⎢⎣
h11 h21 h31 … hm1
h12 h22 h32 … hm2
h13 h23 h33 … hm3
⋮ ⋮ ⋮ ⋱ ⋮
h1n h2n h3n … hmn

⎤⎥⎥⎥⎥⎦
. (1.11)

The equation
HTHx̂ = HTz (1.12)

is called the normal equation or the normal form of the equation for the linear
least-squares problem. It has precisely as many equivalent scalar equations as
unknowns.

1.3.2.1 The Gramian of the Linear Least-Squares Problem The normal equation
has the solution

x̂ = (HTH)−1HTz,

provided that the matrix
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 = HTH (1.13)

is nonsingular (i.e., invertible). Thematrix product  = HTH in this equation is called
the Gramian matrix.4 The determinant of the Gramian matrix characterizes whether
or not the column vectors ofH are linearly independent. If its determinant is zero, the
column vectors of H are linearly dependent and x̂ cannot be determined uniquely. If
its determinant is nonzero, then the solution x̂ is uniquely determined.

Example 1.2 (The Gramians of Guier and Weiffenbach) Development of satel-
lite navigation started just after the world’s first artificial satellite, Sputnik I, was
launched from the Soviet Union on Friday, October 4, 1957. On the following Mon-
day, William Guier (1926–2011) and George Weiffenbach (1921–2003), two scien-
tists at the Applied Physics Laboratory (APL) of Johns Hopkins University, started
recording and analyzing the 20MHz carrier signals from Sputnik I. These signals
exhibited noticeable patterns of Doppler shift as the satellite passed from horizon
to horizon. Weiffenbach was able to use a spectrum analyzer to track the Doppler
frequency shift as the satellite passed from horizon to horizon, generally within a
period of several minutes. Curious to understand how the satellite orbit influenced the
observed patterns of Doppler shift, Guier and Weiffenbach calculated partial deriva-
tives of Doppler shift with respect to orbital parameters.

For any parameter pk of the satellite orbit, Guier and Weiffenbach could obtain
numerical partial derivatives of the measurable Doppler frequency shift fDop(t) at the
known receiver location to that parameter be generating an orbit with perturbed value
pk + 𝛿p,k and calculating the resulting perturbations 𝛿f , k(ti) in the Doppler shifts at the
receiver at sample times ti during a satellite pass by, as

𝜕fDop(ti)
𝜕pk

≈
𝛿f ,k(ti)
𝛿p,k

.

Small variations Δp,k in the orbit parameters should then be approximately related
to observable deviations ΔDop(ti) of Doppler shift during one satellite pass by the

4Named after the Danish mathematician Jørgen Pedersen Gram (1850–1916). This matrix is also related to
what is called the unscaled Fisher information matrix, named after the English statistician Ronald Aylmer
Fisher (1890–1962). Although information matrices and Gramian matrices have different definitions and
uses, they can amount to almost the same thing in this particular instance. The formal statistical definition
of the term information matrix represents the information obtained from a sample of values from a known
probability distribution. It corresponds to a scaled version of the Gramian matrix when the measurement
errors in z have a joint probability distribution, with the scaling related to the uncertainty of the measured
data. The information matrix is a quantitative statistical characterization of the “information” (in some
sense) that is in the data z used for estimating x. The Gramian, on the other hand, is used as an qualitative
algebraic characterization of the uniqueness of the solution.
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linear system of equations

⎡⎢⎢⎢⎢⎢⎣

ΔDop

(
t1
)

ΔDop(t2)
ΔDop(t3)

⋮
ΔDop(tN)

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜕fDop(t1)
𝜕p1

𝜕fDop(t1)
𝜕p2

𝜕fDop(t1)
𝜕p3

· · · 𝜕fDop(t1)
𝜕pn

𝜕fDop(t2)
𝜕p2

𝜕fDop(t2)
𝜕p2

𝜕fDop(t2)
𝜕p3

· · · 𝜕fDop(t2)
𝜕pn

𝜕fDop(t3)
𝜕p1

𝜕fDop(t3)
𝜕p2

𝜕fDop(t3)
𝜕p3

· · · 𝜕fDop(t3)
𝜕pn

⋮ ⋮ ⋮ ⋱ ⋮
𝜕fDop(tN )

𝜕p1

𝜕fDop(tN )
𝜕p2

𝜕fDop(tN )
𝜕p3

· · · 𝜕fDop(tN )
𝜕pn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

H

⎡⎢⎢⎢⎢⎢⎣

Δp,1
Δp,2
Δp,3
⋮

Δp,n

⎤⎥⎥⎥⎥⎥⎦
,

where the matrix H is N × n, N is the number of Doppler frequency shifts observed
during one pass, and n is the number of satellite orbit parameters.

The problem of estimating the n unknown orbital parameters p1, p2, p3, … , pn,
given the N observations ΔDop(ti) is similar to the problem faced by Gauss in 1801 in
solving for the “Keplerian” orbital parameters of Ceres, in that the available obser-
vations span only a small fraction of a complete orbit. Guier and Weiffenbach then
did what Gauss had done: they tried Gauss’s method of least squares to see whether
a suitable estimate could be obtained. That would depend on whether the associated
n × n Gramian matrix

G = HTH

is invertible. Gauss had taken several months to obtain his solution, but Guier
and Weiffenbach had something Gauss did not have: the use of a Univac 1103A
computer.5

At first, following the approach of Gauss, the partial derivatives were with respect
to the sixKeplerian parameters of the Sputnik I orbit. However, effects of gravitational
anomalies on satellite orbits were found to be more significant than anticipated, and
partial derivatives with respect to the dominant gravitational anomalies were then
added to the linearized model. Additional partial derivatives with respect to iono-
spheric propagation effects and satellite transmitter frequency were also added. In
all cases, it could be shown that the associated Gramian matrices G are nonsingu-
lar; indicating that the satellite orbit is determinable from the Doppler shift pattern
from a single satellite pass by of a receiver with known location. As an added bonus,
the solution also provided estimates of anomalies in the gravitational field at satellite
altitudes.

In March of 1958, these results were reviewed by Frank McClure (1916–1973),
director of APL’s Research Center. McClure asked whether this relationship could be
inverted to determine the horizontal receiver location, given the Doppler shift history
and the satellite ephemeris (orbit description), and Guier and Weiffenbach were able

5A vacuum-tube computer with roughly the same capabilities as the IBM 704. It could have one to four
banks of 18 kB magnetic core random-access memories in addition to magnetic drum memory, a 36-bit
data word, and multiply times in the order of a few tenths of a millisecond.
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to show that the 2 × 2 Gramian matrix for this problem is also nonsingular. That is,
given the Doppler frequency shift pattern from one pass by a satellite with known
orbit, one can obtain a least-squares solution for the longitude and latitude of the
receiver antenna.

This discovery would result in the development of the world’s first satellite naviga-
tion system: the US Navy’s Transit Navigation System. In December of 1956, the US
Navy had committed to develop a new class of nuclear powered ballistic missile sub-
marines to be launched in the 1960s, but these submarines would need an accurate
position fix before launching their missiles. The Transit Navigation System would
fulfill that need. It became operational in the 1960s and remained in operation until
it was eclipsed by Global Positioning System (GPS) in the 1990s.

1.3.2.2 Least-Squares Solution In the case that the Gramian matrix is invertible
(i.e., nonsingular), the solution x̂ is called the least-squares solution of the overdeter-
mined linear inversion problem. It is an estimate that makes no assumptions about the
nature of the unknownmeasurement errors, although Gauss alluded to that possibility
in his description of the method. The formal treatment of uncertainty in estimation
would come later.

This form of the Gramian matrix will be used in Chapter 2 to define the observ-
ability matrix of a linear dynamic system model in discrete time.

1.3.2.3 Least Squares in Continuous Time The following example illustrates how
the principle of least squares can be applied to fitting a vector-valued parametric
model to data in continuous time. It also illustrates how the issue of determinacy (i.e.,
whether there is a unique solution to the problem) is characterized by the Gramian
matrix in this context.

Example 1.3 (Least-squares Fitting of Vector-valued Data in Continuous
Time) Suppose that for each value of time t on an interval t0 ≤ t ≤ tf , z(t) is an
𝓁-dimensional signal vector that is modeled as a function of an unknown n-vector x
by the equation

z(t) = H(t) x,

where H(t) is a known 𝓁 × n matrix. The squared error in this relation at each time t
will be

𝜀2(t) = |z(t) − H(t) x|2 = xT[HT(t)H(t)]x − 2xTHT(t)z(t) + |z(t)|2.
The squared integrated error over the interval will then be the integral

‖𝜀‖2 = ∫
tf

t0

𝜀2(t) dt = xT
[
∫

tf

t0

HT(t)H(t) dt
]
x − 2xT

[
∫

tf

t0

HT(t)z(t)dt
]

+ ∫
tf

t0

|z(t)|2 dt,
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which has exactly the same array structure with respect to x as the algebraic
least-squares problem. The least-squares solution for x can be found, as before, by
taking the derivatives of ‖𝜀‖2 with respect to the components of x and equating them
to zero. The resulting equations have the solution

x̂ =
[
∫

tf

t0

HT(t)H(t) dt
]−1 [

∫
tf

t0

HT(t) z(t) dt
]
,

provided that the corresponding Gramian matrix

 = ∫
tf

t0

HT(t)H(t) dt

is nonsingular.

1.3.2.4 GramianMatrices and Observability For the examples considered above,
observability does not depend upon the measurable data (z). It depends only on the
nonsingularity of the Gramianmatrix (), which depends only on the linear constraint
matrix (H) between the unknowns and knowns.

Observability of a set of unknown variables is the issue of whether or not their val-
ues are uniquely determinable from a given set of constraints, expressed as equations
involving functions of the unknown variables. The unknown variables are said to be
observable if their values are uniquely determinable from the given constraints, and
they are said to be unobservable if they are not uniquely determinable from the given
constraints.

The condition of nonsingularity (or “full rank”) of the Gramian matrix is an alge-
braic characterization of observability when the constraining equations are linear
in the unknown variables. It also applies to the case that the constraining equations
are not exact, due to errors in the values of the allegedly known parameters of the
equations.

The Gramian matrix will be used in Chapter 2 to define observability of the states
of dynamic systems in continuous time and discrete time.

1.3.3 Mathematical Modeling of Uncertainty

Probabilities represent the state of knowledge about physical phenomena by provid-
ing something more useful than “I don’t know” to questions involving uncertainty.
One of the mysteries in the history of science is why it took so long for mathe-
maticians to formalize a subject of such practical importance. The Romans were
selling insurance and annuities long before expectancy and risk were concepts of
serious mathematical interest. Much later, the Italians were issuing insurance poli-
cies against business risks in the early Renaissance, and the first known attempts at a
theory of probabilities—for games of chance—occurred in that period. The Italian
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Girolamo Cardano6 (1501–1576) performed an accurate analysis of probabilities for
games involving dice. He assumed that successive tosses of the dice were statisti-
cally independent events. Like the pioneering Indian mathematician Brahmagupta
(589–668), Cardano stated without proof that the accuracies of empirical statistics
tend to improve with the number of trials. This would later be formalized as a Law
of Large Numbers.

More general treatments of probabilities were developed by Blaise Pascal
(1622–1662), Pierre de Fermat (1601–1655), and Christiaan Huygens (1629–1695).
Fermat’s work on combinations was taken up by Jakob (or James) Bernoulli
(1654–1705), who is considered by some historians to be the founder of probability
theory. He gave the first rigorous proof of the Law of Large Numbers for repeated
independent trials (now called Bernoulli trials). Thomas Bayes (1702–1761)
derived his famous rule for statistical inference sometime after Bernoulli. Abraham
de Moivre (1667–1754), Pierre Simon Marquis de Laplace (1749–1827), Adrien
Marie Legendre (1752–1833), and Carl Friedrich Gauss (1777–1855) continued
this development into the nineteenth century.

Between the early nineteenth century and the mid-twentieth century, the probabil-
ities themselves began to take on more meaning as physically significant attributes.
The idea that the laws of nature embrace random phenomena and that these are treat-
able by probabilistic models began to emerge in the nineteenth century. The develop-
ment and application of probabilistic models for the physical world expanded rapidly
in that period. It even became an important part of sociology. Thework of James Clerk
Maxwell (1831–1879) in statistical mechanics established the probabilistic treatment
of natural phenomena as a scientific (and successful) discipline. Andrei Andreyevich
Markov (1856–1922) would develop much of the theory of what is today called a
Markov process (in continuous time) or Markov chain (in discrete time), a random
process with the property that the evolution over time of its probability distribu-
tion can be treated as an initial-value problem. That is, the instantaneous variation
with time of the probability distribution of possible states of the process is deter-
mined by the current distribution, which includes the effects of all past history of the
process.

An important figure in probability theory and the theory of random processes in
the twentieth centurywas the Russian academicianAndrei NikolayevichKolmogorov
(1903–1987). Starting around 1925, working with Aleksandr Yakovlevich Khinchin
and others, he reestablished the foundations of probability theory on measure theory,
which had originated as the basis for integration theory and became the accepted
mathematical basis of probability and random processes. Along with NorbertWiener,
he is credited with founding much of the theory of prediction, smoothing and filtering
of Markov processes, and the general theory of ergodic processes. His theory was the
first formal theory of optimal estimation for systems involving random processes.

6Cardano was a practicing physician in Milan who also wrote books on mathematics. His book De Ludo
Hleae, on the mathematical analysis of games of chance (principally dice games), was published nearly a
century after his death. Cardano was also the inventor of the most common type of universal joint found
in automobiles, sometimes called the Cardan joint, Cardan shaft, or universal joint.



ON OPTIMAL ESTIMATION METHODS 15

1.3.4 The Wiener–Kolmogorov Filter

Norbert Wiener (1894–1964) is one of the more famous prodigies of the early twen-
tieth century. He was taught by his father until the age of 9, when he entered high
school. He finished high school at the age of 11 and completed his undergraduate
degree in mathematics in 3 years at the Tufts University. He then entered graduate
school at the Harvard University at the age of 14 and completed his doctorate degree
in the philosophy of mathematics when he was 18. He studied abroad and tried his
hand at several jobs for 6 more years. Then, in 1919, he obtained a teaching appoint-
ment at the Massachusetts Institute of Technology (MIT). He remained on the faculty
at the MIT for the rest of his life.

In the popular scientific press, Wiener is probably more famous for naming and
promoting cybernetics than for developing the Wiener–Kolmogorov filter. Some of
his greatest mathematical achievements were in generalized harmonic analysis, in
which he extended the Fourier transform to functions of finite power. Previous results
were restricted to functions of finite energy, which is an unreasonable constraint for
signals on the real line. Another of his many achievements involving the generalized
Fourier transform was proving that the transform of white noise is also white noise.7

1.3.4.1 Wiener–Kolmogorov Filter Development In the early years of the World
War II, Wiener was involved in a military project to design an automatic controller for
directing antiaircraft fire with radar information. Because the speed of the airplane
is a nonnegligible fraction of the speed of bullets, this system was required to “shoot
into the future.” That is, the controller had to predict the future course of its target
using noisy radar tracking data.

In his derivation of an optimal estimator, Wiener would use probability measures
on function spaces to represent uncertain dynamics. He derived the solution for the
least-mean-squared prediction error in terms of the autocorrelation functions of the
signal and the noise. The solution is in the form of an integral operator that can
be synthesized with analog circuits, given certain constraints on the regularity of
the autocorrelation functions or, equivalently, their Fourier transforms. His approach
represents the probabilistic nature of random phenomena in terms of power spectral
densities.

An analogous derivation of the optimal linear predictor for discrete-time systems
was published by Kolmogorov in 1941, when Wiener was just completing his work
on the continuous-time predictor.

Wiener’s work was not declassified until the late 1940s, in a report titled “Ex-
trapolation, interpolation, and smoothing of stationary time series.” The title was
subsequently shortened to “Time series.” An early edition of the report had a yel-
low cover, and it came to be called the yellow peril. It was loaded with mathematical
details beyond the grasp of most engineering undergraduates, but it was absorbed and
used by a generation of dedicated graduate students in electrical engineering.

7He is also credited with the discovery that the power spectral density (PSD) of a signal equals the Fourier
transform of its autocovariance function, although it was later discovered that Albert Einstein had known
it before him.
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1.3.5 The Kalman Filter

Rudolf Emil Kalman was born on May 19, 1930, in Budapest, the son of Otto and
Ursula Kalman. The family emigrated from Hungary to the United States during
World War II. In 1943, when the war in the Mediterranean was essentially over, they
traveled through Turkey and Africa on an exodus that eventually brought them to
Youngstown, Ohio, in 1944. Rudolf attended the Youngstown College there for 3
years before entering the MIT.

Kalman received his bachelor’s and master’s degrees in electrical engineering at
the MIT in 1953 and 1954, respectively. His graduate advisor was Ernst Adolph
Guillemin, and his thesis topic was the behavior of solutions of second-order dif-
ference equations [9]. When he undertook the investigation, it was suspected that
second-order difference equations might be modeled by something analogous to the
describing functions used for second-order differential equations. Kalman discovered
that their solutions were not at all like the solutions of differential equations. In fact,
they were found to exhibit chaotic behavior.

In the fall of 1955, after a year building a large analog control system for the E. I.
Du Pont Company, Kalman obtained an appointment as lecturer and graduate student
at the Columbia University. At that time, Columbia was well known for the work in
control theory by John R. Ragazzini, Lotfi A. Zadeh,8 and others. Kalman taught at
Columbia until he completed the Doctor of Science degree there in 1957.

For the next year, Kalman worked at the research laboratory of the International
Business Machines Corporation in Poughkeepsie and for 6 years after that at the
research center of the Glenn L. Martin Company in Baltimore, the Research Institute
for Advanced Studies (RIAS).

To head its mathematics division, RIAS had lured mathematician Solomon
Lefschetz (1884–1972) from Princeton. Lefschetz had been a classmate with rocket
pioneer Robert H. Goddard (1882–1945) at the Clark University, and thesis advisor
to Richard E. Bellman (1920–1984) at Princeton. Lefschetz hired Kalman on the
recommendation of Robert W. Bass, who had been a postdoc under Lefschetz at
Princeton before coming to the RIAS in 1956. Kalman recommended Richard S.
Bucy, who would join him at the RIAS.

1.3.5.1 Discovery In 1958, the Air Force Office of Scientific Research (AFOSR)
was funding Kalman and Bucy to do advanced research in estimation and control at
the RIAS.

In late November of 1958, not long after coming to the RIAS, Kalman was return-
ing by train to Baltimore from a visit to Princeton. At around 11 pm, the train was
halted for about an hour just outside Baltimore. It was late, he was tired, and he had
a headache. While he was trapped there on the train for that hour, an idea occurred to
him:Why not apply the notion of state variables9to the Wiener–Kolmogorov filtering

8Zadeh is perhaps more famous as the “father” of fuzzy systems theory and interpolative reasoning.
9Although frequency-domain methods were then the preferred approach to the filtering problem, the use
of time-domain state-space models for time-varying systems had already been introduced (e.g., by Laning
and Battin. [10] in 1956).
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problem. He was too tired to think much more about it that evening, but it marked the
beginning of a great exercise to do just that. The rest is history.

The Kalman filter is the culmination of a progression of models and associated
optimal estimation methods for dynamic processes.

1. Wiener–Kolmogorov models use the PSD in the frequency domain to char-
acterize the dynamic and statistical properties of a dynamic process. Optimal
Wiener–Kolmogorov estimators are derivable from the PSD, which can be esti-
mated frommeasured system outputs. This assumes the dynamic processmodel
is time invariant.

2. Control theorists use linear differential equations as dynamic system models.
This led to the development of mixed models, in which the dynamic system
functions as a “shaping filter” excited by white noise. Coefficients of the linear
differential equations determine the shape of the output PSD, and the shape of
the PSD defines the Wiener–Kolmogorov estimator. This approach allows the
dynamic system model to be time varying. These linear differential equations
can be modeled as a system of first-order differential equations in what has
come to be called state space.

The next step in this progression would be to develop the equivalent estimation
methods right from a time-varying state-space model—and that is what Kalman
did.

According to Robert W. Bass (1930–2013) [11], who was at the RIAS in
that period, it was Richard S. Bucy who recognized that—if one assumes a
finite-dimensional state-space model—the Wiener–Hopf equation used in deriving
the Wiener–Kolmogorov filter is equivalent to a nonlinear matrix-valued differential
equation. Bucy also recognized that the nonlinear differential equation in question
was of the same type as one studied by Jacopo Francesco Riccati (1676–1754) more
than two centuries earlier, now called the Riccati equation. The general nature of
this relationship between integral equations and differential equations first became
apparent around that time. One of the more remarkable achievements of Kalman
and Bucy in that period was proving that the Riccati equation can have a stable
(steady-state) solution even if the dynamic system is unstable—provided that the
system is observable and controllable.

With the additional assumption of finite dimensionality, Kalman was able to
derive theWiener–Kolmogorov filter as what we now call the Kalman filter. With the
change to state-space form, the mathematical background needed for the derivation
became much simpler and the proofs were within the mathematical reach of many
undergraduates.

Earlier results The Danish astronomer Thorvald Nicolai Thiele (1838–1910) had
derived what is essentially the Kalman filter for scalar processes, and some of the
seminal ideas in the Kalman filter had been published by Peter Swerling (1929–2001)
in 1959 [12] and Ruslan Leont’evich Stratonovich (1930–1997) in 1960 [35].
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1.3.5.2 Introduction of the Kalman Filter Kalman’s ideas were met with some
skepticism among his peers, and he chose a mechanical engineering journal (rather
than an electrical engineering journal) for publication, because “When you fear step-
ping on hallowed ground with entrenched interests, it is best to go sideways.”10

His second paper, on the continuous-time case and coauthored with Bucy, was once
rejected because—as one referee put it—one step in the proof “cannot possibly be
true.” (It was true.) He persisted in presenting his filter, and there wasmore immediate
acceptance elsewhere. It soon became the basis for research topics at many universi-
ties and the subject of hundreds of doctoral theses in electrical engineering over the
next decade or so.

1.3.5.3 Early Applications: The Influence of Stanley F. Schmidt Kalman found
a receptive audience for his filter in the fall of 1960 in a visit to Stanley F. Schmidt
at the Ames Research Center of NASA in Mountain View, California [13]. Schmidt
had known Kalman from meetings at technical conferences and had invited him to
Ames to further explain his approach. Schmidt had recognized its potential applicabil-
ity to a problem then being studied at Ames—the trajectory estimation and control
problem for the Apollo project, a planned manned mission to the moon and back.
Schmidt began work immediately on what was probably the first full implementa-
tion of the Kalman filter. He soon discovered what is now called extended Kalman
filtering (EKF),which has been used ever since for many real-time nonlinear appli-
cations of Kalman filtering. Enthused over his own success with the Kalman filter,
he set about proselytizing others involved in similar work. In the early part of 1961,
Schmidt described his results to RichardH. Battin from theMIT Instrumentation Lab-
oratory (later renamed the Charles Stark Draper Laboratory, then shortened to Draper
Laboratory). Battin was already using state-space methods for the design and imple-
mentation of astronautical guidance systems, and he made the Kalman filter as part of
the Apollo onboard guidance, which was designed and developed at the Instrumen-
tation Laboratory. In the mid-1960s, through the influence of Schmidt, the Kalman
filter became part of the Northrup-built navigation system for the C5A air transport,
then being designed by Lockheed Aircraft Company. The Kalman filter solved the
data fusion problem associated with combining radar data with inertial sensor data to
arrive at an overall estimate of the aircraft trajectory and the data rejection problem
associated with detecting exogenous errors in measurement data. It has been an inte-
gral part of nearly every onboard trajectory estimation and control system designed
since that time.

1.3.5.4 Other Accomplishments of Kalman Around 1960, Kalman showed that
the related notion of observability for dynamic systems had an algebraic dual rela-
tionship with controllability. That is, by the proper exchange of system parameters,
one problem could be transformed into the other, and vice versa.

10The two quoted segments in this paragraph are from a talk on “System Theory: Past and Present” given
by Kalman at the University of California at Los Angeles (UCLA) on April 17, 1991, in a symposium
organized and hosted by A. V. Balakrishnan at the UCLA and sponsored jointly by the UCLA and the
National Aeronautics and Space Administration (NASA) Dryden Laboratory.
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Kalman also played a leading role in the development of realization theory,which
also began to take shape around 1962. This theory addresses the problem of finding a
system model to explain the observed input/output behavior of a system. This line of
investigation led to a uniqueness principle for the mapping of exact (i.e., noiseless)
data to linear system models.

For his many contributions to mathematical engineering, Kalman was awarded
the IEEE Medal of Honor in 1974, the IEEE Centennial Medal in 1984, the Steele
Prize of the American Mathematical Society in 1987, and the Bellman Prize of the
American Automatic Control Council in 1997.

In 1985, the first year the Inamori Foundation awarded its Kyoto Prizes, Kalman
was awarded the Kyoto Prize in Advanced Technology. On his visit to Japan to accept
the Kyoto Prize, he related to the press an epigram that he had first seen in a pub in
Colorado Springs in 1962, and it had made an impression on him. It said:

Little people discuss other people.
Average people discuss events.
Big people discuss ideas.

His own work, he felt, had been concerned with ideas.
Kalman is a member of the US National Academy of Sciences, the US National

Academy of Engineering, the American Academy of Arts and Sciences, and a foreign
member of the French, Hungarian, and Russian Academies of Sciences.

In 1990, on the occasion of Kalman’s sixtieth birthday, a special international sym-
posium was convened for the purpose of honoring his pioneering achievements in
what has come to be called mathematical system theory, and a Festschrift with that
title was published soon after [14].

On February 19, 2008, the USNational Academy of Engineering awarded Kalman
the Draper Prize, the Nation’s most prestigious award in engineering, at an evening
ceremony in Washington, DC.

In a ceremony at the White House on October 7, 2009, Kalman was awarded the
National Medal of Science by US President Barak Obama.

1.3.5.5 Impact of Kalman Filtering on Technology From the standpoint of those
involved in estimation and control problems, at least, this has to be considered the
greatest achievement in estimation theory of the twentieth century. Many of the
achievements since its introduction would not have been possible without it. It was
one of the enabling technologies for the Space Age, in particular. The precise and
efficient navigation of spacecraft through the solar system could not have been done
without it.

The principal uses of Kalman filtering have been in “modern” control systems,
in the tracking and navigation of all sorts of vehicles, and in predictive design of
estimation and control systems. These technical activities were made possible by the
introduction of the Kalman filter.
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1.3.5.6 Relative Advantages of Kalman and Wiener–Kolmogorov Filtering

1. The Wiener–Kolmogorov filter implementation in analog electronics can
operate at much higher effective throughput than the (digital) Kalman filter.

2. The Kalman filter is implementable in the form of an algorithm for a digital
computer, which was replacing analog circuitry for estimation and control at
the time when the Kalman filter was introduced. This implementation may be
slower, but it is capable of much greater accuracy than had been achievable
with analog filters.

3. The Wiener–Kolmogorov filter does not require finite-dimensional stochastic
process models for the signal and noise.

4. The Kalman filter does not require that the deterministic dynamics or the ran-
dom processes have stationary properties, and many applications of importance
include nonstationary stochastic processes.

5. The Kalman filter is compatible with the state-space formulation of optimal
controllers for dynamic systems, and Kalman was able to prove useful dual
properties of estimation and control for these systems.

6. For the modern controls engineering student, the Kalman filter requires
less additional mathematical preparation to learn and use than the Wiener–
Kolmogorov filter. As a result, the Kalman filter can be taught at the
undergraduate level in engineering curricula.

7. The Kalman filter provides the necessary information for mathematically
sound, statistically based decision methods for detecting and rejecting
anomalous measurements.

1.3.6 Implementation Methods

1.3.6.1 Numerical Stability Problems The great success of Kalman filtering was
not without its problems, not the least of which was marginal stability of the numeri-
cal solution of the associated Riccati equation. In some applications, small roundoff
errors tended to accumulate and eventually degrade the performance of the filter.
In the decades immediately following the introduction of the Kalman filter, there
appeared several better numerical implementations of the original formulas. Many of
these were adaptations of methods previously derived for the least-squares problem.

1.3.6.2 Early ad hoc Fixes It was discovered early on11 that forcing symmetry
on the solution of the matrix Riccati equation improved its apparent numerical
stability—a phenomenon that was later given a more theoretical basis by Verhaegen
and Van Dooren [15]. It was also found that the influence of roundoff errors could be
ameliorated by artificially increasing the covariance of process noise in the Riccati
equation. This approach was too easily abused for covering up modeling errors,
however.

11These fixes were apparently discovered independently by several people. Schmidt [13] and his colleagues
at NASA had discovered the use of forced symmetry and “pseudonoise” to counter roundoff effects and
credit R. C. K. Lee at Honeywell with the independent discovery of the symmetry effect.
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A symmetrized form of the discrete-time Riccati equation was developed by
Joseph [16] and used by R. C. K. Lee at Honeywell in 1964. This “structural”
reformulation of the Kalman filter equations improved robustness against roundoff
errors in some applications, although later methods have performed better on some
problems [17].

1.3.6.3 James E. Potter (1937–2005) and Square-Root Filtering The first big
breakthrough for improving the numerical stability of Kalman filtering occurred at
the Instrumentation Laboratory at MIT, the prime contractor for guidance and con-
trol of the Apollo moon project. The Kalman filter for Apollo navigation could be
implemented in 36-bit floating-pointing arithmetic on an IBM 7000-series main-
frame computer, but it would eventually have to run on a flight computer using 15-bit
fixed-point arithmetic. The main problem was implementing the Riccati equation
solution. James Potter was then an MIT graduate student working part-time at the
laboratory. He took the problem home with him on a Friday and came back on the
following Monday with the solution.

Potter introduced the idea of factoring the covariance matrix as

P = GGT (1.14)

and expressing the observational update equations in terms of G, rather than P. The
result was better numerical stability of the filter implementation. An even more effi-
cient implementation—in terms of triangular factors—was published by Bennet
in 1967 [18], and the solution was generalized to vector-valued measurements by
Andrews in 1968 [19].

Cholesky Factors André-Louis Cholesky12 (1875–1918) derived an algorithm for
solving least-squares problems that included factoring a symmetric positive-definite
matrix P as the symmetric product of a triangular matrix C with positive diagonal
elements and its transpose:

P = CCT, (1.15)

called the Cholesky decomposition of P. The triangular factor C is called a Cholesky
factor of P.

Generalized Cholesky Factors By convention, only triangular matrices with positive
diagonal elements are considered to be Cholesky factors. Otherwise, the solution of
Equation 1.14 is not unique. If C is the Cholesky factor of P andM is any orthogonal
matrix (so that MMT = I), the matrix

G = CM (1.16)

12Because Cholesky was French, his last name should perhaps be pronounced something like
“show-less-KEY,” with the accent on the last syllable. Cholesky was a French artillery officer killed in
action in World War I, and his algorithm was published posthumously by fellow officer Commandant
Benoit [20]. Cholesky may not have been the first to derive the factoring algorithm, but his name was soon
attached to it as a matter of respect.
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also satisfies the equation

GGT = (CM)(CM)T (1.17)

= CMMTCT (1.18)

= CICT (1.19)

= CCT (1.20)

= P. (1.21)

But, because G is not necessarily triangular with positive diagonal elements, we will
call any solution G of GGT = P a generalized Cholesky factor of P.

Matrix Square Roots A square root S of a matrix P satisfies the equation P = SS
(i.e., without the transpose on the second factor).

Square-Root Filtering Potter’s derivation used a special type of symmetric matrix
called an elementary matrix, a concept introduced by Householder [21]. Potter fac-
tored an elementary matrix as the square of another elementary matrix. In this case,
the factors were truly square roots of the factored matrix.

The application on which Potter was working on was for dynamics in space, where
there is no appreciable dynamic disturbance noise. In that case, the propagation over a
discrete time interval of the covariance matrix P of navigation could be implemented
as the double matrix product ΦPΦT, where Φ is a known state transition matrix for
trajectories in space. Potter could then propagate his generalized Cholesky factor G
of P forward in time with a single matrix multiply as ΦG. In doing so, G would
no longer remain either a square root or a Cholesky factor of P (unless it remained
symmetric). However, this “square-root” appellation has stuckwith extensions of Pot-
ter’s approach, even though the factors involved are generalized Cholesky factors, not
matrix square roots.

1.3.6.4 Improved Square-Root and UD Filters There was a rather rapid develop-
ment of faster algorithmic methods for square-root filtering in the 1970s, following
the work at NASA/JPL (then called the Jet Propulsion Laboratory, at the California
Institute of Technology) in the late 1960s by Dyer and McReynolds [22] on temporal
update methods for Cholesky factors. Extensions of square-root covariance and infor-
mation filters were introduced in Kaminski’s 1971 thesis [23] at Stanford University.
The first of the triangular factoring algorithms for the observational update was due
to Agee and Turner [24], in a 1972 report of rather limited circulation. These algo-
rithms have roughly the same computational complexity as the conventional Kalman
filter, but with better numerical stability. The “fast triangular” algorithm of Carlson
was published in 1973 [25], followed by the “square-root-free” algorithm of Bier-
man in 1974 [26] and the associated temporal update method introduced by Thornton
[27]. The computational complexity of the square-root filter for time-invariant sys-
tems was greatly simplified by Morf and Kailath [28] soon after that. Specialized
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parallel processing architectures for fast solution of the square-root filter equations
were developed by Jover and Kailath [29] and others over the next decade, and much
simpler derivations of these and earlier square-root implementations were discovered
by Kailath [30].

1.3.6.5 Matrix Decomposition, Factorization, and Triangularization These
terms are bandied about in square-root filtering, often interchangeably. There are
some distinctions, however.

Matrix Decomposition The term decomposition is perhaps the most broad. It gener-
ally refers to decomposing a matrix into a representation composed of different parts
with some useful properties. For example, the “singular value decomposition” (SVD)
of a symmetric positive-definite n × nmatrix P yields the product decomposition of P
as P = EDET, where the column vectors of the orthogonal matrix E are the eigenvec-
tors of P and the diagonal matrixD has the corresponding eigenvalues on its diagonal,
leading to the alternative representation of P = EDET as the “eigenvalue-eigenvector
decomposition” of P:

P =
n∑
i=1

𝜆ieie
T
i ,

where the 𝜆i are the (positive) eigenvalues of P and the ei are the associated eigen-
vectors.13 The SVD, like many other factorization methods used in “square-root”
filtering, is also used for solving least-squares problems [31]. The so-called “QR
decomposition” of a matrix is another used for solving least-squares problems. It
factors a matrix as the product of an orthogonal matrix (Q) and a ‘triangular”14

matrix R (i.e., with zeros either above or below the main diagonal). (However, this
notation does conflict with standard notation for Kalman filtering.) The Cholesky
decomposition also produces triangular factors, but the term decomposition by
itself does not imply matrix factoring. For any square matrix S, for example, the
symmetric–antisymmetric decomposition

S = 1
2
(S + ST)

⏟⏞⏞⏟⏞⏞⏟
sym.

+ 1
2
(S − ST)

⏟⏞⏞⏟⏞⏞⏟
anti.

decomposes S as the sum of its symmetric and antisymmetric parts.

Matrix Factorization Factorization is a term used by Gerald Bierman (1941–1987)
for methods to factor a matrix into a product of matrices with more useful
properties for Kalman filtering implementation [32]. For example, the so-called “UD

13This eigenvalue-eigenvector decomposition is a property of all “normal” matrices, defined as the square
matrices S such that SST = STS.
14See Chapter 7 and Appendix B (on the Wiley web site) for further discussions of triangular forms.
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decomposition” used by Bierman factors a symmetric positive-definite matrix P as

P = UDUT,

where D is diagonal with positive diagonal entries and U is the “unit triangular
matrix” (i.e., triangular with ones along its main diagonal). “Factorization” generally
refers to the algorithmic methods used for obtaining the result, often (but not always)
done “in-place” (i.e., in memory, overwriting the input matrix with the factor(s)).
For example, UD factorization can overwrite the diagonal of the input matrix with
D and off-diagonal terms with those of U (because the diagonal of U is known to
contain only ones).

Matrix Triangularization The term triangularization refers to factorization in which
the resulting factor is triangular. It is used for “QR decompositions” performed
in-place, destroying the original matrix and replacing it with its triangular factor
(R). The orthogonal transformation Q is not saved, but the operations used to render
the effect of Q tend to be well conditioned numerically. The sequence of operations
performed in-place is called triangularization of the original matrix. Triangular-
ization methods derived by Givens [33], Householder [21], and Gentleman [33]
are used to make Kalman filtering implementations more robust against roundoff
errors.

The more useful factorization and triangularization methods for Kalman filtering
are described in Chapter 7.

1.3.6.6 Generalizations Linear estimation theory has been extended to non-
quadratic error criteria, as well. Optimization with respect to the “sup norm” or
H∞ norm minimizes the maximum error, which is advantageous for applications
in which the associated risk is decidedly nonquadratic. The first major application
of Kalman filtering (for Apollo navigation to the moon and back) had very hard
constraints on atmospheric entry on the return to Earth. Large excursions of the
entry angle could result in spacecraft burn-up (too steep) or skip-out (too shallow).
An H∞ estimator might have been more appropriate under those circumstances, but
it had not been developed yet.

For a more expansive view of linear estimation methods, see Kailath et al. [34]
and the references therein.

1.3.7 Nonlinear Approximations

It is human nature to use successful approaches to problem solving within a lim-
ited context on problems outside that context. The Kalman filter is no exception to
this rule. Those experienced with Kalman filtering often find themselves morphing
problems to resemble the Kalman filtering model.

This is especially so with nonlinear problems, for which there is no practical and
mathematically correct approach comparable to the Kalman filter. Although it was
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originally derived for linear problems, the Kalman filter is habitually applied to non-
linear problems by using various approximation methods. This approach has worked
remarkably well for a number of nonlinear problems, but there will always be limits
to how far it can be pushed.

We mention here some approaches that have been used to extend the applicability
of Kalman filtering methodologies to nonlinearly problems. The more successful of
these are described in greater detail in Chapter 8.

1.3.7.1 Extended Kalman Filtering (EKF) for Quasilinear Problems EKF was
used in the very first application of Kalman filtering: the space navigation problem
for the Apollo missions to the moon and back. The approach has been successfully
applied to many nonlinear problems ever since.

Success depends on the problem being quasilinear and sufficiently dominated by
linearity within the expected range of variation that unmodeled errors due to lin-
ear approximation are insignificant compared to the modeled errors due to dynamic
uncertainty and sensor noise. Methods for verifying whether a problem is sufficiently
quasilinear are presented in Chapter 8.

In EKF, linear approximation is used only for solving the Riccati equation, a partial
result of which is the Kalman gain. The full nonlinear model is used in propagation
of the estimate and in computing predicted sensor outputs.

The approach uses partial derivatives as linear approximations of nonlinear rela-
tions. Schmidt [13] introduced the idea of evaluating these partial derivatives at the
estimated value of the state variables. This and other methods for approximate linear
solutions to nonlinear problems are discussed in Chapter 8.

1.3.7.2 Higher Order Approximations Approaches using higher order expansions
of the filter equations (i.e., beyond the linear terms) have been derived by Stratonovich
[35], Kushner [36], Bucy [37], Bass et al. [38], and others for quadratic nonlinearities,
and by Wiberg and Campbell [39] for terms through third order. However, none of
these has proven to be very practical.

1.3.7.3 Sampling-Based Methods for Nonlinear Estimation The Kalman filter-
ing methodology has been further extended to problems for which EKF exhibits
unacceptable errors. The general approach to approximating nonlinear propagation of
the Riccati equation solution is by using representative samples of state variables—as
opposed to linearized propagation of the mean (i.e., the estimated state) and covari-
ance matrix of the distribution.

In the 1940s, mathematician Stanislaw Ulam conceived the idea of using pseudo-
random sampling to characterize the evolution of neutron distributions in thermonu-
clear devices. Colleague NicholasMetropolis coined the termMonte Carlo15 for such
methods. Much of the initial development of Monte Carlo techniques occurred at the
Los Alamos Laboratory, where adequate computer resources were then becoming

15The name refers to the Monaco Monte Carlo gambling casino, which uses pseudorandom methods to
transform the distribution of wealth among its players.
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available. Others involved in this development at Los Alamos included Enrico Fermi
and John von Neumann.

The computational burden of sample-based analysis can be reduced significantly
by using more judicious sampling rules, in place of random sampling:

1. In sequential Monte Carlo methods, the samples are selected in the order of
their relative importance for representing the significant features of the distri-
bution.

2. In sigma point, the samples can be based on the eigenvectors and eigenvalues
(usually represented by the symbol 𝜎2) of the covariance matrix.

3. Unscented transform methods select samples using the Cholesky decom-
position of the covariance matrix. The resulting filter implementation is
called unscented Kalman filtering, a terminology introduced by Jeffrey
Uhlmann. This approach also includes a nonlinear approximation for the
cross-covariance of the predicted state vector and the predicted measurement
and weighting parameters that can be adjusted for “tuning” the filter to the
particular nonlinearities of the application. Unscented transformations for
n-dimensional distributions may use n + 1 or 2n + 1 samples, which is about
minimal for sample-based methods.

The term particle filter is also used to denote extensions of the Kalman filter that
use sample-based methods, because the sampled values can be viewed as “particles”
carried along by the nonlinear system dynamics.

In all cases, the samples of state vector values are chosen to represent the mean and
covariance structure of the ensemble a posteriori distribution (i.e., after the measure-
ment information has been used for refining the estimate). These sample points are
then propagated forward in time by simulating the known nonlinear system dynamics,
and the resulting a priori covariance at the next measurement opportunity is inferred
from the resulting distribution after the nonlinear transformations of individual sam-
ples. The resulting covariance structure is then used in computing the Kalman gains
to use the measured sensor outputs.

The more successful of these methods are described in Chapter 8. The unscented
Kalman filter, in particular, has been shown to be efficient and effective for some of
the more nonlinear applications—including system identification (i.e., estimation of
dynamic model parameters), a notoriously nonlinear and difficult problem.

1.3.8 Truly Nonlinear Estimation

Problems involving nonlinear and random dynamic systems have been studied for
some time in statistical mechanics. The propagation over time of the probability
distribution of the state of a nonlinear dynamic system is described by a nonlinear
partial differential equation called the Fokker–Planck equation. It has been studied
by Einstein [40], Fokker [41], Planck [42], Kolmogorov [43], Stratonovich [35],
Baras andMirelli [44], and others. Stratonovich modeled the effect on the probability
distribution of information obtained through noisy measurements of the dynamic
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system, an effect he called conditioning. The partial differential equation that
includes these effects is called the conditioned Fokker–Planck equation. It has also
been studied by Kushner [36], Bucy [37], and others using the stochastic calculus
of Stratonovich or Itô. The theoretical basis for stochastic differential equations was
long been hampered by the fact that white noise is not a Riemann-integrable function,
but the non-Riemannian stochastic integrals of Stratonovich or Itô fixed that.

The general approach results in a stochastic partial differential equation describ-
ing the evolution over time of the probability distribution over a “state space” of the
dynamic system under study. The resulting models do not enjoy the finite representa-
tional characteristics of the Kalman filter, however. The computational complexity of
obtaining a solution far exceeds the already considerable burden of the conventional
Kalman filter. These methods are of significant interest and utility but are beyond the
scope of this book.

For a concise but readable treatment of the stochastic calculus for Kalman filtering,
see Jazwinski [45].

1.3.9 The Detection Problem for Surveillance

Surveillance problems include the detection, identification, and tracking of objects
within a certain region of space. The Kalman filter helps in solving the tracking prob-
lem and may be of some utility (as a nonlinear filter) in solving the identification
problem. However, the detection problem must usually be solved before identifica-
tion and tracking can begin. The Kalman filter requires an initial state estimate for
each object, and that initial estimate must be obtained by detecting it. Those initial
states are distributed according to some “point process,” but there are no technically
mature methods (comparable to the Kalman filter) for estimating the state of a point
process.

A point process is a type of random process for modeling events or objects that
are distributed over time and/or space, such as the arrivals16 of messages at a com-
munications switching center or the locations of stars in the sky. It is also a model
for the initial states of systems in many estimation problems, such as the locations in
time and space of aircraft or spacecraft under surveillance by a radar installation, or
the locations of submarines under sonar surveillance in the ocean.

A unified approach combining detection and tracking into one optimal estima-
tion method was derived by John M. Richardson (1918–1996) and specialized to
several applications [46]. The detection and tracking problem for a single object is
represented by the conditioned Fokker–Planck equation. Richardson derived from
this one-object model an infinite hierarchy of partial differential equations represent-
ing object densities and truncated this hierarchy with a simple Gaussian-like closure
assumption about the relationships between moments. The result is a single partial
differential equation approximating the evolution of the density of objects. It can
be solved numerically. It provides a solution to the difficult problem of detecting
dynamic objects whose initial states are represented by a point process.

16In these applications, a point process is also called arrival process.
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1.4 COMMON NOTATION

The fundamental problem of symbolic notation, in almost any context, is that there are
never enough symbols to go around. There are not enough letters in the Roman alpha-
bet to represent the basic phonetic elements of standard spoken English, let alone all
the variables in Kalman filtering and its applications. As a result, some symbols must
play multiple roles. In such cases, their roles will be defined as they are introduced.
It is sometimes confusing but unavoidable.

1.4.1 “Dot” Notation for Derivatives

Newton’s notation using ḟ (t), f̈ (t) for the first two derivatives of f with respect to t is
used where convenient to save ink.

1.4.2 Standard Symbols for Kalman Filter Variables

There appear to be two “standard” conventions in technical publications for the sym-
bols used in Kalman filtering. The one used in this book is similar to the original
notation of Kalman [50]. The other standard notation is sometimes associated with
applications of Kalman filtering in control theory. It uses the first few letters of the
alphabet in place of the Kalman notation. Both sets of symbol usages are presented
in Table 1.2, along with the original (Kalman) notation.

1.4.2.1 State Vector Notation for Kalman Filtering The state vector x has been
adorned with all sorts of other appendages in the usage of Kalman filtering. Table 1.3

TABLE 1.2 Common Symbols Used in Kalman Filtering

Sources*

(a) (b) (c) Symbol Definition

F F A Dynamic coefficient matrix of continuous linear differential equation
defining dynamic system

G I B Coupling matrix between random process noise and state of linear
dynamic system

H M C Measurement sensitivity matrix defining the linear relationship between
state of the dynamic system and measurements that can be made

K Δ K Kalman gain matrix
P P Covariance matrix of state estimation uncertainty
Q Q Covariance matrix of process noise in the system state dynamics
R 0 Covariance matrix of observational (measurement) uncertainty
x x State vector of a linear dynamic system
z y Vector (or scalar) of measured values
Φ Φ State transition matrix of a discrete linear dynamic system

* (a) This book and References 2, 47, 48 and 49.
(b) Reference 50.
(c) References 51–53, and 54.
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TABLE 1.3 Special State-Space Notation

This Book Other Sources Definition of Notational Usage

x x, x⃗, x State vector
xk The kth component of the vector x
xk x[k] The kth element of the sequence … , xk−1, xk, xk+1, … of vectors
x̂ E⟨x⟩, x An estimate of the value of x
x̂k(−) x̂k|k−1, x̂k− A priori estimate of xk, conditioned on all prior measurements

except the one at time tk
x̂k(+) x̂k|k, x̂k+ A posteriori estimate of x, conditioned on all available

measurements at time tk
ẋ xt, dx∕dt Derivative of x with respect to t (time)

lists the notation used in this book (first column) along with notations found in some
other sources (second column). The state vector wears a “hat” as the estimated value,
x̂, and subscripting to denote the sequence of values that the estimate assumes over
time. The problem is that it has two values at the same time: the a priori17 value
(before the measurement at the current time has been used in refining the estimate)
and the a posteriori value (after the current measurement has been used in refining
the estimate). These distinctions are indicated by the signum. The negative sign (−)
indicates the a priori value, and the positive sign (+) indicates the a posteriori value.

1.4.3 Common Notation for Array Dimensions

Symbols used for the dimensions of the “standard” arrays in Kalman filtering will
also be standardized, using the notation of Gelb et al. [2] shown in Table 1.4. These
symbols are not used exclusively for these purposes. (Otherwise, one would soon run
out of alphabet.) However, whenever one of these arrays is used in the discussion,
these symbols will be used for their dimensions.

TABLE 1.4 Common Notation for Array Dimensions

Symbol Vector Name Dimensions Symbol Matrix Name Dimensions

Row Column

x System state n Φ State transition n n
𝑤 Process noise r G Process noise coupling n r
u Control input r Q Process noise covariance r r
z Measurement 𝓁 H Measurement sensitivity 𝓁 n
𝑣 Measurement

noise
𝓁 R Measurement noise

covariance
𝓁 𝓁

17This use of full Latin phrases as adjectives for the prior and posterior statistics is an unfortunate choice
of standard notation, because there is no easy way to shorten it. (Even their initial abbreviations are the
same.) If those who initiated this notation had known how commonplace it would become, they might
have named them otherwise.
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1.5 SUMMARY

The Kalman filter is an estimator used to estimate the state of a linear dynamic sys-
tem perturbed by white noise using measurements that are linear functions of the
system state but corrupted by additive white noise. The mathematical model used
in the derivation of the Kalman filter is a reasonable representation for many prob-
lems of practical interest, including control problems as well as estimation problems.
The Kalman filter model is also used for the analysis of measurement and estimation
problems.

Themethod of least squareswas the first “optimal” estimation method, discovered
by Gauss (and others) around the end of the eighteenth century. It is still much in use
today. If the associated Gramian matrix is nonsingular, the method of least squares
determines the unique values of a set of unknown variables such that the squared
deviation from a set of constraining equations is minimized.

Observability of a set of unknown variables is the issue of whether or not they are
uniquely determinable from a given set of constraining equations. If the constraints
are linear functions of the unknown variables, then those variables are observable if
and only if the associated Gramian matrix is nonsingular. If the Gramian matrix is
singular, then the unknown variables are unobservable.

TheWiener–Kolmogorov filterwas derived in the 1940s by Norbert Wiener (using
a model in continuous time) and Andrei Kolmogorov (using a model in discrete time)
working independently. It is a statistical estimation method. It estimates the state of
a dynamic process so as to minimize the mean-squared estimation error. It can take
advantage of statistical knowledge about random processes in terms of their power
spectral densities in the frequency domain.

The state-space model of a dynamic process uses differential equations (or
difference equations) to represent both deterministic and random phenomena. The
state variables of this model are the variables of interest and their derivatives of
interest. Random processes are characterized in terms of their statistical properties
in the time domain, rather than the frequency domain. The Kalman filter was derived
as the solution to the Wiener filtering problem using the state-space model for
dynamic and random processes. The result is easier to derive (and to use) than the
Wiener–Kolmogorov filter.

Square-root filtering is a reformulation of the Kalman filter for better numerical
stability in finite-precision arithmetic. It is based on the same mathematical model,
but it uses an equivalent statistical parameter that is less sensitive to roundoff errors in
the computation of optimal filter gains. It incorporates many of the more numerically
stable computation methods that were originally derived for solving the least-squares
problem.

Sequential Monte Carlo methods and particle filtering can be used to extend
Kalman filtering beyond the quasilinear estimation problems that are solvable by
extended Kalman filtering.

The Unscented Kalman Filter has about the same computational complexity as
the extended Kalman filter and essentially the same numerical stability as square-root
filtering but with potentially greater robustness against nonlinear effects.
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PROBLEMS

1.1 Derive the least-squares equations for finding a and b that provide the best fit
to the three equations

2 = a + b

4 = 3a + b

1 = 2a + b.

(a) Express the system of equations in matrix form as

z = A

[
a
b

]
,

where z is a column vector with three rows and the matrix A is 3 × 2.

(b) Take the matrix product ATA for A derived in (a).

(c) Take the 2 × 2 matrix inverse

[ATA]−1

for the A derived in (a). [Hint: Use the general formula[
m11 m12
m12 m22

]−1
= 1

m11m22 − m2
12

[
m22 −m12

−m12 m11

]
for inverting symmetric 2 × 2 matrices.]

(d) Take the matrix product

AT

[
z1
z2

]
for the A derived in (a).

(e) Calculate the least-squares solution[
â
b̂

]
= [ATA]−1AT

[
z1
z2

]
for the [ATA]−1 derived in (c) and

AT

[
z1
z2

]
derived in (d).
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1.2 Find the least-squares solution for a and b in the four equations

2 = a + b

4 = 3a + b

1 = 2a + b

4 = 4a + b.

1.3 The “straight-line fit” problem with uniform sampling is to find a bias b and
ramp coefficient a to fit a set of N measured values z1, z2, z3, … , zN sam-
pled at uniform time intervals Δt. The problem can modeled by a system of N
linear equations

z1 = a × 1Δt + b

z2 = a × 2Δt + b

z3 = a × 3Δt + b

⋮ ⋮ ⋮

zN = a × NΔt + b,

where the “unknowns” are a and b.
(a) Express the system of equations in matrix form, using dots to represent A

in the form

A =

⎡⎢⎢⎢⎢⎣
a11 a12
a21 a22
a31 a32
⋮ ⋮
aN1 aN2

⎤⎥⎥⎥⎥⎦
,

but with formulas for the matrix elements aij.

(b) Derive a symbolic formula for the 2 × 2 matrix ATA for A as defined in
(a).

(c) Derive a general formula for [ATA]−1, for the ATA defined in (b).

(d) Use the above results to derive formulas for the least-squares estimates â,
b̂ for the general system of N linear equations.

1.4 Jean Baptiste Fourier (1768–1830) was studying the problem of approximat-
ing a function f (𝜃) on the circle 0 ≤ 𝜃 < 2𝜋 by a linear combination of trigono-
metric functions:

f (𝜃) ≈ a0 +
n∑
j=1

[aj cos (j𝜃) + bj sin (j𝜃)].
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See if you can help him on this problem. Use the method of least squares to
demonstrate that the values

â0 =
1
2𝜋 ∫

2𝜋

0
f (𝜃) d𝜃,

âj =
1
𝜋 ∫

2𝜋

0
f (𝜃) cos(j𝜃) d𝜃,

b̂j =
1
𝜋 ∫

2𝜋

0
f (𝜃) sin(j𝜃) d𝜃

of the coefficients aj and bj for 1 ≤ j ≤ n, given the least integrated squared
approximation error

𝜀2(a, b) = ‖f − f̂ (a, b)‖22

= ∫
2𝜋

0
[f̂ (𝜃) − f (𝜃)]2 d𝜃

= ∫
2𝜋

0

{
a0 +

n∑
j=1

[aj cos (j𝜃) + bj sin (j𝜃)]

}2

d𝜃

− 2∫
2𝜋

0

{
a0 +

n∑
j=1

[aj cos (j𝜃) + bj sin (j𝜃)]

}
f (𝜃) d𝜃

+ ∫
2𝜋

0
f 2(𝜃) d𝜃.

You may assume the equalities

∫
2𝜋

0
d𝜃 = 2𝜋

∫
2𝜋

0
cos(j𝜃) cos(k𝜃) d𝜃 =

{
0, j ≠ k

𝜋, j = k,

∫
2𝜋

0
sin(j𝜃) sin(k𝜃) d𝜃 =

{
0, j ≠ k

𝜋, j = k,

∫
2𝜋

0
cos(j𝜃) sin(k𝜃) d𝜃 = 0, 0 ≤ j ≤ n, 1 ≤ k ≤ n,

as given.
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