
 Chapter 1
 Gaming on the Web

 In This Chapter

 ■ Finding out what HTML5 is and where it came from

 ■ Seeing HTML5 within the context of games

 ■ Looking at important new features

 ■ Enabling feature detection and dealing with legacy browsers

 BEFORE I DIVE into code, I want to establish the context of the technology we use. In this
fi rst chapter, I discuss what HTML5 is as well as some of the history that led to the HTML5
specifi cation.

 One of the most interesting aspects of HTML5 is how game developers can profi t from many
of its new features. In this chapter, I introduce you to some of those features and give you a
few quick examples of how to use them. I talk about the canvas element and WebGL and
the huge improvement they make in creating dynamic graphics. I also cover the audio ele-
ment and the added multiplayer possibilities created by the WebSocket specifi cation.

 Everybody likes new toys, but remember that in the real world, old and outdated browsers
keep many users from taking advantage of these cutting-edge features. In this chapter, I dis-
cuss a few tools that can help you detect which features you can safely use as well as how you
can use these feature tests to load appropriate fallback solutions when necessary.

05_9781118855386-ch01.indd 705_9781118855386-ch01.indd 7 1/25/2014 10:48:06 AM1/25/2014 10:48:06 AM

CO
PYRIG

HTED
 M

ATERIA
L

H T M L 5 G A M E S8

 Finally, I briefl y introduce the puzzle game that I use throughout the rest of the book to take
you through the creation of a complete HTML5 game.

 Tracing the History of HTML5
 HTML, the language of the web, has gone through numerous revisions since its invention in
the early 1990s. When Extensible Markup Language (XML) was all the rage around the turn
of the millennium, a lot of eff ort went into transforming HTML into an XML-compliant
language. However, lack of adoption, browser support, and backward compatibility left the
web in a mess with no clear direction and a standards body that some felt was out of touch
with the realities of the web.

 When the W3C fi nally abandoned the XHTML project, an independent group had already
formed with the goal of making the web more suitable for the type of web applications you
see today. Instead of just building upon the last specifi cation, the Web Hypertext Application
Technology Working Group (WHATWG) began documenting existing development patterns
and non-standard browser features used in the wild. Eventually, the W3C joined forces with
the WHATWG. Th e two groups now work together to bring new and exciting features to the
HTML5 specifi cation. Because this new specifi cation more closely refl ects how web develop-
ers already use the web, making the switch to HTML5 is easy, too. Unlike previous revisions,
HTML5 doesn ’ t enforce a strict set of syntax rules. Updating a page can often be as easy as
changing the document type declaration.

 But what is HTML5? Originally, it referred to the latest revision of the HTML standard.
Nowadays, it ’ s harder to defi ne; the term has gone to buzzword hell and is now used to
describe many technologies that aren ’ t part of the HTML5 specifi cation. Even the W3C got
caught up in the all-inclusiveness of HTML5. For a brief period, they defi ned it as including,
for example, Cascading Style Sheets (CSS) and Scalable Vector Graphics (SVG). Th is only
added to the confusion. Fortunately, the W3C backed away from that stance and went back
to the original, stricter defi nition that refers only to the actual HTML5 specifi cation. In a
somewhat bolder move, the WHATWG simply dropped the numeral 5, renaming it simply
 HTML . Th is actually brings it much closer to reality, in the sense that specifi cations such as
HTML are always evolving and never completely supported by any browser. In this book, I
just use the term HTML for the most part. You can assume that any mention of HTML5
refers to the actual W3C specifi cation called HTML5.

 Using HTML5 for Games
 Many features from the HTML5 specifi cation have applications in game development, but
one of the fi rst features to gain widespread popularity was the canvas element. Th e visual

05_9781118855386-ch01.indd 805_9781118855386-ch01.indd 8 1/25/2014 10:48:07 AM1/25/2014 10:48:07 AM

C H A P T E R 1 G A M I N G O N T H E W E B 9

nature of this element without a doubt helped it spread quickly when the fi rst interactive
animations and graphics eff ects started appearing. More advanced projects soon followed,
giving the new standard a dose of good publicity and promising a future with a more dynamic
and visually interesting web.

 Canvas
 Hobbyist game developers were also among the fi rst to embrace HTML5, and for good rea-
son. Th e canvas element provides web game developers with the ability to create dynamic
graphics, giving them a welcome alternative to static images and animated GIFs.

 Sure, people have created more or less ingenious (and/or crazy) solutions in lieu of better
tools for creating dynamic graphics. Entire drawing libraries rely on nothing more than col-
ored div elements—that may be clever, but that approach isn ’ t suffi cient for doing anything
more than drawing a few simple shapes.

 Uniform Resource Identifi er (URI) schemes let you assign source fi les to img elements, for
example, using a base64-encoded data string, either directly in the HTML or by setting the
 src or href property with JavaScript. One of the clever uses of this data URI scheme is to
generate images on the fl y and thus provide a dynamically animated image, which isn ’ t a
great solution for anything but small and simple images.

 Wolf 5K, the winner of the 2002 Th e 5K contest, which challenged developers to create a
website in just fi ve kilobytes, used a somewhat similar technique. Th e game, a small 3D maze
game, generated black and white images at runtime and fed them continuously to the image
 src property, relying on the fact that img elements can also take a JavaScript expression in
place of an actual URL.

 Graphics drawn on a canvas surface can ’ t be declared with HTML markup; instead, they
must be drawn with JavaScript using a simple Application Programming Interface (API).
Listing 1-1 shows a basic example of how to draw a few simple shapes. Note that the full API
provides much more functionality than the small portion shown in this example.

 Listing 1-1 Drawing shapes with the canvas API
 <canvas id="mycanvas"></canvas>
 <script>
 var canvas = document.getElementById("mycanvas"),
 ctx = canvas.getContext("2d");

 canvas.width = canvas.height = 200;

 // draw two blue circles

continued

05_9781118855386-ch01.indd 905_9781118855386-ch01.indd 9 1/25/2014 10:48:07 AM1/25/2014 10:48:07 AM

H T M L 5 G A M E S10

 ctx.fillStyle = "blue";
 ctx.beginPath();
 ctx.arc(50, 50, 25, 0, Math.PI * 2, true);
 ctx.arc(150, 50, 25, 0, Math.PI * 2, true);
 ctx.fill();

 // draw a red triangle
 ctx.fillStyle = "red";
 ctx.beginPath();
 ctx.moveTo(100, 75);
 ctx.lineTo(75, 125);
 ctx.lineTo(125, 125);
 ctx.fill();

 // draw a green semi-circle
 ctx.strokeStyle = "green";
 ctx.beginPath();
 ctx.scale(1, 0.5);
 ctx.arc(100, 300, 75, Math.PI, 0, true);
 ctx.closePath();
 ctx.stroke();
 </script>

 Th e code produces the drawing shown in Figure 1-1 .

 Figure 1-1 : Th is simple canvas drawing was created with JavaScript.

Listing 1-1 continued

05_9781118855386-ch01.indd 1005_9781118855386-ch01.indd 10 1/25/2014 10:48:07 AM1/25/2014 10:48:07 AM

C H A P T E R 1 G A M I N G O N T H E W E B 11

 I revisit the canvas element in Chapter 6 and explore it in detail when I use it to create game
graphics and special eff ects.

 Audio
 Th e new audio element is just as welcome to a web game developers’ toolbox as the canvas
element. Finally, you have native audio capabilities in the browser without resorting to plug-
ins. Not too long ago, if a website had audio, some form of Flash was involved. Libraries like
the SoundManager 2 project (www.schillmania.com/projects/soundmanager2)
provide full JavaScript access to most of the audio features of Flash. But even if such a bridge
allows your own code to stay on the JavaScript side, your users still need to install the plug-
in. Th e HTML5 audio element solves this problem, making access to audio available in
browsers out of the box using only plain old HTML and JavaScript.

 Th e audio element still has a few unresolved issues, however. Th e major browser vendors all
seem to agree on the importance of the element and have all adopted the specifi cation, but
so far they ’ ve failed to agree on which audio codecs should be supported. So, while the theory
of the audio element is good, reality has left developers with no other option than to pro-
vide audio fi les in multiple formats to appease all the browser vendors.

 Th e audio element can be defi ned in the mark-up or created dynamically with JavaScript.
(Th e latter option is of more interest to you as an application and game developer.) Listing
1-2 shows a basic music player with multiple source fi les, native user interface (UI) controls,
and a few keyboard hotkeys that use the JavaScript API.

 Listing 1-2 A simple music player with HTML5 audio
 <audio controls id="myaudio">
 <source src="Prelude In E Minor, Op. 28.ogg"/>
 <source src="Prelude In E Minor, Op. 28.mp3"/>
 </audio>
 <script>
 var audio = document.getElementById("myaudio");
 document.onkeydown = function(e) {
 if (e.keyCode == 83) {
 audio.pause(); // Key pressed was S
 } else if (e.keyCode == 80) {
 audio.play(); // Key pressed was P
 }
 };
 </script>

05_9781118855386-ch01.indd 1105_9781118855386-ch01.indd 11 1/25/2014 10:48:07 AM1/25/2014 10:48:07 AM

H T M L 5 G A M E S12

 TIP The W3C is currently working on expanding HTML5 with the Web Audio API, which enables
advanced audio synthesizing and processing. Because this API is still experimental, I won ’ t
be using it for the game in this book, although I briefl y examine the possibilities it presents in
Chapter 10 when I dive into HTML5 audio.

 WebSockets
 Ajax and the XMLHttpRequest object at its heart brought new life to the web with the Web
2.0 explosion in the early 2000s. Despite the many great things it has enabled, however, it is
still painfully limited. Being restricted to the HTTP protocol, the action is rather one-sided,
as the client must actively ask the server for information. Th e web server has no way of tell-
ing the browser that something has changed unless the browser performs a new request.
Th e typical solution has been to poll the server repeatedly, asking for updates, or alterna-
tively to keep the request open until there is something to report. Th e umbrella term Comet
(http://en.wikipedia.org/wiki/Comet_(programming)) is sometimes used to
refer to these techniques. In many cases, that is good enough, but these solutions are rather
simple and often lack the fl exibility and performance necessary for multiplayer games.

 Enter WebSockets. With WebSockets, you ’ re a big step closer to the level of control necessary
for effi cient game development. Although it isn ’ t a completely raw socket connection, a
WebSocket connection does allow you to create and maintain a connection with two-way
communication, making implementation of real-time multiplayer games much easier. As
Listing 1-3 demonstrates, the interface for connecting to the server and exchanging messages
is quite simple.

 Listing 1-3 Interacting with the server with WebSockets
 // Create a new WebSocket object
 var socket = new WebSocket("ws://mygameserver.com:4200/");

 // Send an initial message to the server
 socket.onopen = function () {
 socket.send("Hello server!");
 };

 // Listen for any data sent to us by the server
 socket.onmessage = function(msg) {
 alert("Server says: " + msg);
 };

05_9781118855386-ch01.indd 1205_9781118855386-ch01.indd 12 1/25/2014 10:48:07 AM1/25/2014 10:48:07 AM

C H A P T E R 1 G A M I N G O N T H E W E B 13

 Of course, using WebSockets requires that you also implement a server application that ’ s
compatible with the WebSockets protocol and capable of responding to the messages you
send to it. Th is doesn ’ t have to be a complex task, however, as I show you in Chapter 13 when
you build a simple chat application using WebSockets and Node.js.

 Web Storage
 Cookies are the usual choice when web applications need to store data on the client. Th eir
bad reputation as spyware-tracking devices aside, cookies have also given developers a much-
needed place to store user settings and web servers a means of recognizing returning clients,
which is a necessary feature for many web applications because of the stateless nature of the
HTTP protocol.

 Originally a part of HTML5 but later promoted to its own specifi cation, Web Storage can be
seen as an improvement on cookies and can, in many cases, directly replace cookies as a
larger storage device for key-value type data. Th ere is more to Web Storage than that, how-
ever. Whereas cookies are tied only to the domain, Web Storage has a local storage that ’ s
similar to cookies and a session storage that ’ s tied to the active window and page, allowing
multiple instances of the same application in diff erent tabs or windows. Unlike cookies, Web
Storage lives on only the client and isn ’ t transmitted with each HTTP request, allowing for
storage space measured in megabytes instead of kilobytes.

 Having access to persistent storage capable of holding at least a few megabytes of data comes
in handy when you want to store any sort of complex data. Web Storage can store only
strings, but if you couple it with a JavaScript Object Notation (JSON) encoder/decoder,
which is natively available in most browsers today, you can easily work around this limitation
to hold structures that are more complex. In the game that you develop during the course of
this book, you use local Web Storage to implement a Save Game feature as well as to store
local high score data.

 Listing 1-4 shows the simple and intuitive interface to the storage.

 Listing 1-4 Saving local data with Web Storage
 // save highscore data
 localStorage.setItem("highscore", "152400");

 // data can later be retrieved, even on other pages
 var highscore = localStorage.getItem("highscore");

 alert(highscore); // alerts 154200

05_9781118855386-ch01.indd 1305_9781118855386-ch01.indd 13 1/25/2014 10:48:07 AM1/25/2014 10:48:07 AM

H T M L 5 G A M E S14

 WebGL
 WebGL is OpenGL for the web. It ’ s based on OpenGL ES 2.0. Th e most widely used graphics
API is now available for web developers to create online 3D graphics content. Of course, this
has major implications for the kind of web games that are now possible. As a testament to
this signifi cance, Google developers released a WebGL port of the legendary fi rst-person
shooter, "Quake II," on April 1, 2010, to general disbelief because of both the carefully cho-
sen release date and the achievement itself.

 REMEMBER Using WebGL requires you to be very aware of the platforms you plan to target. Neither
Android nor iOS currently supports WebGL, limiting you to desktop browsers. Furthermore,
Internet Explorer prior to IE 11 supports only the 2D canvas context. In this book, I show you
how to create the game graphics using both WebGL and 2D canvas.

 HTML5 and Flash
 Ever since the arrival of the canvas element and the improved JavaScript engines, the
Internet has seen discussions and good old fl ame wars over whether the new standards
would replace Flash as the dominant delivery method for multimedia applications on the
web. Flash has long been the favorite choice when it comes to online video, music, and game
development. Although competing technologies such as Microsoft ’ s Silverlight have tried to
beat it, they ’ ve made only a small dent in the Flash market share. HTML5 and its related
open technologies now fi nally look like a serious contender for that top spot.

 Adobe, the company behind Flash, has also shifted its priorities toward HTML5 and recently
released Adobe Edge (http://html.adobe.com/edge), a development environment
very similar to Flash but based fully on HTML5, CSS3, and JavaScript. Add to this the fact
that Adobe Flash Professional CS6 introduced the option to publish directly to HTML5, and
it seems all but certain that the proprietary Flash format will be phased out in favor of
HTML5 and the open web.

 REMEMBER HTML5 isn ’ t a drop-in replacement for Flash. You must know where the new standards fall
short and when alternative solutions like Flash might be more appropriate. Flash is still very
handy for ensuring backward compatibility with older browsers, which I talk about next.

05_9781118855386-ch01.indd 1405_9781118855386-ch01.indd 14 1/25/2014 10:48:07 AM1/25/2014 10:48:07 AM

C H A P T E R 1 G A M I N G O N T H E W E B 15

 Creating Backward Compatibility
 As with most other new technologies, issues with backward compatibility inevitably show up
when working with HTML5. HTML5 isn ’ t one big, monolithic thing: Browsers support fea-
tures , not entire specifi cations. No browsers today can claim 100 percent support for all of
the HTML5 feature sets, and Internet Explorer, still the most widely used browser, has only
recently caught up with the rest of the browsers with features such as WebGL.

 However, even if the current crop of browsers fully supports HTML5 and the related stan-
dards, you still have to think about legacy browsers. With browsers like Internet Explorer 8
still seeing signifi cant use today you can ’ t safely assume that the users of your applications
and games can take advantage of all the features of HTML5 for many years to come. I recom-
mend using the CanIUse website (http://caniuse.com/), which keeps tabs on most fea-
tures and their past, current, and future browser support. A similar site, Mobile HTML5
(http://mobilehtml5.org/) focuses on feature support in mobile browsers.

 Using feature detection
 No one says that the applications and games you build today must support all browsers ever
released—doing so would only lead to misery and hair-pulling. You shouldn ’ t just forget
about those users, though. Th e least you can do is try to tell whether the user is able to play
the game or use a certain feature and then handle whatever problems you detect. Browser
sniffi ng—that is, detecting what browser the user is using by examining its user agent
string—has almost gone out of style. Today, the concept of feature detection has taken its
place. Testing for available properties, objects, and functions is a much saner strategy than
relying on a string that users can change and assuming a set of supported features.

 With so many discrepancies in the various implementations and features that can be tricky
to detect, adequate feature detection is no simple task. Fortunately, you don ’ t usually need to
reinvent the wheel because many clever tricks for detecting feature support have already
been developed and aggregated in various libraries. One collection of these detectors is avail-
able in the Modernizr library (www.modernizr.com). Modernizr provides an easy-to-use
method of testing whether a certain feature is available. You can detect everything from the
 canvas element and WebGL to web fonts and a whole slew of CSS features, allowing you to
provide fallback solutions where features aren ’ t supported and to degrade your application
gracefully.

05_9781118855386-ch01.indd 1505_9781118855386-ch01.indd 15 1/25/2014 10:48:07 AM1/25/2014 10:48:07 AM

H T M L 5 G A M E S16

 Filling the gaps with polyfi lls
 Beginning in the early 2000s, a popular trend has been to favor so-called progressive enhancement
when adding new features to websites. Th is strategy calls for websites to target the lowest
 common denominator in terms of supported features. Any technology that isn ’ t supported
across the board should be used only to add enhancements to the site, never critical functionality.
Th is ensures that everyone can access and use the website. If the user has a modern browser, he
simply has a better experience.

 Progressive enhancement is a sound strategy in many cases, but sometimes you simply need
to use a certain feature. If some browsers don ’ t have native support for that feature, that hole
must be plugged, even if it means using less than ideal or even hackish fallback solutions.
Th ese fallbacks are sometimes called polyfi lls , named after the spackling paste Polyfi lla
because their function is somewhat similar. Th ey fi ll the cracks in the supported feature sets
when you ’ re running your code in actual browsers, bridging the gap between specifi cations
and the reality of dealing with imperfect browsers. As an example, Internet Explorer had no
support for canvas until IE9, but several polyfi lls exist that provide various amounts of
 canvas functionality for legacy browsers.

 Th e ExplorerCanvas project from Google (http://code.google.com/p/explorer
canvas/) was one of the earliest of these polyfi lls. It uses Vector Markup Language (VML),
an old Microsoft developed XML-based language, to simulate a canvas element. Because it
provides enough 2D drawing functionality, it ’ s been used successfully in many projects.
Some features are missing, however, because VML doesn ’ t perfectly overlap the canvas
specifi cation and lacks support for patterns and clipping paths, for example.

 Other polyfi lls use Flash or Silverlight to get even closer to the full canvas API, letting you
use advanced features like image data access and compositing eff ects. With all these diff erent
options, picking the right fallback solutions is no easy task. Depending on the target plat-
forms, sometimes even the polyfi lls need fallbacks.

 Building a Game
 Starting with Chapter 2 and throughout the rest of the book, I take you through the process
of developing an HTML5 web game from scratch. I show you how to create a match-three
gem-swapping game in the style of Bejeweled or Puzzle Quest, casual games that have been
very popular on many platforms over the past decade. Th is type of game has tried-and-tested
game mechanics, allowing you to focus your attention on the use of web technologies in the
context of game development. Additionally, these games play well on desktop browsers and
on mobile devices such as smart phones and tablets, all of which give you the opportunity to
explore multiplatform web game development.

05_9781118855386-ch01.indd 1605_9781118855386-ch01.indd 16 1/25/2014 10:48:07 AM1/25/2014 10:48:07 AM

C H A P T E R 1 G A M I N G O N T H E W E B 17

 Th e game you ’ ll develop takes advantage of several features from the HTML5 specifi cation
and also uses related technologies such as web fonts and CSS3 for building the UI. Although
the game may not be revolutionary, it allows me to cover many of the newest advances in
open web technology. Among other things, I use the canvas element to generate some of
the game graphics, and I show you how to add sound eff ects using HTML5 audio. Th e fi n-
ished game will be playable on a desktop browser, and I show you how to ensure that it plays
just as well on mobile devices and even offl ine. I show you how to use Web Storage to save
high-score data and to allow players to pick up where they left off .

 Th e canvas element lets you create interesting dynamic graphics, but it isn ’ t always suitable
for creating user interfaces. You don ’ t really need any new tools for that part, however,
because traditional HTML and CSS give you all you need to build a great UI. With the latest
additions to the CSS specifi cation, you can add animations, transforms, and other features
that bring life to the UI experience. In Chapters 6 and 7 , I show you how to build the display
module with the canvas element. Later on, in Chapter 11 , I take you a bit further as I show
you how to use WebGL to add 3D graphics to the game.

 In Chapter 13 , I show you how to create a simple chat application using WebSockets. For this
purpose, I also show you how to develop a small server application using the Node.js frame-
work (http://nodejs.org). WebSockets are supported in most modern browsers, one
notable exception being the Android browser, which as of Android 4.3, still doesn ’ t support
this feature.

 Summary
 It ’ s been a bumpy road but it fi nally looks like HTML and the web in general are on the right
track again. Th e WHATWG brought in some fresh perspective on the standards process, and
web developers are now beginning to enjoy the fruits of this undertaking in the plethora of
new tools and an HTML standard that ’ s more in line with how the web is used today. As
always, using new features requires dealing with older browsers but many polyfi lls that you
can use to ensure cross-browser compatibility are already available.

 Many of the new additions are of special interest to game developers because real alterna-
tives to Flash-based web games are now available. Canvas and WebGL bring dynamic- and
hardware-accelerated graphics to the table; the audio element has fi nally enabled native
sound; and with WebSockets, it ’ s now possible to create multiplayer experiences that more
closely match desktop games than was possible just a few years ago. Advances in other,
related areas like CSS and the increasing support for web fonts let you create richer UI
 experiences using open, standardized tools.

05_9781118855386-ch01.indd 1705_9781118855386-ch01.indd 17 1/25/2014 10:48:07 AM1/25/2014 10:48:07 AM

05_9781118855386-ch01.indd 1805_9781118855386-ch01.indd 18 1/25/2014 10:48:07 AM1/25/2014 10:48:07 AM

