
WHAT’S IN THIS CHAPTER?

➤ Getting to know the new important features in SQL Server 2014

➤ Understanding how new features relate to data professionals
based on their roles

➤ Understanding SQL Server architecture

➤ Getting to know the editions of SQL Server and how they affect
the data professional

SQL Server 2012 offered a fresh look at how organizations and their developers, information
workers, and executives use and integrate data. SQL Server 2014 continues that story and
pushes forward into the future with the integration of cloud and in-memory technologies.
Exciting new features and improvements provide breakthrough performance, availability, and
manageability for mission-critical workloads on premises or in the cloud. This chapter pro-
vides enough information to give you an understanding of how SQL Server operates.

SQL SERVER 2014 ECOSYSTEM

The SQL Server data platform has become quite large over the past few releases. This fi rst sec-
tion provides a review of the overall SQL Server ecosystem, which is now referred to as less
of a product and more of a data platform, because many interactions with other products and
features drive increased performance, scale, and usability. SQL Server 2014 focuses on the fol-
lowing areas:

➤ Mission-critical performance—New In-Memory Online Transaction Processing
(OLTP) features that allow faster performance with no application changes, updatable

1
CO

PYRIG
HTED

 M
ATERIA

L

2 ❘ CHAPTER 1 SQL SERVER 2014 ARCHITECTURE

columnstore indexes, buffer pool extensions using solid-state drives (SSDs), and AlwaysOn
enhancements (including support of up to eight replicas) make this the most powerful, avail-
able release of SQL Server.

➤ Faster insights—With new Offi ce-based Business Intelligence (BI) tools such as Power Query
and Power Map, as well as enhancements on Power View and PowerPivot, getting insights
on your data has never been easier. Also, enterprise options such as Parallel Data Warehouse
with Polybase allow an organization to easily explore its Big Data and gain never-before-seen
insights on its data by leveraging the full power of the Microsoft BI stack.

➤ Platform for hybrid cloud—Whether your environment is pure on-premises, virtualized, or all
in the cloud, SQL Server 2014 has options for you. New features such as the Microsoft SQL
Server Backup to Windows Azure Tool enables backup to Windows Azure Blob Storage,
and encrypts and compresses SQL Server backups stored locally or in the cloud. You can
also now choose a Windows Azure virtual machine (VM) as a replica in an AlwaysOn
Availability Group confi guration.

NEW IMPORTANT FEATURES IN 2014

You will be excited about a number of new things, depending on your role and how you use SQL
Server. This section touches on the features you should be checking out and getting your hands on.
Many of these features are quick to get up and running, which is exciting for those readers who
want to begin delivering impact right away.

Production DBA
Production database administrators (DBAs) are a company’s insurance policy that the production
database won’t go down. If the database does go down, the company cashes in its insurance policy
in exchange for a recovered database. The Production DBA also ensures that the server performs
optimally, and promotes database changes from development to quality assurance (QA) to produc-
tion. New features include the following:

➤ In-Memory OLTP—This release offers a new memory-optimized OLTP database engine for
SQL Server. Experience signifi cant performance and scalability gains to your application with
little to no code changes.

➤ AlwaysOn Availability Groups—Availability functionality includes Availability Groups and
the ability to fail over databases in groups that mimic applications. Though not a new feature
in 2014, enhancements in this release include support of up to eight secondaries (up from
four in the 2012 release), as well as performance and management improvements.

➤ SQL Server Backup to Windows Azure tool—This free tool enables backing up to Windows
Azure Blob Storage. It encrypts and compresses backups stored locally or in the cloud. This
tool supports SQL Server 2005 and later.

➤ SQL Server Backup to URL—Originally released in SQL Server 2012 SP1 CU2, this feature is
now fully integrated into the Management Studio interface so that you can back up or restore
from the Windows Azure Blob Storage service.

New Important Features in 2014 ❘ 3

➤ SQL Server Managed Backup to Windows Azure—This new feature fully automates SQL
Server backups (full and transaction log) to the Windows Azure Blob Storage service based
on retention period and transaction workload on the database.

➤ Columnstore indexes—The 2014 release includes updatable clustered columnstore indexes
for optimizing large data volumes.

➤ Encrypted backups—Support is now included for encrypted backups, including algorithm
support for Advanced Encryption Standard (AES) 128, AES 192, AES 256, and Triple Data
Encryption Standard (DES). You must use either a certifi cate or an asymmetric key to per-
form encryption during backup.

➤ Delayed durability—This includes the ability to reduce latency by designating some or all
transactions as delayed durable. This asynchronous process reports a COMMIT as success-
ful before log records are written to disk. Delayed durable transactions become durable
when the transaction log entries are fl ushed to disk in chunks. This feature is available for
In-Memory OLTP only.

➤ Compression and partitioning—Improved compression and partitioning include the capabil-
ity to rebuild single partitions.

➤ Resource Governor—This now enables you to specify limits on physical I/O within a
resource pool.

Development DBA
Since the release of SQL Server 2000, there has been a trend away from full-time Production DBAs,
and the role has merged with that of the Development DBA. The trend may have slowed, though,
with laws such as Sarbanes-Oxley, which require a separation of power between the person devel-
oping the change and the person implementing the change. In a large organization, a Production
DBA may fall into the operations department, which consists of the network of administrators and
Windows-support administrators. In other instances, a Production DBA may be placed in a develop-
ment group. This removes the separation of power that is sometimes needed for regulatory reasons.

Development DBAs play a traditional role in an organization. They wear more of a developer’s hat,
and serve as the development staff’s database experts and representatives. This administrator ensures
that all stored procedures are optimally written and that the database is modeled correctly, both
physically and logically. The Development DBA also may be the person who writes the migration
processes to upgrade the database from one release to the next. The Development DBA typically does
not receive calls at 2:00 A.M like the Production DBA might for failed backups or similar problems.
Following are some of the things Development DBAs should be excited about in this new release:

➤ Transact SQL (T-SQL) enhancements include features such as the inline specifi cation of
indexes for disk-based tables. The SELECT…INTO statement can now operate in parallel with
databases, in compatibility mode set to at least 110.

➤ Updates for SQL Server Data Tools for Business Intelligence (SSDT-BI) include support for
creating Power View reports against multidimensional models. Additional improvements to
SSDT-BI include support to create projects for older versions (2005+) of Analysis Services
and Reporting Services. Backward compatibility for Integration Services projects is not yet
supported.

4 ❘ CHAPTER 1 SQL SERVER 2014 ARCHITECTURE

The Development DBA typically reports to the development group, and receives requests from a
business analyst or another developer. In a traditional sense, Development DBAs should never have
modifi cation access to a production database. However, they should have read-only access to the
production database to debug in a time of escalation.

Business Intelligence DBA and Developer
The BI DBA is a role that has evolved as a result of the increased capabilities of SQL Server. In SQL
Server 2012, BI grew to be an incredibly important feature set that many businesses could not live
without. The BI DBA (or developer) is an expert at these features. SQL Server 2014 improves upon
the end-user BI experience started in SQL Server 2012, with all new extensibility through the Power
BI solution with Offi ce365, as well as the existing BI offerings.

Development BI DBAs specialize in the best practices, optimization, and use of the BI toolset.
In a small organization, a Development BI DBA may create your SQL Server Integration Services
(SSIS) packages to perform extract, transform, and load (ETL) processes or reports for users. In a
large organization, developers create the SSIS packages and SQL Server Reporting Services (SSRS)
reports. The Development BI DBA is consulted regarding the physical implementation of the SSIS
packages and SQL Server Analysis Services (SSAS) cubes, or SSAS tabular models.

Development BI DBAs may be responsible for the following types of functions:

➤ Modeling/consulting regarding Analysis Services cubes/tabular models and solutions

➤ Creating reports using Reporting Services

➤ Creating/consulting around ETL using SSIS

➤ Developing deployment packages to be sent to the Production DBA

These responsibilities, coupled with the following new features, make for an exciting time for the
BI-oriented folks:

➤ Rapid data discovery with Power View and PowerPivot

➤ Lightning-fast query response time with use of columnstore indexes

➤ Users can easily discover, access, and combine various data sources themselves using
Power Query

➤ Users can create powerful geospatial visualizations using Power Map

➤ Managed Self-Service BI with SharePoint and BI Semantic Model

➤ Credible, consistent data with Data Quality Services and Master Data Management
capabilities

➤ Robust data warehousing solutions with Parallel Data Warehouse and Reference
Architectures

SQL Server Architecture ❘ 5

SQL SERVER ARCHITECTURE

SQL Server 2014 brings many enhancements to your data platform solution. These not only give
you a whole new level of breakthrough performance and scalability, but also provide exciting Self-
Service BI opportunities that enable end users to explore and analyze their data faster and easier
than ever before. New features such as in-memory OLTP provide massive performance gains to your
applications with little to no schema changes for the application. Other features such as AlwaysOn
Availability Groups allow you to quickly and easily scale out your database application.

To know how to best leverage all of these exciting features and functionality, it’s important to
understand the basic architecture of SQL Server. This section covers the primary fi le types in SQL
Server 2014, fi le management, SQL Client, and system databases. It also covers an overview of sche-
mas, synonyms, and Dynamic Management Objects. Finally, it also goes into the data types, edi-
tions, and licensing options.

Database Files and Transaction Log
The architecture of database and transaction log fi les remains relatively unchanged from prior
releases. Database fi les serve two primary purposes, depending on their type. Data fi les hold the
data, indexes, and other data support structure within the database. Log fi les hold the data from
committed transactions to ensure consistency in the database.

Database Files
A database may consist of multiple fi legroups. Each fi legroup must contain one or more physical
data fi les. Filegroups ease administrative tasks for a collection of fi les. Data fi les are divided into
8KB data pages, which are part of 64KB extents. You can specify how full each data page should be
with the fi ll factor option of the create/alter index T-SQL command. In SQL Server 2014, you
continue to have the capability to bring your database partially online if a single fi le is corrupted.
In this instance, the DBA can bring the remaining fi les online for reading and writing, and users
receive an error if they try to access the other parts of the database that are offl ine.

In SQL 2000 and before, the largest row you could write was 8,060 bytes. The exceptions to this
limit are text, ntext, image, varchar(max), varbinary(max), and nvarchar(max) columns,
which may each be up to 2GB, and are managed separately. Beginning with SQL 2005, the 8KB
limit applies only to those columns of fi xed length. The sum of fi xed-length columns and pointers
for other column types must still be less than 8,060 bytes per row. However, each variable-length
column may be up to 8KB in size, allowing for a total row size of well more than 8,060 bytes.
If your actual row size exceeds 8,060 bytes, you may experience some performance degradation
because the logical row must now be split across multiple physical 8,060-byte rows.

Transaction Log
The purpose of the transaction log is to ensure that all committed transactions are persisted in the g
database and can be recovered, either through rollback or point-in-time recovery. The transaction
log is a write-ahead log. As you make changes to a database in SQL Server, the data is written to the

6 ❘ CHAPTER 1 SQL SERVER 2014 ARCHITECTURE

log, and then the pages that need to be changed are loaded into memory. The pages are then
“dirtied” by having the changes written to them. Upon checkpoint, the dirty pages are written to
disk, making them now clean pages that no longer need to be part of the write buffer. This is why
you may see your transaction log grow signifi cantly in the middle of a long-running transaction even
if your recovery model is set to simple. (Chapter 17, “Backup and Recovery,” covers this in much
more detail.)

SQL Server Native Client
The SQL Server Native Client (SNAC) is a data-access method that shipped with SQL Server 2005
and was enhanced in 2012. It is used by both an online object linking and embedding (OLE) data-
base and Open Database Connectivity (ODBC) for accessing SQL Server. The SQL Server Native
Client simplifi es access to SQL Server by combining the OLE DB and ODBC libraries into a single
access method. The access type exposes the following features in SQL Server:

➤ Database mirroring

➤ AlwaysOn readable secondary routing

➤ Multiple Active Result sets (MARS)

➤ Native client support for LocalDB

➤ FILESTREAM support

➤ Snapshot isolation

➤ Query notifi cation

➤ XML data type support

➤ User-defi ned data types (UDTs)

➤ Encryption

➤ Performing asynchronous operations

➤ Using large value types

➤ Performing bulk copy operations

➤ Table-value parameters

➤ Large Common Language Runtime (CLR) user-defi ned types

➤ Password expiration

➤ Service Principal Name (SPN) support in client connections

With these features, you can use the feature in other data layers such as Microsoft Data Access
Components (MDAC), but it takes more work. MDAC still exists, and you can use it if you don’t
need some of the new functionality of SQL Server 2008/2012. If you develop a COM-based applica-
tion, you should use SQL Native Client; and if you develop a managed code application (such as in
C#), you should consider using the .NET Framework Data Provider for SQL Server, which is robust
and includes the SQL Server 2008/2012 features as well.

SQL Server Architecture ❘ 7

SQL Server 2014 actually installs SQL Server 2012 Native Client because there is no SQL Server
2014 Native Client. Other major changes include the deprecation of the ODBC driver in SQL Server
Native Client. Because of this deprecation, there will be no more updates to the ODBC driver in
SQL Server Native Client. The successor of the ODBC driver in SQL Server Native Client is called
the Microsoft ODBC Driver 11 for SQL Server on Windows, which is installed with SQL Server
2014 by default.

Standard System Databases
The system databases in SQL Server are crucial, and you should leave them alone most of the time.
The only exceptions to that rule are the model database (which enables you to deploy a change such
as a stored procedure to any new database created) and tempdb (which will probably need to be
altered to help with scaling your workload). The following sections go through the standard system
databases in detail.

WARNING If certain system databases are tampered with or corrupted, you
run the risk that SQL Server will not start. The master database contains all the
stored procedures and tables needed for SQL Server to remain online.

The resource Database
SQL Server 2005 added the resource database. This database contains all the read-only critical
system tables, metadata, and stored procedures that SQL Server needs to run. It does not contain
any information about your instance or your databases because it is written to only during an instal-
lation of a new service pack. The Resource database contains all the physical tables and stored pro-
cedures referenced logically by other databases. You can fi nd the database in a default installation
at C:\Program Files\Microsoft SQL Server\MSSQL14.MSSQLSERVER\MSSQL\Binn, and there is
only one Resource database per instance.

NOTE The use of drive C: in the path assumes a standard setup. If your machine
is set up differently, you may need to change the path to match your setup. In
addition, the .MSSQLSERVER is the instance name. If your instance name is differ-
ent, use your instance name in the path.

In SQL Server 2000, when you upgraded to a new service pack, you needed to run many long scripts
to drop and re-create system objects. This process took a long time to run, and created an environ-
ment that couldn’t be rolled back to the previous release after the service pack. Since SQL Server
2012, when you upgrade to a new service pack or hot fi x, a copy of the resource database over-
writes the old database. This enables you to both quickly upgrade your SQL Server catalog and roll
back a release.

8 ❘ CHAPTER 1 SQL SERVER 2014 ARCHITECTURE

The resource database cannot be seen through Management Studio and should never be altered
unless you’re under instruction to do so by Microsoft Product Support Services (PSS). You can
connect to the database under certain single-user mode conditions by typing the command USE

MSSQLSystemResource. Typically, a DBA runs simple queries against it while connected to any
database, instead of having to connect to the resource database directly. Microsoft provides some
functions that enable this access. For example, if you were to run this query while connected to any
database, it would return your resource database’s version and the last time it was upgraded:

 SELECT serverproperty('resourceversion') ResourceDBVersion,
 serverproperty('resourcelastupdatedatetime') LastUpdateDate;

NOTE Do not place the resource database on an encrypted or compressed
drive. Doing this may cause upgrade or performance issues.

The master Database
The master database contains the metadata about your databases (database confi guration and fi le
location), logins, and confi guration information about the instance. You can see some of the meta-
data stored in master by running the following query, which returns information about the data-
bases that exist on the server:

SELECT * FROM sys.databases;

The main difference between the resource and master databases is that the master database holds
data specifi c to your instance, whereas the resource database just holds the schema and stored pro-
cedures needed to run your instance but does not contain any data specifi c to your instance.

WARNING You should rarely create objects in the master database. If you cre-
ate objects here, you may need to make more frequent master database backups.

The tempdb Database
The tempdb database is similar to the operating system paging fi le. It’s used to hold temporary
objects created by users, temporary objects needed by the database engine, and for row-version
information. The tempdb database is created each time you restart SQL Server. The database will be
re-created to its original database size when the SQL Server is started. Because the database is re-
created each time, you cannot back it up. Data changes made to objects in the tempdb database ben-
efi t from reduced logging. You must have enough space allocated to your tempdb database because
many operations that you use in your database applications use tempdb. Generally speaking, you
should set tempdb to autogrow as it needs space. Typically, your tempdb size varies, but you should
understand how much temp space your application will use at peak, and ensure that there is enough

SQL Server Architecture ❘ 9

space with 15–20 percent overhead for growth. If there is not enough space, the user may receive
one of the following errors:

➤ 1101 or 1105—The session connecting to SQL Server must allocate space in tempdb.

➤ 3959—The version store is full.

➤ 3967—The version store must shrink because tempdb is full.

The model Database
model is a system database that serves as a template when SQL Server creates a new database. As
each database is created, SQL Server copies the model database as the new database. The only time
this does not apply is when you restore or attach a database from a different server.

If a table, stored procedure, or database option should be included in each new database that you
create on a server, you may simplify the process by creating the object in model. When the new
database is created, model is copied as the new database, including the special objects or database
settings you have added to the model database. If you add your own objects to model, it should be
included in your backups, or you should maintain a script that includes the changes.

The msdb Database
msdb is a system database that contains information used by SQL Server Agent, log shipping, SSIS,
and the backup-and-restore system for the relational database engine. The database stores all the
information about jobs, operators, alerts, policies, and job history. Because it contains this impor-
tant system-level data, you should back up this database regularly.

Schemas
Schemas enable you to group database objects together. You may want to do this for ease of admin-
istration because you can apply security to all objects within a schema. Another reason to use sche-
mas is to organize objects so that the users may fi nd the objects they need easily. For example, you
may create a schema called HumanResource and place all your employee tables and stored proce-
dures into it. You could then apply security policies on the schema to allow appropriate access to the
objects contained within it.

When you refer to an object, you should always use the two-part name. The dbo schema is the
default schema for a database. An Employee table in the dbo schema is referred to as dbo.Employee.
Table names must be unique within a schema. You could create another table called Employee in the
HumanResources schema. It would be referred to as HumanResources.Employee. This table actually
exists in the AdventureWorks sample database for SQL Server 2014. (All SQL Server 2014 samples
must be downloaded and installed separately from wrox.com.) A sample query using the two-part
name follows:

USE AdventureWorks2014
GO
SELECT BusinessEntityID, JobTitle
FROM HumanResources.Employee;

10 ❘ CHAPTER 1 SQL SERVER 2014 ARCHITECTURE

Prior to SQL 2005, the fi rst part of the two-part name was the username of the object owner. The
problem with that implementation was related to maintenance. If a user who owned objects were
to leave the company, you could not remove that user login from SQL Server until you ensured that
all the objects owned by the user were changed to a different owner. All the code that referred to
the objects had to be changed to refer to the new owner. By separating ownership from the schema
name, SQL 2005 and later versions remove this maintenance problem.

Synonyms
A synonym is an alias, or alternative name, for an object. This creates an abstraction layer between
the database object and the user. This abstraction layer enables you to change some of the physical
implementation and isolate those changes from the consumer. The following example is related to
the use of linked servers. You may have tables on a different server that need to be joined to tables
on a local server. You refer to objects on another server using the four-part name, as shown in the
following code:

SELECT Column1, Column2
FROM LinkedServerName.DatabaseName.SchemaName.TableName;

For example, you might create a synonym for LinkedServerName.DatabaseName.SchemaName
.Tablename called SchemaName.SynonymName. Data consumers would refer to the object using the
following query:

SELECT Column1, Column2
FROM SchemaName.SynonymName;

This abstraction layer now enables you to change the location of the table to another server, using a
different linked server name, or even to replicate the data to the local server for better performance
without requiring any changes to the code that refers to the table.

NOTE A synonym cannot reference another synonym. The object_id function
returns the id of the synonym, not the id of the related base object. If you need
column-level abstraction, use a view instead.

Dynamic Management Objects
Dynamic Management Objects (DMOs) and functions return information about your SQL
Server instance and the operating system. DMOs are grouped into two different classes: Dynamic
Management Views (DMVs) and Dynamic Management Functions (DMFs). DMVs and DMFs
simplify access to data and expose new information that was not available in versions of SQL Server
prior to 2005. DMOs can provide you with various types of information, from data about the I/O
subsystem and RAM to information about Service Broker.

Whenever you start an instance, SQL Server begins saving server-state and diagnostic information
in memory, which DMVs and DMFs can access. When you stop and start the instance, the informa-
tion is fl ushed from the views and fresh data begins to be collected. You can query the views just like

SQL Server Architecture ❘ 11

any other table in SQL Server with the two-part qualifi er. For example, the following query uses the
sys.dm_exec_sessions DMV to retrieve the number of sessions connected to the instance, grouped
by login name:

 SELECT login_name, COUNT(session_id) as NumberSessions
 FROM sys.dm_exec_sessions GROUP BY login_name;

Some DMFs are functions that accept parameters. For example, the following code uses the sys
.dm_io_virtual_file_stats dynamic management function to retrieve the I/O statistics for the
AdventureWorks data fi le:

USE AdventureWorks
GO
SELECT * FROM
sys.dm_io_virtual_file_stats(DB_ID('AdventureWorks2014'),
FILE_ID('AdventureWorks_Data'));

Many new DMVs and DMFs were introduced in SQL Server 2012. These views focus on improved
insight into new and existing areas of functionality and include the following:

➤ AlwaysOn Availability Groups

➤ Change Data Capture–Related

➤ Change Tracking–Related

➤ Common Language Runtime–Related

➤ Database Mirroring–Related

➤ Database-Related

➤ Execution-Related

➤ SQL Server Extended Events

➤ FileStream and FileTable

➤ Full-Text Search and Semantic Search

➤ Index-Related

➤ I/O-Related

➤ Object-Related

➤ Query Notifi cations–Related

➤ Replication-Related

➤ Resource Governor–Related

➤ Security-Related

➤ Server-Related

➤ Service Broker–Related

➤ Spatial Data–Related

12 ❘ CHAPTER 1 SQL SERVER 2014 ARCHITECTURE

➤ SQL Server Operating System–Related

➤ Transaction-Related

SQL Server 2014 introduced the following new DMVs and DMFs:

➤ Cluster Shared Volume (CSV)–Related

➤ Buffer Pool Extension–Related

➤ In-Memory OLTP–Related

SQL Server 2014 Data Types
Data types are the foundation of table creation in SQL Server. As you create a table, you must assign
a data type for each column. This section covers some of the more commonly used data types in
SQL Server. Even if you create a custom data type, it must be based on a standard SQL Server data
type. For example, you can create a custom data type (Address) by using the following syntax, but
notice that it is based on the SQL Server standard varchar data type:

CREATE TYPE Address
FROM varchar(35) NOT NULL;

If you change the data type of a column in a large table in SQL Server Management Studio’s table
designer interface, the operation may take a long time. You can observe the reason for this by script-
ing the change from the Management Studio interface. Management Studio creates a secondary tem-
porary table with a name such as tmpTableName and then copies the data into the table. Finally, the
interface deletes the old table and renames the new table with the new data type. Other steps along
the way, of course, handle indexes and any relationships in the table.

If you have a large table with millions of records, this process can take more than 10 minutes, and,
in some cases, more than 1 hour. To avoid this, you can use a simple one-line T-SQL statement in
the query window to change the column’s data type. For example, to change the data type of the
JobTitle column in the Employees table to a varchar(70), you could use the following syntax:

 ALTER TABLE HumanResources.Employee ALTER COLUMN JobTitle Varchar(70);

WARNING When you convert to a data type that may be incompatible with
your data, you may lose important data. For example, if you convert from
a numeric data type that has data, such as 15.415, to an integer, the number
15.415 would be rounded to a whole number.

You may want to write a report against your SQL Server tables that displays the data type of each
column inside the table. You can do this dozens of ways, but a popular method shown in the follow-
ing example joins the sys.objects table with the sys.columns table. You may not be familiar with
two functions in the following code. The TYPE_NAME() function translates the data type ID into its
proper name. To go the opposite direction, you could use the TYPE_ID() function. The other func-
tion of note is SCHEMA_ID(), which is used to return the identity value for the schema. This is useful
primarily when you want to write reports against the SQL Server metadata.

SQL Server Architecture ❘ 13

USE AdventureWorks2014;
GO
SELECT o.name AS ObjectName,
 c.name AS ColumnName,
 TYPE_NAME(c.user_type_id) as DataType
FROM sys.objects o
JOIN sys.columns c
ON o.object_id = c.object_id
WHERE o.name ='Department'
and o.Schema_ID = SCHEMA_ID('HumanResources');

This code returns the following results (the Name data type is a user-defi ned type):

ObjectName ColumnName DataType

Department DepartmentID smallint
Department Name Name
Department GroupName Name
Department ModifiedDate datetime

Character Data Types
Character data types include varchar, char, and text. This set of data types stores character data.
The primary difference between the varchar and char types is data padding. If you have a column
called FirstName that is a varchar(20) data type and you store the value of “Brian” in the column,
only 5 bytes are physically stored, plus a little overhead. If you store the same value in a char(20)

data type, all 20 bytes would be used. SQL inserts trailing spaces to fi ll the 20 characters.

NOTE You might ask yourself, if you want to conserve space, why would you
ever use a char data type? There is a slight overhead to using a varchar data
type. For example, if you store a two-letter state abbreviation, you’re better off
using a char(2) column. Although some DBAs have opinions about this that
border on religious conviction, generally speaking, it’s good to fi nd a threshold
in your organization, and specify that anything below this size becomes a char
versus a varchar. In general, a good guideline is that any column less than or
equal to 5 bytes should be stored as a char data type instead of a varchar data
type, depending on your application needs. Beyond that point, the benefi t of
using a varchar begins to outweigh the cost of the overhead.

The nvarchar and nchar data types operate the same way as their varchar and char counterparts,
except these data types can handle international Unicode characters. This comes at a cost, though.
Data stored as Unicode consumes 2 bytes per character. If you were to store the value of “Brian”
in an nvarchar column, it would use 10 bytes, and storing it as an nchar(20) would use 40 bytes.
Because of this overhead and added space, you should not use Unicode columns unless you have a
business or language need for them. Think ahead to the future and consider instances in which you
might need them. If there is no future business need, avoid them.

14 ❘ CHAPTER 1 SQL SERVER 2014 ARCHITECTURE

Table 1-1 shows the data types with short descriptions and the amount of storage required.

TABLE 1-1: SQL Server Data Types

DATA TYPE DESCRIPTION STORAGE SPACE

Char(n) N between 1 and 8,000 characters n bytes

Nchar(n) N between 1 and 4,000 Unicode
characters

(2 × n bytes)

Nvarchar(max) Up to ((2 to the 30th power) – 1)
(1,073,741,823) Unicode characters

2 × characters stored + 2 bytes
overhead

Text Up to ((2 to the 31st power) – 1)
(2,147,483,647) characters

1 byte per character stored + 2
bytes overhead

Varchar(n) N between 1 and 8,000 characters 1 byte per character stored + 2
bytes overhead

Varchar(max) Up to ((2 to the 31st power) – 1)
(2,147,483,647) characters

1 byte per character stored + 2
bytes overhead

Exact Numeric Data Types
Numeric data types consist of bit, tinyint, smallint, int, bigint, numeric, decimal, small-
money, and money. Each of these data types stores different types of numeric values. The fi rst data
type, bit, stores only a null, 0, or a 1, which in most applications translates into true or false. Using
the bit data type is perfect for on and off fl ags, and it occupies only a single byte of space. Table 1-2
shows other common numeric data types.

TABLE 1-2: Exact Numeric Data Types

DATA TYPE DESCRIPTION STORAGE SPACE

Bit 0, 1, or null 1 byte for each 8 columns
of this data type

tinyint Whole numbers from 0 to 255 1 byte

smallint Whole numbers from −32,768 to 32,767 2 bytes

Int Whole numbers from −2,147,483,648 to
2,147,483,647

4 bytes

bigint Whole numbers from
−9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

8 bytes

SQL Server Architecture ❘ 15

DATA TYPE DESCRIPTION STORAGE SPACE

numeric(p,s) or
decimal(p,s)

Numbers from −1,038 + 1 through 1,038 −1 Up to 17 bytes

money −922,337,203,685,477.5808 to
922,337,203,685,477.5807

8 bytes

smallmoney −214,748.3648 to 214,748.3647 4 bytes

Numeric data types, such as decimal and numeric, can store a variable number of digits to the
right and left of the decimal place. Scale refers to the number of digits to the right of the decimal.
Precision defi nes the total number of digits, including the digits to the right of the decimal place. For
example, 14.88531 would be a numeric(7,5) or decimal(7,5). If you were to insert 14.25 into a
numeric(5,1) column, it would be rounded to 14.3.

Approximate Numeric Data Types
The data types float and real are included in this group. They should be used when fl oating-point data
must be represented. However, because they are approximate, not all values can be represented exactly.

The n in the float(n) is the number of bits used to store the mantissa of the number. SQL Server
uses only two values for this fi eld. If you specify between 1 and 24, SQL uses 24. If you specify
between 25 and 53, SQL uses 53. The default is 53 when you specify float(), with nothing in
parentheses.

Table 1-3 shows the approximate numeric data types with a short description and the amount of
storage required.

TABLE 1-3: Approximate Numeric Data Types

DATA TYPE DESCRIPTION STORAGE SPACE

float[(n)] −1.79E + 308 to –2.23E-308,0, 2.23E-308 to
1.79E + 308

N <= 24 – 4 bytes N> 24 – 8
bytes

real() −3.40E + 38 to –1.18E-38,0, 1.18E-38 to
3.40E + 38

4 bytes

NOTE The synonym for real is float(24).

Binary Data Types
Binary data types such as varbinary, binary, and varbinary(max) store binary data such as
graphic fi les, Word documents, or MP3 fi les. The values are hexadecimal 0x0 to 0xf. The image

16 ❘ CHAPTER 1 SQL SERVER 2014 ARCHITECTURE

data type stores up to 2GB outside the data page. The preferred alternative to an image data
type is varbinary(max), which can hold more than 8KB of binary data and generally performs
slightly better than an image data type. Introduced in SQL Server 2012 was the capability to store
varbinary(max) objects in operating system fi les via FileStream storage options. This option stores
the data as fi les and is not subject to the 2GB size limit of varbinary(max).

Table 1-4 shows the binary data types with a short description and the amount of storage required.

TABLE 1-4: Binary Data Types

DATA TYPE DESCRIPTION STORAGE SPACE

Binary(n) N between 1 and 8,000 hex digits n bytes

Varbinary(n) N between 1 and 8,000 hex digits 1 byte per character stored + 2 bytes
overhead

Varbinary(max) Up to 231 – 1 (2,147,483,647)
characters

1 byte per character stored + 2 bytes
overhead

Date and Time Data Types
The datetime and smalldatetime types both store date and time data. The smalldatetime is 4
bytes and stores from January 1, 1900, through June 6, 2079, and is accurate to the nearest minute.

The datetime data type is 8 bytes and stores from January 1, 1753, through December 31, 9999, to
the nearest 3.33 millisecond.

SQL Server 2012 introduced four new date-related data types: datetime2, dateoffset, date, and
time. You can fi nd examples using these data types in SQL Server Books Online.

The datetime2 data type is an extension of the datetime data type, with a wider range of dates.
Time is always stored with hours, minutes, and seconds. You can defi ne the datetime2 data type
with a variable parameter at the end—for example, datetime2(3). The 3 in the preceding expres-
sion means to store fractions of seconds to three digits of precision, or 0.999. Valid values are
between 0 and 7, with a default of 3.

The datetimeoffset data type is just like the datetime2 data type, with the addition of the time
offset. The time offset is + or – up to 14 hours, and contains the UTC offset so that you can ratio-
nalize times captured in different time zones.

The date data type stores the date only, a long-requested piece of functionality. Alternatively, the
time data type stores the time only. The time data type also supports the time(n) declaration, so
you can control granularity of the fractional seconds. As with datetime2 and datetimeoffset, n
can be between 0 and 7.

Table 1-5 shows the date/time data types with a short description and the amount of storage
required.

SQL Server Architecture ❘ 17

TABLE 1-5: Date and Time Data Types

DATA TYPE DESCRIPTION STORAGE SPACE

Date January 1, 1 to December 31, 9999 3 bytes

Datetime January 1, 1753 to December 31, 9999, Accurate to
nearest 3.33 millisecond

8 bytes

Datetime2(n) January 1, 1 to December 31, 9999 N between 0 and
7 specifi es fractional seconds

6 to 8 bytes

Datetimeoffset(n) January 1, 1 to December 31, 9999 N between 0 and
7 specifi es fractional seconds +- offset

8 to 10 bytes

SmalldateTime January 1, 1900 to June 6, 2079, Accurate to 1 minute 4 bytes

Time(n) Hours:minutes:seconds. 9999999 N between 0 and 7
specifi es fractional seconds

3 to 5 bytes

Other System Data Types
Table 1-6 shows several other data types, which you have not yet seen.

TABLE 1-6: Other System Data Types

DATA TYPE DESCRIPTION STORAGE SPACE

Cursor This contains a reference to a cursor, and may
be used only as a variable or stored procedure
parameter.

Not applicable

Hierarchyid Contains a reference to a location in a hierarchy. 1 to 892 bytes +
2 bytes overhead

SQL_Variant May contain the value of any system data type
except text, ntext, image, timestamp, xml,
varchar(max), nvarchar(max), varbinary(max),
and user-defi ned data types. The maximum size
allowed is 8,000 bytes of data + 16 bytes of
metadata.

8,016 bytes

Table Used to store a data set for further processing. The
defi nition is like a Create Table. Primarily used to
return the result set of a table-valued function; they
can also be used in stored procedures and batches.

Dependent on
table defi nition
and number of
rows stored

Timestamp or

Rowversion
Unique per table, automatically stored value.
Generally used for version stamping; the value is
automatically changed on insert and with each
update.

8 bytes

continues

18 ❘ CHAPTER 1 SQL SERVER 2014 ARCHITECTURE

DATA TYPE DESCRIPTION STORAGE SPACE

Uniqueidentifier Can contain Globally Unique Identifi er (GUID).
guid values may be obtained from the
Newsequentialid() function. This function returns
values that are unique across all computers. Although
stored as a binary 16, it is displayed as a char(36).

16 bytes

XML This is Unicode by defi nition. Up to 2GB

NOTE A cursor data type may not be used in a Create Table statement.

The XML data type stores an XML document or fragment. It is stored like an nvarchar(max) in size
depending on the use of UTF-16 or UTF-8 in the document. The XML data type enables the use of spe-
cial constructs for searching and indexing. (This is covered in more detail in Chapter 15, “Replication.”)

CLR Integration
In SQL Server, you can also create your own data types, functions, and stored procedures using
the portion of the Common Language Runtime (CLR) referred to as SQLCLR. This enables you
to write more complex data types to meet your business needs in Visual Basic or C#, for example.
These types are defi ned as a class structure in the base CLR language.

EDITIONS OF SQL SERVER

SQL Server 2014 is available in several editions, and the features available to you in each edition
vary widely. The editions you can install on your workstation or server also vary based on the oper-
ating system. The editions of SQL Server range from SQL Express on the lowest end to Enterprise
Edition on the highest.

Edition Overview
Three major editions of SQL Server 2014 are available. Additional, smaller editions are intended for
select use cases, so they are not covered here. For more details on these, see www.microsoft.com/
sqlserver. As shown in Table 1-7, SQL Server 2014 offers three principal SKUs:

➤ Enterprise Edition—This contains all the new SQL Server 2014 capabilities, including high
availability and performance updates and features that make this a mission critical–ready
database. This edition contains all the BI functionality as well.

➤ Business Intelligence Edition—The BI Server Edition offers the full suite of powerful BI capabili-
ties in SQL Server 2014, including PowerPivot, Power View, Data Quality Services, and Master
Data Services. One major focus of this edition is empowering end users with BI functionality.

TABLE 1-6 (continued)

Editions of SQL Server ❘ 19

This is ideal for projects that need advanced BI capabilities, but don’t require the full OLTP
performance and scalability of Enterprise Edition. The new BI Edition is inclusive of the stan-
dard edition and still contains the basic OLTP offerings.

➤ Standard Edition—This remains as it is today, designed for departmental use with limited
scale. It has basic database functionality and basic BI functionality. New features are now
included in the Standard Edition, such as compression.

TABLE 1-7: SQL Server 2014 Editions

ENTERPRISE EDITION (INCLUSIVE OF

BUSINESS INTELLIGENCE EDITION)

BUSINESS INTELLIGENCE

EDITION (INCLUSIVE OF

STANDARD EDITION)

STANDARD EDITION

Mission-critical and Tier 1
applications

Corporate and scalable
reporting of analytics

Departmental databases

Data warehousing Power View and PowerPivot
enable self-service analytics

Limited business intel-
ligence project

Private cloud and highly virtualized
environments

Large, centralized, or external-facing
business intelligence

Note: Web Edition will only be available via Service Provider License Agreement (SPLA)

Table 1-8 provides you with an at-a-glance view of some of the key features in SQL Server 2014 by
edition.

TABLE 1-8: SQL Server 2014 Capabilities by Edition

SQL SERVER CAPABILITIES SQL SERVER

EDITIONS

STANDARD BUSINESS

INTELLIGENCE

ENTERPRISE

Maximum number of cores 16 cores 16 cores (data-
base; operating
system maximum
for business
intelligence)

Operating sys-
tem maximum

Supported Memory 128GB 128GB Operating sys-
tem maximum

Basic OLTP X X X

continues

20 ❘ CHAPTER 1 SQL SERVER 2014 ARCHITECTURE

SQL SERVER CAPABILITIES SQL SERVER

EDITIONS

STANDARD BUSINESS

INTELLIGENCE

ENTERPRISE

In-memory OLTP X

Basic reporting and analytics X X X

Programmability and developer’s tools X X X

Manageability (SSMS, policy-based
management)

X X X

Enterprise data management (data
quality, master data services)

X X

Self-service BI (Power View,
PowerPivot for SPS)

X X

Corporate BI (semantic model,
advanced analytics)

X X

Advanced security (advanced auditing,
transparent data encryption)

X

Data warehousing (ColumnStore
index, compression, partitioning)

X

Maximum scalability and performance X

High availability Limited Basic X

ColumnStore index X

AlwaysOn X

Buffer Pool Extension X X X

Virtualization licensing 1 virtual machine 1 virtual machine Unlimited

The basic functionality is kept in the Standard Edition. Key enterprise BI features are included in the
Business Intelligence SKU. When you need to go to high-end data warehousing and enterprise-level
high availability, the Enterprise Edition is the right edition for you.

As you can see in Table 1-8, for the Standard Edition, there is a 16-core maximum compute capacity
for the Database Engine. For the Business Intelligence Edition, there is a 16-core maximum for data-
base use and up to the OS Maximum for BI features (Analysis Services, Reporting Services). The
Enterprise Edition can be used up to the maximum number of cores in the operating system.

TABLE 1-8 (continued)

Editions of SQL Server ❘ 21

Both the Business Intelligence Edition and Enterprise Edition offer the full premium BI capabilities
of SQL Server 2014, including Enterprise Data Management, Self-Service BI, and Corporate BI fea-
tures. The Enterprise Edition adds mission-critical and Tier-1 database functionality with the maxi-
mum scalability, performance, and high availability. With the Enterprise Edition under Software
Assurance, customers also get unlimited virtualization, with the ability to license unlimited virtual
machines, as well as full mobility of those licenses.

Licensing
Starting with SQL Server 2012, licensing has changed signifi cantly. This new licensing scheme can
impact your environment if you do not run Software Assurance on those licenses. This section is an
overview of the changes, not an exhaustive licensing discussion. See your Microsoft account man-
ager for more details on these changes.

SQL Server pricing and licensing better aligns to the way customers purchase database and BI prod-
ucts. The new pricing and licensing offers a range of benefi ts for customers, including the following:

➤ SQL Server offers market leading Total Cost of Ownership (TCO):

➤ SQL Server continues to be the clear high-value leader among major vendors. This is
exemplifi ed through the pricing model, features included in non-Enterprise editions,
and world-class support, no matter the edition.

➤ Customers with Software Assurance get signifi cant benefi ts and ways to help ease
the transition to new licensing models. These benefi ts include access to upgrades and
enhanced support options during your license term.

➤ Customers with Enterprise Agreements have the easiest transition to the latest ver-
sions of SQL Server and realize the greatest cost-savings.

➤ SQL Server 2014 is cloud-optimized:

➤ SQL Server 2014 is the most virtualization-friendly database platform with expanded
virtualization licensing, the fl exibility to license per VM, and excellent support for
Hyper-V.

➤ Hybrid on-premises and cloud-based solutions are fully supported with features
such as support for SQL Server Data Files in Windows Azure, SQL Server Managed
Backup to Windows Azure, ability to deploy a database from an on-premises
instance directly to an instance in a Windows Azure Virtual Machine, support for
backing up databases to Windows Azure BLOB Storage, and ability to add a replica
to your AlwaysOn Availability Group in a Windows Azure Virtual Machine.

➤ SQL Server pricing and licensing is designed to enable customers to pay as they grow:

➤ The new streamlined editions are aligned to database and BI needs.

➤ For data center scenarios, licensing is better aligned to hardware capacity.

➤ For BI, licensing is aligned to user-based access, which is the way most customers are
accustomed to purchasing BI.

22 ❘ CHAPTER 1 SQL SERVER 2014 ARCHITECTURE

CPU Core (Not Processor) Licenses
With the release of SQL Server 2012, Microsoft switched to a per-core processing model. The CPU
Core licenses (available only for the Standard and Enterprise Edition) are sold in two core “packs.”
So, a quad-core CPU needs two of these packs per socket. These license packs cost half of what a
SQL Server 2008 R2 CPU license costs. The catch here is that you must purchase at least four cores
per CPU.

Following are some examples:

➤ Two sockets with 2 cores each, you need four license “packs” (eight core licenses).

➤ Two sockets with 4 cores each, you need four license “packs” (eight core licenses).

➤ Two sockets with 6 cores each, you need six license “packs” (12 core licenses).

➤ Two sockets with 8 cores each, you need eight license “packs” (16 core licenses).

Virtualized SQL Server and Host-Based Licensing
When you run a virtualized SQL Server, you must license at least four cores for the VM. If you have
more than four virtual CPUs on the VM, you must have a CPU Core license for each virtual CPU
that you have assigned to the VM.

SQL Server 2014 still includes host-based licensing for those customers with Software Assurance
and an Enterprise Agreement. The host-based licensing works just like it did before: you purchase
enough Enterprise Edition CPU Core licenses for the host, and you can run as many VMs running
SQL Server as you want. This will likely be the preferred way for many of you. Those customers not
running with Software Assurance or an Enterprise Agreement will want to contact their Microsoft
Representative or reseller, because host-based licensing is not available for those customers.

As you can see, this is a lot of change. The pricing has changed, too, but is not discussed here
because of the wide variations depending on your individual agreements with Microsoft. Microsoft
has tried hard to ensure that the cost does not go up dramatically for many of you, so don’t fret, but
be judicious and check this out with your Microsoft Account teams.

SUMMARY

The architecture for SQL Server 2014 has advancements under the covers that will improve perfor-
mance, increase developer effi ciency and system availability, and decrease overall operating cost.
SQL Server 2014 also delivers exciting new features that allow your system to scale and offer greater
performance than ever before. It is important to focus on your current and future roles, and under-
stand the types of features and editions that will apply to your situation and organizational needs.

In Chapter 2, you learn about best practices for upgrading to SQL Server 2014.

