
�

� �

�

1
Computer Vision in Vehicles

Reinhard Klette
School of Engineering, Computer and Mathematical Sciences, Auckland University
of Technology, Auckland, New Zealand

This chapter is a brief introduction to academic aspects of computer vision in vehi-
cles. It briefly summarizes basic notation and definitions used in computer vision. The
chapter discusses a few visual tasks as of relevance for vehicle control and environ-
ment understanding.

1.1 Adaptive Computer Vision for Vehicles

Computer vision designs solutions for understanding the real world by using cameras.
See Rosenfeld (1969), Horn (1986), Hartley and Zisserman (2003), or Klette (2014)
for examples of monographs or textbooks on computer vision.
Computer vision operates today in vehicles including cars, trucks, airplanes,

unmanned aerial vehicles (UAVs) such as multi-copters (see Figure 1.1 for a
quadcopter), satellites, or even autonomous driving rovers on the Moon or Mars.
In our context, the ego-vehicle is that vehicle where the computer vision system

operates in; ego-motion describes the ego-vehicle’s motion in the real world.

1.1.1 Applications

Computer vision solutions are today in use in manned vehicles for improved safety or
comfort, in autonomous vehicles (e.g., robots) for supportingmotion or action control,
and also for misusing UAVs for killing people remotely. The UAV technology has also
good potentials for helping to save lives, to create three-dimensional (3D) models of

Computer Vision in Vehicle Technology: Land, Sea, and Air, First Edition.
Edited by Antonio M. López, Atsushi Imiya, Tomas Pajdla and Jose M. Álvarez.
© 2017 John Wiley & Sons Ltd. Published 2017 by John Wiley & Sons Ltd.

CO
PYRIG

HTED
 M

ATERIA
L

�

� �

�

2 Computer Vision in Vehicle Technology

v

(a) (b)

Figure 1.1 (a) Quadcopter. (b) Corners detected from a flying quadcopter using a modified
FAST feature detector. Courtesy of Konstantin Schauwecker

the environment, and so forth. Underwater robots and unmanned sea-surface vehicles
are further important applications of vision-augmented vehicles.

1.1.2 Traffic Safety and Comfort

Traffic safety is a dominant application area for computer vision in vehicles. Currently,
about 1.24 million people die annually worldwide due to traffic accidents (WHO
2013), this is, on average, 2.4 people die per minute in traffic accidents. How does
this compare to the numbers Western politicians are using for obtaining support for
their “war on terrorism?” Computer vision can play a major role in solving the true
real-world problems (see Figure 1.2). Traffic-accident fatalities can be reduced by
controlling traffic flow (e.g., by triggering automated warning signals at pedestrian
crossings or intersections with bicycle lanes) using stationary cameras, or by having
cameras installed in vehicles (e.g., for detecting safe distances and adjusting speed
accordingly, or by detecting obstacles and constraining trajectories).
Computer vision is also introduced into modern cars for improving driving comfort.

Surveillance of blind spots, automated distance control, or compensation of uneven-
ness of the road are just three examples for a wide spectrum of opportunities provided
by computer vision for enhancing driving comfort.

1.1.3 Strengths of (Computer) Vision

Computer vision is an important component of intelligent systems for vehicle control
(e.g., in modern cars, or in robots). The Mars rovers “Curiosity” and “Opportunity”
operate based on computer vision; “Opportunity” has already operated on Mars for

�

� �

�

Computer Vision in Vehicles 3

Figure 1.2 The 10 leading causes of death in the world. Chart provided online by the World
Health Organization (WHO). Road injury ranked number 9 in 2011

more than ten years. The visual system of human beings provides a proof of exis-
tence that vision alone can deliver nearly all of the information required for steering a
vehicle. Computer vision aims at creating comparable automated solutions for vehi-
cles, enabling them to navigate safely in the real world. Additionally, computer vision
can also work constantly “at the same level of attention,” applying the same rules or
programs; a human is not able to do so due to becoming tired or distracted.
A human applies accumulated knowledge and experience (e.g., supporting intu-

ition), and it is a challenging task to embed a computer vision solution into a system
able to have, for example, intuition. Computer vision offers many more opportunities
for future developments in a vehicle context.

1.1.4 Generic and Specific Tasks

There are generic visual tasks such as calculating distance or motion, measuring
brightness, or detecting corners in an image (see Figure 1.1b). In contrast, there are

�

� �

�

4 Computer Vision in Vehicle Technology

specific visual tasks such as detecting a pedestrian, understanding ego-motion, or cal-
culating the free space a vehicle may move in safely in the next few seconds. The
borderline between generic and specific tasks is not well defined.
Solutions for generic tasks typically aim at creating one self-contained module

for potential integration into a complex computer vision system. But there is
no general-purpose corner detector and also no general-purpose stereo matcher.
Adaptation to given circumstances appears to be the general way for an optimized
use of given modules for generic tasks.
Solutions for specific tasks are typically structured into multiple modules that inter-

act in a complex system.

Example 1.1.1 Specific Tasks in the Context of Visual Lane Analysis Shin et al.
(2014) review visual lane analysis for driver-assistance systems or autonomous
driving. In this context, the authors discuss specific tasks such as “the combination
of visual lane analysis with driver monitoring..., with ego-motion analysis..., with
location analysis..., with vehicle detection..., or with navigation....” They illustrate
the latter example by an application shown in Figure 1.3: lane detection and
road sign reading, the analysis of GPS data and electronic maps (e-maps), and
two-dimensional (2D) visualization are combined into a real-view navigation system
(Choi et al. 2010).

Figure 1.3 Two screenshots for real-view navigation. Courtesy of the authors of Choi et al.
(2010)

1.1.5 Multi-module Solutions

Designing a multi-module solution for a given task does not need to be more difficult
than designing a single-module solution. In fact, finding solutions for some single
modules (e.g., formotion analysis) can be very challenging. Designing amulti-module
solution requires:

�

� �

�

Computer Vision in Vehicles 5

1. that modular solutions are available and known,
2. tools for evaluating those solutions in dependency of a given situation (or scenario;

see Klette et al. (2011) for a discussion of scenarios) for being able to select (or
adapt) solutions,

3. conceptual thinking for designing and controlling an appropriate multi-module
system,

4. a system optimization including a more extensive testing on various scenarios
than for a single module (due to the increase in combinatorial complexity of
multi-module interactions), and

5. multiple modules require control (e.g., when many designers separately insert pro-
cessors for controlling various operations in a vehicle, no control engineer should
be surprised if the vehicle becomes unstable).

1.1.6 Accuracy, Precision, and Robustness

Solutions can be characterized as being accurate, precise, or robust. Accuracy means
a systematic closeness to the true values for a given scenario. Precision also con-
siders the occurrence of random errors; a precise solution should lead to about the
same results under comparable conditions. Robustness means approximate correct-
ness for a set of scenarios that includes particularly challenging ones: in such cases,
it would be appropriate to specify the defining scenarios accurately, for example, by
using video descriptors (Briassouli and Kompatsiaris 2010) or data measures (Suaste
et al. 2013). Ideally, robustness should address any possible scenario in the real world
for a given task.

1.1.7 Comparative Performance Evaluation

An efficient way for a comparative performance analysis of solutions for one task is
by having different authors testing their own programs on identical benchmark data.
But we not only need to evaluate the programs, we also need to evaluate the bench-
mark data used (Haeusler and Klette 2010, 2012) for identifying their challenges or
relevance.
Benchmarks need to come withmeasures for quantifying performance such that we

can compare accuracy on individual data or robustness across a diversity of different
input data.
Figure 1.4 illustrates two possible ways for generating benchmarks, one by using

computer graphics for rendering sequences with accurately known ground truth,1 and
the other one by using high-end sensors (in the illustrated case, ground truth is pro-
vided by the use of a laser range-finder).2

1 For EISATS benchmark data, see www.mi.auckland.ac.nz/EISATS.
2 For KITTI benchmark data, see www.cvlibs.net/datasets/kitti/.

�

� �

�

6 Computer Vision in Vehicle Technology

(a) (b)

Figure 1.4 Examples of benchmark data available for a comparative analysis of computer
vision algorithms for motion and distance calculations. (a) Image from a synthetic sequence
provided on EISATS with accurate ground truth. (b) Image of a real-world sequence provided
on KITTI with approximate ground truth

But those evaluations need to be considered with care since everything is not com-
parable. Evaluations depend on the benchmark data used; having a few summarizing
numbers may not be really of relevance for particular scenarios possibly occurring in
the real world. For some input data we simply can not answer how a solution performs;
for example, in the middle of a large road intersection, we cannot answer which lane
border detection algorithm performs best for this scenario.

1.1.8 There Are Many Winners

We are not so naive to expect an all-time “winner” when comparatively evaluating
computer vision solutions. Vehicles operate in the real world (whether on Earth, the
Moon, or on Mars), which is so diverse that not all of the possible event occurrences
can be modeled in underlying constraints for a designed program. Particular solutions
perform differently for different scenarios, and a winning program for one scenario
may fail for another. We can only evaluate how particular solutions perform for partic-
ular scenarios. At the end, this might support an optimization strategy by adaptation
to a current scenario that a vehicle experiences at a time.

1.2 Notation and Basic Definitions

The following basic notations and definitions (Klette 2014) are provided.

1.2.1 Images and Videos

An image I is defined on a set

Ω = {(x, y) ∶ 1 ≤ x ≤ Ncols ∧ 1 ≤ y ≤ Nrows} ⊂ ℤ2 (1.1)

�

� �

�

Computer Vision in Vehicles 7

of pairs of integers (pixel locations), called the image carrier, where Ncols and Nrows
define the number of columns and rows, respectively. We assume a left-hand coor-
dinate system with the coordinate origin in the upper-left corner of the image, the
x-axis to the right, and the y-axis downward. A pixel of an image I combines a location
p = (x, y) in the carrier Ω with the value I(p) of I at this location.
A scalar image I takes values in a set {0, 1, … , 2a − 1}, typically with a = 8, a =

12, or a = 16. A vector-valued image I has scalar values in a finite number of channels
or bands. A video or image sequence consists of frames I(.,.,t), for t = 1, 2, … ,T , all
being images on the same carrier Ω.

Example 1.2.1 Three Examples In case of an RGB color image I = (R,G,B), we
have pixels (p, I(p)) = (p,R(p),G(p),B(p)).
A geometrically rectified gray-level stereo image or frame I = (L,R) consists of

two channels L and R, usually called left and right images; this is implemented in the
multi-picture object (mpo) format for images (CIPA 2009).
For a sequence of gray-level stereo images, we have pixel (p, t,L(p, t),R(p, t)) in

frame t, which is the combined representation of pixels (p, t,L(p, t)) and (p, t,R(p, t))
in L(.,.,t) and R(.,.,t), respectively, at pixel location p and time t.

1.2.1.1 Gauss Function

The zero-mean Gauss function is defined as follows:

G𝜎(x, y) =
1

2𝜋𝜎2
exp

(
−
x2 + y2

2𝜎2

)
(1.2)

A convolution of an image I with the Gauss function produces smoothed images

L(p, 𝜎) = [I ⋆ G𝜎](p) (1.3)

also known as Gaussians, for 𝜎 > 0. (We stay with symbol L here as introduced by
Lindeberg (1994) for “layer”; a given context will prevent confusion with the left
image L of a stereo pair.)

1.2.1.2 Edges

Step-edges in images are detected based on first- or second-order derivatives, such as
values of the gradient ∇I or the Laplacian ΔI given by

∇I = grad I =
[
𝜕I
𝜕x

,
𝜕I
𝜕y

]⊤
or ΔI = ∇2I = 𝜕2I

𝜕x2
+ 𝜕2I

𝜕y2
(1.4)

Local maxima of L1- or L2-magnitudes ||∇I||1 or ||∇I||2, or zero-crossings of values
ΔI are taken as an indication for a step-edge. The gradient or Laplacian is commonly
preceded by smoothing, using a convolution with the zero-mean Gauss function.

�

� �

�

8 Computer Vision in Vehicle Technology

Alternatively, Phase-congruency edges in images are detected based on local
frequency-space representations (Kovesi 1993).

1.2.1.3 Corners

Let Ixx, Ixy, Iyx, and Iyy denote the second-order derivatives of image I. Corners in
images are localized based on high curvature of intensity values, to be identified by
two large eigenvalues of the Hessian matrix

H(p) =
[
Ixx(p) Ixy(p)
Ixy(p) Iyy(p)

]
(1.5)

at a pixel location p in a scalar image I (see Harris and Stephens (1988)). Figure 1.1
shows the corners detected by FAST. Corner detection is often preceded by smoothing
using a convolution with the zero-mean Gauss function.

1.2.1.4 Scale Space and Key Points

Key points or interest points are commonly detected asmaxima orminima in a 3 × 3 ×
3 subset of the scale space of a given image (Crowley and Sanderson 1987; Lindeberg
1994). A finite set of differences of Gaussians

D𝜎,a(p) = L(p, 𝜎) − L(p, a𝜎) (1.6)

produces a DoG scale space. These differences are approximations to Laplacians of
increasingly smoothed versions of an image (see Figure 1.5 for an example of such
Laplacians forming an LoG scale space).

1.2.1.5 Features

An image feature is finally a location (an interest point), defined by a key point, edge,
corner, and so on, together with a descriptor, usually given as a data vector (e.g., in
case of scale-invariant feature transform (SIFT) of length 128 representing local gra-
dients), but possibly also in other formats such as a graph. For example, the descriptor
of a step-edge can be mean and variance of gradient values along the edge, and the
descriptor of a corner can be defined by the eigenvalues of the Hessian matrix.

1.2.2 Cameras

We have an XwYwZw world coordinate system, which is not defined by a particu-
lar camera or other sensor, and a camera coordinate system XsYsZs (index “s” for
“sensor”), which is described with respect to the chosen world coordinates by means
of an affine transform, defined by a rotation matrix R and a translation vector t.

�

� �

�

Computer Vision in Vehicles 9

Figure 1.5 Laplacians of smoothed copies of the same image using cv::GaussianBlur
and cv::Laplacian in OpenCV, with values 0.5, 1, 2, and 4, for parameter 𝜎 for smooth-
ing. Linear scaling is used for better visibility of the resulting Laplacians. Courtesy of Sandino
Morales

A point in 3D space is given as Pw = (Xw,Yw,Zw) in world coordinates or as Ps =
(Xs,Ys,Zs) in camera coordinates. In addition to the coordinate notation for points,
we also use vector notation, such as Pw = [Xw,Yw,Zw]T for point Pw.

1.2.2.1 Pinhole-type Camera

The Zs-axis models the optical axis. Assuming an ideal pinhole-type camera, we can
ignore radial distortion and can have undistorted projected points in the image plane
with coordinates xu and yu. The distance f between the xuyu image plane and the pro-
jection center is the focal length.
A visible point P = (Xs,Ys,Zs) in the world is mapped by central projection into

pixel location p = (xu, yu) in the undistorted image plane:

xu =
f Xs

Zs
and yu =

f Ys
Zs

(1.7)

with the origin of xuyu image coordinates at the intersection point of the Zs-axis with
the image plane.
The intersection point (cx, cy) of the optical axis with the image plane in xy

coordinates is called the principal point. It follows that (x, y) = (xu + cx, yu + cy). A
pixel location (x, y) in the 2D xy image coordinate system has 3D coordinates (x − cx,
y − cy, f) in the XsYsZs camera coordinate system.

�

� �

�

10 Computer Vision in Vehicle Technology

1.2.2.2 Intrinsic and Extrinsic Parameters

Assuming multiple cameras Ci, for some indices i (e.g., just CL and CR for binocu-
lar stereo), camera calibration specifies intrinsic parameters such as edge lengths eix
and eiy of camera sensor cells (defining the aspect ratio), a skew parameter si, coordi-
nates of the principal point ci = (cix, ciy) where optic axis of camera i and image plane
intersect, the focal length f i, possibly refined as f ix and f iy , and lens distortion param-
eters starting with 𝜅 i

1 and 𝜅 i
2. In general, it can be assumed that lens distortion has

been calibrated before and does not need to be included anymore in the set of intrin-
sic parameters. Extrinsic parameters are defined by rotation matrices and translation
vectors, for example, matrix Rij and vector tij for the affine transform between cam-
era coordinate systems Xi

sY
i
sZ

i
s and Xj

sY
j
sZ

j
s, or matrix Ri and vector ti for the affine

transform between camera coordinate system Xi
sY

i
sZ

i
s and XwYwZw.

1.2.2.3 Single-Camera Projection Equation

The camera projection equation in homogeneous coordinates, mapping a 3D point
P = (Xw,Yw,Zw) into image coordinates pi = (xi, yi) of the ith camera, is as follows:

k
⎡⎢⎢⎣
xi

yi

1

⎤⎥⎥⎦=
⎡⎢⎢⎣
f i∕eix si cix 0
0 f i∕eiy ciy 0
0 0 1 0

⎤⎥⎥⎦
[
Ri −[Ri]⊤ti
𝟎T 1

] ⎡⎢⎢⎢⎣
Xw
Yw
Zw
1

⎤⎥⎥⎥⎦
(1.8)

= [Ki|𝟎] ⋅ Ai ⋅ [Xw,Yw,Zw, 1]⊤ (1.9)

where k ≠ 0 is a scaling factor. This defines a 3 × 3 matrix Ki of intrinsic camera
parameters and a 4 × 4 matrix Ai of extrinsic parameters (of the affine transform) of
camera i. The 3 × 4 camera matrix Ci = [Ki|𝟎] ⋅ Ai is defined by 11 parameters if
we allow for an arbitrary scaling of parameters; otherwise it is 12.

1.2.3 Optimization

We specify one popular optimization strategy that has various applications in com-
puter vision. In an abstract sense, we assign to each pixel a label l (e.g., an optical
flow vector u, a disparity d, a segment identifier, or a surface gradient) out of a set
L of possible labels (e.g., all vectors pointing from a pixel p to points in a Euclidean
distance to p of less than a given threshold). Labels (u, v) ∈ ℝ2 are thus in the 2D
continuous plane.

1.2.3.1 Optimizing a Labeling Function

Labels are assigned to all the pixels in the carrierΩ by a labeling function f ∶ Ω → L.
Solving a labeling problemmeans to identify a labeling f that approximates somehow
an optimum of a defined error or energy

Etotal(f) = Edata(f) + 𝜆 ⋅ Esmooth(f) (1.10)

�

� �

�

Computer Vision in Vehicles 11

where 𝜆 > 0 is a weight. Here, Edata(f) is the data-cost term and Esmooth(f) is the
smoothness-cost term. A decrease in 𝜆 works toward reduced smoothing of calcu-
lated labels. Ideally, we search for an optimal (i.e., of minimal total error) f in the set
of all possible labelings, which defines a total variation (TV).
We detail Eq. (1.10) by adding costs at pixels. In a current image, label fp = f (p) is

assigned by the value of labeling function f at pixel position p. Then we have that

Etotal(f) =
∑
p∈Ω

Edata(p, fp) + 𝜆 ⋅
∑
p∈Ω

∑
q∈A(p)

Esmooth(fp, fq) (1.11)

where A is an adjacency relation between pixel locations.
In optical flow or stereo vision, label fp (i.e., optical flow vector or disparity) defines

a pixel q in another image (i.e., in the following image, or in the left or right image of
a stereo pair); in this case, we can also write Edata(p, q) instead of Edata(p, fp).

1.2.3.2 Invalidity of the Intensity Constancy Assumption

Data-cost terms are defined for windows that are centered at the considered pixel
locations. The data in both windows, around the start pixel location p, and around
the pixel location q in the other image, are compared for understanding “data
similarity.”
For example, in the case of stereo matching, we have p = (x, y) in the right image R

and q = (x + d, y) in the left image L, for disparity d ≥ 0, and the data in both (2k +
1) × (2k + 1) windows are identical if and only if the data-cost measure

ESSD(p, d) =
l∑

i=−l

k∑
j=−k

[R(x + i, y + j) − L(x + d + i, y + j)]2 (1.12)

results in value 0, where SSD stands for sum of squared differences.
The use of such a data-cost term would be based on the intensity constancy assump-

tion (ICA), that is, intensity values around corresponding pixel locations p and q are
(basically) identical within a window of specified size. However, the ICA is invalid for
real-world recording. Intensity values at corresponding pixels and in their neighbor-
hoods are typically impacted by lighting variations, or just by image noise. There are
also impacts of differences in local surface reflectance, differences in cameras when
comparing images recorded by different cameras, or effects of perspective distortion
(the local neighborhood around a surface point is differently projected into different
cameras). Thus, energy optimization needs to apply better data measures compared
to SSD, or other measures are also defined based on the ICA.

1.2.3.3 Census Data-Cost Term

The census-cost function has been identified as being able to compensate success-
fully bright variations in input images of a recorded video (Hermann and Klette 2009;

�

� �

�

12 Computer Vision in Vehicle Technology

Hirschmüller and Scharstein 2009). The mean-normalized census-cost function is
defined by comparing a (2l + 1) × (2k + 1) window centered at pixel location p in
frame I1 with a window of the same size centered at a pixel location q in frame I2. Let
Īi(p) be the mean of the window around p for i = 1 or i = 2. Then we have that

EMCEN(p, q) =
l∑

i=−l

k∑
j=−k

𝜌ij (1.13)

with

𝜌ij =
⎧⎪⎨⎪⎩
0 I1(p + (i, j)) < Ī1(p) and I2(q + (i, j)) < Ī2(q)

or I1(p + (i, j)) > Ī1(p) and I2(q + (i, j)) > Ī2(q)
1 otherwise

(1.14)

Note that value 0 corresponds to consistency in both comparisons. If the comparisons
are performed with respect to values I1(p) and I2(q), rather than the means Ī1(p) and
Ī2(q), then we have the census-cost function ECEN(p, q) as a candidate for a data-cost
term.
Let ap be the vector listing results sgn(I1(p + (i, j)) − Ī1(p)) in a left-to-right,

top-to-bottom order (with respect to the applied (2l + 1) × (2k + 1) window),
where sgn is the signum function; bq lists values sgn(I2(q + (i, j)) − Ī2(q)). The
mean-normalized census data-cost EMCEN(p, q) equals the Hamming distance
between vectors ap and bq.

1.3 Visual Tasks

This section briefly outlines some of the visual tasks that need to be solved by com-
puter vision in vehicles.

1.3.1 Distance

Laser range-finders are increasingly used for estimating distance mainly based on
the time-of-flight principle. Assuming sensor arrays of larger density in the near
future, laser range-finders will become a standard option for cost-efficient accurate
distance calculations. Combining stereo vision with distance data provided by laser
range-finders is a promising multi-module approach toward distance calculations.
Stereo vision is the dominant approach in computer vision for calculating distances.

Corresponding pixels are here defined by projections of the same surface point in the
scene into the left and right images of a stereo pair. After having recorded stereo pairs
rectified into canonical stereo geometry, one-dimensional (1D) correspondence search
can be limited to identical image rows.

�

� �

�

Computer Vision in Vehicles 13

Figure 1.6 (a) Image of a stereo pair (from a test sequence available on EISATS).
(b) Visualization of a depth map using the color key shown at the top for assigning distances
in meters to particular colors. A pixel is shown in gray if there was low confidence for the
calculated disparity value at this pixel. Courtesy of Simon Hermann

1.3.1.1 Stereo Vision

We address the detection of corresponding points in a stereo image I = (L,R), a basic
task for distance calculation in vehicles using binocular stereo.
Corresponding pixels define a disparity, which is mapped based on camera parame-

ters into distance or depth. There are already very accurate solutions for stereo match-
ing, but challenging input data (rain, snow, dust, sunstroke, running wipers, and so
forth) still pose unsolved problems (see Figure 1.6 for an example of a depth map).

1.3.1.2 Binocular Stereo Vision

After camera calibration, we have two virtually identical cameras CL and CR, which
are perfectly aligned defining canonical stereo geometry. In this geometry, we have
an identical copy of the camera on the left translated by base distance b along the
Xs-axis of the XsYsZs camera coordinate system of the left camera. The projection
center of the left camera is at (0, 0, 0) and the projection center of the cloned right
camera is at (b, 0, 0). A 3D point P = (Xs,Ys,Zs) is mapped into undistorted image
points

pLu = (xLu , yLu) =
(

f ⋅ Xs

Zs
,
f ⋅ Ys
Zs

)
(1.15)

pRu = (xRu , yRu) =
(

f ⋅ (Xs − b)
Zs

,
f ⋅ Ys
Zs

)
(1.16)

�

� �

�

14 Computer Vision in Vehicle Technology

in the left and right image planes, respectively. Considering pLu and p
R
u in homogeneous

coordinates, we have that
[pRu]⊤ ⋅ F ⋅ pLu = 0 (1.17)

for the 3 × 3 bifocal tensor F, defined by the configuration of the two cameras. The
dot product F ⋅ pLu defines an epipolar line in the image plane of the right camera; any
stereo point corresponding to pLu needs to be on that line.

1.3.1.3 Binocular Stereo Matching

Let B be the base image andM be the match image. We calculate corresponding pix-
els pB and qM in the xy image coordinates of carrier Ω following the optimization
approach as expressed by Eq. (1.11). A labeling function f assigns a disparity fp to
pixel location p, which specifies a corresponding pixel q = pf .
For example, we can use the census data-cost term EMCEN(p, pf) as defined in

Eq. (1.13), and for the smoothness-cost term, either the Potts model, linear truncated
cost, or quadratic truncated costs is used (see Chapter 5 in Klette (2014)). Chapter 6
of Klette (2014) discusses also different algorithms for stereo matching, including
belief-propagation matching (BPM) (Sun et al. 2003) and dynamic-programming
stereo matching (DPSM). DPSM can be based on scanning along the epipolar line
only using either an ordering or a smoothness constraint, or it can be based (for
symmetry?) on scanning along multiple scanlines using a smoothness constraint
along those lines; the latter case is known as semi-global matching (SGM) if multiple
scanlines are used for error minimization (Hirschmüller, 2005). A variant of SGM is
used in Daimler’s stereo vision system, available since March 2013 in their Mercedes
cars (see also Chapter 2 by U. Franke in this book).
Iterative SGM (iSGM) is an example for a modification of baseline SGM; for

example, error minimization along the horizontal scanline should in general con-
tribute more to the final result than optimization along other scanlines (Hermann and
Klette, 2012). Figure 1.7 also addresses confidence measurement; for a comparative
discussion of confidence measures, see Haeusler and Klette (2012). Linear BPM
(linBPM) applies the MCEN data-cost term and the linear truncated smoothness-cost
term (Khan et al. 2013).

1.3.1.4 Performance Evaluation of Stereo Vision Solutions

Figure 1.8 provides a comparison of iSGM to linBPM on four frame sequences each
of 400 frames length. It illustrates that iSGM performs better (with respect to the used
measure, see the following section for its definition) on the bridge sequence that is
characterized by many structural details in the scene, but not as good as linBPM on
the other three sequences. For sequences dusk and midday, both performances are
highly correlated, but not for the other two sequences. Of course, evaluating on only

�

� �

�

Computer Vision in Vehicles 15

Figure 1.7 Resulting disparity maps for stereo data when using only one scanline for DPSM
with the SGM smoothness constraint and a 3 × 9 MCEN data-cost function. From top to bot-
tom and left to right: Left-to-right horizontal scanline, and lower-left to upper-right diagonal
scanline, top-to-bottom vertical scanline, and upper-left to lower-right diagonal scanline. Pink
pixels are for low-confidence locations (here identified by inhomogeneous disparity locations).
Courtesy of Simon Hermann; the input data have been provided by Daimler A.G.

80

60

40

20

0

1
1 29 57 85 11
3

14
1

16
9

19
7

22
5

25
3

28
1

30
9

33
7

36
5

39
3 1 21 41 61 81 10
1

12
1

14
1

16
1

18
1

20
1

22
1

24
1

26
1

28
1

30
1

32
1

34
1

36
1

38
1

1 21 41 61 81 10
1

12
1

14
1

16
1

18
1

20
1

22
1

24
1

26
1

28
1

30
1

32
1

34
1

36
1

38
128 55 82 10
9

13
6

16
3

19
0

21
7

24
4

27
1

29
8

32
5

35
1

37
9

80

60

40

20

0

80

60

40

20
Dusk Bridge

Midday Wiper

0

80
linBPM iSGM

60

40

20

0

Figure 1.8 Normalized cross-correlation results when applying the third-eye technology
for stereo matchers iSGM and linBPM for four real-world trinocular sequences of Set 9 of
EISATS. Courtesy of Waqar Khan, Veronica Suaste, and Diego Caudillo

a few sequences of 400 frames each is insufficient for making substantial evaluations,
but it does illustrate performance.
The diagrams in Figure 1.8 are defined by the normalized cross-correlation (NCC)

between a recorded third-frame sequence and a virtual sequence calculated based on

�

� �

�

16 Computer Vision in Vehicle Technology

the stereo matching results of two other frame sequences. This third-eye technology
(Morales and R 2009) also uses masks such that only image values are compared
which are close to step-edges (e.g., see Figure 1.5 for detected edges at bright pixels
in LoG scale space) in the third frame. It enables us to evaluate performance on any
calibrated trinocular frame sequence recorded in the real world.

Example 1.3.1 Environment Reconstruction 3D road-side visualization or 3D
environment modeling is the application where a 3D reconstruction from a mov-
ing platform can be used (Xiao et al. 2009), possibly in combination with 3D
reconstructions from a flying platform such as a multi-copter.
There are unresolved issues in the required very high accuracy of ego-motion anal-

ysis for mapping 3D results obtained at time t in a uniform world coordinate system.
This is in particular apparent when trying to unify results from different runs through
the same street (Zeng and Klette 2013). Figure 1.9 shows the 3D results from a single
run (for a site at Tamaki campus, Auckland).

Figure 1.9 (a) Reconstructed cloud of points. (b) Reconstructed surface based on a single
run of the ego-vehicle. Courtesy of Yi Zeng

1.3.2 Motion

A sequence of video frames I(.,.,t), all defined on the same carrierΩ, is recorded with
a time difference 𝛿t between two subsequent frames; frame t is recorded at time t ⋅ 𝛿t
counted from the start of the recording.
The projection of a static or moving surface point into pixel pt = (xt, yt) in frame t

and into pixel pt+1 = (xt+1, yt+1) in frame t + 1 defines a pair of corresponding pixels
represented by a motion vector [xt+1 − xt, yt+1 − yt]⊤ from pt to pt+1 in Ω.

1.3.2.1 Dense or Sparse Motion Analysis

Dense motion analysis aims at calculating approximately correct motion vectors for
“basically” every pixel location p = (x, y) in frame t (see Figure 1.10 for an example).

�

� �

�

Computer Vision in Vehicles 17

(a) (b)

Figure 1.10 Visualization of optical flow using the color key shown around the border of the
image for assigning a direction to particular colors; the length of the flow vector is represented
by saturation, where value “white” (i.e., undefined saturation) corresponds to “no motion.” (a)
Calculated optical flow using the original Horn–Schunck algorithm. (b) Ground truth for the
image shown in Figure 1.4a. Courtesy of Tobi Vaudrey

Sparse motion analysis is designed for having accurate motion vectors at a few
selected pixel locations.
Motion analysis is a difficult 2D correspondence problem, and it might become

easier by having recorded high-resolution images at a higher frame rate in future. For
example, motion analysis is approached by a single-module solution by optical flow
calculation, or as a multi-module solution when combining image segmentation with
subsequent estimations of motion vectors for image segments.

1.3.2.2 Optical Flow

Optical flow u(p, t) = [u(p, t), v(p, t)]⊤ is the result of dense motion analysis. It rep-
resents motion vectors between corresponding pixels p = (x, y) in frames I(.,.,t) and
I(.,.,t + 1). Figure 1.10 shows the visualization of an optical flow map.

1.3.2.3 Optical Flow Equation and Image Constancy Assumption

The derivation of the optical flow equation (Horn and Schunck 1981)

0 = u(p, t) ⋅ Ix(p, t) + v(p, t) ⋅ Iy(p, t) + It(p, t) (1.18)

for p ∈ Ω and first-order derivatives Ix, Iy, and It follows from the ICA, that is, by
assuming that corresponding 3D world points are represented in frame t and t + 1 by
the same intensity. This is actually not true for computer vision in vehicles. Light
intensities change frequently due to lighting artifacts (e.g., driving below trees),
changing angles to the Sun, or simply due to sensor noise. However, the optical flow

�

� �

�

18 Computer Vision in Vehicle Technology

equation is often used as a data-cost term in an optimization approach (minimizing
energy as defined in Eq. (1.10)) for solving the optical flow problem.

1.3.2.4 Examples of Data and Smoothness Costs

If we accept Eq. (1.18) due to Horn and Schunck (and thus the validity of the ICA) as
data constraint, then we derive

EHS(f) =
∑
p∈Ω

[u(p, t) ⋅ Ix(p, t) + v(p, t) ⋅ Iy(p, t) + It(p, t)]2 (1.19)

as a possible data-cost term for any given time t.
We introduced above the zero-mean-normalized census-cost function EMCEN. The

sum EMCEN(f) =
∑

p∈ΩEMCEN(p, p + f (p)) can replace EHS(p, q) in an optimization
approach as defined by Eq. (1.10) (seeHermann andWerner (2013)). This corresponds
to the invalidity of the ICA for video data recorded in the real world.
For the smoothness-error term, we may use

EFO L2
(f) =

∑
p∈Ω

[
𝜕u(p, t)
𝜕x

]2
+
[
𝜕u(p, t)
𝜕y

]2
+
[
𝜕v(p, t)
𝜕x

]2
+
[
𝜕v(p, t)
𝜕y

]2
(1.20)

This smoothness-error term applies squared penalties to first-order derivatives in the
L2 sense. Applying a smoothness term in an approximate L1 sense reduces the impact
of outliers (Brox et al. 2004).
Terms EHS and EFO L2

define the TVL2 optimization problem as originally consid-
ered by Horn and Schunck (1981).

1.3.2.5 Performance Evaluation of Optical Flow Solutions

Apart from using data with provided ground truth (see EISATS and KITTI and
Figure 1.4), there is also a way for evaluating calculated flow vectors on recorded
real-world video assuming that the recording speed is sufficiently large; for calculated
flow vectors for frames I(.,.,t) and I(.,.,t + 2), we calculate an image “half-way” using
the mean of image values at corresponding pixels and we compare this calculated
image with frame I(.,.,t + 1) (see Szeliski (1999)). Limitations for recording frequen-
cies of current cameras make this technique not yet practically appropriate, but it is
certainly appropriate for fundamental research.

1.3.3 Object Detection and Tracking

In general, an object detector is defined by applying a classifier for an object detection
problem. We assume that any decision made can be evaluated as being either correct
or false.

�

� �

�

Computer Vision in Vehicles 19

1.3.3.1 Measures for Object Detection

Let tp or fp denote the numbers of true-positives or false-positives, respectively. Anal-
ogously we define tn and fn for the negatives; tn is not a common entry for perfor-
mance measures.
Precision (PR) is the ratio of true-positives compared to all detections. Recall (RC)

(or sensitivity) is the ratio of true-positives compared to all potentially possible detec-
tions (i.e., to the number of all visible objects):

PR =
tp

tp + fp
and RC =

tp

tp + fn
(1.21)

Themiss rate (MR) is the ratio of false-negatives compared to all objects in an image.
False-positives per image (FPPI) is the ratio of false-positives compared to all detected
objects in an image:

MR = fn
tp + fn

and FPPI =
fp

tp + fp
(1.22)

In case of multiple images, the mean of measures can be used (i.e., averaged over all
the processed images).
How to decide whether a detected object is true-positive? Assume that objects

in images have been locally identified manually by bounding boxes, serving as the
ground truth. All detected objects are matched with these ground-truth boxes by cal-
culating ratios of areas of overlapping regions

ao =
(D ∩ T)
(D ∪ T)

(1.23)

where denotes the area of a region in an image, D is the detected bounding box of
the object, and T is the area of the bounding box of the matched ground-truth box.
If ao is larger than a threshold T , say T = 0.5, then the detected object is taken as a
true-positive.

Example 1.3.2 Driver Monitoring Besides measurements for understanding the
steadiness of driver’s movement of the steering wheel, cameras are also an appro-
priate tool for understanding the state of the driver (e.g., drowsiness detection, or eye
gaze).
Face and eye detection (Viola and Jones 2001b) or head pose analysis

(Murphy-Chutorian and Trivedi 2009) are basic tasks in this area (Figure 1.11).
Challenging lighting conditions still define unsatisfactorily solved scenarios (e.g., see
Rezaei and Klette (2012) for such scenarios).

�

� �

�

20 Computer Vision in Vehicle Technology

Figure 1.11 Face detection, eye detection, and face tracking results under challenging light-
ing conditions. Typical Haar-like features, as introduced in Viola and Jones (2001b), are shown
in the upper right. The illustrated results for challenging lighting conditions require additional
efforts. Courtesy of Mahdi Rezaei

Driver awareness can be defined by relating driver monitoring results to environ-
ment analysis for the given traffic scenario. The driver not only needs to pay attention
to driving, eye gaze or head pose (Rezaei and Klette 2011) should also correspond
(for some time) to those outside regions where safety-related events occur.

1.3.3.2 Object Tracking

Object tracking is an important task for understanding themotion of a mobile platform
or of other objects in a dynamic environment. The mobile platform with the installed
system is also called the ego-vehicle whose ego-motion needs to be calculated for
understanding the movement of the installed sensors in the three-dimensional (3D)
world.
Calculated features in subsequent frames I(.,.,t) can be tracked (e.g., by using

RANSAC for identifying an affine transform between feature points) and then used
for estimating ego-motion based on bundle adjustment. This can also be combined
with another module using nonvisual sensor data such as GPS or of an inertial
measurement unit (IMU). For example, see Geng et al. (2015) for an integration of
GPS data.
Other moving objects in the scene can be tracked using repeated detections or

by following a detected object in frame I(.,.,t) to frame I(.,.,t + 1). A Kalman filter
(e.g., linear, general, or unscented) can be used for building a model for the motion
as well as for involved noise. A particle filter can also be used based on extracted
weights for potential moves of a particle in particle space. Kalman and particle filters
are introduced, with references to related original sources, in Klette (2014).

�

� �

�

Computer Vision in Vehicles 21

1.3.4 Semantic Segmentation

When segmenting a scene, ideally obtained segments should correspond to defined
objects in the scene, such as a house, a person, or a car in a road scene. These segments
define semantic segmentation. Segmentation for vehicle technology aims at semantic
segmentation (Floros and Leibe 2012; Ohlich et al. 2012) with temporal consistency
along a recorded video sequence. Appearance is an important concept for semantic
segmentation (Mohan 2014). The concept of super pixels (see, e.g., Liu et al. (2012))
might be useful for achieving semantic segmentation. Temporal consistency requires
tracking of segments and similarity calculations between tracked segments.

1.3.4.1 Environment Analysis

There are static (i.e., fixed with respect to the Earth) or dynamic objects in a scenario
which need to be detected, understood, and possibly further analyzed.
A flying helicopter (or just multi-copter) should be able to detect power lines or

other potential objects defining a hazard. Detecting traffic signs or traffic lights, or
understanding lane borders of highways or suburban roads are examples for driving
vehicles. Boats need to detect buoys and beacons.
Pedestrian detection became a common subject for road-analysis projects. After

detecting a pedestrian on a pathway next to an inner-city road, it would be helpful
to understand whether this pedestrian intends to step onto the road in the next few
seconds.
After detecting more and more objects, we may have the opportunity to model and

understand a given environment.

Example 1.3.3 Use of Stereo Analysis and Optical Flow Calculations Modules
for solving stereo matching and optical flow calculation can be used for designing a
system for video segmentation. For example, following Hermann et al. (2011), stereo
matching for images L(.,.,t) and R(.,.,t) of frame t results in a depth map that is seg-
mented by

1. preprocessing for removing noisy (i.e., isolated) depth values and irrelevant depth
values (e.g., in the sky region),

2. estimating a ground manifold using v-disparities—depth values identified as being
in the ground manifold are also removed—and

3. performing a segmentation procedure (e.g., simple region growing) on the remain-
ing depth values.

Resulting segments are likely to be of similar shape and location as those obtained
for stereo frame t + 1 by the same procedure. For each segment obtained for frame t,
the mean optical flow vector for pixels in this segment defines the expected move of
this segment into a new position in frame t + 1. Those expected segments (of frame
t after expected moves into frame t + 1) are compared with the actual segments of
frame t + 1 for identifying correspondences, for example, by applying a set-theoretical
metric, which represents the ratio between overlap and total area of both segments.

�

� �

�

22 Computer Vision in Vehicle Technology

1.3.4.2 Performance Evaluation of Semantic Segmentation

There is a lack of provided ground truth for semantic segmentations in traffic
sequences. Work reported in current publications on semantic segmentation, such
as Floros and Leibe (2012) and Ohlich et al. (2012), can be used for creating test
databases. There is also current progress in available online data; see www.cvlibs
.net/datasets/kitti/eval_road.php, www.cityscapes-dataset.net, and (Ros et al. 2015)
for a study for such data.
Barth et al. (2010) proposed a method for segmentation, which is based on evalu-

ating pixel probabilities of whether they are in motion in the real world or not (using
scene flow and ego-motion). Barth et al. (2010) also provides ground truth for image
segmentation in Set 7 of EISATS, illustrated by Figure 1.12. Figure 1.12 also shows
resulting SGM stereo maps and segments obtained when following the multi-module
approach briefly sketched earlier.

Figure 1.12 Two examples for Set 7 of EISATS illustrated by preprocessed depth maps fol-
lowing the described method (Steps 1 and 2). Ground truth for segments is provided by Barth
et al. (2010) and shown on top in both cases. Resulting segments using the described method
are shown below in both cases; courtesy of Simon Hermann

�

� �

�

Computer Vision in Vehicles 23

Modifications in the involved modules for stereo matching and optical flow calcu-
lation influence the final result. There might be dependencies between performances
of contributing programs.

1.4 Concluding Remarks

The vehicle industry worldwide has assigned major research and development
resources for offering competitive solutions for vision-based components for vehi-
cles. Research at academic institutions needs to address future or fundamental tasks,
challenges that are not of immediate interest for the vehicle industry, for being able
to continue to contribute to this area.
The chapter introduced basic notation and selected visual tasks. It reviewed work

in the field of computer vision in vehicles. There are countless open questions in this
area, often related to

1. adding further alternatives to only a few existing robust solutions for one generic
or specific task,

2. a comparative evaluation of such solutions,
3. ways of analyzing benchmarks for their particular challenges,
4. the design of more complex systems, and
5. ways to test such complex systems.

Specifying and solving a specific task might be a good strategy to define fundamen-
tal research, ahead of currently extremely intense industrial research and development
within the area of computer vision for vehicles. Aiming at robustness including chal-
lenging scenarios and understanding interactions in dynamic scenes between multiple
moving objects are certainly examples where further research is required.
Computer vision can help to solve true problems in society or industry, thus con-

tributing to the prevention of social harms or atrocities; it is a fundamental ethical
obligation of researchers in this field not to contribute to those, for example, by design-
ing computer vision solutions for the use in UAVs for killing people. Academics
identify ethics in research often with subjects such as plagiarism, competence, or
objectivity, and a main principle is also social responsibility. Computer vision in road
vehicles can play, for example, a major role in reducing casualties in traffic accidents,
which are counted by hundreds of thousands of people worldwide each year; it is a
very satisfying task for a researcher to contribute to improved road safety.

Acknowledgments

The author thanks Simon Hermann, Mahdi Rezaei, Konstantin Schauwecker, Junli
Tao, and Garry Tee for comments on drafts of this chapter.

