
CHAPTER 1

THE KINEMATICS AND DYNAMICS
OF AIRCRAFT MOTION

1.1 INTRODUCTION

In this chapter the end point will be the equations of motion of a rigid vehicle moving
over the oblate, rotating Earth. The flat-Earth equations, describing motion over a
small area of a nonrotating Earth, with constant gravity, are sufficient for many air-
craft simulation needs and will be derived first. To reach this end point we will use
the vector analysis of classical mechanics to set up the equations of motion, matrix
algebra to describe operations with coordinate systems, and concepts from geodesy
(a branch of mathematics dealing with the shape of the Earth), gravitation (the mass
attraction effect of the Earth), and navigation, to introduce the effects of Earth’s shape
and mass attraction.

The moments and forces acting on the vehicle, other than the mass attraction of
the Earth, will be abstract until Chapter 2 is reached. At this stage the equations can
be used to describe the motion of any type of aerospace vehicle, including an Earth
satellite, provided that suitable force and moment models are available. The term
rigid means that structural flexibility is not allowed for, and all points in the vehicle
are assumed to maintain the same relative position at all times. This assumption is
good enough for flight simulation in most cases as well as for flight control system
design provided that we are not trying to design a system to control structural modes
or to alleviate aerodynamic loads on the aircraft structure.

The vector analysis needed for the treatment of the equations of motion often
causes difficulties for the student, particularly the concept of the angular velocity
vector. Therefore, a review of the relevant topics is provided. In some cases we
have gone beyond the traditional approach to flight mechanics. The introduction of
topics from geodesy, gravitation, and distance and position calculations allows us
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2 THE KINEMATICS AND DYNAMICS OF AIRCRAFT MOTION

to accurately simulate the trajectories of aircraft that can fly autonomously at very
high altitudes and over long distances, including “point-to-point suborbital flight”
(e.g., White Knight 2 and SpaceShipTwo). Some topics have been reserved for an
“optional” advanced section (e.g., quaternions), Section 1.8.

The equations of motion will be organized as a set of simultaneous first-order dif-
ferential equations, explicitly solved for the derivatives. For n independent variables,
Xi (such as components of position, velocity, etc.), and m control inputs, Ui (such as
throttle, control surface deflection, etc.), the general form will be

.
X1 = f1(X1,X2,… ,Xn,U1,U2,… ,Um)
.

X2 = f2(X1,X2,… ,Xn,U1,U2,… ,Um)

⋮
.

Xn = fn(X1,X2,… ,Xn,U1,U2,… ,Um), (1.1-1)

where the functions fi are the nonlinear functions that can arise from modeling real
systems. If the variables Xi constitute the smallest set of variables that, together with
given inputs Ui, completely describe the behavior of the system, then the Xi are a set
of state variables for the system, and Equations (1.1-1) are a state-space description
of the system. The functions fi are required to be single-valued continuous functions.
Equations (1.1-1) are often written symbolically as

.
X = f (X,U), (1.1-2)

where the state vector X is an (n × 1) column array of the n state variables, the con-
trol vector U is an (m × 1) column array of the control variables, and f is an array of
nonlinear functions. When U is held constant, the nonlinear state equations (1.1-1),
or a subset of them, usually have one or more equilibrium points in the multidimen-
sional state and control space, where the derivatives vanish. The equations are usually
approximately linear for small perturbations from equilibrium and can be written in
matrix form as the linear state equation:

.
x = Ax + Bu (1.1-3)

Here, the lowercase notation for the state and control vectors indicates that they are
perturbations from equilibrium, although the derivative vector contains the actual
values (i.e., perturbations from zero). The “A-matrix” is square and the “B-matrix”
has dimensions determined by the number of states and controls.

The state-space formulation will be described in more detail in Chapters 2 and 3.
At this point we will simply note that a major advantage of this formulation is that the
nonlinear state equations can be solved numerically. The simplest numerical solution
method is Euler integration, described by

Xk+1 = Xk + f (Xk,Uk) 𝛿t, (1.1-4)
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in which Xk is the kth value of the state vector computed at discrete times k 𝛿t,
k = 0, 1, 2, … , starting from an initial condition X0. The integration time step, 𝛿t,
must be made small enough that, for every 𝛿t interval, U can be approximated by a
constant value, and

.
X 𝛿t provides a good approximation to the increment in the state

vector. This numerical integration allows the state vector to be stepped forward, in
time increments of 𝛿t, to obtain a time-history simulation.

1.2 VECTOR OPERATIONS

Definitions and Notation

Kinematics can be defined as the study of the motion of objects without regard to the
mechanisms that cause the motion. The motion of physical objects can be described
by means of vectors in three dimensions, and in performing kinematic analysis with
vectors we will make use of the following definitions:

Frame of Reference: A rigid body or set of rigidly related points that can be used
to establish distances and directions (denoted by Fi,Fe, etc.). In general, a sub-
script used to indicate a frame will be lowercase, while a subscript used to
indicate a point will be uppercase.

Inertial Frame: A frame of reference in which Newton’s laws apply. Our best iner-
tial approximation is probably a “helio-astronomic” frame in which the center
of mass (cm) of the sun is a fixed point, and fixed directions are established by
the normal to the plane of the ecliptic and the projection on that plane of certain
stars that appear to be fixed in position.

Vector: A vector is an abstract geometrical object that has both magnitude and
direction. It exists independently of any coordinate system. The vectors used
here are Euclidean vectors that exist only in three-dimensional space and come
in two main types:
Bound Vector: A vector from a fixed point in a frame (e.g., a position vector).
Free Vector: Can be translated parallel to itself (e.g., velocity, torque).
Coordinate System: A measurement system for locating points in a frame

of reference. We may have multiple coordinate systems (with no relative
motion) within one frame of reference, and we sometimes loosely refer to
them also as “frames.”

In choosing a notation the following facts must be taken into account. For position
vectors, the notation should specify the two points whose relative position the vector
describes. Velocity and acceleration vectors are relative to a frame of reference, and
the notation should specify the frame of reference as well as the moving point. The
derivative of a vector depends on the observer’s frame of reference, and this frame
must be specified in the notation. A derivative may be taken in a different frame from
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that in which a vector is defined, so the notation may require two frame designators
with one vector. We will use the following notation:

Vectors will be in boldface type fonts.

Right subscripts will be used to designate two points for a position vector, and a
point and a frame for a velocity or acceleration vector. A “∕” in a subscript will
mean “with respect to.”

A left superscript will specify the frame in which a derivative is taken, and the dot
notation will indicate a derivative.

A right superscript on a vector will specify a coordinate system. It will therefore
denote an array of the components of that vector in the specified system.

Vector length will be denoted by single bars, for example, |p|.

Examples of the notation are:

pA∕B ≡ Position vector of point A with respect to point B

vA∕i ≡Velocity vector of point A in frame Fi

b .
vA∕i ≡Vector derivative of vA∕i taken in frame Fb

vc
A∕i ≡ (vA∕i)c ≡Array of components of vA∕i in coordinate system c

b .
vc

A∕i ≡ Components in system c of the derivative taken in Fb

The individual components of a vector will have subscripts that indicate the coor-
dinate system or be denoted by the vector symbol with subscripts x, y, and z to
indicate the coordinates. All component arrays will be column arrays unless other-
wise indicated by the transpose symbol, a right superscript T. For example, arrays of
components in a coordinate system b could be shown as

pb
A∕B =
⎡
⎢
⎢
⎣

xb
yb
zb

⎤
⎥
⎥
⎦

or vb
A∕i =
⎡
⎢
⎢
⎣

vx
vy
vz

⎤
⎥
⎥
⎦

= [vx vy vz] T

Vector Properties

Vectors are independent of any Cartesian coordinate system. Addition and subtraction
of vectors can be defined independently of coordinate systems by means of geomet-
rical constructions (the “parallelogram law”). Thus, we can draw vectors on charts to
determine the track of a vehicle through the air or on or under the sea. Some vector
operations yield pseudovectors that are not independent of a “handedness” conven-
tion. For example, the result of the vector cross-product operation is a vector whose
direction depends on whether a right-handed or left-handed convention is being used.
We will always use the right-hand rule in connection with vector direction.

It is usually most convenient to manipulate vectors algebraically by decomposing
them into a sum of appropriately scaled unit-length vectors usually written as
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i, j,k (i.e., v = x i + y j + zk). These unit vectors are normally chosen to form a
right-handed orthogonal set, that is, the right-hand rule applied to i and j gives the
direction of k (i.e., i × j = k). The use of orthogonal unit vectors leads naturally
to using Cartesian coordinate systems for their scaling factors and thence to
manipulating the coordinates with matrix algebra (next section).

The direction of a vector p relative to a coordinate system is commonly described
in two different ways: first by rotations in two orthogonal planes, for example, an
azimuth rotation to point in the right direction and then an elevation rotation above
the azimuth plane (used with El-over-Az mechanical gimbals), and second by three
direction angles 𝛼, 𝛽, 𝛾 to the coordinate axes (used with some radar antennas). The
direction cosines of p—cos 𝛼, cos 𝛽, cos 𝛾—give the projections of p on the coor-
dinate axes, and two applications of the theorem of Pythagoras yield

|p|2cos2
𝛼 + |p|2cos2

𝛽 + |p|2cos2
𝛾 = |p|2

∴ cos2
𝛼 + cos2

𝛽 + cos2
𝛾 = 1 (1.2-1)

The dot product of two vectors, say u and v, is a scalar defined by

u ⋅ v = |u||v| cos 𝜃, (1.2-2)

where 𝜃 is the included angle between the vectors (it may be necessary to translate the
vectors so that they intersect). The dot product is commutative and distributive; thus,

u ⋅ v = v ⋅ u

(u + v) ⋅ w = u ⋅ w + v ⋅ w

The principal uses of the dot product are to find the projection of a vector, to
establish orthogonality, and to find length. For example, if (1.2-2) is divided by |v|,
we have the projection of u on v,

(u ⋅ v)∕|v| = |u| cos 𝜃

If cos 𝜃 = 0, u ⋅ v = 0, and the vectors are said to be orthogonal. If a vector is dotted
with itself, then cos 𝜃 = 1, and we obtain the square of its length. Orthogonal unit
vectors satisfy the dot product relationships

i ⋅ i = j ⋅ j = k ⋅ k = 1

i ⋅ j = j ⋅ k = k ⋅ i = 0

Using these relationships, the dot product of two vectors can be evaluated in terms of
components in any convenient orthogonal coordinate system (say a, with components
x, y, z),

(u ⋅ v)a = uxvx + uyvy + uzvz (1.2-3)

The cross-product of u and v, denoted by u × v, is a vector w that is normal
to the plane of u and v and is in a direction such that u, v,w (in that order) form
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a right-handed system (again, it may be necessary to translate the vectors so that
they intersect). The length of w is defined to be |u × v| = |u||v| sin 𝜃, where 𝜃 is the
included angle between u and v. It has the following properties:

u × v = −(v × u) (anticommutative)

a(u × v) = (au) × v = u × (av) (associative; “a” scalar)

u × (v + w) = (u × v) + (u × w) (distributive)

u ⋅ (v × w) = v ⋅ (w × u) = w ⋅ (u × v) (scalar triple product)

u × (v × w) = v(w ⋅ u) − w(u ⋅ v) (vector triple product) (1.2-4)

As an aid for remembering the form of the triple products, note the cyclic permutation
of the vectors involved. Alternatively, the vector triple product can be remembered
phonetically using “ABC = BAC-CAB.”

The cross-products of the unit vectors describing a right-handed orthogonal coor-
dinate system satisfy the equations

i × i = j × j = k × k = 0

and, using cyclic permutation,

i × j = k , j × k = i , k × i = j

Also remember that j × i = −(i × j) = −k, and so on.
An example of the use of the cross-product is finding the vector moment r × F of

a force F acting at a point whose position vector is r.

Rotation of a Vector

It is intuitively obvious that a vector can be made to point in an arbitrary direction
by means of a single rotation around an appropriate axis. Here we follow Goldstein
(1980) to derive a formula for vector rotation.

Consider Figure 1.2-1, in which a vector u has been rotated to form a new vector v
by defining a rotation axis along a unit vector n and performing a left-handed rotation
through 𝜇 around n. The two vectors that must be added to u to obtain v are shown
in the figure and provide a good student exercise in using the vector cross-product
(Problem 1.2-4). By doing this addition, we get

v = u + (1 − cos𝜇)(n × (n × u)) − (n × u) sin𝜇 (1.2-5a)

or
v = (1 − cos𝜇)n(n ⋅ u) + u cos𝜇 − (n × u) sin𝜇 (1.2-5b)
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Figure 1.2-1 Rotation of a vector.

Equations (1.2-5) are sometimes called the rotation formula; they show that, after
choosing n and 𝜇, we can operate on u with dot and cross-product operations to get
the desired rotation; no coordinate system is involved, and the rotation angle can be
arbitrarily large.

1.3 MATRIX OPERATIONS ON VECTOR COORDINATES

As noted earlier, the coordinate system components of a vector will be written as a
(3 × 1) column array. Here, we shall show how those components are manipulated in
correspondence with operations performed with vectors.

The Scalar Product

If ua and va are column arrays of the same dimension, their scalar product is (ua)Tva,
and, for example, in three dimensions,

(ua)Tva = [ux uy uz]
⎡
⎢
⎢
⎣

vx
vy
vz

⎤
⎥
⎥
⎦

= uxvx + uyvy + uzvz (1.3-1a)

This result is identical to Equation (1.2-3) obtained from the vector dot product. The
scalar product allows us to find the 2-norm of a column matrix:

|va| =
[

(va)Tva
] 1

2 (1.3-1b)

In Euclidean space this is the length of the vector.
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The Cross-Product Matrix

From the unit-vector cross-products, given earlier, we can derive a formula for the
components of the cross-product of two vectors by writing them in terms of a sum of
unit vectors. A convenient mnemonic for remembering the formula is to write it so
that it resembles the expansion of a determinant, as follows:

u × v =
|
|
|
|
|
|
|

i j k
ux uy uz
vx vy vz

|
|
|
|
|
|
|

= i
|
|
|
|
|

uy uz
vy vz

|
|
|
|
|

− j
|
|
|
|

ux uz
vx vz

|
|
|
|
+ k
|
|
|
|
|

ux uy
vx vy

|
|
|
|
|

(1.3-2)

where subscripts x, y, z, indicate components in a coordinate system whose axes are
aligned respectively with the unit vectors i, j,k. We often wish to directly trans-
late a vector equation into a matrix equation of vector components. From the above
mnemonic it is easy to see that

(u × v)a =
⎡
⎢
⎢
⎣

0 −uz uy
uz 0 −ux
−uy ux 0

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

vx
vy
vz

⎤
⎥
⎥
⎦

≡ ũa va (1.3-3)

A skew-symmetric matrix of the above form will be denoted by the tilde overbar and
referred to as the tilde matrix or cross-product matrix. An example of the use of the
cross-product matrix involves the centripetal acceleration at a point described by a
position vector r rotating with an angular velocity vector 𝜔 (see also Equation 1):

centripetal acceleration = 𝝎 × (𝝎 × r)

In the case of a vector triple product, the vector operation in parentheses must be per-
formed first, but the corresponding matrix operations may be performed collectively
in any order:

(u × (v × w ))a = (ũa ṽa)wa = ũa( ṽa wa)

Here, the third term requires only postmultiplication by a column array and hence
fewer operations to evaluate than the second term.

Coordinate Rotation, the DCM

When the rotation formula (1.2-5b) is resolved in a coordinate system a, the result is

va =
[
(1 − cos𝜇) na(na)T + (cos𝜇) I − (sin𝜇) ña

]
ua
, (1.3-4)

where na(na)T is a square matrix, I is the identity matrix, and ña is a cross-product
matrix. This formula was developed as an “active” vector operation in that a vec-
tor was being rotated to a new position by means of a left-handed rotation about the
specified unit vector. In component form, the new array can be interpreted as the
components of a new vector in the same coordinate system, or as the components of
the original vector in a new coordinate system, obtained by a right-handed coordinate
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Figure 1.3-1 A plane rotation of coordinates.

rotation around the specified axis. This can be visualized in Figure 1.3-1, which shows
the new components of a vector v after a right-handed coordinate system rotation, 𝜃,
around the z-axis. Instead, if the vector is given a left-handed rotation of the same
amount, then (xb, yb) will become the components of the vector in the original sys-
tem. Taking the coordinate system rotation viewpoint and combining the matrices in
(1.3-4) into a single coefficient matrix, this linear transformation can be written as

ub = Cb∕a ua (1.3-5)

Here Cb/a is a matrix that transforms the coordinates of the vector u from system a to
system b and is called a direction cosine matrix (DCM), or simply a rotation matrix.

In Figure 1.3-1 a new coordinate system is formed by a right-handed rotation
around the z-axis of the original orthogonal coordinate system; the DCM can easily
be found by applying Equation (1.3-4) using

na = nb = [0 0 1 ]T , ñ =
⎡
⎢
⎢
⎣

0 −1 0
1 0 0
0 0 0

⎤
⎥
⎥
⎦

The DCM and the components of u in system b are then found to be

ub =
⎡
⎢
⎢
⎣

xb
yb
zb

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

cos 𝜃 sin 𝜃 0
−sin 𝜃 cos 𝜃 0

0 0 1

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

xa
ya
za

⎤
⎥
⎥
⎦

(1.3-6)

The direction cosine matrix is so called because its elements are direction cosines
between corresponding axes of the new and old coordinate systems. Let i, j, k, with
appropriate subscripts, be unit vectors defining the axes of our orthogonal coordinate
systems a and b. The xb-component of an arbitrary vector r can be written as

xb = (r ⋅ ib)b = (r ⋅ ib)a = xa(ia ⋅ ib) + ya(ja ⋅ ib) + za(ka ⋅ ib)

This equation defines the first row of the DCM; the other b-system components can
be found in the same way and consist of dot products of unit vectors, which are equiv-
alent to direction cosines.
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The above two methods of constructing a DCM are not very convenient for a
general three-dimensional rotation; Euler Rotations (following) provide a more con-
venient way.

Direction Cosine Matrix Properties

We will look briefly at some of the properties of the rotation matrix and then at how
it may be determined in applications. A coordinate rotation must leave the length of
a vector unchanged. The change of length under the rotation above is

|u|2 = (ub)Tub = (Cb∕au
a)TCb∕au

a = (ua)TCT
b∕aCb∕au

a

and the length is preserved if

CT
b∕aCb∕a = I = Cb∕aCT

b∕a (1.3-7)

This is the definition of an orthogonal matrix, and it makes the inverse matrix
particularly easy to determine (C−1 = CT ). It also implies that the columns (and also
the rows) of the rotation matrix form an orthonormal set:

Cb∕a =
[
c1 c2 c3

]
→ cT

i cj =

{
0, i ≠ j

1, i = j

Also, since
c1 ≡ C[1 0 0]T

columns of the rotation matrix give us the components in the new system of a unit
vector in the old system.

If a vector is expressed in a new coordinate system by a sequence of rotations as

ud = Cd∕c Cc∕b Cb∕a ua (1.3-8)

then the inverse operation is given by

ua = (Cd∕cCc∕bCb∕a)−1ud = C−1
b∕aC−1

c∕bC−1
d∕cu

d = CT
b∕aCT

c∕bCT
d∕cu

d

= (Cd∕cCc∕bCb∕a)Tud = CT
d∕au

d (1.3-9)

Summary of DCM (Rotation Matrix) Properties

(a) Successive rotations are described by the product of the individual DCMs;
cf. (1.3-8).

(b) Rotation matrices are not commutative, for example, Cc∕bCb∕a ≠ Cb∕aCc∕b.
(c) Rotation matrices are orthogonal matrices.
(d) The determinant of a DCM is unity.
(e) A nontrivial DCM has one, and only one, eigenvalue equal to unity [see Euler’s

Rotation Theorem].
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Euler Rotations

Here we will determine the rotation matrix in a way that is better suited to visualizing
vehicle orientation.

The orientation of one Cartesian coordinate system with respect to another can
always be described by three successive rotations around the orthogonal coordinate
axes, and the angles of rotation are called the Euler angles (or Eulerian angles). The
axes and the order of the rotations are chosen in various ways in different fields of
science. When we rule out two successive Euler rotations about the same axis, there
are twelve possibilities, six without repetition of an axis (counting both forward and
reverse) and six with repetition.

In the aerospace field Euler rotations are performed, in an x, y, z or z, y, x order.
Each rotation has a form similar to Equation (1.3-6); the zeros and the “1” are placed
so that the appropriate coordinate is unchanged (the z-coordinate in (1.3-6)). The
remaining terms are placed with cosines on the main diagonal and sines in the remain-
ing off-diagonal positions, so that the matrix reverts to the identity matrix when the
rotation angle is zero. The negative sine term is placed on the row above the “1”
term when a positive angle corresponds to a right-handed rotation around the current
axis. Henceforth the plane rotation matrix will be written immediately by inspection,
and three-dimensional coordinate rotations will be built up as a sequence of plane
rotations. The fact that the individual rotations are not commutative can be checked
by performing sequences of rotations with any convenient solid object. Therefore,
although the order of the sequence can be defined arbitrarily, the same order must be
maintained ever after.

The sequence of three Euler rotations leading to a given DCM is not unique, and
for a particular DCM we could, in general, find a different set of Euler rotations
that would lead to the same final attitude. The Euler angles would then differ from
the prescribed angles, and they may be impossible to perform because of physi-
cal constraints, for example, aircraft aerodynamic constraints, or mechanical gimbal
constraints (think of a simple elevation-over-azimuth sensor-pointing system, where
there is a mechanical constraint of zero roll angle). Knowing the Euler rotation con-
vention that was used with the DCM allows the correct Euler angles to be extracted
from the DCM, as shown earlier.

Note that Euler angles do not form the components of a vector (though infinitesi-
mal rotations can be treated as such), as will be further elaborated in Section 1.4.

Rotations Describing Aircraft Attitude

Standard aircraft practice is to describe aircraft orientation by the z, y, x (also called
3, 2, 1) right-handed Euler rotation sequence that is required to get from a reference
system on the surface of Earth into alignment with an aircraft body-fixed coordinate
system. The usual choice for the reference system, on Earth, is a North-East-down
(ned) system, with the x-axis pointing true North, the z-axis pointing down, and
the y-axis completing the right-handed set. The exact meaning of “down” will be
explained in Section 1.6. The aircraft axes are normally aligned (x, y, z), forward,
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right, and down (frd), with “forward” aligned with the longitudinal reference line
of the aircraft, and the forward and down axes in the aircraft plane of symmetry.
Therefore, starting from the reference system, the sequence of rotations is:

1. Right-handed rotation about the z-axis, or positive 𝜓 (compass heading)
2. Right-handed rotation about the new y-axis, or positive 𝜃 (pitch)
3. Right-handed rotation about the new x-axis, or positive 𝜙 (roll)

The rotations are often described as a yaw-pitch-roll sequence, starting from the
reference system.

The plane rotation matrices can be written down immediately with the help of the
rules established in the preceding subsection. Thus, abbreviating cosine and sine to c
and s, we have,

Cfrd∕ned =
⎡
⎢
⎢
⎣

1 0 0
0 cos𝜙 sin𝜙
0 − sin𝜙 cos𝜙

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

cos 𝜃 0 − sin 𝜃
0 1 0

sin 𝜃 0 cos 𝜃

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

cos𝜓 sin𝜓 0
− sin𝜓 cos𝜓 0

0 0 1

⎤
⎥
⎥
⎦

Cfrd∕ned =
⎡
⎢
⎢
⎣

c𝜃 c𝜓 c𝜃 s𝜓 −s𝜃
(−c𝜙 s𝜓 + s𝜙 s𝜃 c𝜓) (c𝜙 c𝜓 + s𝜙 s𝜃 s𝜓) s𝜙 c𝜃
(s𝜙 s𝜓 + c𝜙 s𝜃 c𝜓) (−s𝜙 c𝜓 + c𝜙 s𝜃 s𝜓) c𝜙 c𝜃

⎤
⎥
⎥
⎦

(1.3-10)

This matrix represents a standard transformation and will be used throughout
the text.

The defined ranges for the rotation angles are

−𝜋 < 𝜙 ≤ 𝜋

−𝜋∕2 ≤ 𝜃 ≤ 𝜋∕2

−𝜋 < 𝜓 ≤ 𝜋

If the pitch angle, 𝜃, had been allowed to have a ±180∘ range then the airplane could
be inverted and heading South with the roll and heading angles reading zero, which
is obviously undesirable from a human factors viewpoint! The restriction on theta
can be enforced naturally, simply by interpretation of the DCM, as we see in the next
subsection

Euler Angles from the DCM

In a control system it is often necessary to extract the Euler angles, from a continu-
ously computed DCM, for display to a human operator. For the z-y-x sequence used
in Equation (1.3-10), taking account of the chosen angular ranges, the Euler angles
are easily seen to be

𝜙 = atan2(c23, c33), −𝜋 < 𝜙 ≤ 𝜋

𝜃 = −asin (c13), −𝜋∕2 ≤ 𝜃 ≤ 𝜋∕2

𝜓 = atan2(c12, c11), −𝜋 < 𝜓 ≤ 𝜋, (1.3-11)
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where atan2(*) is the four-quadrant inverse tangent function, available in most
programming languages. These equations also work for only two Euler rotations
(when the order and positive reference directions are the same), for example, the
elevation-over-azimuth gimbal system with zero roll angle.

Finite precision computer arithmetic occasionally causes the DCM element C13
to very slightly exceed unit magnitude; in computer code we simply detect this con-
dition and set the pitch attitude to 90∘. Since 𝜃 is usually a low-precision “output”
variable, not a state variable, this does not cause any accuracy problems. A more sig-
nificant problem is the ambiguity introduced into the DCM (1.3-10) at vertical pitch.
When 𝜃 = ±𝜋∕2 the condition C11 = C12 = C23 = C33 = 0 occurs, and the remain-
ing elements can be written as sine and cosine of (𝜙 − 𝜓), or (𝜙 + 𝜓) when 𝜃 = −𝜋∕2.
Heading is undefined at vertical pitch, and so roll cannot be computed. For aerobatic
aircraft, missiles, and spacecraft, the problem can be avoided by using the quaternion
representation of attitude. For most aircraft simulations, the condition 𝜃 = 90.000…
degrees has a very low probability of occurrence and an aircraft simulation can usu-
ally fly through vertical pitch without numerical problems.

Linear Transformations

Linear transformations occur both in the state equation (1.1-3), via the A-matrix, and
in a coordinate rotation. A little knowledge of linear transformations is required in
order to use some of the properties of eigenvalues and eigenvectors, described in the
next subsection.

Consider the matrix equation
v = Au, (1.3-12)

where v and u are n × 1 matrices (e.g., vector component arrays) and A is an n × n
constant matrix, not necessarily nonsingular. Each element of v is a linear combi-
nation of the elements of u, and so this equation is a linear transformation of the
matrix u. In Euclidean space the geometrical interpretation of the transformation is
that a vector is being changed in length and/or direction.

Next, suppose that in an analysis we change to a new set of variables through a
reversible linear transformation. If L is the matrix of this transformation, then L−1

must exist (i.e., L is nonsingular) for the transformation to be reversible, and the new
variables corresponding to u and v are

u1 = Lu, v1 = Lv

Therefore, the relationship between the new variables must be

v1 = LAu = LAL−1 u1 (1.3-13a)

The transformation LAL−1 is a similarity transformation of the original coefficient
matrix A. A special case of this transformation occurs when the inverse of the
matrix L is given by its transpose (i.e., L is an orthogonal matrix) and the similarity
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transformation becomes a congruence transformation, LALT. An important example
of a similarity transformation is a change of state variables, z = Lx, in the linear state
equation (1.1-3), leading to the new state equation

.
z = (LAL−1)z + (LB)u (1.3-13b)

Eigenvalues and Eigenvectors

Eigenvalues and eigenvectors are introduced here because of the insight they provide
into coordinate rotations; they will also be used extensively in Chapter 3 to provide
information on the dynamic behavior of systems described by a linear, time-invariant
state equation.

A square-matrix linear transformation with an arbitrary matrix A(n, n) has the
property that vectors exist whose components are only scaled by the transformation.
If v is such an “invariant” vector, its component array, v, must satisfy the equation

Av = 𝜆v, v(n × 1) (1.3-14)

where 𝜆 is a (scalar) constant of proportionality. A rearrangement of (1.3-14) gives
the set of homogeneous linear equations

(A − 𝜆I)v = 0 (1.3-15)

which has a nonnull solution for v if and only if the determinant of the coefficient
matrix is zero (Strang, 1980); that is,

|A − 𝜆I| = 0 (1.3-16)

This determinant is an nth-order polynomial in 𝜆, called the characteristic polynomial
of A, so there may be up to n distinct solutions for 𝜆. Each solution, 𝜆i, is known as
an eigenvalue or characteristic value of the matrix A. The associated invariant vector
defined by (1.3-14) is known as a right eigenvector of A (the left eigenvectors of A
are the right eigenvectors of its transpose AT ).

In the mathematical model of a physical system, a reversible change of model state
variables does not change the behavior of the model if observed at the same outputs.
An example of this is the invariance of the eigenvalues of a linear system, described
by the state equation (1.1-3), under the similarity transformation (1.3-13). After the
similarity transformation, the eigenvalues are given by

|𝜆I − LAL−1| = 0,

which can be rewritten as
|𝜆LL−1 − LAL−1| = 0

The determinant of a product of square matrices is equal to the product of the indi-
vidual determinants; therefore,

|L| |𝜆I − A| |L−1| = 0 (1.3-17)
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This equation is satisfied by the eigenvalues of the matrix A, so the eigenvalues are
unchanged by the transformation.

Now consider a special similarity transformation that will reduce the linear
equations with square coefficient matrix A to a canonical (standard) form. First,
consider the case when all of the n eigenvalues of A are distinct. Then the n
eigenvectors vi can be shown to form a linearly independent set; therefore, their
components can be used to form the columns of a nonsingular transformation matrix.
This matrix is called the modal matrix, M, and

M ≡ [v1 v2 … vn]

Then, according to the eigenvector/eigenvalue defining equation (1.3-14),

AM = M J, where J = diag(𝜆1…. 𝜆n)

or
M−1 AM = J (1.3-18)

When some of the eigenvalues of A are repeated (i.e., multiple), it may not be
possible to find a set of n linearly independent eigenvectors. Also, in the case of
repeated eigenvalues, the result of the similarity transformation (1.3-18) is in general
a Jordan form matrix (Wilkinson and Golub, 1976). In this case the matrix J may
have some unit entries on the superdiagonal. These entries are associated with blocks
of repeated eigenvalues on the main diagonal.

As an example, the linear state equation (1.1-3), with x = Mz, becomes

.
z = Jz +M−1Bu (1.3-19)

This corresponds to a set of state equations with minimal coupling between them. For
example, if the eigenvalue 𝜆i is of multiplicity 2 and the associated Jordan block has
a superdiagonal 1, we can write the corresponding equations as

.
zi = 𝜆izi + zi+1 + b′iu

.
zi+1 = 𝜆izi + b′i+1u (1.3-20)

The variables zi are called the modal coordinates. In the above case these two
equations are coupled; when the eigenvalues are all distinct, the modal coordinates
yield a set of uncoupled first-order differential equations. Their homogeneous
solutions (i.e., response to initial conditions, with u = 0) are the exponential func-
tions e𝜆it, and these are the natural modes of (behavior of) the dynamic system.
A disadvantage of the modal coordinates is that the state variables usually lose their
original physical significance.

Euler’s Rotation Theorem

A better understanding of coordinate rotations can be obtained by examining the
eigenvalues of the DCM. Any nontrivial (3× 3) rotation matrix has one, and only one,
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eigenvalue equal to+1 (see, for example, Goldstein, 1980). The other two eigenvalues
are a complex conjugate pair with unit magnitude and can be written as (cos𝜙 ±
j sin𝜙) apart from a special case of two “–1” eigenvalues (see below).

Because the eigenvalues are distinct, the +1 eigenvalue has an associated
unique, real eigenvector and, for this eigenvector of an arbitrary rotation matrix C,
Equation (1.3-14) can be written as

C v = v

Now, let v (suitably normalized) be the direction cosine array of an axis passing
through the coordinate origin. The only way in which it is possible for the direction
cosines to remain unchanged by an arbitrary C is for C to be equivalent to a single
rotation around the axis given by the eigenvector of eigenvalue +1. Therefore, any
compound rotation, made up of rotations about various axes, is equivalent to a single
rotation around an axis corresponding to the+1 eigenvector of the compound rotation
matrix. (The special case of two “–1” eigenvalues occurs when this rotation is 180∘.)
This is a modern version of a fixed-point theorem proven by Leonhard Euler in 1775.

Euler showed that if a sphere is rigidly rotated about its center, then there is a
diameter that remains fixed. The principle is fundamentally important and forms the
basis of the quaternion representation of rotation that we describe in Section 1.8.

1.4 ROTATIONAL KINEMATICS

In this section we will develop kinematic equations for a time-varying orientation,
specifically, the relationship between the derivative of a translational vector and
angular velocity expressed as a vector. We will follow this with the relationship of
the Euler angle derivatives to the angular velocity vector, expressed in state-space
form. These relationships will be required when we derive the equations for the
six-degrees-of-freedom (6-DoF) motion of a rigid body in Section 1.7. We know
from simple mechanics that rotation of a body around an axis induces translational
velocities at points away from the axis. We now need to formalize this relationship
by expressing the translational velocity as a vector and combining the direction of
the axis of rotation with the rate of rotation as a single angular velocity vector.

The Derivative of a Vector

Here we will define the derivative of a vector, show how it depends on the observer’s
frame of reference, and relate the derivatives of a vector, taken in two different frames,
through the relative angular velocity vector of the frames.

In general terms, the derivative of a vector is defined in the same way as the deriva-
tive of a scalar:

d
dt

pA∕B = lim
𝛿t→0

[
pA∕B (t + 𝛿 t) − pA∕B(t)

𝛿 t

]

This is a new vector created by the changes in length and direction of pA∕B. If p
is a free vector (e.g., velocity), then we expect its derivative to be independent of
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translation, and the changes in length and direction come from the motion of the tip
of p relative to its tail. If p is a bound vector (e.g., a position vector) in some frame,
its derivative in that frame is a free vector, corresponding to motion of the tip of p.

Angular Velocity as a Vector

Using Figure 1.2-1, make a small right-handed rotation, 𝛿𝜇 ≪ 1 rad, and define v =
u + 𝜹u; then Equation (1.2-5a) gives

𝛿u ≈ −sin(−𝛿𝜇)n × u ≈ (n × u)𝛿𝜇

Now divide by 𝛿t, take the limit as 𝛿t → 0, and define the vector 𝝎 ≡
.
𝜇n, giving

.
u = 𝝎 × u (1.4-1)

This equation relates the translational velocity of the tip of the constant-length bound
vector u to the vector 𝜔. The vector 𝜔 is made up of a unit vector defining the axis of
rotation, scaled by the rotation rate; it is the angular velocity vector of this rotation.
It is a free vector (can be translated parallel to itself) and an axial or pseudovector
(it would change direction if we had chosen a left-handed rotation convention).

Because 𝜔 is a free vector, we associate it with the rigid body (i.e., frame), not just
a bound vector in the frame, and give it subscripts to indicate that it is the angular
velocity of that body relative to some other body. The orientation of a rotating rigid
body is described by a time-varying DCM and it follows from Euler’s theorem that
the body has a unique instantaneous axis of rotation; the angular velocity vector is
parallel to this axis and is unique to the body.

Vector Derivatives and Rotation

To understand the derivative of a vector, observed from another frame, in relative
motion, we can proceed as follows.

Figure 1.4-1 shows a frame Fb in arbitrary motion with respect to another frame
Fa and with angular velocity 𝝎b∕a. Fixed point Q has translational velocity vQ∕a with
respect to Fa, and vector p from Q is the vector of interest. An observer in Fb watching
the tip of this vector would see the new vector p1 corresponding to a nonzero deriva-
tive b .

p. An observer in Fa would see, in addition, the effect of the angular velocity
of Fb with respect to Fa, giving the vector p2. The Fa observer would also see p2
translated parallel to itself because of the translational velocity vQ∕a. However, the
derivative in Fa is a free vector and this translation does not entail a change in length
or direction of p2. The derivative a .

p is obtained by comparing p2 with p as 𝛿t → 0.
In time 𝛿t,p2 − p is given by

p2 − p = b .
p 𝛿t + (𝛚b∕a × p)𝛿t

Dividing by 𝛿t and taking the limit as 𝛿t → 0 give

a .
p = b .

p + 𝛚b∕a × p (1.4-2)
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Figure 1.4-1 A vector derivative in a rotating frame.

Equation (1.4-2) is sometimes called the equation of Coriolis (Blakelock, 1965)
and will be an essential tool in developing equations of motion from Newton’s laws.
It is much more general than is indicated above and applies to any physical quantity
that has a vector representation. The derivatives need not even be taken with respect
to time. Angular velocity can be defined as the vector that relates the derivatives of
any arbitrary vector in two different frames, according to (1.4-2). In the interests of
having a vector diagram and intuitive feel, we have derived the equation in a rather
restricted fashion. A more rigorous derivation (with no diagram) has been given by
McGill and King (1995) and a longish derivation with a different kind of diagram by
Pestel and Thompson (1968).

Some formal properties of the angular velocity vector are:

(a) It is a unique vector that relates the derivatives of a vector taken in two different
frames.

(b) It satisfies the relative motion condition 𝝎b∕a = −𝝎a∕b.
(c) It is additive over multiple frames, e.g., 𝝎c∕a = 𝝎c∕b + 𝝎b∕a (not true of angu-

lar acceleration).

(d) Its derivative is the same in either frame, a .
𝝎b∕a = b .

𝝎b∕a. [Use (1.4-2) to find
the derivative.]

A common problem is the determination of an angular velocity vector after the
frames have been defined in a practical application. This can be achieved by finding
one or more intermediate frames in which an axis of rotation and an angular rate are
physically evident. Then the additive property can be invoked to combine the inter-
mediate angular velocities. An example of this is given later, with the “rotating-Earth”
equations of motion of an aerospace vehicle.

The derivative of a vector in some frame can be found from the derivatives of its
components in a coordinate system fixed in that frame, that is, if

vaf = [vx vy vz]T
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where system af is fixed in frame a, then

a .
vaf = [ .

vx
.
vy

.
vz]T

If the vector is from a fixed point in that frame, it is a velocity, acceleration, etc.,
with respect to that frame. If the vector is from a fixed point in a different frame, then
it is a relative velocity, acceleration, etc., taken in the derivative frame.

Example 1.4-1: Centripetal Acceleration on Earth’s Surface If p is a position vec-
tor from Earth’s cm to a fixed point P on the surface rotating with Earth’s (constant)
inertial angular velocity 𝝎e∕i, then the inertial acceleration vector a of P can be found
from

vP∕i = i .
p = e .

p + 𝝎e∕i × p

a = i .
vP∕i = i .

𝝎e∕i × p + 𝝎e∕i × i .
p = 𝝎e∕i × (𝝎e∕i × p) (1)

It is easy to confirm that this centripetal acceleration is orthogonal to the angular
velocity vector and to show that this equation leads to the well-known scalar formulae
(v2/r and r𝜔2) for centripetal acceleration in a plane perpendicular to the angular
velocity vector. ◾

Euler Angle Kinematics

With the idea in mind of relating the Euler angle rates, describing the changing atti-
tude of a body, to its angular velocity, we proceed as follows. We define a reference
frame Fr and a body frame Fb with a relative angular velocity vector 𝜔b/r and a
sequence of Euler angles that define the attitude of the body as the orientation of
a coordinate system fixed in the body relative to a coordinate system fixed in the
reference frame. Each Euler angle rate provides the magnitude and direction infor-
mation for an individual angular velocity vector (i.e., along a particular coordinate
axis). These three vectors can be added to find the resultant angular velocity vector
of the vehicle whose Euler angle rates are being considered. Equivalently, we can find
the components of the resultant angular velocity vector.

To make this process more concrete we take the common case of motion over
Earth, with a frd coordinate system in the body, a ned system in the reference frame,
and a yaw-pitch-roll Euler angle sequence from ned to frd. In the case of the flat-Earth
equations (Section 1.7) the ned system is fixed in the Earth as the reference frame,
and the relative angular velocity is that of the body with respect to Earth. In the case
of the more general 6-DoF equations the ned system moves over the Earth, underneath
the body, and we must define an abstract reference frame which has its own angular
velocity with respect to the Earth frame (determined by latitude and longitude rates).

The coordinate transformations are

𝝎
frd
b∕r =
⎡
⎢
⎢
⎣

.
𝜙

0
0

⎤
⎥
⎥
⎦

+ C
𝜙

⎛
⎜
⎜
⎝

⎡
⎢
⎢
⎣

0.
𝜃

0

⎤
⎥
⎥
⎦

+ C
𝜃

⎡
⎢
⎢
⎣

0
0
.
𝜓

⎤
⎥
⎥
⎦

⎞
⎟
⎟
⎠
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where C
𝜙

and C
𝜃

are the right-handed plane rotations through the particular Euler
angles, as given in Equations (1.3-10). After multiplying out the matrices, the final
result is

𝝎
frd
b∕r ≡

⎡
⎢
⎢
⎣

P
Q
R

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

1 0 −sin 𝜃
0 cos𝜙 sin𝜙 cos 𝜃
0 −sin𝜙 cos𝜙 cos 𝜃

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

.
𝜙.
𝜃

.
𝜓

⎤
⎥
⎥
⎦

(1.4-3)

where P, Q, R, are standard symbols for, respectively, the roll, pitch, and yaw rate
components of the aircraft angular velocity vector in frd coordinates. The inverse
transformation is

⎡
⎢
⎢
⎣

.
𝜙.
𝜃

.
𝜓

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

1 sin𝜙 tan 𝜃 cos𝜙 tan 𝜃
0 cos𝜙 −sin𝜙
0 sin𝜙∕ cos 𝜃 cos𝜙∕ cos 𝜃

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

P
Q
R

⎤
⎥
⎥
⎦

(1.4-4)

For brevity, we will define Φ ≡ [𝜙 𝜃 𝜓]T and write (1.4-4) as
.
Φ = H(Φ) 𝝎frd

b∕r (1.4-5)

Equations (1.4-3) and (1.4-4) will be referred to as the Euler kinematical
equations. Note that the coefficient matrices are not orthogonal matrices represent-
ing ordinary coordinate rotations. Note also that Equations (1.4-4) have a singularity
when 𝜃 = ±𝜋∕2. In addition, if these equations are used in a simulation, the Euler
angle rates may integrate up to values outside the Euler angle range. Therefore,
logic to deal with this problem must be included in the computer code. Despite
these disadvantages the Euler kinematical equations are commonly used in aircraft
simulation.

1.5 TRANSLATIONAL KINEMATICS

In this section we introduce the equations for relative velocity and relative accel-
eration between rigid bodies in motion and, in particular, introduce centripetal and
Coriolis acceleration. The equations are then applied to motion over Earth, and the
results are used in the 6-DoF motion in Section 1.7.

Velocity and Acceleration in Moving Frames

Figure 1.5-1 shows a point P with position vector p moving with respect to two frames
Fa and Fb, in relative motion, and with fixed points O and Q, respectively. Suppose
that we wish to relate the velocities in the two frames and also the accelerations. We
must first relate the position vectors shown in the figure and then take derivatives in
Fa to introduce velocity (we are arbitrarily choosing Fa to be the “reference” frame):

pP∕O = pQ∕O + pP∕Q (1.5-1)

a .
pP∕O = a .

pQ∕O + a .
pP∕Q (1.5-2)
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Figure 1.5-1 Velocity and acceleration in moving frames.

Starting from the left-hand side of Equation (1.5-2), the first two terms are velocities
in Fa but the last term involves the position of P relative to a fixed point in Fb, with
the derivative taken in Fa. Let v with an appropriate subscript represent a velocity
vector. Then, by applying the equation of Coriolis, Equation (1.5-2) gives

vP∕a = vQ∕a + (vP∕b + 𝝎b∕a × pP∕Q) (1.5-3)

Note that (1.5-3) can be written as

vP∕a = vP∕b + (vQ∕a + 𝝎b∕a × pP∕Q),

where the term in parentheses is the velocity in Fa of a fixed point in Fb that is instan-
taneously coincident with P and is called the transport velocity of P in Fa.

As an application of Equation (1.5-3), let Fa be an inertial reference frame and Fb
a body moving with respect to the reference frame. Assume that a navigator on the
moving body determines, from an onboard inertial navigation system, his velocity in
the inertial reference frame vQ∕a and his inertial angular velocity vector 𝝎b∕a. Also,
using a radar set, he measures the velocity vP∕b, of P in Fb and the position pP∕Q
of P with respect to Q. He can then use Equation (1.5-3), with appropriately chosen
coordinate systems, to calculate the velocity of the object in the inertial reference
frame and, knowing the equation of motion in the inertial frame, predict its trajectory.

We next find the acceleration of P by taking derivatives of (1.5-3) in Fa. Starting
from the left, the first two terms are velocities in Fa and these become accelerations
in Fa. The third term is a velocity in Fb and must be differentiated by the equation of
Coriolis. The last term involving a cross-product can be differentiated by the “product
rule,” and the derivative of angular velocity is an angular acceleration vector, denoted
by 𝛂. Therefore, denoting translational acceleration by a, (1.5-3) yields

aP∕a = aQ∕a + (aP∕b + 𝝎b∕a × vP∕b) + 𝛂b∕a × pP∕Q + 𝝎b∕a × (vP∕b + 𝝎b∕a × pP∕Q)

Regrouping terms, we get

aP∕a
Total Accel.

= aP∕b
Relative Accel.

+ aQ∕a + 𝛂b∕a × pP∕Q + 𝝎b∕a × (𝝎b∕a × pP∕Q)
Centripetal Acceleration

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Transport Acceleration of P in Frame-a

+ 2𝛚b∕a × vP∕b
Coriolis Acceleration

(1.5-4)
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Here, the names total acceleration and relative acceleration apply to the reference
and secondary frames, respectively. If P were fixed in Fb the first and last right-
hand-side terms would vanish, leaving only the transport acceleration; this is defined
as the acceleration in Fa of a fixed point in Fb that is instantaneously coincident
with P. As could be anticipated, the transport acceleration term contains the effects of
the motion of Fb in terms of the acceleration of the reference point Q and the angular
acceleration and angular velocity of the frame [see (1) for more detail of the cen-
tripetal term]. A comparison of the acceleration equation with the velocity equation
shows that a new type of term has appeared, namely the Coriolis acceleration. The
significance of Coriolis acceleration is examined in the following subsection.

Example 1.5-1: Sensor Fixed in A Moving Body A sensor (e.g., accelerometer,
radar, etc.) fixed to a rigid vehicle has no velocity or acceleration in that frame, so
according to Equation (1.5-3) or (1.5-4) only the transport term in these equations
is nonzero. Sensor motion must often be related analytically to the motion of the
vehicle cm (or perhaps some other fixed point). For example, with the same notation
as Equation (1.5-4), an accelerometer at position P, with position vector pP∕Q relative
to the point Q, has an acceleration given by

aP∕a = aQ∕a + 𝛂b∕a × pP∕Q + 𝛚b∕a × (𝛚b∕a × pP∕Q),

where a and b denote, respectively, the reference and vehicle frames. ◾

Acceleration Relative to Earth

This book is concerned with the motion of aerospace vehicles over the Earth, and
acceleration relative to Earth is the starting point for equations of motion. Using the
results of the previous subsection, let Fa become an inertial frame Fi and Fb become
the rigid Earth frame Fe. Let the points Q and O coincide, at Earth’s cm (Earth is
assumed to have no translational acceleration) so that the acceleration aQ∕a vanishes
and pP∕Q is a geocentric position vector. Earth’s angular velocity is closely constant
and so the derivative of 𝛚b∕a vanishes. This leaves only the relative acceleration,
centripetal acceleration, and Coriolis acceleration terms and gives the fundamental
equation, relating true (inertial) acceleration to relative acceleration, that we will use
in Section 1.7 to apply Newton’s laws to motion of a point P over Earth:

aP∕i = aP∕e + 𝛚e∕i × (𝛚e∕i × pP∕O) + 2𝛚e∕i × vP∕e (1.5-5)

For a particle of mass m at P, the relative acceleration aP/e corresponds to an “apparent
force” on the particle and produces the trajectory observed by a stationary observer on
Earth. The true acceleration aP∕i corresponds to “true” forces (e.g., mass attraction,
drag); therefore, writing (1.5-5) in terms of force,

Apparent force = true force − m[𝛚e∕i × (𝛚e∕i × pP∕O)] − m(2𝛚e∕i × vP∕e)

The second term on the right is the centrifugal force, directed normal to the angular
velocity vector. The third term is usually referred to as the Coriolis force and will
cause a ballistic trajectory over Earth to curve to the left or right.
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The true force is the sum of the contact forces, say F, and the mass attraction
of Earth’s gravitational field, mG (see next section). The Earth gravity vector is
g=G – centripetal acceleration (see next section), so Equation (1.5-5) is often written
(for a body of mass m) as

aP∕e =
F
m
+ g − 2𝛚e∕i × vP∕e (1.5-6)

An often-quoted example of the Coriolis force is the circulation of winds around
a low-pressure area (a cyclone) on Earth. The true force is radially inward along the
pressure gradient. In the Northern Hemisphere, for example, Earth’s angular velocity
vector points outward from Earth’s surface and, whichever way the velocity vector
vP∕e is directed, the Coriolis force is directed to the right of vP∕e. Therefore, in the
Northern Hemisphere the winds spiral inward in a counterclockwise direction around
a cyclone.

The Coriolis acceleration is also significant in high-speed flight; it is zero for an
aircraft flying due North or South at the equator and reaches its maximum value at the
poles or for flight due East or West at any latitude. Its significance can be estimated
by equating its value to the centripetal acceleration, in low, constant-altitude flight, at
45∘ latitude, and solving for the speed over Earth:

2 |𝛚e∕i| |vcm∕e| sin(45o) = |vcm∕e|
2∕rE

|vcm∕e| =
√

2 rE |𝛚e∕i| ≈ 657 m∕s (2156 ft∕s)

At this speed the Coriolis acceleration is equal to the centripetal acceleration and
is very small compared to g but causes a position error that grows quadratically
with time.

1.6 GEODESY, COORDINATE SYSTEMS, GRAVITY

Introduction

Geodesy is a branch of mathematics that deals with the shape and area of the
Earth. Some ideas and facts from geodesy are needed to simulate the motion of an
aerospace vehicle around Earth. In addition, some knowledge of Earth’s gravitation
is required. Useful references are Encyclopaedia Britannica (1987), Heiskanen
and Moritz (1967), Kuebler and Sommers (1981), NIMA (1997), and Vanicek and
Krakiwsky (1982).

The Shape of the Earth, WGS-84

Simulation of high-speed flight over large areas of Earth’s surface, with accurate
equations of motion and precise calculation of position, requires an accurate model
of Earth’s shape, rotation, and gravity. Meridional cross sections of Earth are approx-
imately elliptical and the polar radius of Earth is about 21 km less than the equato-
rial radius, so the solid figure generated by rotating an appropriately scaled ellipse
about its minor axis will provide a model of Earth’s shape. Organizations from many
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countries participate in making accurate measurements of the parameters of these
spheroidal (i.e., ellipsoids of revolution) models. In the United States the current
model is the Department of Defense World Geodetic System 1984, or WGS-84, and
the agency responsible for supporting this model is the National Imagery and Map-
ping Agency (NIMA, 1997). The Global Positioning System (GPS) relies on WGS-84
for the ephemerides of its satellites.

The equipotential surface of Earth’s gravity field that coincides with the undis-
turbed mean sea level extended continuously underneath the continents is called the
geoid. Earth’s irregular mass distribution causes the geoid to be an undulating sur-
face, and this is illustrated in Figure 1.6-1. Note that the local vertical is defined by
the direction in which a plumb-bob hangs and is accurately normal to the geoid. The
angle that it makes with the spheroid normal is called the deflection of the vertical
and is usually less than 10 arc-s (the largest deflections over the entire Earth are about
1 arc-min).

Figure 1.6-2 shows the Earth spheroid, with the oblateness greatly exaggerated.
The coordinate system shown has its origin at Earth’s center of mass (indirectly deter-
mined from satellite orbits), z up the spin axis, and its x and y axes in the equatorial
plane. Based on this coordinate system, the equation of the spheroidal model is

x2 + y2

a2
+ z2

b2
= 1 (1.6-1)

Geoid

Reference
Spheroid

Local Vertical
(Plumb Bob)

Deflection of
the Vertical

Geoid Height

m.s.l.
elevation

Figure 1.6-1 The geoid and definitions of height.
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Figure 1.6-2 The oblate spheroidal model of the Earth.
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In the figure, a and b are respectively the semimajor and semiminor axes of the gen-
erating ellipse. Two other parameters of the ellipse (not shown) are its flattening, f,
and its eccentricity, e.

The WGS-84 spheroid was originally (1976–1979 data) a least-squares best fit to
the geoid. More recent estimates have slightly changed the “best fit” parameters, but
the current WGS-84 spheroid now uses the original parameters as its defining values.
Based on a 1∘ × 1∘ (latitude, longitude) worldwide grid, the root-mean-square (rms)
deviation of the geoid from the spheroid is only about 30 m! The WGS-84 defined
and derived values are:

a ≡ 6 378 137.0m (defined)

f = a − b
a

≡ 1∕298.257 223 563 (defined)

b = 6 356 752m (derived)

e = (a2 − b2)
1
2

a
= .0818 191 908 426 (derived) (1.6-2a)

Two additional parameters are used to define the complete WGS-84 reference frame;
these are the fixed (scalar) Earth rotation rate, 𝜔E, and the Earth’s gravitational con-
stant (GM) with the mass of the atmosphere included. In WGS-84 they are defined
to be

𝜔E ≡ 7.292 1150 × 10−5 rad∕s

GM ≡ 398 6004.418 × 108 m3∕s2 (1.6-2b)

The 𝜔E value is called the sidereal rate of rotation (rate relative to the “fixed” stars);
it actually corresponds to a component of Earth’s angular velocity in the heliocen-
tric frame (𝜔E = (2𝜋∕(24 × 3600)) × (1 + 1∕365.25)), neglecting the inclination of
Earth’s axis).

Frames, Earth-Centered Coordinates, Latitude and Longitude

The reference frames used here are the Earth, considered to be a rigid body, and an
inertial frame (Kaplan, 1981) containing Earth’s cm as a fixed point (this neglects
the small centripetal acceleration of Earth’s orbit and any acceleration of the Sun
with respect to the Galaxy). An inertial frame must also be nonrotating; so the small,
low-amplitude wobble of Earth’s axis will be neglected, and a line from the cm, in
the plane of the ecliptic, parallel to a line from the Sun’s cm to a very distant “fixed”
star will be taken to be a fixed line. Several polar and Cartesian coordinate systems
are defined in these frames; they use Earth’s spin axis and equatorial plane (defined
as orthogonal to the spin axis and containing Earth’s cm) for reference.

The Earth-centered–Earth-fixed (ECEF) system is fixed in the Earth frame, has
its origin at the cm, its z-axis up the spin axis, and its x and y axes in the equatorial
plane (as in Figure 1.6-2) with the x-axis passing through the Greenwich Meridian
(actually a few arc-seconds off the Meridian (see NIMA, 1997)). The Earth-centered
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inertial (ECI) system is fixed in the inertial frame, and defined in the same way as
ECEF, except that its x-axis is always parallel to a line from the Sun’s cm to Earth’s
position in orbit at the vernal equinox.

Terrestrial longitude, 𝓁, and celestial longitude, 𝜆, are shown in the figure, mea-
sured easterly from the appropriate x-axis to the projection of the position vector on
the equatorial plane. In a given time interval, an increment in celestial longitude is
equal to the increment in terrestrial longitude plus the increment in Earth’s rotation
angle. This can be written as

𝜆 − 𝜆0 = 𝓁 − 𝓁0 + 𝜔Et, (1.6-3)

where 𝜆0 and 𝓁0 are the values at t = 0. Absolute celestial longitude is often unim-
portant, and 𝜆0 ≡ 0 can be used. Latitude angles are angles subtended by the position
vector, above the equatorial plane, and are positive in the Northern Hemisphere.

Geocentric Coordinates of a Point The geocentric coordinates of a point P,
on the spheroid, are shown in Figure 1.6-2 and, in cross section, for a point above the
spheroid in Figure 1.6-3. They are referenced to the common origin of the ECI and
ECEF systems and the equatorial plane. They are:

The geocentric latitude of P: angle 𝜓

The geocentric radius of P: distance r

(The geocentric radius of the spheroid is rc.)

Geodetic Coordinates of a Point The geodetic coordinates of point P, in
Figures 1.6-2 and 1.6-3, are used for maps and navigation and are referenced to the
normal to the spheroid from point P. They are:

Geodetic latitude, 𝜙: the angle of the normal with the equatorial plane.
Geodetic height, h: the height above the spheroid, along the normal.

Geodetic height can be determined from a database of tabulated geoid height ver-
sus latitude and longitude plus the elevation above mean sea level (msl). The elevation
above msl is in turn obtained from a barometric altimeter or from the land elevation
(in a hypsographic database) plus the altitude above land (e.g., radar altimeter).

ψ ϕ

P

h

D

r

cm
a

b
rc

Ne2

N(1−e2)

Figure 1.6-3 The geometry of a point above the spheroid.
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In Figure 1.6-3, the triangle that defines latitude shows that

𝜙 = 𝜓 + D (1.6-4)

and the very small angle D is called the deviation of the normal and has a maximum
value of 11.5 arc-min when P is on the spheroid and the latitude is 45∘.

Local Coordinate Systems

Local coordinate systems have their origins on the spheroid. The local geocentric
system (c-system) has its down axis aligned with the geocentric position vector and
its “horizontal” axes aligned geographically (usually true North and East). The local
geographic systems have their down axis aligned with the spheroid normal and are
oriented North-East-down (ned) or East-North-up (enu). These systems move with
the vehicle (i.e., origin vertically below the vehicle cm) and the latitude and longitude
of the vehicle determine their orientation relative to the Earth-centered systems [see
Earth-Related Coordinate Transformations]. If required we could define an imaginary
frame in which these systems would be fixed (e.g., a “vehicle-carried” frame) with
an angular velocity determined by the vehicle latitude and longitude rates (found
from radii of curvature, following). A tangent-plane coordinate system is aligned as
a geographic system but has its origin fixed at a point of interest on the spheroid; this
coordinate system is used with the flat-Earth equations of motion (Section 1.7).

Radii of Curvature

A radius of curvature is a radial length that relates incremental distance along a
geometrical arc to an increment in the angle subtended by the arc on a coordinate
axis. Discussions of curvature and formulae for radii of curvature can be found in
calculus textbooks; the simplest example is a circular arc, where the radius of cur-
vature is the radius of the circle. For the spheroidal model of the Earth, the radii
of curvature relating North-South distance along a meridian to an increment in lati-
tude and East-West distance to an increment in longitude are required for estimating
distances and speeds over the real Earth.

The meridian radius of curvature, M, of the spheroid is the radius of curvature in
a meridian plane that relates North-South distance to increments in geodetic latitude;
it is determined by the gradient of the generating ellipse. Applying a general formula
for radius of curvature to the generating ellipse, it is easy to show that M is given by

M = a(1 − e2)
(1 − e2 sin2

𝜙)3∕2
,

b2

a
≤ M ≤

a2

b
(1.6-5)

A radius of curvature, integrated with respect to angle, gives arc length. In this case
the integral cannot be found in closed form, and it is much easier to compute distance
over the Earth approximately using spherical triangles. The usefulness of this radius
of curvature lies in calculating components of velocity. Thus, at geodetic height h, the
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geographic system North component of velocity, vN , over Earth is related to latitude
rate by

vN = (M + h)
.
𝜙 (1.6-6)

The prime vertical radius of curvature, N, is the radius of curvature in a plane
perpendicular to the meridian plane and containing the prime vertical (the normal to
the spheroid at the pertinent latitude). By rotational symmetry, the center of curvature
(origin for the radius of curvature) is on the minor axis of the generating ellipse, as
shown in Figure 1.6-3, and N is the distance to the ellipse (two parts of N are shown
in the figure). Note that N occurs in almost all of the geodesy calculations that we will
use. The formula for N is more easily (and instructively) found from the following
simple argument than from an algebraically messy application of the standard formula
for the radius of curvature. From the figure, we find the radius r of a small circle
(of constant latitude) where N meets the ellipse and, from the rectangular coordinates
on the spheroid, the meridian gradient and the gradient of the normal:

r = N cos𝜙

Meridian gradient = dz
dr
= −b2 r

a2 z

Gradient of normal = tan𝜙 = − 1
dz∕dr

= a2 z
b2 r

From these equations, we find that the z-component on the spheroid at geodetic
latitude, 𝜙, is

z = b2

a2
N sin𝜙 = N (1 − e2) sin𝜙 (1.6-7)

Equation (1.6-7) shows the very useful property that N can be divided into two parts,
above and below the equatorial plane, as shown in the figure,

N = Ne2

(below x−y)
+ N(1 − e2)

(above x−y)
(1.6-8)

Next, we write the spheroid equation in terms of r and z, substitute the above
expressions for r and z, and solve for N:

N = a
(1 − e2 sin2

𝜙)1∕2
, a ≤ N ≤

a2

b
, (1.6-9)

where N is needed for coordinate calculations and is useful for calculating velocity
components. Using the constant-latitude circle we find that the geographic system
East component of velocity over Earth, vE, is related to longitude rate by

vE = (N + h) cos(𝜙)
.
𝓁 (1.6-10)
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Trigonometric Relationships for the Spheroid

Some useful relationships can be derived from the spheroid equation using simple
trigonometry. The geocentric radius at any point on the spheroid is given by

rc
2 = a2

1 + e2

1−e2 sin2
𝜓

= b2

1 − e2cos2
𝜓

= a2[1 − e2(2 − e2)sin2
𝜙]

1 − e2sin2
𝜙

(1.6-11)

The deviation of the normal can be found from

tan D = n sin𝜙 cos𝜙
1 − n sin2

𝜙

= n sin𝜓 cos𝜓
1 − n cos2

𝜓

, where n = e2N
N + h

≈ e2 (1.6-12)

and the relationships between geodetic and geocentric latitude are

sin𝜓 = (1 − n)sin𝜙
[1 − n(2 − n)sin2

𝜙]1∕2
, cos𝜓 = cos𝜙

[1 − n(2 − n)sin2
𝜙]1∕2

(1.6-13)

so,
tan𝜓 = (1 − n) tan𝜑 (1.6-14)

The geocentric radius to a point P at geodetic height h is

r = (N + h)[1 − n(2 − n)sin2
𝜙]1∕2 (1.6-15)

but, because the deviation of the normal, D, is so small, the geocentric radius at P
is closely equal to the sum of the geocentric radius of the spheroid and the geodetic
height:

r ≈ rc + h (1.6-16)

The error in this approximation is insensitive to altitude and greatest at 45∘ latitude,
where it is still less than 6 × 10−4%. The use of the approximation is described in the
next subsection.

Cartesian/Polar Coordinate Conversions

Cartesian position coordinates (ECI or ECEF) can be readily calculated from polar
coordinates using the prime vertical radius of curvature. The projection of N on the x-y
plane gives the x- and y-components; the z-component was given in Equation (1.6-7).
Therefore, the ECEF position can be calculated from either geocentric or geodetic
coordinates by

pecef =
⎡
⎢
⎢
⎣

r cos𝜓 cos𝓁
r cos𝜓 sin𝓁
r sin𝜓

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

(N + h) cos𝜙 cos𝓁
(N + h) cos𝜙 sin𝓁
[N(1 − e2) + h] sin𝜙

⎤
⎥
⎥
⎦

(1.6-17)
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The position in ECI coordinates is of the same form as (1.6-17), but with celestial
longitude 𝜆 replacing terrestrial longitude 𝓁.

Geocentric coordinates are easily found from the Cartesian coordinates, but geode-
tic coordinates are more difficult to find. An exact formula exists but requires the
solution of a quartic equation in tan 𝜙 (Vanicek and Krakiwsky, 1982). Therefore, an
iterative algorithm is often used. Referring to Figure 1.6-3, we see that

sin 𝜙 = z
N(1 − e2) + h

(1.6-18)

Using the large triangle with hypotenuse N + h and sides
√

x2 + y2
, [z + Ne2 sin𝜙],

we can write

tan 𝜙 = [z + Ne2 sin𝜙]
√

x2 + y2
(1.6-19)

If (1.6-18) is substituted for sin(𝜙) in (1.6-19) and simplified, we obtain

tan 𝜙 = z

(x2 + y2)
1
2 [1 − Ne2∕(N + h)]

Because N is a function of 𝜙, this formula is implicit in 𝜙, but it can be used in the
following iterative algorithm for the geodetic coordinates:

𝓁 = atan2 (y, x)

h = 0 ; N = a

→ 𝜙 = tan−1

[

z
(
x2 + y2

)1∕2

(

1 − e2N
N + h

)−1
]

↑ N = a
(1 − e2sin2

𝜙)1∕2

↑ (h + N) = (x2 + y2)1∕2

cos𝜙

← h = (N + h) − N (1.6-20)

Latitudes of ±90∘ must be dealt with as a special case, but elsewhere the iterations
converge very rapidly, and accuracy of 10 to 12 decimal digits is easily obtainable.
If the algorithm is modified to eliminate the inverse tangent function, convergence is
badly affected.

In most practical applications the algorithm can be replaced by the approximation
(1.6-16) to find h, with the geocentric radius of the spheroid found from geocentric
latitude 𝜓 and 𝜓 found directly from the position vector. Single-precision arith-
metic (seven decimal digits) is inadequate when the height above Earth is calculated
from the small difference of large quantities (e.g., N or a). The geodetic latitude can
be found from 𝜙 = 𝜓 + D, where the deviation of the normal, D, is found from 𝜓
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using (1.6-12) with the approximation h ≪ N. These approximations can also be used
to initialize the iterative algorithm above.

Earth-Related Coordinate Transformations

The rotation from the ECI to the ECEF system is a plane rotation around the z-axis,
and the rotation angle increases steadily as Earth rotates. The conventions chosen for
the directions of the two systems (ECEF x-axis through Greenwich and ECI x-axis
aligned with the line from the Sun to Earth’s position in orbit at the vernal equinox)
allow the rotation angle to be tabulated as a daily function of Greenwich Mean Time
(GMT). The angle is known as the Greenwich Hour Angle (GHA, positive East) and
tabulated in nautical almanacs published annually for use by navigators. Since the
vernal equinox position originally aligned with the First Point of Aries, the angle
is given the astronomical symbol for Aries, ℘. Therefore, the rotation from ECI to
ECEF can be written as

Cecef∕eci =
⎡
⎢
⎢
⎣

c
(
GHA℘

)
s(GHA℘) 0

−s(GHA℘) c(GHA℘) 0
0 0 1

⎤
⎥
⎥
⎦

(1.6-21)

When going from the ECEF to a local system, the convention is to perform the
longitude rotation first. For example, consider the coordinate rotation from ECEF to
NED. After rotating around the ECEF z-axis to the correct longitude, a left-handed
rotation through 90∘, around the y-axis, is needed to get the x-axis pointing north
and the z-axis down. It is then only necessary to move to the correct latitude and fall
into alignment with the NED system by means of an additional left-handed rotation
around the y-axis, through the latitude angle. Therefore, the transformation is

Cned∕ecef =
⎡
⎢
⎢
⎣

c𝜙 0 s𝜙
0 1 0
−s𝜙 0 c𝜙

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

0 0 1
0 1 0
−1 0 0

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

c𝓁 s𝓁 0
−s𝓁 c𝓁 0

0 0 1

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

−s𝜙c𝓁 −s𝜙 s𝓁 c𝜙
−s𝓁 c𝓁 0
−c𝜙c𝓁 −c𝜙 s𝓁 −s𝜙

⎤
⎥
⎥
⎦

(1.6-22)

The rotation to a geocentric system is found similarly, except that geocentric lati-
tude is used in place of geodetic. For example, a straight replacement of variables in
Equation (1.6-22) gives

Cc∕eci =
⎡
⎢
⎢
⎣

−s𝜓 c𝜆 −s𝜓 s𝜆 c𝜓
−s𝜆 c𝜆 0
−c𝜓 c𝜆 −c𝜓 s𝜆 −s𝜓

⎤
⎥
⎥
⎦

(1.6-23)

Gravitation and Gravity

The term gravitation denotes a mass attraction effect, as distinct from gravity, mean-
ing the combination of mass attraction and centrifugal force experienced by a body
constrained to move with Earth’s surface.
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The WGS-84 datum includes an amazingly detailed model of Earth’s gravitation.
This model is in the form of a (scalar) potential function, V, such that components of
specific mass attraction force along each of three axes can be found from the respec-
tive gradients of the potential function. The current potential function, for use with
WGS-84, is Earth Gravitational Model 1996 (EGM96). This has 130,676 coefficients
and is intended for very precise satellite and missile calculations. The largest coeffi-
cient is two orders of magnitude bigger than the next coefficient and, if we retain only
the largest coefficient, the result is still a very accurate model. Neglecting the other
coefficients removes the dependence on terrestrial longitude, leaving the following
potential function at point P(r,𝜓):

V(r, 𝜓) = GM
r

[

1 − 1
2

(a
r

)2
J2(3sin2

𝜓 − 1)
]

, (1.6-24)

where r is the length of the geocentric position vector and 𝜓 is the geocentric lati-
tude. The Earth’s gravitational constant, GM, is the product of Earth’s mass and the
universal gravitational constant of the inverse square law. Its EGM96 value, with the
mass of the atmosphere included, was given in Equation (1.6-2b). The constant J2 is
given by

J2 = −
√

5 C2,0 = 1.082 626 684 × 10−3
, (1.6-25)

where C2,0 is the actual EGM96 coefficient.
The gradients of the potential function are easily evaluated in geocentric coordi-

nates. When this is done and the results are transformed into the ECEF system, we
obtain the following gravitation model for the gravitational acceleration, G:

Gecef = −GM
r2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

[

1 + 3
2

(a
r

)2
J2(1 − 5sin2

𝜓)
]

px∕r

[

1 + 3
2

(a
r

)2
J2(1 − 5sin2

𝜓)
]

py∕r

[

1 + 3
2

(a
r

)2
J2(3 − 5sin2

𝜓)
]

pz∕r

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (1.6-26)

where the geocentric position vector is p, with ECEF components px, py, pz and
length r, and the geocentric latitude is given by sin𝜓 = pz∕r. This model is accu-
rate to about 30 × 10−3 to 35 × 10−3 cm∕s2 rms, but local deviations can be quite
large. Note that the x- and y-components are identical because there is no longitude
dependence. The model can also be converted to geodetic coordinates using the rela-
tionships given earlier.

The weight of an object on Earth is determined by the gravitational attraction
(mG) minus the mass times the centripetal acceleration needed to produce the cir-
cular motion in inertial space at geocentric position vector p. Dividing the weight



GEODESY, COORDINATE SYSTEMS, GRAVITY 33

of the object by its mass gives the gravity vector g. Therefore, the vector equation
for g is

g = G − 𝛚e∕i × (𝛚e∕i × p) (1.6-27)

As noted earlier, at Earth’s surface g is accurately normal to the geoid, points down-
ward, and defines the local vertical. When Equation (1.6-26) is substituted for G in
(1.6-27) and the equation is resolved in the NED system, we find that g is almost
entirely along the down axis with a variable north component of only a few micro-gs.
This is a modeling error, since deflection of the vertical is not explicitly included in
the model. The down component of g given by the model, at Earth’s surface, varies
sinusoidally from 9.780 m/s2 at the equator to 9.806 m/s2 at 45∘ geodetic latitude and
9.832 m/s2 at the poles. Our simplified “flat-Earth” equations of motion will use a g
vector that has only a down component, gD, and is measured at Earth’s surface. When
a constant value of gD is to be used (e.g., in a simulation), the value at 45∘ latitude is
taken as the standard value of gravity (actually defined to be 9.80665 m/s2).

Gravitation and Accelerometers

The basic principle used in nearly all accelerometers is measurement, indirectly, of the
force, F, that must be applied (mechanically or by means of a magnetic or electrostatic
field) to prevent a known “proof” mass from accelerating with respect to its instrument
case when the case is being accelerated. Thus, apart from a small transient and/or
steady-state error determined by the dynamics of the proof mass “rebalancing” servo
and the type of acceleration signal, the acceleration of the proof mass is the same as
the acceleration of the case. An accelerometer is usually a single-axis device, but here
we will write vector equations for the acceleration experienced by the accelerometer.
The gravitational field always acts on the proof mass, m, and so the acceleration, a,
of the proof mass is given by the vector sum:

a = F
m
+G ≡ f +G,

where F∕m is the force per unit mass applied to the proof mass, called the specific
force, f. The accelerometer calibration procedure determines the scale factor, s, relat-
ing the output quantity to the specific force, and so the accelerometer equation is

Accelerometer output = sf = s(a −G) (1.6-28)

Equation (1.6-28) shows that an accelerometer is basically a specific force measur-
ing device. When acceleration must be measured precisely (as in inertial navigation),
an accurate model of G (as a function of position) is essential. In other, lower precision
applications the accelerometer “bias” of G is not a limitation.

When an accelerometer’s sensitive axis is horizontal, the bias is zero. When an
accelerometer, with geocentric position vector p, is stationary with respect to Earth,
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its acceleration and specific force reading are given by

a = 𝛚e∕i × (𝛚e∕i × p)

f = a −G = −g (1.6-29)

This specific force equation shows that the true force acting on the accelerometer
has a magnitude equal to the accelerometer weight and is in the negative direction of
the g vector (i.e., the reaction of the surface on which the accelerometer is sitting).
Single-axis accelerometers intended to be used with their sensitive axis vertical can
be calibrated in “g-units,” using the standard gravity or the local gravity, so that the
specific force reading is

fned
D = −1g-unit

At a different position from the calibration location, the accelerometer could be cor-
rected to the local gravity, but if acceleration is to be calculated accurately, a correc-
tion would have to be applied for the different (in general) centripetal acceleration.
For accelerometers in motion over Earth, we must evaluate a transport acceleration to
relate accelerometer acceleration to vehicle acceleration, as shown in Chapter 4 for
the normal-acceleration control augmentation system.

1.7 RIGID-BODY DYNAMICS

In this section we finally put together the ideas and equations from the previous
sections to obtain a set of state equations that describe the 6-DoF motion of a rigid
aerospace vehicle (defined to be frame Fb). We shall deal first with the angular motion
of the vehicle in response to torques generated by aerodynamic, thrust, or any other
forces, whose lines of action do not pass through the vehicle cm. By using the vehicle
cm as a reference point, the rotational dynamics of the aircraft can be separated from
the translational dynamics (Wells, 1967); we therefore use a body-fixed coordinate
system, bf , with its origin at the cm to compute moments about the origin. A (nonzero)
torque vector produces a rate of change of angular momentum vector, but then, to
relate angular momentum to the mass distribution of a specific body, we must use
the coordinate system bf and switch to matrix equations to obtain the components of
the angular acceleration vector. Angular acceleration components integrate to angular
velocity components, but then the three degrees of freedom in angular displacement
are obtained from nonlinear equations such as the Euler equations (1.4-4). For an
aircraft, the coordinate system bf is usually forward-right-down, frd, as described
in Section 1.3.

The translational equations are more straightforward, the acceleration of the vehi-
cle cm is obtained from the vector sum of the various forces, and their lines of action
do not have to pass through the cm because the effect of any offset is incorporated
into the moment equations. The equations are expressed in terms of motion relative to
Earth and introduce the usual Coriolis and centripetal terms. Aerodynamic and thrust
effects depend on motion relative to the surrounding atmosphere and so, when the
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atmosphere is moving relative to Earth, we must introduce an auxiliary equation to
compute the relative wind.

Angular Motion

Here, we develop the equations for the rotational dynamics, which will be the same
for both the flat-Earth and oblate-rotating-Earth equations of motion. The following
definitions will be needed:

Fi = an inertial reference frame

Fb = the body of the rigid vehicle

vcm∕i = velocity of vehicle cm in Fi

𝛚b∕i = angular velocity of Fbwith respect toFi

M = vector sum of all moments about the cm

The moment, M, may be generated by aerodynamic effects, any propulsion-force
components not acting through the cm, and attitude control devices.

Let the angular momentum vector of a rigid body in the inertial frame and taken
about the cm be denoted by h. It is shown in textbooks on classical mechanics (Gold-
stein, 1980) that the derivative of h taken in the inertial frame is equal to the vector
moment M applied about the cm. Therefore, analogously to Newton’s law for trans-
lational momentum, we write

M = i .
hcm∕i (1.7-1)

The angular momentum vector can be found by considering an element of mass
𝛿m with position vector r relative to the cm. Its translational momentum is given by

(vcm∕i + 𝛚b∕i × r)𝛿m

The angular momentum of this particle about the cm is the moment of the translational
momentum about the cm, or

𝛅h = r × (vcm∕i + 𝛚b∕i × r )𝛿m

and for the whole body,

hcm∕i =
∫ ∫ ∫

r × (vcm∕i + 𝛚b∕i × r)dm

In order to integrate this equation over the whole body, we must choose a coordinate
system and, to avoid a time-varying integrand, the coordinate system must be fixed
in the body. Let the position coordinates in body-fixed axes, bf, be

rbf = [x y z]T

The corresponding matrix equation for h is obtained by replacing the cross-products
by r̃ and noting that v and 𝛚 are constants for the purposes of integration. The first
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term contains only integrals whose integrands have a position coordinate integrated
dm and, by definition of the cm, they all integrate to zero. The second term is

hbf
cm∕i = −

∫ ∫ ∫

r̃(̃r𝛚bf
b∕i)dm = −

∫ ∫ ∫

r̃2dm𝛚bf
b∕i

giving

hbf
cm∕i =

∫ ∫ ∫

⎡
⎢
⎢
⎣

(y2 + z2) −xy −xz
−xy (x2 + z2) −yz
−xz −yz (x2 + y2)

⎤
⎥
⎥
⎦

dm 𝛚bf
b∕i (1.7-2)

The result of this integration is a 3 × 3 constant matrix that is defined to be the inertia
matrix Jbf for the rigid body; it contains scalar moments and cross-products of inertia,
for example:

Moment of Inertia about x-axis = Jxx =
∫

(y2 + z2)dm

Cross-Product of Inertia Jxy ≡ Jyx =
∫

xydm

and so,

hbf
cm∕i =

⎡
⎢
⎢
⎣

Jxx −Jxy −Jxz
−Jxy Jyy −Jyz
−Jxz −Jyz Jzz

⎤
⎥
⎥
⎦

𝛚bf
b∕i ≡ Jbf 𝛚bf

b∕i (1.7-3)

It was necessary to choose a coordinate system to obtain this matrix and, conse-
quently, it is not possible to obtain a vector equation of motion that is completely
coordinate free. In more advanced treatments this paradox is avoided by the use of
tensors. Note also that J is a real symmetric matrix and therefore has special properties
that are discussed below. Various formulae and theorems are available for calculating
Jbf for a composite body like an aircraft, and it can be estimated experimentally with
the aircraft mounted on a turntable.

With the angular momentum expressed in terms of the inertia matrix and angular
velocity vector of the complete rigid body, Equation (1.7-1) can be evaluated. Since
the inertia matrix is known, and constant in the body frame, it will be convenient to
replace the derivative in (1.7-1) by a derivative taken in the body frame:

M = i .
hcm∕i =

b .
hcm∕i + 𝛚b∕i × hcm∕i (1.7-4)

Now, differentiating (1.7-3) in Fb, with J constant, and taking body-fixed components,
we obtain

Mbf = Jbf b .𝛚bf
b∕i + �̃�

bf
b∕iJ

bf𝛚bf
b∕i

A rearrangement of this equation gives the state equation for angular velocity:

b .𝛚bf
b∕i = (J

bf )−1
[

Mbf − �̃�bf
b∕iJ

bf 𝛚bf
b∕i

]

(1.7-5)
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This state equation is widely used in simulation and analysis of rigid-body motion
from satellites to ships. It can be solved numerically for the angular velocity given
the inertia matrix and the torque vector, and its features will now be described.

The assumption that the inertia matrix is constant is not always completely true.
For example, with aircraft the inertias will change slowly as fuel is transferred and
burned. Also, the inertias will change abruptly if an aircraft is engaged in dropping
stores. These effects can usually be adequately accounted for in a simulation by sim-
ply changing the inertias in (1.7-5) without accounting for their rates of change. As
far as aircraft control system design is concerned, point designs are done for partic-
ular flight conditions, and interpolation between point designs can be used when the
aircraft mass properties change. This is more likely to be done to deal with movement
of the vehicle cm and the resultant effect on static stability (Chapter 2).

The inverse of the inertia matrix occurs in (1.7-5), and because of symmetry this
has a relatively simple form:

J−1 = 1
Δ

⎡
⎢
⎢
⎣

k1 k2 k3
k2 k4 k5
k3 k5 k6

⎤
⎥
⎥
⎦

(1.7-6)

where
k1 = (JyyJzz − J2

yz)∕Δ, k2 = (JyzJzx + JxyJzz)∕Δ

k3 = (JxyJyz + JzxJyy)∕Δ, k4 = (JzzJxx − J2
zx)∕Δ

k5 = (JxyJzx + JyzJxx)∕Δ, k6 = (JxxJyy − J2
xy)∕Δ

Δ = JxxJyyJzz − 2JxyJyzJzx − JxxJ2
yz − JyyJ2

zx − JzzJ
2
xy

A real symmetric matrix has real eigenvalues and, furthermore, a repeated eigenvalue
of order p still has associated with it p linearly independent eigenvectors. Therefore, a
similarity transformation can be found that reduces the matrix to a real diagonal form.
In the case of the inertia matrix this means that we can find a set of coordinate axes
in which the inertia matrix is diagonal. These axes are called the principal axes. The
inverse of a diagonal matrix is also diagonal and the angular velocity state equation
takes its simplest form, known as Euler’s equations of motion.

At this point it is convenient to be more specific and choose the body-fixed axes
to be frd, so that we can use standard aircraft yaw, pitch, and roll symbols:

Mfrd = [𝓁 m n]T , 𝜔

frd
b∕i = [P Q R]T (1.7-7)

Then Euler’s equations of motion are

.
P =

(Jy − Jz)QR

Jx
+ 𝓁

Jx

.
Q =

(Jz − Jx)RP

Jy
+ m

Jy

.
R =

(Jx − Jy)PQ

Jz
+ n

Jz
(1.7-8)
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and the double-subscript notation on the moments of inertia has been dropped. The
equations involve cyclic permutation of the rate and inertia components; they are
inherently coupled because angular rates about any two axes produce an angular
acceleration about the third. This inertia coupling has important consequences for air-
craft maneuvering rapidly at high angles of attack; we examine its effects in Chapter 4.
The stability properties of the Euler equations are interesting and will be studied in
Problem 1.7-3.

The angular velocity state equation is again simplified when applied to aircraft
since for most aircraft the frd x-z plane is a plane of symmetry. Under this condition,
for every product yi zj or yi xj in an inertia computation there is a product that is iden-
tical in magnitude but opposite in sign. Therefore, only the Jxz cross-product of inertia
is nonzero. A notable exception is an oblique-wing aircraft (Travassos et al., 1980),
which does not have a plane of symmetry. Under the plane-of-symmetry assumption
the inertia matrix and its inverse reduce to

Jfrd =
⎡
⎢
⎢
⎣

Jx 0 −Jxz
0 Jy 0
−Jxz 0 Jz

⎤
⎥
⎥
⎦

, (Jfrd)−1 = 1
Γ

⎡
⎢
⎢
⎢
⎣

Jz 0 Jxz

0

(
Γ
Jy

)

0

Jxz 0 Jx

⎤
⎥
⎥
⎥
⎦

(1.7-9)

Γ = JxJz − J2
xz

If the angular velocity state equation (1.7-5) is expanded using the torque vector in
(1.7-7) and the simple inertia matrix given by (1.7-9), the coupled, nonlinear angular
acceleration equations are

Γ
.
P = Jxz(Jx − Jy + Jz)PQ −

[
Jz

(
Jz − Jy

)
+ J2

xz

]
QR + Jz𝓁 + Jxzn

Jy

.
Q = (Jz − Jx)RP − Jxz(P2 − R2) + m

Γ
.
R = −Jxz(Jx − Jy + Jz)QR +

[
Jx

(
Jx − Jy

)
+ J2

xz

]
PQ + Jxz𝓁 + Jxn (1.7-10)

In the analysis of angular motion we have so far neglected the angular momen-
tum of any spinning rotors. Technically this violates the rigid-body assumption, but
the resulting equations are valid. Note that, strictly, we require axial symmetry of
the spinning rotors; otherwise the position of the vehicle cm will vary. This is not
a restrictive requirement because it is also a requirement for dynamically balancing
the rotors. The effects of the additional angular momentum may be quite significant.
For example, a number of World War I aircraft had a single “rotary” engine that had
a fixed crankshaft and rotating cylinders. The gyroscopic effects caused by the large
angular momentum of the engine gave these aircraft tricky handling characteristics.
In the case of a small jet with a single turbofan engine on the longitudinal axis, the
effects are smaller. To represent the effect, a constant vector can be added to the
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angular momentum vector in (1.7-3); therefore, let

hbf
cm∕i = Jbf𝛚bf

b∕i +
⎡
⎢
⎢
⎣

hx
hy
hz

⎤
⎥
⎥
⎦engines

(1.7-11a)

If this analysis is carried through, the effect is to add the following terms, respectively,
to the right-hand sides of the three equations (1.7-10):

Jz(Rhy − Qhz) + Jxz(Qhx − Phy)

− Rhx + Phz

Jxz(Rhy − Qhz) + Jx(Qhx − Phy) (1.7-11b)

To complete the set of equations for angular motion, an attitude state equation is
required. Here, with the flat-Earth equations in mind, we will assume that this will be
the Euler kinematical equations (1.4-4). A direction cosine matrix can be computed
from the Euler angles and will be needed in the translational equations. Thus, the
translational equations will be coupled to the rotational equations. We now have all
of the state equations for the angular motion dynamics, and we will turn our attention
to the translational motion of the cm.

Translational Motion of the Center of Mass

Vector State Equations We begin by applying Newton’s second law to the
motion of a constant-mass rigid body near the surface of Earth to find the inertial
derivative of velocity under the influence of aerodynamic, propulsion, and mass
attraction forces. We shall find state equations, in vector form at first, for position
and velocity.

Some considerations for the choice of state variables are that the velocity vector
can be chosen for convenience in either navigation over Earth or aerodynamic
force and moment calculations on the body. The position vector can be taken from
an arbitrary fixed point in the rigid-Earth frame, Fe. If the variation in gravity is
significant over the trajectory, then the position vector should be taken from Earth’s
cm but will be over six million meters long. For short-range navigation it can
more conveniently be taken from an initial point on the surface of Earth, but then
latitude and longitude cannot easily be calculated. We will first derive equations
for convenience in navigation using velocity of the vehicle cm in Fe and taking the
position vector from Earth’s cm.

Earth’s cm is a fixed point common to both the inertial frame, Fi, and the Earth
frame, Fe, so the derivative of a position vector from the cm will give either inertial
velocity or Earth velocity, according to the frame in which the derivative is taken.
Derivatives in Fi and Fe are related through Earth’s angular velocity vector, 𝜔e/i,
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according to the Coriolis equation. In addition to the above frames, the rigid-body
frame Fb will be required. We also define the following scalars and vectors:

m ≡ Vehicle (constant) mass

O ≡ Earth cm

pcm∕O ≡ Vehicle cm position relative to O

vcm∕i ≡
i .
pcm∕O = Velocity of the cm in Fi

vcm∕e ≡
e .
pcm∕O = Velocity of the cm in Fe

𝛚x∕y ≡ Angular velocity of frame x with respect to frame y

F ≡ Vector sum of forces at cm

G ≡ Earth’s gravitation vector

g ≡ Earth’s gravity vector, g = G − 𝛚e∕i × (𝛚e∕ i × pcm∕O)

From the above explanation and definitions, the position and velocity state equations,
in vector form, are

e .
pcm∕O = vcm∕e

e .
vcm∕e = acm∕e (1.7-12)

To apply Newton’s laws we use Equation (1.5-5), substitute ( 1
m

F +G) for the inertial
acceleration, and solve for the relative acceleration (i.e., the derivative of the velocity
state in Fe):

e .
vcm∕e =

1
m

F +G − 𝛚e∕i × (𝛚e∕i × pcm∕O) − 2𝛚e∕i × vcm∕e (1.7-13)

This velocity state equation together with the position state equation is suitable for
accurate simulation of flight around the oblate, rotating Earth. Latitude and longitude
and G can be calculated from the geocentric position vector. The Coriolis term was
examined in Section 1.5; a rule of thumb is to consider the Coriolis effect significant
for speeds over about 2000 ft/s.

Finally, true airspeed is needed for calculating aerodynamic effects and propulsion
system performance; therefore we define a relative velocity vector, vrel, by

vrel = vcm∕e − vW∕e, (1.7-14)

where vw∕e is the wind velocity taken in Fe. This is an auxiliary equation that will be
needed with the state equations.

The full set of 6-DoF oblate, rotating-Earth matrix equations will be illustrated in
Section 1.8, and we will now simplify the vector equations (1.7-12) and (1.7-13) to
obtain the much more commonly used flat-Earth equations. If the g vector can be
considered to be independent of latitude and taken to be approximately constant or
dependent only on height above Earth’s surface, the position vector can be taken from
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a point of interest, Q, on Earth’s surface. The position vector then need no longer be
six million meters long, but latitude and longitude cannot be calculated from it, and
it will give only approximate distances over Earth’s surface. If Q is the fixed point on
Earth’s surface, then the position state equation is

e .
pcm∕Q = vcm∕e (1.7-15)

As noted at the beginning of this subsection, the velocity state equation can alter-
natively be expressed in terms of a vector derivative taken in the vehicle body frame,
and then when components are taken in a body-fixed coordinate system, we have a
set of component derivatives that can be integrated to provide velocity components
that determine aerodynamic effects. Changing derivatives in Equation (1.7-13) and
substituting for g, we have

b .
vcm∕e + 𝛚b∕e × vcm∕e = e .

vcm∕e =
1
m

F + g − 2𝛚e∕i × vcm∕e

b .
vcm∕e =

1
m

F + g − (𝛚b∕e + 2𝛚e∕i ) × vcm∕e (1.7-16a)

Alternatively, using the additive property of angular velocity vectors,

b .
vcm∕e =

1
m

F + g − (𝛚b∕i + 𝛚e∕i ) × vcm∕e (1.7-16b)

A further assumption is that Earth is an inertial reference frame; Earth’s angular veloc-
ity can then be neglected, and 𝛚b∕i ≡ 𝛚b∕e, and Equations (1.7-16a) and (1.7-16b)
both reduce to

b .
vcm∕e =

1
m

F + g − 𝛚b∕e × vcm∕e (1.7-16c)

These approximations are the basis of the flat-Earth equations of motion, described
in the next section.

The Flat-Earth Equations, Matrix Form As explained above, the flat-Earth
equations are not suitable for precise determination of position over Earth, but they
are widely used in simulations to study aircraft performance and dynamic behavior
and are used to derive linear state-space models for analytical studies and flight
control system design. The assumptions for the flat-Earth equations will now be
formally listed:

(i) The Earth frame is an inertial reference frame.
(ii) Position is measured in a tangent-plane coordinate system, tp.

(iii) The gravity vector is normal to the tangent plane and constant in magnitude.

Some consequent assumptions are:

(iv) Height above the tangent plane is a good approximation to true height above
Earth’s surface, and the horizontal projection of the position vector gives a
good approximation to distance traveled over Earth’s surface (this will be
reasonable up to a few hundred miles from the tangent-plane origin).
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(v) The attitude of the vehicle in the tangent-plane coordinate system is a good
approximation to true geographic attitude at the position of the vehicle.

Equation (1.7-16c) already incorporates the first flat-Earth assumption, and the
position state variable is already referred to the tangent-plane origin; we must now
make choices of coordinate systems for the variables in the state equations and make
provisions to calculate a rotation matrix to convert from one system to another where
necessary.

A frd coordinate system fixed in Fb is very convenient for the velocity vector
derivative in Fb, for the aerodynamic and propulsion forces, and for the vehicle
angular velocity vector (which uses body-axes components in the angular motion
equations). This choice is less convenient for the g vector and Earth angular velocity
vector; these are known in Earth-fixed coordinate systems and must be rotated
into the body axes using a vehicle-attitude DCM obtained from the attitude state
equations. In the flat-Earth equations, the changing attitude of the vehicle is almost
invariably adequately modeled with the simple Euler angle kinematical equations,
(1.4-4). These relate a frd body-fixed system to a ned system, here the ned system is
the tangent-plane system, tp, fixed in the Earth. The Euler angles can then be used
to construct the Cfrd∕tp DCM, which must be done before the position and velocity
state equations can be evaluated.

The set of 6-DoF state equations will be completed by the addition of the angular
velocity state equation (1.7-5), with𝛚b∕i ≡ 𝛚b∕e as the state variable. The state vector
is now

XT =
[(

ptp
cm∕Q

)T
𝚽T
(

vfrd
cm∕e

)T (

𝛚frd
b∕e

)T
]

(1.7-17)

Using the current values of the state variables we evaluate the state derivatives as fol-
lows. The rotation matrix is calculated before the position and velocity state equations
as noted above. Aerodynamic angle derivatives can be calculated from the transla-
tional velocity derivatives, and therefore the translational velocity state equation is
placed ahead of the angular velocity state equation, where those derivatives are more
significant (this is explained in detail in Chapter 2) and we have the following set of
equations:

Cfrd∕tp = fn(Φ)
.
Φ = H(Φ) 𝛚 frd

b∕e

e .
ptp

cm∕Q = Ctp∕frd v frd
cm∕e

b .
v frd

cm∕e =
1
m

F frd + Cfrd∕tpg
tp − �̃� frd

b∕e v frd
cm∕e

b .𝛚 frd
b∕e =
(
J frd
)−1
[

M frd − �̃� frd
b∕eJ frd𝛚 frd

b∕e

]

(1.7-18)

The 6-DoF flat-Earth equations contained in (1.7-18) are twelve (scalar) coupled,
nonlinear, first-order differential equations and an auxiliary equation. Coupling exists
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because angular acceleration integrates to angular velocity, which determines the
Euler angle rates, which in turn determine the direction cosine matrix. The direction
cosine matrix is involved in the state equations for position and velocity; position
(the altitude component) and velocity determine aerodynamic effects which deter-
mine angular acceleration. Coupling is also present through the translational velocity.
These interrelationships will become more apparent in Chapter 2.

To complete the flat-Earth assumptions, g in tangent-plane coordinates will be

gtp = [0 0 gD ]T

with the down component, gD, equal to the standard gravity (9.80665 m/s2), or the
local value. Aerodynamic calculations will require the equation for the velocity vector
relative to the surrounding air [from Equation (1.7-14)]:

vfrd
rel = vfrd

cm∕e − Cfrd∕tp vtp
W∕e (1.7-19)

Some additional auxiliary equations will be needed to compute all of the aerodynamic
effects, but these will be introduced in Chapter 2.

An interesting alternative to the translational velocity state equation in (1.7-18) can
be derived by using relative velocity as the state variable. The vector form of the rel-
ative velocity equation is (1.7-14). If this equation is differentiated in the body-fixed
frame and used to eliminate vcm∕e and its derivative from the vector equation for the
translational acceleration, we obtain

b .
vrel =

1
m

F + g − 𝛚b∕e × vrel −
(
𝛚b∕e × vW∕e + b .

vW∕e

)

The term in parentheses is the derivative of the wind velocity, taken in Fe, so we
can write

b .
vrel =

1
m

F + g − 𝛚b∕e × vrel − e .
vW∕e (1.7-20)

The last term on the right can be used as a way of introducing gust inputs into the
model or can be set to zero for steady winds. Taking the latter course and introducing
components in the body-fixed system give

b .
vfrd

rel =
1
m

Ffrd + Cfrd∕tpg
tp − �̃�frd

b∕e vfrd
rel (1.7-21)

This equation is an alternative to the velocity state equation in (1.7-18), and the posi-
tion state equation therein must then be modified to use the sum of the relative and
wind velocities.

The negative of vrel is the relative wind, which determines the aerodynamic
forces and moments on the aerodynamic vehicle and hence its dynamic behavior. In
Chapter 2 we will use Equation (1.7-21) to make a model that is suitable for studying
the dynamic behavior. Chapter 2 shows how the flat-Earth equations can be “solved”
analytically. Chapter 3 shows how they can be solved simultaneously by numerical
integration for the purposes of flight simulation.
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1.8 ADVANCED TOPICS

In this section we have derived two additional sets of kinematical equations for the
attitude of a rotating body. The resulting attitude state equations have better numerical
properties than the Euler angle state equations [Equations (1.4-4)]. The first set of
kinematical equations relates the derivatives of the elements of a direction cosine
matrix to the components of the associated angular velocity vector; we will refer to
them as the Poisson kinematical equations (PKEs). They involve more mathematical
operations than the Euler kinematical equations but are free from the singularity at
90∘ pitch attitude.

The second set of kinematical equations are based on quaternions, a complex
number algebra invented by Sir William Rowan Hamilton in 1843 in an attempt to
generalize ordinary complex numbers to three dimensions. We have derived many
properties of quaternions, applied them to coordinate rotations, and related them
to the direction cosine matrix and to Euler angles. Next, we have derived a set of
quaternion state equations for the attitude of a rotating body. These quaternion state
equations have additional numerical advantages over the PKE.

Finally, we have returned to the 6-DoF equations of motion for a rigid body moving
around the oblate, rotating Earth, examined their properties, and explained how they
are used. For this motion it is more appropriate to use the PKEs or the quaternion
state equations to track the attitude of the rigid body.

Poisson’s Kinematical Equations

Consider, once again, the coordinate transformation, Cbf∕rf , between systems fixed in
a reference frame, Fr, and in a rigid body, Fb, when the body has an angular velocity
vector 𝛚b∕r with respect to the reference frame. Applying the transformation to the
components of an arbitrary vector, u, we have

ubf = Cbf∕rf (t) urf

A fixed unit vector in Fr corresponds to a unit-length vector with time-varying com-
ponents in Fb. Let this be the vector ci, with components in Fb given by the ith column
of Cbf∕rf . Now, applying the equation of Coriolis to the derivative of this vector in the
two frames, we have

0 = r .
ci = b .

ci + 𝛚b∕r × ci, i = 1, 2, 3

Take body-fixed coordinates:

0 = b .
cbf

i + �̃�bf
b∕r cbf

i , i = 1, 2, 3

The term b .
cbf

i is the derivative of the ith column of Cbf∕rf . If we combine the three
equations into one matrix equation, the result is

.
Cbf∕rf = −�̃�

bf
b∕r Cbf∕rf (1.8-1)
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These equations are known as Poisson’s kinematical equations, PKEs, or in inertial
navigation as the strapdown equation. Whereas Equations (1.4-4) deal with the Euler
angles, this equation deals directly with the elements of the rotation matrix. Compared
to the Euler kinematical equations, the PKEs have the advantage of being singularity
free and the disadvantage of a large amount of redundancy (nine scalar equations).
When they are used in a simulation, the Euler angles are not directly available and
must be calculated from the direction cosine matrix as in Equations (1.3-11).

The Equation of Coriolis

In Section 1.4 the equation of Coriolis was derived using vectors; a matrix form can
be derived with the use of the PKEs. Starting from a time-varying coordinate trans-
formation of the components of a general vector u,

ubf = Cbf∕af uaf
,

with coordinate systems af and bf fixed in Fa and Fb, respectively, differentiate the
arrays on both sides of the equation. Differentiating the arrays is equivalent to taking
derivatives in their respective frames, with components taken in the systems fixed in
the frames; therefore,

b .
ubf = Cbf∕af

a .
uaf +

.
Cbf∕af uaf

or
b .
ubf = a .

ubf +
.

Cbf∕af uaf

Now use the Poisson equations to replace
.

Cbf∕af (note that we used the equation of
Coriolis to derive the Poisson equations, but they could have been derived in other
ways),

b .
ubf = a .

ubf − �̃�bf
b∕a Cbf∕af uaf

or
b .
ubf = a .

ubf + �̃�bf
a∕b ubf (1.8-2)

Equation (1.8-2) is the equation of Coriolis resolved in coordinate system bf.

Quaternions

Quaternions are introduced here because of their “all-attitude” capability and numer-
ical advantages in simulation and control. They are now widely used in simulation,
robotics, guidance and navigation calculations, attitude control, and graphics anima-
tion. We will review enough of their properties to use them for coordinate rotation
in the following subsections. W. R. Hamilton (1805–1865) introduced the quater-
nion form:

x0 + x1i + x2 j + x3k (1.8-3a)
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with the imaginary operators given by

i2 = j2 = k2 = −1, ij = k = −ji, ki = j = −ik, etc.

in an attempt to generalize complex numbers in a plane to three dimensions.
Quaternions obey the normal laws of algebra, except that multiplication is not

commutative. Multiplication, indicated by “∗”, is defined by the associative law. For
example, if,

r = p ∗ q = (p0 + p1i + p2 j + p3k) ∗ (q0 + q1i + q2 j + q3k)

then,
r = p0q0 + p0q1i + p0q2 j + p0q3k + p1q0i + p1q1i2 + · · ·

By using the rules for i, j, k, products, and collecting terms, the answer can be written
in various forms, for example,

⎡
⎢
⎢
⎢
⎣

r0
r1
r2
r3

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

p0 −p1 −p2 −p3
p1 p0 −p3 p2
p2 p3 p0 −p1
p3 −p2 p1 p0

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

q0
q1
q2
q3

⎤
⎥
⎥
⎥
⎦

Alternatively, by interpreting i, j, k as unit vectors, the quaternion (1.8-3a) can be
treated as q0 + q, where q is the quaternion vector part, with components q1, q2, q3
along, i, j, k, respectively. We will write the quaternion as an array, formed from q0
and the vector components, thus:

p =
⎡
⎢
⎢
⎢
⎣

p0
p1
p2
p3

⎤
⎥
⎥
⎥
⎦

⇒

[
p0
pr

]

, q =
⎡
⎢
⎢
⎢
⎣

q0
q1
q2
q3

⎤
⎥
⎥
⎥
⎦

⇒

[
q0
qr

]

, (1.8-3b)

in which the components of the vectors are taken in a reference system r, to be chosen
when the quaternion is applied. The above multiplication can be written as

p ∗ q =
[

p0q0 − (p ⋅ q)r
(p0q + q0p + p × q)r

]

(1.8-4)

We will use (1.8-3b) and (1.8-4) as the definitions of quaternions and quaternion
multiplication. Quaternion properties can now be derived using ordinary vector
operations.
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Quaternion Properties
(i) Quaternion Noncommutativity: Consider the following identity:

p ∗ q − q ∗ p =
[

0
(p × q − q × p)r

]

=
[

0
2(p × q)r

]

It is apparent that, in general,
p ∗ q ≠ q ∗ p

(ii) The Quaternion Norm: The norm of a quaternion is defined to be the sum
of the squares of its elements:

norm(q) =
i=3∑

i=0

q2
i

(iii) Norm of a Product: Using the definition of the norm and vector operations,
it is straightforward to show (Problem 1.8-1) that the norm of a product is
equal to the product of the individual norms:

norm (p ∗ q) = norm (p) norm (q)

(iv) Associative Property over Multiplication: The associative property,
(p ∗ q) ∗ r = p ∗ (q ∗ r), is proven in a straightforward manner.

(v) The Quaternion Inverse: Consider the following product:

[
q
0

qr

]

∗
[

q0
−qr

]

=
[

q2
0 + q ⋅ q

(
q0q − q0q − q × q

)r

]

=
⎡
⎢
⎢
⎢
⎣

∑
q2

i

0
0
0

⎤
⎥
⎥
⎥
⎦

We see that multiplying a quaternion by another quaternion, which differs
only by a change in sign of the vector part, produces a quaternion with a scalar
part only. A quaternion of the latter form will have very simple properties
in multiplication (i.e., multiplication by a constant) and, when divided by
the quaternion norm, will serve as the “identity quaternion.” Therefore, the
inverse of a quaternion is defined by

q−1 =
[

q0
qr

]−1

= 1
norm(q)

[
q0
−qr

]

(1.8-5)

However, we will work entirely with unit-norm quaternions, thus simplifying
many expressions.
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(vi) Inverse of a Product: The inverse of a quaternion product is given by the
product of the individual inverses in the reverse order. This can be seen as
follows:

(p ∗ q)−1 = 1
norm(p ∗ q)

[
p0q0 − (p ⋅ q)r

−(p0q + q0p + p × q)r
]

= 1
norm(q)

[
q0
−qr

]

∗
[

p0
−pr

]
1

norm(p)

Therefore,
(p ∗ q)−1 = q−1 ∗ p−1 (1.8-6)

Vector Rotation by Quaternions A quaternion can be used to rotate a Euclidean
vector in the same manner as the rotation formula, and the quaternion rotation is much
simpler in form. The vector part of the quaternion is used to define the rotation axis
and the scalar part to define the angle of rotation. The rotation axis is specified by its
direction cosines in the reference coordinate system, and it is convenient to impose
a unity norm constraint on the quaternion. Therefore, if the direction angles of the
axis are 𝛼, 𝛽, 𝛾 and a measure of the rotation angle is 𝛿, the rotation quaternion is
written as

q =
⎡
⎢
⎢
⎢
⎣

cos 𝛿
cos 𝛼 sin 𝛿

cos 𝛽 sin 𝛿

cos 𝛾 sin 𝛿

⎤
⎥
⎥
⎥
⎦

=
[

cos 𝛿
sin 𝛿 nr

]

(1.8-7)

where n is a unit vector along the rotation axis,

nr = [cos 𝛼 cos 𝛽 cos 𝛾]T

and
norm(q) = cos2

𝛿 + sin2
𝛿 (cos2

𝛼 + cos2
𝛽 + cos2

𝛾) = 1

This formulation also guarantees that there is a unique quaternion for every value of
𝛿 in the range ±180∘, thus encompassing all possible rotations.

Now consider the form of the transformation, which must involve multiplication.
For compatibility of multiplication between vectors and quaternions, a Euclidean
vector is written as a quaternion with a scalar part of zero; thus

u =
[

0
ur

]

The result of the rotation must also be a quaternion with a scalar part of zero, the
transformation must be reversible by means of the quaternion inverse, and Euclidean
length must be preserved. The transformation v = q ∗ u obviously does not satisfy
the first of these requirements. Therefore, we consider the transformations

v = q ∗ u ∗ q−1 or v = q−1 ∗ u ∗ q,
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which are reversible by performing the inverse operations on v. The second of these
transformations leads to the convention most commonly used:

v = q−1 ∗ u ∗ q =
[

q0 (q ⋅ u) − (q0u − q × u) ⋅ q
((q ⋅ u)q + q0(q0u − q × u) + (q0u − q × u) × q)r

]

,

which reduces to

v = q−1 ∗ u ∗ q =
[

0
(
2q (q ⋅ u) + (q2

0 − q ⋅ q)u − 2q0(q × u)
)r

]

(1.8-8)

Therefore, this transformation meets the requirement of zero scalar part. Also,
because of the properties of quaternion norms, the Euclidean length is preserved.
For a match with the rotation formula, we require agreement between:

Rotation Formula Quaternion Rotation
(1 − cos𝜇)n (n ⋅ u) 2sin2

𝛿 n (n ⋅ u)
cos𝜇 u (cos2

𝛿 − sin2
𝛿)u

− sin𝜇 (n × u) −2 cos 𝛿 sin 𝛿 (n × u)

The corresponding terms agree if 𝛿 = 𝜇∕2 and half-angle trigonometric identities are
applied. Therefore, the quaternion

q =
[

cos (𝜇∕2)
sin(𝜇∕2) nr

]

(1.8-9a)

and transformation
u = q−1 ∗ u ∗ q (1.8-9b)

give a left-handed rotation of a vector u through an angle 𝜇 around n when 𝜇 is
positive.

Quaternion Coordinate Rotation Refer to the quaternion rotation formulae
(1.8-9) and take the viewpoint that positive 𝜇 is a right-handed coordinate rotation
rather than a left-handed rotation of a vector. We will define the quaternion that per-
forms the coordinate rotation to system b from system a to be qb∕a; therefore,

qb∕a =
[

cos (𝜇∕2)
sin(𝜇∕2) nr

]

(1.8-10a)

and the coordinate transformation is

ub = q−1
b∕a ∗ ua ∗ qb∕a (1.8-10b)

Equation (1.8-10b) can take the place of the direction cosine matrix transformation
(1.3-5), and the coordinate transformation is thus achieved by a single rotation around
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an axis aligned with the quaternion vector part, n sin(𝜇∕2). Euler’s theorem shows
that the same coordinate rotation can be achieved by a plane rotation around the
unique axis corresponding to an eigenvector of the rotation matrix. Therefore, the
vector n must be parallel to this eigenvector, and so

nb = Cb∕a na = na
,

which shows that the quaternion vector part has the same components in system a
or system b. In (1.8-10a) the reference coordinate system r may be either a or b. We
will postpone, for the moment, the problem of finding the rotation quaternion without
finding the direction cosine matrix and its eigenstructure and instead examine the
properties of the quaternion transformation.

Performing the inverse transformation to (1.8-10b) shows that

q−1
b∕a = qa∕b (1.8-11)

Also, for multiple transformations,

uc = q−1
c∕b ∗ q−1

b∕a ∗ ua ∗ qb∕a ∗ qc∕b (1.8-12)

which, because of the associative property, means that we can also perform this trans-
formation with the single quaternion given by

q−1
c∕a = q−1

c∕b ∗ q−1
b∕a (1.8-13a)

or
qc∕a = qb∕a ∗ qc∕b (1.8-13b)

The quaternion coordinate transformation (1.8-10b) actually involves more arithmeti-
cal operations than premultiplication of ua by the direction cosine matrix. However,
when the coordinate transformation is evolving with time, the time update of the
quaternion involves differential equations (following shortly) that are numerically
preferable to the Euler kinematical equations and more efficient than the Poisson
kinematical equations. In addition, the quaternion formulation avoids the singularity
of the Euler equations and is easily renormalized (to reduce error accumulation).

The Quaternion Kinematical Equations With the goal of finding an expression
for the derivative of a time-varying quaternion, and hence obtaining a state equation
for vehicle attitude, we will derive an expression for an incremental increase q(t + 𝛿t)
from an existing state q(t) in response to a nonzero angular velocity vector. Follow-
ing the order of Equation (1.8-13b) for multiplication of two “forward” quaternions,
we have

q(t + 𝛿 t) = q(t) ∗ 𝛿q(𝛿 t)

using

q(t) =
[

cos 𝜇

2
nr sin 𝜇

2

]

, 𝛿q(𝛿t) ≅
[

1
nr 𝛿𝜇

2

]

,
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where 𝜇(t) is the rotation angle, n the Euler axis, and r the reference coordinate
system. The definition of a derivative gives

.
q = lim

𝛿t→0

q(t + 𝛿t) − q(t)
𝛿t

= lim
𝛿t→0

q (t) ∗ (𝛿q − I(q))
𝛿t

= lim
𝛿t→0

q ∗
[

0
1
2
nr 𝛿𝜇

𝛿t

]

,

where I(q) is the identity quaternion. Now, take the indicated limit and recognize the
angular velocity vector𝛚 (as in Section 1.4) associated with the evolving quaternion,

.
q = 1

2
q ∗
[

0
nr d𝜇

dt

]

= 1
2
q ∗
[

0
𝛚r

]

Let this equation be associated with a coordinate rotation from system a to system b.
Then, in terms of our notation, it is written as

.
qb∕a =

1
2
qb∕a ∗ 𝛚b

b∕a (1.8-14)

The above quaternion can also be written as the matrix equation

.
qb∕a =

1
2

⎡
⎢
⎢
⎣

0 −
(

𝛚b
b∕a

)T

𝛚b
b∕a −�̃�b

b∕a

⎤
⎥
⎥
⎦

[
q0

qb

]

Writing this out in full using the body system components of 𝛚b/a gives

⎡
⎢
⎢
⎢
⎣

.
q0.
q1.
q2.
q3

⎤
⎥
⎥
⎥
⎦

= 1
2

⎡
⎢
⎢
⎢
⎣

0 −P −Q −R
P 0 R −Q
Q −R 0 P
R Q −P 0

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

q0
q1
q2
q3

⎤
⎥
⎥
⎥
⎦

≡
1
2
Ωq (1.8-15)

These quaternion state equations (1.8-14) and (1.8-15) are widely used in simulation
of rigid-body angular motion, and in discrete form they are used in digital attitude
control systems (e.g., for satellites) and for inertial navigation digital processing. We
will illustrate their use in 6-DoF simulation for tracking the attitude of a body in
motion around the oblate, rotating Earth in the next section.

Initializing a Quaternion In simulation and control, we often choose to keep
track of orientation with a quaternion and construct the direction cosine matrix and/or
Euler angles from the quaternion as needed. It is easy to initialize the quaternion for
a simple plane rotation since the Euler axis is evident. For a compound rotation (e.g.,
yaw, pitch, and roll combined) an eigenvector analysis of the DCM would be needed
to formally determine the Euler axis and construct a quaternion. Fortunately, this is
not necessary, for a specific rotation the Euler axis is unique and so the quaternion is
unique. Therefore, if we construct the quaternion in some other manner, the rotation
axis will be implicitly correct. We shall now give two examples of constructing a
quaternion for a particular set of rotations.
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Example 1.8-1: Quaternion for a Yaw, Pitch, Roll Sequence For the yaw, pitch,
roll sequence described by (1.3-10) the quaternion formulation is

v frd = q−1
𝜙

∗ q−1
𝜃

∗ q−1
𝜓

∗ vned ∗ q
𝜓

∗ q
𝜃

∗ q
𝜙

The rotation axes for the individual quaternions are immediately evident:

q
𝜙

=
⎡
⎢
⎢
⎢
⎣

cos 𝜙

2

sin 𝜙

2

0
0

⎤
⎥
⎥
⎥
⎦

, q
𝜃

=
⎡
⎢
⎢
⎢
⎣

cos 𝜃

2

0
sin 𝜃

2

0

⎤
⎥
⎥
⎥
⎦

, q
𝜓

=
⎡
⎢
⎢
⎢
⎣

cos 𝜓

2

0
0

sin 𝜓

2

⎤
⎥
⎥
⎥
⎦

These transformations can be multiplied out, using quaternion multiplication, with
only a minor amount of pain. The result is

qfrd∕ned = q
𝜓

∗ q
𝜃

∗ q
𝜙

=

⎡
⎢
⎢
⎢
⎢
⎣

±
(
cos 𝜙

2
cos 𝜃

2
cos 𝜓

2
+ sin 𝜙

2
sin 𝜃

2
sin 𝜓

2

)

±
(
sin 𝜙

2
cos 𝜃

2
cos 𝜓

2
− cos 𝜙

2
sin 𝜃

2
sin 𝜓

2

)

±
(
cos 𝜙

2
sin 𝜃

2
cos 𝜓

2
+ sin 𝜙

2
cos 𝜃

2
sin 𝜓

2

)

±
(
cos 𝜙

2
cos 𝜃

2
sin 𝜓

2
− sin 𝜙

2
sin 𝜃

2
cos 𝜓

2

)

⎤
⎥
⎥
⎥
⎥
⎦

(1)

A plus or minus sign has been added to these equations because neither (1.8-10b)
nor (1.8-15) is affected by the choice of sign. The same choice of sign must be used
in all of Equations (1). ◾

Example 1.8-2: Quaternion for an ECEF-to-NED Rotation The sequence of rota-
tions required to arrive at an NED orientation, starting from the ECEF system is:

(i) A right-handed rotation about the ECEF z-axis to a positive longitude, 𝓁.

(ii) A left-handed rotation of (90 + 𝜙) degrees, around the new y-axis, to a positive
geodetic latitude of 𝜙. (This is easily seen by letting 𝓁 be zero.)

The quaternion description is

qned∕ecf = q𝓁 ∗ q(−90−𝜙) =
⎡
⎢
⎢
⎢
⎣

cos 𝓁
2

0
0

sin 𝓁
2

⎤
⎥
⎥
⎥
⎦

∗
⎡
⎢
⎢
⎢
⎣

cos
(
𝜙

2
+ 45o)

0
− sin
(
𝜙

2
+ 45o)

0

⎤
⎥
⎥
⎥
⎦

Following the rules of quaternion multiplication, with a cross-product matrix used
on the vector part, gives

qned∕ecf =

⎡
⎢
⎢
⎢
⎢
⎣

cos 𝓁
2

cos
(
𝜙

2
+ 45o)

sin 𝓁
2

sin
(
𝜙

2
+ 45o)

− cos 𝓁
2

sin
(
𝜙

2
+ 45o)

sin 𝓁
2

cos
(
𝜙

2
+ 45o)

⎤
⎥
⎥
⎥
⎥
⎦

(1)

◾
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Direction Cosine Matrix from Quaternion If we write the quaternion rotation
formula (1.8-8) in terms of array operations, using the vector part of the quaternion,
we get

ub =
[

2qa(qa)T + (q2
0 − (qa)Tqa) I − 2q0q̃

a
]

ua
≡ Cb∕au

a (1.8-16)

The cross-product matrix q̃a is given by

q̃a =
⎡
⎢
⎢
⎣

0 −q3 q2
q3 0 −q1
−q2 q1 0

⎤
⎥
⎥
⎦

(1.8-17)

Now, evaluating the complete transformation matrix in (1.8-16), we find that

Cb∕a =
⎡
⎢
⎢
⎣

(
q2

0 + q2
1 − q2

2 − q2
3

)
2(q1q2 + q0q3) 2(q1q3 − q0q2)

2(q1q2 − q0q3) (q2
0 − q2

1 + q2
2 − q2

3) 2(q2q3 + q0q1)
2(q1q3 + q0q2) 2(q2q3 − q0q1) (q2

0 − q2
1 − q2

2 + q2
3)

⎤
⎥
⎥
⎦

(1.8-18)

This expression for the rotation matrix, in terms of quaternion parameters, corre-
sponds to Equations (1.8-10) and the single right-handed rotation around n through
the angle 𝜇. Equation (1.8-18) is independent of any choice of Euler angles. Depend-
ing on the coordinate rotation that it represents, we can determine a set of Euler angles
as in Equation (1.3-11).

Quaternion from Direction Cosine Matrix The quaternion parameters can
also be calculated from the elements {ci,j} of the general direction cosine matrix. If
terms on the main diagonal of (1.8-18) are combined, the following relationships are
obtained:

4q2
0 = 1 + c11 + c22 + c33

4q2
1 = 1 + c11 − c22 − c33

4q2
2 = 1 − c11 + c22 − c33

4q2
3 = 1 − c11 − c22 + c33 (1.8-19a)

These relationships give the magnitudes of the quaternion elements but not the signs.
The off-diagonal terms in (1.8-18) yield the additional relationships

4q0q1 = c23 − c32, 4q1q2 = c12 + c21

4q0q2 = c31 − c13, 4q2q3 = c23 + c32

4q0q3 = c12 − c21, 4q1q3 = c31 + c13 (1.8-19b)

From the first set of equations, (1.8-19a), the quaternion element with the largest mag-
nitude (at least one of the four must be nonzero) can be selected. The sign associated
with the square root can be chosen arbitrarily, and then this variable can be used as
a divisor with (1.8-19b) to find the remaining quaternion elements. An interesting
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quirk of this algorithm is that the quaternion may change sign if the algorithm is
restarted with a new set of initial conditions. This will have no effect on the rotation
matrix given in (1.8-18). Algorithms like this are discussed by Shoemake (1985) and
Shepperd (1978).

The Oblate Rotating-Earth 6-DoF Equations

The starting point here will be the position and velocity state equations (1.7-12) and
(1.7-13) and the angular velocity state equation (1.7-4):

e .
pcm∕O = vcm∕e

e .
vcm∕e =

1
m

F +G − 𝛚e∕i × (𝛚e∕i × pcm∕O) − 2𝛚e∕i × vcm∕e

M = i .
hcm∕i =

b .
hcm∕i + 𝛚b∕i × hcm∕i

This time, we will resolve the position and velocity equations on the coordinate axes
of the ECEF system (abbreviated in the equations to ecf ), instead of the tangent-plane
system. The reference point, O, for the position vector will then be at Earth’s cm, and
latitude and longitude will then be easily calculated. The angular velocity equation
must, as usual, be resolved in a body-fixed coordinate system in order to avoid a
time-varying inertia matrix, and we will use the forward-right-down system, frd.
A coordinate transformation will therefore be needed, and this time it will be obtained
from a quaternion, qfrd∕ecf . With these choices of coordinate systems the state vector,
for the set of 6-DoF equations, will be

X =
[

qfrd∕ecf , pecf
cm∕O, vecf

cm∕e, 𝛚
frd
b∕i

]T

Note that, here, the transpose designation is only meant to indicate that the element
column arrays inside the brackets should be stacked into a single column.

The matrix state equations now follow from this choice of state vector as

.
qfrd∕ecf = 1∕2 qfrd∕ecf ∗

(

𝜔

frd
b∕i − 𝜔

frd
e∕i

)

e .
pecf

cm∕o = vecf
cm∕e

e .
vecf

cm∕e =
F
m

ecf
− 2�̃�ecf

e∕i vecf
cm∕e + gecf

b .
𝜔

frd
b∕i =
(
J frd
)−1
(

M frd − �̃�

frd
b∕iJ

frd
𝜔

frd
b∕i

)

(1.8-20)

The following auxiliary equations must be executed first to compute Earth’s angular
velocity in body-fixed coordinates for the quaternion equation and the aerodynamic
forces in Earth-fixed coordinates for the velocity state equation:

[
0

𝜔

frd
e∕i

]

= q−1
frd∕ecf ∗

[
0

𝜔

ecf
e∕i

]

∗ qfrd∕ecf

[
0

Fecf

m

]

= qfrd∕ecf ∗

[
0

Ffrd

m

]

∗ qecf∕frd

(1.8-21)
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The gravity term will be calculated from the centripetal acceleration and G as a func-
tion of the geocentric position vector.

A short digression will be used here to bring out useful information contained
in the velocity equation. We shall set the applied force, F, to zero and look for a
steady-state Earth orbit around the equator, i.e., pz ≡ 0 (this is the only Great Circle
possibility). Also, let the y-component of position, py, be zero, so that the vehicle is
crossing the ecf x-axis (zero longitude), and set the y and z acceleration components to
zero. The ecf x-acceleration component will be set to the centripetal acceleration for
a circular orbit at geodetic height h above the WGS-84 spheroid,

.
vx = −v2

y∕(a + h).
Therefore, the x-axis equation of motion will be

−v2
y∕(a + h) = 2𝜔z vy − GD + 𝜔

2
z (a + h),

where 𝜔z is the z-component of 𝜔e∕i. When this quadratic equation is solved for the
velocity, we obtain the circular orbit condition,

vy =
√

GD(a + h) − 𝜔z(a + h) (1.8-22)

The first term on the right-hand side is the inertial velocity component, and the second
is the easterly component of Earth’s velocity at the equator. The inertial term simply
boils down to the centripetal acceleration condition v2∕r = G. Some idea of the num-
bers involved can be obtained by using the value of a given in Section 1.6 and the
G model given there and choosing a geodetic height. At 422 km above the spheroid
the inertial component is 7.662 km/s. The International Space Station is stated to be
in a nearly circular orbit, at an average height of 422 km above msl, and inclined
at about 55∘ to the equatorial plane, and its orbital speed is stated to be 7.661 km/s
(17,100 mph). The orbital velocity is quite insensitive to the orbit inclination and
height, and most objects in low-Earth orbit (LEO) have about this velocity.

Returning to the 6-DoF equations, the relative wind, defined in Equation (1.7-14),
could be computed for use in finding the aerodynamic forces and moments as

[
0

vfrd
rel

]

= q−1
frd∕ecf ∗

[
0

vecf
cm∕e − vecf

W∕e

]

∗ qfrd∕ecf (1.8-23)

The components of vfrd
rel determine the aerodynamic angles and these, together with

the magnitude of this velocity vector, determine the aerodynamic forces and moments
on the vehicle. There would be practical difficulties in providing the wind information
for a simulation, unless it could be neglected for high-speed, high-altitude flight or
taken as piecewise constant over different segments of a flight. Onboard a real vehicle
the situation would be reversed, in that the velocity over Earth would be known from
the INS (Inertial Navigation System), and the major component of the relative wind
would be known from the aircraft pitot-static air-data system, so that some estimate
of atmospheric wind could be calculated.

Output equations that are likely to be needed with the 6-DoF equations are a
calculation of vehicle attitude in a geographic coordinate system and calculation
of geodetic position coordinates. Referring to Section 1.6, longitude is easily
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calculated from the ECEF coordinates of the geocentric position vector in
Equations (1.8-20),

𝓁 = atan2(py, px), (1.8-24)

while geodetic latitude and height can be calculated from the approximations
described in Section 1.6. The usual attitude reference for the vehicle is a
geographic coordinate system (i.e., NED or ENU, and moving over the Earth
with the vehicle) and the attitude is specified by the Euler angles of the vehicle body
axes relative to the geographic system. We will choose the NED system, and the roll,
pitch, and heading angles of the vehicle can be calculated as follows. First, calculate
qned∕ecf from latitude and longitude, as in Example 1.8-2. Then, using the quaternion
state variable, we can calculate the quaternion qfrd∕ned. This quaternion determines
the DCM, Cfrd∕ned, and from this we can find the Euler angles, as in (1.3-11). The
equations are

q−1
frd∕ned = q−1

frd∕ecf ∗ q−1
ecf∕ned

Cfrd∕ned = fn (qfrd∕ned)

𝜙 = atan2(c23, c33)

𝜃 = −asin(c13)

𝜓 = atan2(c12, c11) (1.8-25)

This completes the discussion of the oblate, rotating-Earth 6-DoF simulation
equations, and the following simulation example will illustrate their use.

Example 1.8-3: Simulation of Motion around Earth Equations (1.8-20), (1.8-21),
(1.8-24), and (1.8-25) were programmed as a subroutine, with the state and deriva-
tive vectors as its arguments. The programming is almost trivially easy in a language
that handles matrix operations (e.g., Fortran-95; MATLABTM). It is only necessary
to write two additional routines, for quaternion multiplication and for the tilde matrix
from vector elements. The “vehicle” was simply a “brick” with dimensions 2 × 5 × 8
units, and the coordinate origin was at the center of mass with the x-axis parallel to
the eight-unit side and y parallel to the five-unit side. For this simulation no aerody-
namic effects were modeled, and the applied torque and applied specific force com-
ponents were set to zero. A simple driver program was written to use the fourth-order
Runge-Kutta routine in Chapter 2 to integrate the equations and handle input and
output operations. The initial-condition inputs were geodetic position (latitude, lon-
gitude, and altitude), Euler angles, velocity over Earth in frd coordinates, simulation
run time, and integration time step. Note that, because the equations are in terms
of velocity over Earth, no input of Earth’s inertial velocity components is required;
inertial effects are accounted for with the Coriolis term in the state equation.

Much can be learned from running this simulation; the brick can be fired vertically
to observe Coriolis effects, spun around its intermediate-inertia axis to observe its
instability to small additional angular rate disturbances, or put into Earth orbit to study
steady-state conditions, escape velocity, etc. Here, we have simulated an orbit starting
from zero latitude and longitude and an altitude of 105 m. This low-altitude orbit
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Figure 1.8-1

(below the usual “LEO” range) would show a rapid decay if atmospheric drag were
modeled. The other initial conditions are a heading angle of zero degrees (aiming
for the North Pole); zero pitch and roll, a forward component of velocity of 9.0 km/s
(enough to give a moderately elliptical orbit), and zero initial angular rates. Integra-
tion step size is not critical; 0.01, 0.10, and 1.0 s step sizes give identical graphs (small
step size would be needed for the spinning brick stability experiment).

Graph 1 shows a plot of the orbit in an inertial coordinate system initialized from
the ecf system at t = 0. Earth’s cm is at the origin (a focus of the ellipse). Orbits
that pass through high latitudes are significantly affected by the variation of Earth’s
gravity with latitude, especially very low orbits such as this one. Thus, if the sim-
ulation is run for two or more orbits an inertial precession of the orbital plane will
be observed.

Graph 2 shows height above the Spheroid versus the inertial speed, and this
reaches minimum speed and maximum height at the Apogee (zero latitude, and 180∘
longitude).
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Graph 3 shows latitude and longitude. The orbit will pass to the right of the North
Pole because added to the initial Earth-velocity of 9 km/s North it has an initial inertial
velocity of 465.1 m/s to the East, imparted at the Equator by the spin of the Earth. The
orbital plane must contain the Earth’s cm and so the orbit is tilted away from the poles,
and the latitude never reaches ±90∘. Longitude will decrease steadily as the Earth
rotates under the inertially fixed orbit. The rate of change of longitude is determined
by the eastward component of the relative inertial velocity of the orbit and points
on the Earth below, and the convergence of the Meridians near the Poles. Therefore,
longitude changes very slowly at first, and then changes rapidly near 90∘ latitude. At
the maximum negative latitude the longitude changes by 180∘, in the same way as
near the North Pole, but the change is disguised by the 180∘ ambiguity.

The Euler angle graphs show the attitude of the brick relative to a local NED
system. The brick maintains a fixed inertial orientation as it circles Earth (initial rates
were zero, and no torques were applied), and so the Euler angle variations are caused
by changing orientation of the NED system as it follows the trajectory. The local NED
system never reaches zero tilt with respect to the equatorial plane since the trajectory
does not pass over the poles. Consequently, the pitch attitude angle of the brick never
reaches 90∘ as the brick approaches the poles. The roll angle of the brick shows the
expected 180∘ transitions, and the shape of these closely matches the shape of changes
in the longitude graph. The heading angle remains unchanged, at zero. ◾

In concluding this chapter, we note that practically all of the concepts introduced
in the chapter are used in Example 1.8-3, and a number of significantly different
orbits and initial condition combinations can be simulated, leading to graphical
results that are quite demanding in their interpretation. Lack of space prevented the
use of the simulation to illustrate properties of spinning bodies, which is also very
instructive.
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PROBLEMS

Section 1.2

1.2-1 If vectors u, v,w, from a common point, define the adjacent edges of a
parallelepiped, show that u ⋅ (v × w) represents the signed volume of the
parallelepiped.

1.2-2 Show that u × (v × w) + v × (w × u) + w × (u × v) = 0.

1.2-3 Two particles moving with constant velocity are described by the position
vectors

p = p𝟎 + v t, s = s𝟎 + w t

(a) Show that the shortest distance between their trajectories is given by

d = |(s𝟎 − p𝟎) ⋅ (w × v)| ∕ |w × v|

(b) Find the shortest distance between the particles themselves.

1.2-4 Derive the vector expressions shown in Figure 1.2-1.

Section 1.3

1.3-1 Derive the cross-product matrix used in Equation (1.3-3).

1.3-2 Start with an airplane heading north in level flight and draw two sequences of
pictures to illustrate the difference between a yaw, pitch, roll sequence and a
roll, yaw, pitch sequence. Let the rotations (Euler angles) be yaw 𝜓 = −90∘,
pitch 𝜃 = −45∘, and roll 𝜙 = 45∘. State the final orientation.
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1.3-3 Find the rotation matrix corresponding to (1.3-10) but for a heading, roll, pitch
sequence. Find the formulae for the Euler angles and specify their ranges.

1.3-4 For the rotation in Equation (1.3-10), with heading, pitch, and roll angles all
equal to −90∘, find, by hand:

(a) The eigenvalues

(b) The eigenvector for the +1 eigenvalue

(c) The direction of the Euler axis in terms of an azimuth and an elevation
angle

(d) The equivalent rotation around the Euler axis (by physical experiment)

1.3-5 Show that the rotation matrix between two coordinate systems can be calcu-
lated from a knowledge of the position vectors of two different objects if the
position vectors are known in each system.

(a) Specify the rotation matrix in terms of the solution of a matrix equation.

(b) Show how the matrix equation can be solved for the rotation matrix.

Section 1.4

1.4-1 Prove that the derivative of the angular velocity vector of a frame Fb relative
to frame Fa is the same when taken in either Fa or Fb.

1.4-2 Prove that the centripetal acceleration vector is always orthogonal to the
angular velocity vector.

1.4-3 Find the Euler angle rates as in Equation (1.4-4) but for the rotation sequence
heading, roll, pitch.

Section 1.5

1.5-1 Start from the vector equation (1.5-6).

(a) Obtain the matrix equation for the NED coordinates of the vectors.
Assume that g has a down component only.

(b) Neglecting North motion, and the y-dot contribution to vertical accelera-
tion, integrate the equations to obtain the y and z displacement equations
(include initial condition terms with the indefinite integrals).

(c) Compare the Coriolis deflections of a mass reaching the ground for the
following two cases: (i) thrown vertically upward with initial velocity u;
(ii) dropped, with zero initial velocity, from the maximum height reached
in (i).

Section 1.6

1.6-1 Starting from a calculus textbook definition of radius of curvature and the
equation of an ellipse, derive the formula (1.6-5) for the meridian radius of
curvature.
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1.6-2 Derive the formulae (1.6-13) and hence the formula (1.6-14) for geocentric
latitude in terms of geodetic latitude by using the geometry of the generating
ellipse.

1.6-3 Derive the formula (1.6-26) for G starting from the potential function V
in Equation (1.6-24). Use a geocentric coordinate system as mentioned in
the text.

1.6-4 Starting from (1.6-26), write and test a program to evaluate |g| and |G| as
functions of geodetic latitude and altitude. Plot them both on the same axes
against latitude (0 → 90∘). Do this for h = 0 and 30,000 m.

1.6-5 Derive the conditions for a body to remain in a geostationary orbit of Earth.
Use the gravity model and geodetic data to determine the geostationary alti-
tude. What are the constraints on the latitude and inclination of the orbit?

Section 1.7

1.7-1 An aircraft is to be mounted on a platform with a torsional suspension so that
its moment of inertia, Izz, can be determined. Treat the wings as one piece
equal to one-third of the aircraft weight and placed on the fuselage one-third
back from the nose.
(a) Find the distance of the aircraft cm from the nose as a fraction of the

fuselage length.
(b) The aircraft weight is 80,000 lb, the wing planform is a rectangle 40 ft

by 16 ft, and the planview of the fuselage is a rectangle 50 ft by 12 ft.
Assuming uniform density, calculate the aircraft moment of inertia (in
slug-ft2).

(c) Calculate the period of oscillation (in seconds) of the platform if the tor-
sional spring constant is 10,000 lb-ft/rad.

1.7-2 Use Euler’s equations of motion (1.7-8) and the Euler kinematical
equations (1.4-4) to simulate the angular motion of a brick tossed in
the air and spinning. Write a MATLAB program using Euler integration
(1.1-4) to integrate these equations over a 300-s interval using an integration
step of 10 ms. Add logic to the program to restrict the Euler angles to the
ranges described in Section 1.3. Let the brick have dimensions 8 × 5 × 2
units, corresponding to x, y, z axes at the center of mass. The moments 𝓁,m, n
are all zero, and the initial conditions are:
(a) 𝜙 = 𝜃 = 𝜓 = 0, P = 0.1, Q = 0, R = 0.001 rad∕s
(b) 𝜙 = 𝜃 = 𝜓 = 0, P = 0.001, Q = 0, R = 0.1 rad∕s
(c) 𝜙 = 𝜃 = 𝜓 = 0, P = 0.0, Q = 0.1, R = 0.001 rad∕s
Plot the three angular rates (deg/s) on one graph, and the three Euler angles
(in deg) on another. Which motion is stable and why?

1.7-3 Derive a set of linear state equations from Equations (1.7-8) by considering
perturbations from a steady-state condition with angular rates Pe, Qe, and Re.
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Find expressions for the eigenvalues of the coefficient matrix when only one
angular rate is nonzero and show that there is an unstable eigenvalue if the
moment of inertia about this axis is either the largest or the smallest of the
three inertias. Deduce any practical consequences of this result.

1.7-4 The propeller and crankshaft of a single-engine aircraft have a combined
moment of inertia of 45 slug-ft2 about the axis of rotation and are rotating at
1500 rpm clockwise when viewed from in front. The moments of inertia of
the aircraft are roll: 3000 slug-ft2, pitch: 6700 slug-ft2, yaw: 9000 slug-ft2.
If the aircraft rolls at 100 deg/s, while pitching at 20 deg/s, determine the
angular acceleration in yaw. All inertias and angular rates are body-axes
components.

1.7-5 Analyze the height and distance errors of the flat-Earth equations.

Section 1.8

1.8-1 Show that, for a quaternion product, the norm of the product is equal to the
product of the individual norms.

1.8-2 Compare the operation count (+, −, ×, ÷) of the vector rotation formula
(1.2-5b) with that of the quaternion formula (1.8-9b).

1.8-3 If a coordinate system b is rotating at a constant rate with respect to a system a
and only the components of the angular velocity vector in system b are given,
find an expression for the quaternion that transforms coordinates from b to a.

1.8-4 .(a) Write a subroutine or an M-file for the Round the Earth 6-DoF equations
of motion as described in Example 1.8-3.

(b) Write a driver program to use these 6-DoF equations and reproduce the
results of Example 1.8-3.


