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1
The Digital Communications
Point of View

When detailing how to dimension a transceiver, it can seem natural to first clarify what is
expected from such a system. This means understanding both the minimum set of functions
that need to be implemented in a transceiver line-up as well as the minimum performance
expected from them. In practice, these requirements come from different topics which can
be sorted into three groups. We can indeed refer to the signal processing associated with
the modulations encountered in digital communications, to the physics of the medium used
for the propagation of the information, and to the organization of wireless networks when
considering a transceiver that belongs to such system, or alternatively its coexistence with
such systems.

The last two topics are discussed in Chapter 2 and Chapter 3 respectively, while this chapter
focuses on the consequences for transceiver architectures of the signal processing associated
with the digital communications. In that perspective, a first set of functions to be embedded
in such a system can be derived from the inspection of the relationship that holds between the
modulating waveforms used in this area and the corresponding modulated RF signals to be
propagated in the channel medium.

As a side effect, this approach enables us to understand how information that needs a
complex baseband modulating signal to be represented can be carried by a simple real valued
RF signal, thus leading to the key concept of the complex envelope. It is interesting to see that
this concept allows us to define correctly classical quantities used to characterize RF signals
and noise, in addition to its usefulness for performing analytical derivations. It is therefore
used extensively throughout this book.

Finally, in this chapter we also review some particular modulation schemes that are rep-
resentative of the different statistics that can be encountered in classical wireless standards.
These schemes are then used as examples to illustrate subsequent derivations in this book.

Wireless Transceiver Architecture: Bridging RF and Digital Communications, First Edition. Pierre Baudin.
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4 The Digital Communications Point of View

1.1 Bandpass Signal Representation

1.1.1 RF Signal Complex Modulation

Digital modulating waveforms in their most general form are represented by a complex
signal function of time in digital communications books [1]. But, even if we understand
that this complex signal allows us to increase the number of bits per second that can be
transmitted by working on symbols using this two-dimensional space, a question remains.
The final RF signal that carries the information, like the RF current or voltage generated at
the transmitter (TX) output, is a real valued signal like any physical quantity that can be
measured. Accordingly, we may wonder how the information that needs a complex signal
to be represented can be carried by such an RF signal. Any RF engineer would respond by
saying that an electromagnetic wave has an amplitude and a phase that can be modulated
independently. Nevertheless, we can anticipate the discussion in Chapter 2, and in particular
in Section 2.1.2, by saying that there is nothing in the electromagnetic theory that requires this
particular structure for the time dependent part of the electromagnetic field. In fact, the right
argument remains that this time dependent part, like any real valued signal, can be represented
by two independent quantities that can be interpreted as its instantaneous amplitude and its
instantaneous phase as long as it is a bandpass signal. Here, “bandpass signal” means that
the spectral content of the signal has no low frequency component that spreads down to the
zero frequency. In other words, the spectrum of the RF signal considered, whose positive and
negative sidebands are assumed centered around ±𝜔c, must be non-vanishing only for angular
frequencies in [−𝜔u − 𝜔c,−𝜔c + 𝜔l] ∪ [+𝜔c − 𝜔l,+𝜔c + 𝜔u], with 𝜔c, 𝜔l and 𝜔u defined as
positive quantities, and with 𝜔c > 𝜔l.

To understand this behavior, let us consider the complex baseband signal s̃(t) expressed as

s̃(t) = p (t) + jq (t), (1.1)

where p (t) and q (t) are respectively the real and imaginary parts of this complex signal. We
can assume that the spectrum of this signal spreads over [−𝜔l,+𝜔u]. Such baseband signals
with a non-vanishing DC component in their spectrum are called lowpass signals in contrast
to the bandpass signals as given above. If we now wish to shift the spectrum of this signal
around the central carrier angular frequency +𝜔c, we have to convolve its spectrum with the
Dirac delta distribution 𝛿(𝜔 − 𝜔c). In the time domain, this means multiplying the signal by
the Fourier transform of this Dirac delta distribution, i.e. the complex exponential e+j𝜔ct [2].
This results in the complex signal sa(t) defined by

sa(t) = s̃(t)e+j𝜔ct = (p (t) + jq (t))e+j𝜔ct. (1.2)

Suppose now that we take the real part of this signal. Using

e+j𝜔t = cos(𝜔t) + j sin(𝜔t), (1.3)

we get the classical form of the resulting RF signal s(t) we are looking for,

s(t) = Re{sa(t)} = p (t) cos(𝜔ct) − q (t) sin(𝜔ct). (1.4)
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But what is interesting to see is that even if we took only the real part of the upconverted initial
complex lowpass signal transposed around +𝜔c, we have no loss of information compared
to the initial complex baseband signal as long as 𝜔c > 𝜔l. Indeed, under that condition, the
original complex modulating waveform s̃(t) can be reconstructed from the bandpass RF real
signal s(t).

To understand this, let us first consider the spectral content of the resulting bandpass signal
s(t). What would be a good mathematical tool to choose for the spectral analysis? Dealing with
digital modulations that are randomly modulated most of the time, the natural choice would
be to use the stochastic approach to derive the signal power spectral density. The problem
with this approach is that the power spectral density (PSD) of a signal is only linked to the
modulus of the Fourier transform of the original signal. It thus leads to a loss of information
compared to the time domain signal. As a result, in some cases of interest in this book, we need
to keep the simple Fourier transform representation in order to be able to discuss the phase
relationship between different sidebands present in the spectrum. Here, by “sideband” we
mean a non-vanishing portion of spectrum of finite frequency support. This phase relationship
is indeed required to understand the underlying phenomenon involved in concepts as reviewed
in this chapter, but also in Chapter 6, for instance, when dealing with frequency conversion
and image rejection. The existence of such Fourier transforms can be justified thanks to the
practical finite temporal support of the signals of interest that ensures a finite energy. This
is indeed the practical use case when dealing with the post-processing of a finite duration
measurement or simulation result. The signals we deal with are therefore assumed to have a
finite temporal support and a finite energy, i.e. they are assumed to belong to L2[0, T], the space
of square-integrable functions over the bounded interval [0, T]. Nevertheless, when dealing
with a randomly modulated signal, this approach means that we consider only the spectral
properties of a single realization of the process of interest. Thus, even if this direct Fourier
analysis is suitable for discussing some signal processing operations involved in transceivers,
the power spectral analysis should be considered when possible for taking into account the
statistical properties of the modulating process of interest, as done in “Power spectral density”
(Section 1.1.3).

Let us therefore derive the Fourier transform of s(t). As the aim is to make the link between
the spectral representation of s(t) and that of s̃(t), we can first expand the relationship between
s(t) and the complex signal sa(t) given by equation (1.4). To do so, we use the general property
that for any complex number s̃(t), we have

Re{s̃(t)} = 1
2

(s̃(t) + s̃∗(t)), (1.5)

where s̃∗(t) stands for the complex conjugate of s̃(t). This means that we can write

s(t) = Re{sa(t)} = 1
2

(sa(t) + s∗a (t)). (1.6)

Using the relationship between sa(t) and s̃(t) given by equation (1.2), we finally get that

s(t) = 1
2

s̃(t)e+j𝜔ct + 1
2

s̃∗(t)e−j𝜔ct. (1.7)
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It now remains to take the Fourier transform of this signal. For that, we can use two properties
of the Fourier transform. The first states that for any signal, s̃(t), the Fourier transform of the
complex conjugate, s̃∗(t), of such a signal can be related to that of s̃(t) through

ℱ{s̃∗(t)}(𝜔) = ∫
+∞

−∞
s̃∗(t)e−j𝜔tdt

=
[
∫

+∞

−∞
s̃(t)e+j𝜔tdt

]∗
=
[
ℱ{s̃(t)}(−𝜔)

]∗
. (1.8)

We observe that this derivation remains valid when s̃(t) reduces to a real signal s(t). In that
case, having s∗(t) = s(t) leads to having S∗(−𝜔) = S(𝜔). We then recover the classical property
of real signals, i.e. the Hermitian symmetry of their spectrum. Then we can use the property
that the Fourier transform of a product of signals is equal to the convolution of the Fourier
transforms of each signal. Indeed, we get that

ℱ{s̃1(t)s̃2(t)}(𝜔) = ∫
+∞

−∞
s̃1(t)s̃2(t)e−j𝜔tdt

= ∫
+∞

−∞
S̃1(𝜔′)∫

+∞

−∞
s̃2(t)e−j(𝜔−𝜔′)tdtd𝜔′

= ∫
+∞

−∞
S̃1(𝜔′)S̃2(𝜔 − 𝜔′)d𝜔′, (1.9)

i.e. that

ℱ{s̃1(t)s̃2(t)}(𝜔) = ℱ{s̃1(t)}(𝜔) ⋆ℱ{s̃2(t)}(𝜔). (1.10)

Thus, using the two properties above, we get that the Fourier transform of equation (1.7)
reduces to

S(𝜔) = 1
2

S̃(𝜔) ⋆ 𝛿(𝜔 − 𝜔c) + 1
2

S̃∗(−𝜔) ⋆ 𝛿(𝜔 + 𝜔c), (1.11)

where1 S̃(𝜔) stands for the Fourier transform of s̃(t) and where the Dirac delta distribution is
the Fourier transform of the complex exponential. As this distribution is even, i.e. we have
𝛿(𝜔 + 𝜔c) = 𝛿(−𝜔 − 𝜔c), the spectrum of s(t) can be expressed as the sum of two components
as illustrated in Figure 1.1. The first component corresponds to the positive frequencies part,
denoted S+(𝜔), and is referred to as the positive sideband of the spectrum of s(t). The second
component corresponds to the negative part of the spectrum, S−(𝜔), and is therefore referred
to as the negative sideband of the spectrum of s(t). As s(t) is assumed to be bandpass, there is

1 Recall our convention in this book that S̃(𝜔) stands for the spectral domain representation of the complex envelope
s̃(t) and not for the complex envelope of the signal S(𝜔).



JWST466-c01 JWST466-Baudin Printer: Yet to Come September 19, 2014 11:56 Trim: 244mm × 170mm

Bandpass Signal Representation 7
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Figure 1.1 Spectral domain representation of the complex modulation of a real bandpass RF signal –
The information linked to a complex lowpass signal, whose spectrum does not fulfill Hermitian symmetry
(top), can be carried by a real bandpass signal as long as the intermediate complex upconverted signal is
such that its spectrum does not spread toward zero frequency (middle), i.e. as long as 𝜔c > 𝜔l. In that
case, the two sidebands of the spectrum of the resulting real bandpass signal do not overlap (bottom).

no overlap between those sidebands. They are thus defined without ambiguity from equation
(1.11) as

S(𝜔) = 1
2

S̃(𝜔 − 𝜔c) + 1
2

S̃∗(−𝜔 − 𝜔c)

= S+(𝜔) + S−(𝜔), (1.12)

where

S+(𝜔) = 1
2

S̃(𝜔 − 𝜔c), (1.13a)

S−(𝜔) = 1
2

S̃∗(−𝜔 − 𝜔c). (1.13b)
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As expected for a real signal, the spectrum of s(t) fulfills Hermitian symmetry as we have
S−(𝜔) = S ∗

+(−𝜔). Reconsidering our derivation so far, we thus see that S+(𝜔) represents the
spectrum of the initial complex signal s̃(t) transposed around +𝜔c, whereas S−(𝜔) represents
the spectrum of the complex conjugate of the initial complex signal, i.e. of s̃∗(t), transposed
around −𝜔c. We therefore see that the action of taking the real part of sa(t) leads to a
symmetrization of the spectrum by creating a negative part of the spectrum that is a flipped
copy of its positive part. What is interesting to remark is that even if the resulting real RF
signal spectrum fulfills Hermitian symmetry, the portion that lies in the positive frequencies
part still represents precisely the initial complex lowpass signal spectrum. Consequently, as
long as the resulting signal s(t) is bandpass the two sidebands of its spectrum do not overlap.
The initial complex lowpass signal can thus be reconstructed, theoretically without distortion,
by downconversion to baseband of the positive sideband of the passband signal.

As a consequence of the concepts presented so far, we can see that in a transceiver, as long as
we are dealing with a lowpass representation of a complex modulating waveform, s̃(t), we need
to work with two analog real quantities to represent, for instance, its real and imaginary parts
p (t) and q (t). However, this is not required when working on the corresponding modulated
real bandpass signal for which a representation using a single analog signal is always possible
with no loss of information. We also mention that the real and imaginary parts are classically
labeled p (t) and q (t), as used in this book, or alternatively as i (t) and q(t). The origin of these
labels is that p (t) or i (t) stand for the in-phase component and q(t) stands for the in-quadrature
component of the bandpass signal as those lowpass modulating signals are carried by cosine
and sine waveforms that are effectively in quadrature.

1.1.2 Complex Envelope Concept

We saw in Section 1.1.1 that a real bandpass RF signal can be modulated in such a way that
it carries information that needs a complex lowpass modulating signal, i.e. two independent
real baseband signals, to be represented. We can now go through the reverse process and
examine how to reconstruct the equivalent complex lowpass modulating signal that represents
the modulation of a given bandpass RF signal s(t).

For that purpose, we can retain the approach of Section 1.1.1, i.e. assume that it is the positive
sideband of s(t) that is an image of the spectrum of the original complex lowpass modulating
waveform. Let us first define the complex signal sa(t) whose spectral representation Sa(𝜔) is
equal to twice the positive sideband of s(t), i.e. such that

Sa(𝜔) = 2U(𝜔)S(𝜔), (1.14)

where U(.) stands for the Heaviside step function. Here, the factor 2 is used for the sake of
consistency with the definition introduced in Section 1.1.1. The signal sa(t) defined as such
is said to be the analytic signal associated with s(t). Based on its definition, we clearly get
that this signal is unique, which is an important difference compared to the complex envelope
concept defined later on. We observe that the term “analytic” is used for a signal whose
spectrum is null for negative frequencies. This is thus the equivalent, in the spectral domain,
of the causality concept encountered in the time domain. In order to recover the complex
modulating waveform we are looking for, it thus remains to downconvert this analytic signal
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toward the zero frequency. In that perspective, it remains of interest to consider a time domain
representation of sa(t). In doing so, rather than directly taking the inverse Fourier transform of
equation (1.14), it is convenient to remark that an alternative expression for Sa(𝜔) is

Sa(𝜔) = S(𝜔) + sign{𝜔}S(𝜔)

= S(𝜔) + j(−jsign{𝜔})S(𝜔), (1.15)

where sign{.} denotes the sign function. This expression is in fact the direct transcription of
the cancellation of the negative part of the spectrum of s(t) for expressing sa(t). If we now
transpose this equation in the time domain, this signal can then be expressed as

sa(t) = s(t) + jŝ(t), (1.16)

where ŝ(t) represents the signal resulting from the filtering of s(t) by the filter whose transfer
function can be expressed in the frequency domain as

− j sign{𝜔} =

⎧⎪⎨⎪⎩
−j when 𝜔 > 0,

0 when 𝜔 = 0,

j when 𝜔 < 0.

(1.17)

At this stage, it may be of interest to remark that this filter simply behaves as a 𝜋∕2 phase
shifter when acting on a bandpass signal. This can be highlighted by considering, for instance,
its effect on a pure sine wave such as s(t) = cos(𝜔ct). Expanding the cosine function as the
sum of two complex exponentials results in

cos(𝜔ct) = 1
2

(
ej𝜔ct + e−j𝜔ct

)
. (1.18)

Thus, considering the effect of the transfer function given by equation (1.17), we get that
the first complex exponential, ej𝜔ct, changes to −jej𝜔ct and the second one, e−j𝜔ct, changes to
je−j𝜔ct. The signal recovered at the filter output is therefore the sine wave:

sin(𝜔ct) = 1
2j

(
ej𝜔ct − e−j𝜔ct

)
. (1.19)

Given that sin(𝜔t) = cos(𝜔t − 𝜋∕2), we thus recover the expected behavior of a 𝜋∕2 phase
shifter. This effect can in fact be confirmed for any bandpass signals by reconsidering equation
(1.17). Indeed, given that j = ej𝜋∕2, we get that this filter simply subtracts a constant 𝜋∕2 phase
offset from all the frequency components of the input signal lying at positive frequencies and
adds the same 𝜋∕2 phase offset to all the components lying at negative frequencies, thus
confirming the behavior of an ideal 𝜋∕2 phase shifter. The transfer function of this filter
can also be transposed in the time domain, thus leading to the implementation of a Hilbert
transform corresponding to the convolution of the input signal with the distribution principal
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value of 1∕(𝜋t) [2]. The filter impulse response can thus be expressed in the distribution
sense as

ŝ(t) = pv
(

1
𝜋t

)
⋆ s(t) = lim

𝜖→0

1
𝜋 ∫|t′|>𝜖

s(t − t′)
t′

dt′, (1.20)

where pv(.) stands for the Cauchy principal value.
Now that we have an expression for sa(t), it remains to downconvert this signal toward

the zero frequency to recover the complex modulating waveform s̃(t). This can be achieved
by multiplying its time domain expression by the negative complex exponential e−j𝜔ct so
that [2]

s̃(t) = sa(t)e−j𝜔ct. (1.21)

Using equation (1.16) we then get that

s̃(t) = (s(t) + jŝ(t))e−j𝜔ct. (1.22)

At first glance, the signal s̃(t) defined this way matches the definition of the complex modulating
waveform as defined in Section 1.1.1. This signal is called the complex envelope of the
bandpass signal s(t). The different steps for its construction are illustrated in the frequency
domain in Figure 1.2. Alternatively, its real and imaginary parts, p (t) and q (t) respectively,
can also be expressed in the time domain as functions of s(t) and ŝ(t) by expanding the above
equation. This results in

p (t) = s(t) cos(𝜔ct) + ŝ(t) sin(𝜔ct), (1.23a)

q (t) = ŝ(t) cos(𝜔ct) − s(t) sin(𝜔ct). (1.23b)

Reconsidering our definitions so far, we observe that we have called s̃(t) the complex
envelope of the bandpass signal s(t). But we should in fact say that s̃(t) is a complex envelope
of s(t). Indeed, we defined the lowpass signal s̃(t) by the downconversion of the analytic signal
sa(t) around the zero frequency. This notion of “around” the zero frequency is somewhat
imprecise. The point for the definition of this downconversion is only that the resulting signal
must have a non-vanishing DC component in order to be effectively lowpass. We can thus
define as many complex envelopes as we want for a given bandpass signal, depending on the
chosen angular frequency 𝜔c used for the downconversion of its associated analytic signal.
We see that this definition necessarily leads to an interesting relationship between the different
complex envelopes that can be defined for a given bandpass signal. Indeed, considering for
instance the complex envelopes s̃1(t) and s̃2(t) as defined through the downconversion of the
analytic signal sa(t) using 𝜔c1 and 𝜔c2 respectively, we get that

s̃1(t) = sa(t)e−j𝜔c1t, (1.24a)

s̃2(t) = sa(t)e−j𝜔c2t. (1.24b)
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Figure 1.2 Illustration in the frequency domain of the complex envelope derivation of a bandpass RF
signal – The analytic signal associated with a bandpass RF signal (top) is defined by considering twice
its positive sideband (middle). The complex envelope then results from the downconversion to baseband
of this analytic signal (bottom).

We thus have

s̃1(t) = s̃2(t)e−j(𝜔c1−𝜔c2)t. (1.25)

Consequently, all the complex envelopes representing a given bandpass signal necessarily have
the same modulus. There is only a continuous phase rotation difference between them. This
property is important, as in transceiver budgets we often use such complex envelopes to perform
analytic signal power evaluation for the purpose of signal to noise power ratio (SNR) budgets.
And as illustrated for instance in “Average power” (Section 1.1.3) or throughout Chapter 5, it
is the modulus of those complex envelopes that is involved in such evaluations. It is therefore
good to see that the quantities involved in those derivations are well defined whatever the
complex envelope considered. However, in digital communications, we generally do not have
this kind of ambiguity in the selection of the center angular frequency used for the definition
of the complex envelopes we deal with. Indeed, for reasons discussed in “Impact of spectral
symmetry on top of stationarity” (Section 1.1.3), the complex lowpass modulating waveforms
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that are classically used in wireless systems almost always have a symmetrical PSD around
the zero frequency, as illustrated for instance in Section 1.3. Thus, the angular frequency of
the corresponding center of symmetry in the spectrum of the modulated RF bandpass signals
remains a natural choice for the definition of the corresponding complex envelope.

Reconsidering our derivations so far, we see that we have derived an expression for the
complex envelopes in their Cartesian form, i.e. through their real and imaginary parts p (t) and
q (t). But, as for any complex number, we can instead use a polar representation. Denoting by
𝜌(t) and 𝜙(t) respectively the modulus and phase of the complex number s̃(t), we can write

s̃(t) = p (t) + jq (t) = 𝜌(t)ej𝜙(t). (1.26)

In this expression and throughout the rest of this book we assume that 𝜌(t) is a positive
quantity. This is indeed required in order to define 𝜙(t) without ambiguity. Thus by using
the Cartesian or polar representation of s̃(t), we can derive two different (albeit equivalent)
analytical expressions for the corresponding bandpass RF signal s(t). Indeed, since by equations
(1.2) and (1.4) we have that

s(t) = Re{sa(t)} = Re
{

s̃(t)ej𝜔ct
}

, (1.27)

we can write, using either representation of s̃(t),

s(t) = Re
{

(p (t) + jq (t))ej𝜔ct
}
= p (t) cos(𝜔ct) − q (t) sin(𝜔ct), (1.28a)

= Re
{
𝜌(t)ej(𝜔ct+𝜙(t))

}
= 𝜌(t) cos(𝜔ct + 𝜙(t)). (1.28b)

We can thus see that the modulus of the complex envelope represents the amplitude part
of the modulation of the corresponding bandpass RF signal, while its argument represents the
phase/frequency part. In that sense, it is often said that an RF signal is complex modulated
when it is both amplitude and phase/frequency modulated. We see here that this statement is
not directly related to the nature of the corresponding complex envelope. The latter can only
be a real signal for a pure amplitude modulation. A phase/frequency modulation is still said to
be a real modulation scheme, whereas the corresponding complex envelope is truly complex,
even if with a constant modulus. In practice a real modulation corresponds to a modulating
signal that can be represented by a single real signal, i.e. either 𝜌(t) or 𝜙(t), regardless of
the mathematical nature of the complex envelope. In this book we therefore reserve the term
“complex modulated RF signals” for signals that are both amplitude and phase modulated.

In conclusion we highlight that, as illustrated in the next sections, the concept of the
complex envelope is of particular importance as this lowpass signal embeds all the statistical
characteristics of interest of the modulated bandpass RF signal it represents. We can thus
say that from the signal processing point of view, the transceiver architecture reduces to
how to upconvert or recover a given complex envelope while minimizing its degradation
due to implementation limitations. We can also point out that such complex envelopes have
additional practical advantages over the use of real bandpass signal representations when
performing analytical derivations. The root cause for this comes from its complex nature
that can allow for more straightforward analytical derivations. This behavior is illustrated
for instance in Chapter 5 where the complex envelope polar notation allows easy analytical
derivations when dealing with nonlinearity due to the fact that trigonometric polynomials are
naturally linearized compared to power of sine and cosine functions. This complex nature is
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Figure 1.3 Complex envelope and corresponding trajectory representation in the complex plane – The
complex envelope as well as the analytic signal concept allow vectorial representations for complex RF
modulated signals. It can be seen as a generalization of the Fresnel representation used for continuous
waves. The set of points that successively represent, in time, the complex envelope values, i.e. the
extremity of its representative vector in the complex plane, define the trajectory of the modulation.

also of interest as it allows useful vectorial representations of signals in the complex plane. As
shown in Figure 1.3, we are dealing here with a generalization of the Fresnel representation
used for continuous waves. This approach leads to simple vectorial interpretations of analytical
derivations that are often not so obvious to interpret directly. Furthermore, considering a simple
practical modulating waveform, we get that the corresponding complex envelope describes
a curve in the complex plane as a function of time. This curve represents what is called the
trajectory associated with the modulating waveform. This trajectory in fact results from the
pulse shaping filtering of the original sequence of symbols. If this pulse shaping filter does not
introduce intersymbol interference (ISI), the trajectory simply links the symbols represented
as a constellation in the complex plane. Some trajectory examples are shown in Section 1.3.
Finally, we get that complex envelopes and the associated analytic signal concept allow us
to correctly define the quantities of interest for characterizing RF signals, as illustrated in the
following sections.

1.1.3 Bandpass Signals vs. Complex Envelopes

Due to the importance of the complex envelope concept introduced in the previous section, it
is of interest to consider the characteristics of such complex lowpass signals in more detail, in
particular with respect to the characteristics of the real bandpass signals they represent.

Positive vs. Negative Sidebands

Returning the definition of the complex envelope s̃(t) of a real bandpass signal s(t) given in
Section 1.1.2, we see that we considered the positive sideband, i.e. the positive part of the
spectrum, of that signal to define the associated analytic signal, sa(t), the complex envelope
being the downconversion of this analytic signal toward baseband. Practically speaking, this
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definition necessarily leads to the use of the negative complex exponential, i.e. the complex
exponential with a negative angular frequency e−j𝜔ct, for the ideal implementation of the
downconversion processing of sa(t), as illustrated by equation (1.21). Conversely, it is thus the
positive complex exponential, i.e. the complex exponential with a positive angular frequency
e+j𝜔ct, that was considered for the upconversion of an initial complex lowpass envelope in
order to generate the corresponding modulated real bandpass signal according to equation
(1.27). We might wonder whether we could consider the opposite choice for the complex
exponentials. We observe that the processing corresponding to Re{s̃(t)e−j𝜔ct} would result in
a real bandpass signal that has the same spectral location as that corresponding to our definition
so far. This would result in different characteristics for the resulting modulated signals.

By way of illustration, let us consider a first bandpass signal s1(t) resulting from the
upconversion of the complex lowpass signal s̃(t) following our legacy definition, i.e. using the
positive complex exponential e+j𝜔ct. According to Section 1.1.2, s1(t) can be written as

s1(t) = Re
{

s̃(t)e+j𝜔ct
}

. (1.29)

For our analysis, it is of interest to decompose this bandpass signal as the sum of two time
domain bandpass signals that correspond to the two sidebands present in its spectrum, i.e. the
positive one lying around +𝜔c and the negative one lying around −𝜔c. We can use equation
(1.5) to expand the real part in the above expression as

s1(t) = 1
2

s̃∗(t)e−j𝜔ct + 1
2

s̃(t)e+j𝜔ct. (1.30)

As expected, we recover a bandpass signal that is the sum of the upconversion of s̃(t) around
+𝜔c, and the upconversion of its complex conjugate s̃∗(t) around −𝜔c. Those two bandpass
signals centered around symmetric angular frequencies with respect to the zero frequency are
obviously complex valued, but also complex conjugates to each other. This is indeed required
in order to have the spectrum of the real valued signal s1(t) that exhibits Hermitian symmetry,
as can be seen by taking the Fourier transform of the above expression. Using equation (1.8),
we get that

S1(𝜔) = 1
2

S̃∗(−𝜔 − 𝜔c) + 1
2

S̃(𝜔 − 𝜔c). (1.31)

We thus see that the sideband centered on −𝜔c is a flipped copy of that corresponding to s̃(t).
Let us now consider the upconversion of s̃(t) using the negative complex exponential e−j𝜔ct.

This results in a second real bandpass signal s2(t) that can be expressed as

s2(t) = Re
{

s̃(t)e−j𝜔ct
}

= 1
2

s̃(t)e−j𝜔ct + 1
2

s̃∗(t)e+j𝜔ct, (1.32)

and whose representation in the frequency domain is given by

S2(𝜔) = 1
2

S̃(𝜔 + 𝜔c) + 1
2

S̃∗(−𝜔 + 𝜔c). (1.33)
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Figure 1.4 Spectral domain representation of the complex envelope frequency upconversion and result-
ing RF bandpass signal – Depending on the sign of the complex exponential, e+j𝜔ct (middle right) or
e−j𝜔ct (middle left), used for the frequency upconversion, the same complex lowpass envelope (top)
results in different RF bandpass signals. In the first case, the positive sideband of the resulting spectrum
corresponds to the spectrum of the original complex envelope (bottom right) whereas in the second case,
it corresponds to a flipped copy of it (bottom left).

Comparing this expression with equation (1.31), we see that we now face an inversion of
the positive and negative sidebands of the spectrum of s2(t) with respect to those of s1(t),
as illustrated in Figure 1.4. Reconsidering this figure and equation (1.32), we can moreover
see that s2(t) can alternatively be interpreted as the result of the upconversion of the complex
lowpass signal s̃∗(t) using the positive complex exponential e+j𝜔ct.

The same kind of comment applies when considering the downconversion operation per-
formed to recover the complex envelope of a given bandpass signal. Indeed, depending on
whether we use the negative or the positive complex exponential to perform the operation,
we obtain through this processing either the positive or the negative sideband of the orig-
inal bandpass signal. Moreover, depending on whether the bandpass signal considered for
such downconversion has been originally generated by the upconversion of an initial complex
envelope through the use of the negative or the positive complex exponential, we can finally
recover at the output of the downconversion process the sideband that corresponds to the com-
plex conjugate of the initially upconverted complex envelope. In fact, this is not so problematic
as it is just a matter of a complex conjugate operation in the complex envelope and hence of
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managing the sign of the q (t) modulating component. We then get that the choice of sideband
transmitted on the positive part of the resulting RF bandpass signal spectrum can be simply
made through this q (t) sign selection. We observe that for a given standardized modulation
scheme definition, the convention is often that the positive sideband of the resulting bandpass
signal corresponds to s̃(t) = p (t) + jq (t) and the negative sideband to its complex conjugate.
Consequently, in this book we mostly assume that theoretical upconversions are implemented
using the positive complex exponential e+j𝜔ct and reciprocal downconversions with the corre-
sponding negative complex exponential, e−j𝜔ct. Trickier configurations can occur in practical
architecture choices. In some transceiver implementations we can indeed consider successive
up- or downconversions based on the selection of different sidebands to be transposed each
time. This may be the case in order to optimize the frequency planning of the transceiver
through the use of supradyne or infradyne conversions. This topic is discussed in Chapter 6
when dealing with more general real and complex frequency conversions.

Power Spectral Density

So far, we have used Fourier transforms directly to examine the spectral representation of
a given signal. As discussed in Section 1.1.1, this was done with the aim of keeping the
good phase relationship between the signal sidebands and thus interpreting the behavior
of a signal processing function in the frequency domain. However, for digital modulation
schemes generated through random data bits, the Fourier transform only provides a frequency
representation of a given realization of the modulating process over a finite time frame. It is
thus of interest to derive the PSD of those randomly modulated waveforms, taking into account
their statistical properties. Given that the complex envelope s̃(t) of an RF bandpass signal s(t)
contains all its statistical information, it is of interest to examine the link between the power
spectral densities of these two signals.

The simplest way to proceed is to derive the autocorrelation function of s(t) in order to take
its Fourier transform [3, 4]. We suppose that we are dealing with stationary bandpass signals,
at least up to second order. This is an assumption we can rely on in most cases for processes we
have to deal with in wireless transceivers, as discussed in Appendix 2. Assuming the ergodicity
of the modulating process, we get that the autocorrelation function of s(t), defined by

𝛾s×s(t1, t2) = lim
𝜏1 → −∞
𝜏2 → +∞

1
𝜏2 − 𝜏1 ∫

𝜏2

𝜏1

s(t − t1)s(t − t2)dt, (1.34)

can be evaluated as

𝛾s×s(t1, t2) = E
{

st1
st2

}
. (1.35)

Here E{.} stands for the stochastic expectation value and st for the random variable corre-
sponding to the sample of s(t) at time t. In order to go further, we can then use the fact
that s(t) is related to its complex envelope s̃(t), assumed defined as centered around the
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angular frequency 𝜔c, according to equation (1.7). As a result, the above expectation can be
written as

𝛾s×s(t1, t2) = 1
4

E
{(

s̃t1
ej𝜔ct1 + s̃ ∗t1e−j𝜔ct1

)(
s̃t2

ej𝜔ct2 + s̃ ∗t2e−j𝜔ct2
)}

. (1.36)

After expansion, we finally get that

𝛾s×s(t1, t2) = 1
4

E
{

s̃t1
s̃ ∗t2
}

ej𝜔c(t1−t2) + 1
4

E
{

s̃ ∗t1 s̃t2

}
e−j𝜔c(t1−t2)

+ 1
2

Re
{

E
{

s̃t1
s̃t2

}
ej𝜔c(t1+t2)

}
. (1.37)

As discussed in Appendix 2, a side effect of the stationarity of s(t), at least up to second order,
is that any of its complex envelopes must fulfill equation (A2.11). We thus get in particular
that E

{
s̃t1

s̃t2

}
= 0, and that the autocorrelation of s(t) finally reduces to

𝛾s×s(t1, t2) = 𝛾s×s(𝜏) = 1
4
𝛾s̃×s̃(𝜏)ej𝜔c𝜏 + 1

4
𝛾s̃×s̃(−𝜏)e−j𝜔c𝜏 . (1.38)

with 𝜏 = t1 − t2.
We can then derive the PSD of s(t) by taking the Fourier transform of this autocorrelation

function.2 For this, we can use the Fourier transform property, valid for all signals real or
complex, that links the Fourier transform of a signal with that of its time reversal copy
according to

ℱ{s̃(−t)}(𝜔) = ∫
+∞

−∞
s̃(−t)e−j𝜔tdt

= ∫
+∞

−∞
s̃(t)e−j(−𝜔)tdt

= ℱ{s̃(t)}(−𝜔). (1.39)

Thus, using this property while taking the Fourier transform of equation (1.38) finally
results in

Γs×s(𝜔) = 1
4
Γs̃×s̃(𝜔 − 𝜔c) + 1

4
Γs̃×s̃(−𝜔 − 𝜔c). (1.40)

2 Here and in the rest of this book, we follow the signal processing approach for the definition of the PSD, i.e. we
implicitly assume that we are working with normalized impedances when dealing with analog quantities for s(t).
Otherwise, as illustrated in Section 2.2.3, a factor Re{1∕Z0} should appear when s(t) represents a voltage over an
impedance Z0. In the same way, a factor Re{Z0} should appear when s(t) represents a current across Z0. But in most
formulas derived in this book, only relative power quantities are involved so that such normalization factors cancel, as
illustrated for instance in Chapter 5, in “Characterization of RF device nonlinearity” (Section 5.1.2). Nevertheless, for
the derivation of the absolute PSD of an analog quantity across a given load, the reader needs to add the corresponding
impedance term compared to the results derived in this book.
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As might be expected for the modulated bandpass RF signal s(t) that corresponds to the
frequency upconversion of the lowpass modulating signal s̃(t), its PSD is simply proportional
to that of s̃(t) once transposed around the angular frequencies ±𝜔c. Here, we recover that the
resulting sideband of the spectrum lying at negative frequencies is the flipped version of the
original lowpass signal spectrum, i.e. a transposition of Γs̃×s̃(−𝜔) around −𝜔c. As highlighted
in earlier sections, this behavior is related to the Hermitian symmetry that must be retrieved
on the Fourier transform of any real signal. We also observe that each sideband of the PSD of
the bandpass signal s(t), i.e. both that centered on +𝜔c and that centered on −𝜔c, is one fourth
that of its complex envelope. This means that the integration of the PSD of such sideband
corresponds to one half the original complex envelope signal power. As discussed in “Average
power” later in this section, this can be linked to the convention followed in this book for the
definition of this complex lowpass signal that is defined as twice the positive sideband of the
original bandpass signal it represents.

Impact of Stationarity
In the previous section, we assumed the bandpass signal s(t) to be stationary in order to derive
its PSD. However, we did not examine all the resulting characteristics of the spectrum for
such stationarity. In particular, in the light of the derivations performed in Appendix 2, we
get that the stationarity of s(t) implies that all of its complex envelopes s̃(t) satisfy equation
(A2.11), i.e.

𝛾s̃×s̃∗ (𝜏) = 0. (1.41)

We can then expand this equation in terms of the real and imaginary parts of s̃(t) = p (t) + jq (t)
following equation (A1.46b). Referring to equation (A2.13a), we then get that

𝛾p×p (𝜏) = 𝛾q×q (𝜏). (1.42)

Now taking the Fourier transform of this equation leads to

Γp×p (𝜔) = Γq×q (𝜔). (1.43)

We thus recover the remarkable result that the stationarity of s(t) implies that the real and
imaginary parts of any of its complex envelopes have the same PSD. We observe that this
result is related to the discussion in Appendix 2 that gives more insight into the conditions
required to achieve the generation of an RF bandpass signal that is stationary.

Impact of Spectral Symmetry on Top of Stationarity
Let us now go a step further and suppose that on top of dealing with a stationary bandpass
signal s(t), at least up to second order, we also face an even symmetry in the PSD of either
of its sidebands when inspected independently of the other one. Referring to equation (1.40),
we get that the spectral shape of the sidebands of such bandpass signal is proportional to that
of any of its complex envelopes. We thus get for instance that a symmetry regarding the zero
frequency in the spectrum of such complex envelope, let say s̃(t), necessarily corresponds to a
symmetry regarding 𝜔c of the positive sideband of s(t), 𝜔c being the center angular frequency
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chosen for the definition of s̃(t). The point is that such a characteristic leads to interesting
properties.

In order to examine this, let us assume that the PSD of s̃(t) exhibits an even symmetry, i.e.
is such that

Γs̃×s̃(𝜔) = Γs̃×s̃(−𝜔). (1.44)

At the same time, we know from the results derived in Appendix 1 that the PSD of any process
is necessarily a real valued function. Thus the relationship

Γs̃×s̃(𝜔) = Γ∗
s̃×s̃(𝜔) (1.45)

always holds. From the above two equations, we can thus deduce that the complex envelope
considered fulfills

Γ∗
s̃×s̃(𝜔) = Γs̃×s̃(−𝜔). (1.46)

This means that the even symmetry in the PSD of s̃(t) leads to a quantity that exhibits
Hermitian symmetry. Thus, recalling the property discussed during the derivation of equation
(1.8), we can deduce that the autocorrelation function of s̃(t), 𝛾s̃×s̃(𝜏), is necessarily a real
valued function. So its imaginary part must be null. We then deduce from equation (A1.46a)
that

𝛾p×q (−𝜏) − 𝛾p×q (𝜏) = 0. (1.47)

On the other hand, we get that any complex envelope of a stationary bandpass signal necessarily
fulfills equation (1.41). Using equation (A1.46b) to expand 𝛾s̃×s̃∗ (𝜏) in terms of the real and
imaginary parts of s̃(t) = p (t) + jq (t), we then get that

𝛾p×q (−𝜏) + 𝛾p×q (𝜏) = 0. (1.48)

From the above two equations, we thus deduce that

𝛾p×q (𝜏) = 𝛾q×p (𝜏) = 0. (1.49)

The real and imaginary parts of s̃(t) = p (t) + jq (t) are thus necessarily uncorrelated, even when
considered at different times. This is obviously a new property as, according to Appendix 2,
the stationarity of s(t) implies that p (t) and q (t) are uncorrelated when considered at the same
time t.

Conversely, considering a complex lowpass signal s̃(t) = p (t) + jq (t) such that equation
(1.49) holds, we necessarily get that 𝛾s̃×s̃(𝜏) is a real valued quantity by equation (A1.46a).
It follows that the PSD of s̃(t), which reduces to the Fourier transform of this autocorrelation
function, satisfies Hermitian symmetry. But, given at the same time that this quantity is also real
valued, we then recover the even spectral symmetry of this PSD, i.e. that Γs̃×s̃(𝜔) = Γs̃×s̃(−𝜔).
As highlighted at the beginning of the derivation, this symmetry property is thus necessarily
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recovered on the sidebands of the corresponding modulated bandpass signal s(t) relative to
the angular frequency 𝜔c used for the definition of the complex envelope s̃(t). At the same
time, we get that most of the modulating waveforms used in practical wireless standards are
defined such that 𝛾p×q (𝜏) = 𝛾q×p (𝜏) = 0, as discussed in Appendix 2. This explains why this
even spectral symmetry in the spectrum of modulated bandpass signals is encountered in most
practical cases. In spite of this, we often represent the spectrum as asymmetrical throughout
this book. This allows us to clearly highlight which sideband we are dealing with, i.e. whether
the complex envelope we are dealing with is s̃(t) = p (t) + jq (t) or its complex conjugate
s̃∗(t) = p (t) − jq (t) as discussed in “Positive vs. negative sidebands” earlier in this section.
Given that those complex envelopes are complex conjugates to each other, it follows that their
Fourier transforms are related as in equation (1.8), i.e. their magnitudes are symmetric to each
other with respect to the zero frequency. Thus, representing them as asymmetrical allows us to
distinguish easily between them, even if, when p (t) and q (t) are uncorrelated, the modulus of
their Fourier transform, and thus their power spectral densities, are evenly symmetrical. In this
last case, it is only the argument of their Fourier transform that remains an odd function of the
frequency, and it is only the phase difference between them that distinguishes these sidebands.

We can even go a step further. Recall that for a stationary bandpass signal s(t), the real
and imaginary parts of any of its complex envelopes s̃(t) = p (t) + jq (t) necessarily have the
same autocorrelation function as given by equation (1.42). Thus, if we now assume that we
are also dealing with a signal whose spectrum exhibits the even symmetry discussed above,
we necessarily have that p (t) and q (t) are also uncorrelated as given by equation (1.49). Based
on those two results, equation (A1.46a) reduces to

𝛾s̃×s̃(𝜏) = 𝛾p×p (𝜏) + 𝛾q×q (𝜏) = 2𝛾p×p (𝜏) = 2𝛾q×q (𝜏). (1.50)

Now taking the Fourier transform of this equation, we finally obtain

Γs̃×s̃(𝜔) = Γp×p (𝜔) + Γq×q (𝜔) = 2Γp×p (𝜔) = 2Γq×q (𝜔). (1.51)

We now see that s̃(t) and thus s(t) also have the same spectral shape as p (t) and q (t) when this
spectrum is evenly symmetric regarding the carrier center angular frequency used to define
the complex envelope. Practically speaking, this property is important not only for the study
of modulated RF bandpass signals but also for RF bandpass noise, as discussed in Section
1.2. Indeed, the stationarity of an RF bandpass noise source allows us to link the PSD of the
bandpass noise term n(t) it delivers to its load, to the PSD of the real and imaginary parts of
any of its complex envelopes ñ(t). It is important to link the properties of the noise terms at
the input and output of a complex frequency conversion, for instance.

Average Power

Let us now focus on the average power of a bandpass signal, or more precisely on the link
between this quantity and the statistical properties of any of its complex envelopes. Let us
consider the expression for the bandpass signal s(t) as a function of its complex envelope s̃(t),
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defined as centered around the carrier angular frequency 𝜔c. According to equation (1.27),
this expression reduces to

s(t) = Re
{

s̃(t)e+j𝜔ct
}

. (1.52)

In order to derive the average power of this signal, we can thus consider further either the
direct time domain average or the stochastic approach. Under ergodicity, the two approaches are
expected to give the same result. Here, we initially adopt the time domain average approach
as it leads to an intuitive explanation for the result when considering the derivation in the
frequency domain.

Let us therefore evaluate the long-term average power Ps of this bandpass signal as its root
mean square (RMS) value. Considering the complex envelope s̃(t) expressed in its polar form
as s̃(t) = 𝜌(t)ej𝜙(t), we can then write:3

Ps = lim
𝜏1 → −∞
𝜏2 → +∞

1
𝜏2 − 𝜏1 ∫

𝜏2

𝜏1

[𝜌(t) cos(𝜔ct + 𝜙(t))]2dt. (1.53)

In order to evaluate this integral, we can linearize the cosine function using

cos2(𝜃) = 1 + cos(2𝜃)
2

. (1.54)

This leads to

Ps = lim
𝜏1 → −∞
𝜏2 → +∞

1
𝜏2 − 𝜏1 ∫

𝜏2

𝜏1

𝜌2(t)
2

dt

+ lim
𝜏1 → −∞
𝜏2 → +∞

1
𝜏2 − 𝜏1 ∫

𝜏2

𝜏1

𝜌2(t)
2

cos(2𝜔ct + 2𝜙(t))dt. (1.55)

The first term on the right-hand side obviously depends only on the amplitude part of the
modulating signal, i.e. on the modulus of the complex envelope s̃(t). More precisely, it is equal
to half the RMS value of the modulus of this complex envelope. We remark that it reduces to
the classical value 𝜌2∕2 when dealing with a constant amplitude bandpass signal. And given
that it directly gives the average power of this particular bandpass signal, we can then guess
that the second term in the above expression is null. This is indeed true as long as the spectrum
of s̃(t) can be assumed narrowband with respect to the carrier angular frequency 𝜔c. In other
words, if the spectrum of s̃(t) lies over the frequency band [−Ω∕2,Ω∕2], we need Ω ≪ 𝜔c.

We first interpret this condition in the time domain. As can be seen in the left part of
Figure 1.5, as long as the time domain variations of 𝜌2(t) are weak over a period 2𝜋∕𝜔c of
the carrier, the integral of 𝜌2(t) cos(2𝜔ct + 2𝜙(t)) over this period is necessarily almost null.

3 As highlighted in “Power spectral density” earlier in this section, we adopt the signal processing approach for this
definition as this expression implicitly assumes that we are working with normalized impedances when dealing with
analog quantities for s(t).
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Figure 1.5 Illustration in the frequency and time domain of the bandpass signal average power esti-
mation mechanism – The long-term average power estimation of s(t) = 𝜌(t) cos(𝜔ct + 𝜙(t)) involves the
time average of the high-frequency term 𝜌2(t) cos(2𝜔ct + 2𝜙(t)) (left). This contribution is expected to be
negligible as can be seen in the spectral domain (right). If we refer to equation (1.60), it indeed involves
the averaging of the product of two non-overlapping spectrum, F(𝜔) = S̃(𝜔) and G∗(𝜔) = S̃(−𝜔 − 2𝜔c).

We can thus expect that the overall integral toward infinity is also almost null, or at least
negligible regarding the first term of equation (1.55). This condition can be interpreted more
clearly in the frequency domain. Now we may need to consider Fourier transforms of the
corresponding signals. As discussed in Section 1.1.1, for that to be possible we can initially
assume a signal corresponding to an observation over a finite duration, for instance limited to
[0, T], of a realization of the modulating process. Under that assumption, we can rewrite the
second term of equation (1.55) as

I = 1
2T ∫

T

0
𝜌2(t) cos(2𝜔ct + 2𝜙(t))dt. (1.56)

This quantity can then be expressed in terms of the complex envelope s̃(t) through the use of
equation (1.52). This leads to

I = 1
2T

Re

{
∫

T

0
s̃2(t)ej2𝜔ctdt

}
. (1.57)

With s̃(t) vanishing outside [0, T], this integral can be extended toward infinity:

I = 1
2T

Re

{
∫

+∞

−∞
s̃(t)
[
s̃∗(t)e−j2𝜔ct

]∗
dt

}
. (1.58)

Then, using the Fourier transform property, which states that

∫
+∞

−∞
f (t)g∗(t)dt = 1

2𝜋 ∫
+∞

−∞
F(𝜔)G∗(𝜔)df , (1.59)
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we finally get that I is proportional to

Re
{
∫ S̃(𝜔)S̃(−𝜔 − 2𝜔c)d𝜔

}
, (1.60)

where S̃(𝜔) stands for the Fourier transform of the complex envelope s̃(t). As can be understood
by inspecting the representation shown in Figure 1.5, we then get that for 𝜔c high enough with
respect to Ω, the spectra involved in that equation are non-overlapping. We can thus expect
that their product is null, as is the above integral. We must mention that having assumed a
finite temporal support over [0, T] for the time domain signals, their spectra necessarily spread
toward infinity. On the other hand, we get that their asymptotic behavior is also necessarily
decreasing in order to have an overall power that remains finite. This means that the above
integral necessarily tends to zero as 𝜔c becomes higher and higher compared to Ω. We
thus see that the second term of the right-hand side of equation (1.55) necessarily remains
negligible compared to the first. As a result, the power of the modulated bandpass signal s(t)
can effectively be estimated as half the RMS value of the modulus of its complex envelope
according to

Ps = lim
𝜏1 → −∞
𝜏2 → +∞

1
𝜏2 − 𝜏1 ∫

𝜏2

𝜏1

𝜌2(t)
2

dt. (1.61)

Then, assuming the ergodicity of the process we are dealing with, we can rewrite this result
as

Ps =
E
{
𝜌 2

t

}
2

, (1.62)

so that under stationarity we finally get

Ps =
E{𝜌2}

2
. (1.63)

Alternatively, given that s̃(t) is a lowpass process, we remark that its power is simply given by
E{s̃s̃∗} = E{𝜌2}. We can therefore write

Ps =
E{𝜌2}

2
= 1

2
Ps̃. (1.64)

The long-term average power of a bandpass signal s(t) is therefore equal to half the long-term
average power of its lowpass complex envelope s̃(t). This factor 1∕2 is in fact related to the
definition used in this book for the complex envelope as already discussed in Section 1.1.3. In
the same way, as reviewed in Section 1.1.2, we may recall that we can define as many complex
envelopes as we want for a given bandpass signal. All those complex envelopes necessarily
have the same modulus if we refer to equation (1.25). We thus get that the quantity defined
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by equation (1.61) or (1.64) necessarily remains well defined whatever the complex envelope
considered to perform the derivation.

In conclusion, it is of interest to highlight the link that holds between the average power
of the bandpass signal s(t) and the average power of the real and imaginary parts of one of
its complex envelopes s̃(t) = p (t) + jq (t). Using equation (A1.39), we can immediately write
under stationarity that

Ps =
1
2

Ps̃ =
1
2

E{s̃s̃ ∗} = 1
2
𝛾s̃×s̃(0). (1.65)

This result can be expanded in terms of the autocorrelation functions of the real and imaginary
parts of the complex envelope s̃(t) by using equation (A1.46a). This finally leads to

Ps =
1
2
𝛾s̃×s̃(0) = 1

2
[𝛾p×p (0) + 𝛾q×q (0)]. (1.66)

We can thus sum the average power of the in-phase and in-quadrature components, p (t) and
q (t) respectively, to get twice the average power of the corresponding bandpass signal s(t).
This property remains valid for p (t) and q (t) whether correlated or not. The deep reason for
this is that the bandpass signal s(t) is constructed through the sum of orthogonal waveforms
that carry the information of p (t) and q (t). Thus, whatever the correlation behavior of p (t)
and q (t), the powers of the orthogonal waveforms that carry their information sum together
during the derivation of the power of the final bandpass RF signal.

Peak to Average Power Ratio and Crest Factor

Two quantities are of particular interest for the characterization of the waveforms that are
processed in a transceiver: the peak to average power ratio (PAPR) and the crest factor (CF).
Although the purpose of those two quantities is to characterize the amplitude variations of
a given signal, they are up to a point related to different problems in the dimensioning of
transceivers.

For instance, the PAPR of a bandpass signal s(t) of the form 𝜌(t) cos(𝜔ct + 𝜙(t)) is defined
as the ratio between its peak and average power. Although this definition may look clear
enough at first glance, it remains of interest to discuss what we call peak power in the wireless
transceiver perspective. In so doing, we may anticipate the discussion in Chapter 5 as the
analytical derivations performed in this chapter clearly highlight that it is the square of the
magnitude of the modulating waveform, i.e. 𝜌2(t), that is involved in the formulations related
to RF compression. We can then understand that when talking about the instantaneous power
variations of a bandpass RF signal, we are in fact talking about the variations linked to the
modulation part only of the signal. Consequently, the peak power involved in the PAPR
definition reduces to a peak average power of the bandpass modulated signal s(t) over a
duration short enough that the characteristics of the modulation remain almost constant, but
long enough that many carrier periods have occurred. Classically, this duration can be assumed
in the range of a data symbol.
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We can now derive an analytical expression for the PAPR of s(t) assuming that its spectrum
spreads over a bandwidth of width Ω such that Ω ≪ 𝜔c; that is, assuming that s(t) is narrow-
band, we can directly reuse the material derived in the previous section to express its average
power Ps through equation (1.61). In order to derive the PAPR of this signal, it thus remains
to derive an expression for its peak power. We therefore reconsider the expansion of s2(t) as

s2(t) =
𝜌2(t)

2
+

𝜌2(t)
2

cos(2𝜔ct + 2𝜙(t)). (1.67)

The first term is linked to the modulation process only, and the second term is a high frequency
component. The latter term thus vanishes when averaged. In the present case, the power
variations we are looking for can be estimated through an average of this instantaneous
power over a short duration 𝜏2 − 𝜏1 that is in the range of the data symbol, say 2𝜋∕Ω. Thus,
given that the modulation scheme is assumed narrowband regarding the carrier frequency, we
necessarily get that at least a few carrier periods occur during 𝜏2 − 𝜏1. This means that as long
as the averaging period is short enough that the modulation scheme amplitude does not vary
much, but long enough to have an averaging of the carrier over few periods, we can write

p1(t) = 1
𝜏2 − 𝜏1 ∫

t+𝜏2

t+𝜏1

𝜌2(t′)
2

dt′ ≈
𝜏2 − 𝜏1

𝜏2 − 𝜏1

𝜌2(t)
2

=
𝜌2(t)

2
, (1.68a)

p2(t) = 1
𝜏2 − 𝜏1 ∫

t+𝜏2

t+𝜏1

𝜌2(t′)
2

cos
(
2𝜔ct′ + 2𝜙(t′)

)
dt′ ≈ 0. (1.68b)

We then get that the second contribution p2(t) is almost null, whereas the first term is
still proportional to the instantaneous power of the modulating waveform. As a result, the
instantaneous power variations p(t) linked only to the envelope contributions can be estimated
as

p(t) = p1(t) + p2(t) ≈
𝜌2(t)

2
. (1.69)

We can thus express the PAPR as the ratio between the peak value of p(t) and the average
power Ps given by equation (1.61). This results in

PAPR =
maxt{𝜌

2(t)}

𝜌2(t)
, (1.70)

where (.) denotes the time average and max{.} the maximum value. Since we consider 𝜌(t)
to be a positive quantity, and due to the fact that the square function is strictly monotonic for
such a positive quantity, the maximum of the square is therefore equal to the square of the
maximum. Thus, denoting by 𝜌pk the peak value of 𝜌(t), we simply get that

PAPR =
𝜌 2

pk

𝜌2(t)
(1.71)
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or, in decibels,

PAPR|dB = 10 log10(PAPR) = 10 log10

(
𝜌 2

pk

𝜌2(t)

)
. (1.72)

Up to now, we have adopted a deterministic approach to the derivation of the PAPR quantity
through time averaging. But, dealing with randomly modulated signals, we can transpose those
definitions using stochastic concepts. Under ergodicity and assuming the stationarity of those
processes, which is a reasonable assumption in the wireless transceiver area as discussed in
Appendix 2, we can write the above expressions as

PAPR =
𝜌 2

pk

E{𝜌2}
, (1.73a)

PAPR|dB = 10 log10

(
𝜌 2

pk

E{𝜌2}

)
. (1.73b)

The peak value 𝜌pk of 𝜌(t) may thus be defined in turn in a probabilistic way. In that case,
this peak value can be defined such that a given percentage of the realizations of 𝜌 are lower
than 𝜌pk. In practice the value of 99.9% is often used for the definition. Having that 𝜌 is a
positive quantity, we thus get

F(𝜌pk) = ∫
𝜌pk

−∞
p(𝜌)d𝜌 = ∫

𝜌pk

0
p(𝜌)d𝜌 = 0.999. (1.74)

Here, p(𝜌) stands for the probability density function (PDF) of 𝜌 and thus F(𝜌) for its cumulative
distribution function (CDF). Obviously, the definition using the complementary cumulative
distribution function (CCDF), Fc(𝜌pk), can be used instead. This leads to

Fc(𝜌pk) = ∫
+∞

𝜌pk

p(𝜌)d𝜌 = 0.001. (1.75)

We observe that effective modulating waveforms necessarily remain bounded in amplitude
whatever the pattern of modulating bits that is used. Thus, an upper bound is always well
defined for the amplitude of those waveforms. But for some schemes this kind of maximum
value can occur with a very low probability. In that case, it may be of interest to adopt
a statistical approach in order not to overdimension the data path only for events with no
significant contributions to overall system performance. The orthogonal frequency division
multiplexing (OFDM) signals introduced in “OFDM” (Section 1.3.3) are a good example
of this.

Let us now focus on the CF. This quantity is classically defined as the peak amplitude of a
given waveform over its RMS value. As a result, we can write the crest factor CF of the signal
s(t) as

CF =
spk√
s2(t)

, (1.76)
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with spk = max{s(t)} the peak value of s(t). Alternatively, it can be expressed in decibels as

CF|dB = 20 log10(CF) = 20 log10

⎛⎜⎜⎝
spk√
s2(t)

⎞⎟⎟⎠. (1.77)

As was done for the PAPR, under ergodicity and still assuming the stationarity of the processes
we are dealing with, we can transpose those expressions to the stochastic case:

CF =
spk√
E{s2}

, (1.78a)

CF|dB = 20 log10

(
spk√
E{s2}

)
, (1.78b)

where the signal peak value depends on a chosen bound for the CDF of the signal as discussed
above. Compared to the definition of the PAPR, the CF is not related to the instantaneous
power of the considered signal but directly to its amplitude. Thus, according to our discussion
so far, we may initially expect the CF to be more useful for characterizing lowpass signals than
RF bandpass ones. As illustrated, for instance in Chapter 7, the CF of baseband modulating
waveforms indeed drives the scaling of those signals along the data path in order to avoid
any potential saturation. Nevertheless, even if the CF is more suited to addressing lowpass
signal problems, there is nothing to prevent its use in deriving bandpass signals. For instance,

a continuous wave (CW) signal has both a PAPR of 1, i.e. 0 dB, and a CF of
√

2, i.e. 3 dB. In
terms of physical interpretation of those results, it may be of interest to highlight that the deep

reason for this ratio of
√

2 between those quantities in the present case comes from the fact that
the PAPR focuses on the power variations, i.e. on the variations of the complex envelope only,
whereas the CF takes into account the variations of the overall signal, i.e. including those of the

sinusoidal carrier. Thus, it is natural to wonder if this ratio of
√

2 cannot be generalized to any
bandpass signal s(t). We can consider the following expression for its complex envelope s̃(t):

s̃(t) = p (t) + jq (t) = 𝜌(t)ej𝜙(t). (1.79)

We can then write

|s̃(t)|2 = 𝜌2(t) = p 2(t) + q 2(t). (1.80)

Using the stochastic approach, this means that under stationarity we can transpose equation
(1.66) as

E{𝜌2} = E{p 2} + E{q 2}. (1.81)
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But, as discussed in “Impact of stationarity” earlier in this section, the stationarity of s(t) also
leads to having the same power for p (t) and q (t). We can thus write

E{𝜌2} = 2E{p 2} = 2E{q 2}. (1.82)

On the other hand, from a statistical point of view we can expect that the maximum value that
p (t) or q (t) can reach is of the same order of magnitude as the maximum value of 𝜌(t). We can
indeed assume in most cases that the maximum value of 𝜌(t) occurs when the contributions of
one of the signals p (t) or q (t) is negligible with regard to the other. Thus, comparing equations
(1.73a) and (1.78a), we see that we can approximate for most bandpass signals the result that
was exact for CW, i.e. that

CFp = CFq ≈
√

2PAPR𝜌, (1.83)

or, in decibels,

CFp
||dB = CFq

||dB ≈ PAPR𝜌
||dB + 3, (1.84)

In those equations, CFp and CFq stand respectively for the CF of the real and imaginary parts
p (t) and q (t) of the complex envelope that describes the modulating waveform considered,
and PAPR𝜌 for the PAPR of the corresponding bandpass RF modulated signal. This behavior
is confirmed by the examples detailed in Section 1.3.

Instantaneous Amplitude and Instantaneous Frequency

Let us now clarify two other concepts classically associated with bandpass RF signals, namely
their instantaneous amplitude and their instantaneous phase or frequency. At first glance,
we might be tempted to say that these quantities are quite straightforward to define. Indeed,
considering, for instance, a modulated bandpass signal that can be written using equation
(1.28b) in the form s(t) = 𝜌(t) cos(𝜔ct + 𝜙(t)), we could obviously call 𝜌(t) the instantaneous
amplitude of s(t) and 𝜔ct + 𝜙(t) as the instantaneous phase of s(t). Nevertheless, we might
wonder whether this analytical expression for s(t) is unique and thus whether the resulting
expressions for its instantaneous amplitude and phase are also unique. Moreover, considering
the situation where s(t) is a bandpass signal for which no particular analytical expression of this
form is available, we can guess what is the correct way to define and derive those quantities.

Let us first focus on the problem of uniqueness by considering the definition of the instan-
taneous frequency. Recall that the concept of frequency in itself is naturally associated with
Fourier analysis. Perhaps we can rely on this theoretical tool to formalize the instantaneous
frequency concept we are looking for. Unfortunately, in order to correctly evaluate the angular
frequency of a CW in the form

scw(t) = 𝜌 cos(𝜔ct), (1.85)

we require an infinite duration of observation. Practically speaking, this is the cost of having
infinite integration bounds in the integral of the Fourier transform. As soon as we try to “locate”
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the frequency content of a signal in the time domain we get a limitation in terms of frequency
resolution related to the Heisenberg uncertainty principle. This limitation shows that Fourier
analysis may not be the right tool for the definition of an instantaneous frequency. We can
look at another approach when considering a generalization of the above CW signal with an
arbitrary time dependent phase 𝜑(t) in the form

spm(t) = 𝜌 cos(𝜑(t)). (1.86)

Looking at the analytical expression for this constant amplitude signal, it seems natural to
define its instantaneous frequency, f (t), as

f (t) = 1
2𝜋

d𝜑(t)
dt

. (1.87)

This definition indeed leads to no ambiguity in the definition of f (t) and gives good results
when applied to a CW signal such as scw(t). Nevertheless, a problem occurs if we now consider
a general bandpass signal,

s(t) = 𝜌(t) cos(𝜑(t)), (1.88)

that is now also amplitude modulated. In this latter case the direct application of equation
(1.87) gives a result that is not unique. This can be seen by considering a time dependent
function 𝜉(t), such that 0 < 𝜉(t) < 1, that allows s(t) to be rewritten as

s(t) =
𝜌(t)
𝜉(t)

𝜉(t) cos(𝜑(t)), (1.89)

or alternatively, in a form more suited to our purposes, as

s(t) = 𝜌′(t) cos(𝜑′(t)), (1.90)

with

𝜌′(t) = 𝜌(t)∕𝜉(t), (1.91a)

𝜑′(t) = arccos(𝜉(t) cos(𝜑(t))). (1.91b)

We thus get two different analytical expressions for the same bandpass signal s(t). The
direct application of equation (1.87) to those expressions therefore results in two different
expressions for the instantaneous frequency of s(t). Obviously, this is unsatisfactory.

Nowadays, the most commonly used definition for the instantaneous frequency of a bandpass
signal is that given by Ville in 1948 [5]. This definition involves the analytic signal associated
with the considered bandpass signal according to the definition given in Section 1.1.2. Indeed,
reconsidering the former CW signal scw(t), we can see that by using equations (1.16) and
(1.17) we can express its analytic signal, scw,a(t), as

scw,a(t) = 𝜌ej𝜔ct. (1.92)
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We can therefore conclude that the angular frequency of scw(t) matches the rotation angular
speed of the vectorial representation in the complex plane of scw,a(t). What is interesting in this
way of proceeding is that the analytic signal derived from any real bandpass signal is unique. It
can therefore be used for the generalization of the concept of instantaneous frequency without
ambiguity. Thus, we can use equations (1.27) and (1.5) to express the bandpass signal s(t) as
a function of its analytic signal sa(t):

s(t) = Re{sa(t)} = 1
2

(
sa(t) + s ∗a (t)

)
. (1.93)

Then, given that sa(t) and s ∗a (t) have the same modulus but opposite arguments, we can represent
those quantities in the complex plane as vectors of the same magnitude but symmetrical with
regard to the real axis. As expected, and as shown in Figure 1.6, their sum therefore remains
a real quantity equal to twice the value of s(t). Practically speaking, we thus get that the
instantaneous phase 𝜑(t) of s(t) can be defined as the argument of sa(t) or equivalently its
instantaneous frequency, f (t), as the angular velocity of the representation in the complex
plane of this analytic signal. In the same way, the instantaneous amplitude 𝜌(t) of s(t) can
be defined without ambiguity as the modulus of sa(t). In terms of analytical expressions, we
obtain

f (t) = 1
2𝜋

d𝜑(t)
dt

= 1
2𝜋

d arg{sa(t)}

dt
, (1.94a)

𝜌(t) = |sa(t)|. (1.94b)

For our purposes, it is of interest to link those quantities to the characteristics of the
complex envelopes of the bandpass signals we are dealing with. Let us therefore suppose

0

|S+(ω)| = 1
2

(ω)

ωc−ωc

|S−(ω)| = 1
2 {s ∗

a

sa

( t )}(ω)

|S (ω)|
(nat. unit)

ω
(rad/s)

0

φ (t)

−φ (t)

ρ(t)

ρ(t)

sa (t)

s∗
a (t)

2s(t)

Im
(nat. unit)

Re{ }

{sa (t)}

(nat. unit)
{ (t)}

Figure 1.6 Instantaneous amplitude and phase definition of a real bandpass signal through its associated
analytic signal – A real bandpass signal, s(t), can be decomposed as half the sum of its analytic signal,
sa(t), and its complex conjugate according to equation (1.93). In this decomposition, the analytic signal is
linked to the signal corresponding to the positive sideband of s(t) and its complex conjugate to the signal
corresponding to the negative sideband (left). The representation in the complex plane of those signals
illustrates the definition of the instantaneous amplitude, 𝜌(t), and phase, 𝜑(t), of s(t) as the modulus and
argument of sa(t), respectively (right).
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that s̃(t) = 𝜌(t) ej𝜙(t) is the complex envelope defined as centered around 𝜔c of s(t). Inverting
equation (1.21), we immediately get the following expression for the analytic signal sa(t)
associated with s(t):

sa(t) = s̃(t)ej𝜔ct = 𝜌(t) ej(𝜔ct+𝜙(t)). (1.95)

The instantaneous phase of s(t) can then be expressed as

𝜑(t) = arg{sa(t)} = 𝜔ct + arg{s̃(t)}

= 𝜔ct + 𝜙(t), (1.96)

and its instantaneous frequency as

f (t) = 1
2𝜋

d arg{sa(t)}

dt
= 1

2𝜋

(
𝜔c +

d arg{s̃(t)}

dt

)
= 1

2𝜋

(
𝜔c +

d𝜙(t)
dt

)
. (1.97)

In the same way, its instantaneous amplitude can then be expressed as

𝜌(t) = |sa(t)| = |s̃(t)|. (1.98)

Thus the instantaneous frequency of an RF bandpass signal is precisely the sum of the carrier
frequency and the normalized time derivative of the phase of its complex envelope that is
defined as centered around this carrier frequency. This instantaneous frequency is thus related
to the angular rate at which the complex envelope describes the modulation trajectory in the
complex plane. As a side effect, it also allows us to understand how the spectral limitation
of the modulating signal impacts the speed at which the vector representing the complex
envelope can go from a data symbol representation to another one in the complex plane, and
thus impacts the relationship between the data symbol rate and the instantaneous frequency
variations of the resulting modulated bandpass signal.

Following those definitions, it may be of interest to recall that an infinity of complex
envelopes can be defined for a given bandpass signal, as discussed in Section 1.1.2 “Complex
envelope concept” (Section 1.1.2). Nevertheless, all these complex envelopes are derived from
the same unique analytic signal, so that they all fulfill equation (1.25). As a result, the above
relationships linking the instantaneous amplitude and phase or frequency to the characteristics
of the complex envelopes result in well-defined quantities.

In conclusion, it may be of interest to illustrate the concepts discussed so far in this section
with an example. In Section 1.3.3 we examine the characteristics of a wideband code division
multiple access (WCDMA) modulated bandpass signal, s(t), in two different configurations.
In the first, the carrier angular frequency 𝜔c is low enough that it is of the same order of
magnitude as the modulation spectrum width even though still ensuring the bandpass condition.
Thus, given that the spectrum of a WCDMA modulation spreads in a frequency bandwidth
slightly lower than [−1∕(2Tc), 1∕(2Tc)], where Tc represents the chip rate as detailed in “Code
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Division Multiple Access” in Section 1.3.3, we can select 𝜔c as equal to 0.8 × 2𝜋∕Tc for our
example. In the second configuration, the carrier angular frequency is high enough that s(t)
can be considered as narrowband. We can select, for instance, 𝜔c as equal to 4 × 2𝜋∕Tc. As
illustrated in Figure 1.7, we then get in the first situation that the frequency of occurrence
of the instantaneous amplitude variations is of the same order of magnitude as those of the
carrier. As a result, the definition of an instantaneous amplitude and phase or frequency of s(t)
is not so obvious just from the time domain representation of s(t). In contrast, as soon as 𝜔c
increases compared to the modulating bandwidth, the shape of s(t) clearly matches that of a
CW signal whose amplitude and frequency are slowly varying according to its instantaneous
amplitude and frequency. Nevertheless, it is interesting to notice that the modulus and phase of
the analytic signal of s(t) lead to an unambiguous definition for those quantities in both cases.
Moreover, we recover that whatever the chosen carrier angular frequency, all the resulting
bandpass signals necessarily have the same instantaneous amplitude. The same holds for their
instantaneous frequency variations when considered relative to their carrier frequencies.

1.2 Bandpass Noise Representation

The complex envelope is a valuable concept in performing analytical derivations for transceiver
budgets, and we now focus on extending it to bandpass noise. Or rather, we now focus on
the additional properties of complex envelopes for bandpass noise as the complex envelope,
originally introduced for bandpass deterministic signals in Section 1.1.2, has already been
implicitly extended to bandpass stochastic processes when considering modulated bandpass
signals. Practically speaking, we consider that each realization of a given bandpass process is
also bandpass. We can thus define a complex envelope associated with each of its realizations,
thus in turn allowing us to define the complex envelope as a stochastic process.

There are new features of complex envelopes to consider when dealing with bandpass noises
as classically encountered in practical wireless transceiver implementations. For instance, we
get that the distribution of most such bandpass noises is Gaussian, which leads to interesting
characteristics for their complex envelopes. Furthermore, those bandpass noises can often be
seen as additive with regard to the signal being processed along the line-up. In that case, the
bandpass behavior of both the noise and the signal allows for an interesting decomposition of
the noise in terms of amplitude and phase noise, i.e. in terms of noise components that corrupt
the instantaneous amplitude or the instantaneous phase respectively of the bandpass signal it
adds to. Due to the importance of this decomposition in the field of transceivers, it is important
to introduce it correctly based on the complex envelope concept.

Before going any further, however, we discuss the bandpass concept itself for noise signals
as classically encountered in practical transceivers. Referring to the discussion at the beginning
of Chapter 4, we get that noise components such as thermal noise have a spectrum that spreads
up to a very high frequency. Although the bandpass concept requires only that the spectral
extent has no power density at the zero frequency, it turns out that the noise processes we need
to consider for the derivation of transceiver budgets often have limited bandwidth. Practically
speaking, there are various reasons for that:

(i) On the receive side, we always get channel filters that select the desired signal. We thus
get that the noise contributions that would lie outside their passband are canceled, or at
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Figure 1.7 Bandpass signal and associated instantaneous amplitude and frequency – When the carrier
frequency is set to 0.8∕Tc, where Tc is the chip rate, a WCDMA bandpass signal has a spectrum with
low frequency components (top, dashed). This results in a time domain waveform (middle, dashed) that
does not highlight clearly the shape of the instantaneous amplitude waveform (middle, solid). This is
not the case when the carrier frequency is set to 4∕Tc (top, dot-dashed), which results in a clear shaping
of the time domain waveform by the instantaneous amplitude (middle, dot-dashed). In these two cases,
the bandpass signals have the same instantaneous amplitude (middle, solid) and the same instantaneous
frequency variations around the carrier frequency (bottom).
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least reduced to a negligible level. As a result, even when dealing with noises that are
broadband in essence due to their physical origin, we can restrict their description to the
fraction that lies within the receiver passband in order to perform the line-up budget. We
observe that it leads to the concept of receiver noise bandwidth, which directly matches
the receiver passband when dealing with a noise process that has a flat spectral density.

(ii) On the transmit side, we can invoke the same kind of argument. We observe, for instance,
that analog reconstruction filters are often required in the line-up as discussed in Section
4.6. Any broadband noise contribution that experiences such filtering can thus be seen as
a narrower bandpass noise at the output of the line-up.

We also observe that various noise contributions have a spectral extent naturally in the
region of that of the signal being processed. This is the case, for instance, for the distortion
terms that are generated from it through linear or nonlinear effects. In any case, the concept
of the complex envelope is well suited for performing analytical derivations involving such
noise contributions. Among other things, it allows interesting vectorial representations in
the complex plane that illustrate underlying phenomena that are sometimes not immediately
obvious.

1.2.1 Gaussian Components

Let us now detail some characteristics of complex envelopes of real bandpass noises that
exhibit a Gaussian distribution – or, rather, of Gaussian bandpass processes in general. The
Gaussian distribution is naturally associated with analog noises, the most famous being thermal
noise as discussed in Chapter 4, and is encountered in many situations in practice, among them
the following:

(i) The modulating waveforms used in some wideband wireless systems. As discussed in
Section 1.3.3, the Gaussian distribution can be seen as a limit case for the distribution of
most of the resulting modulated bandpass signal.

(ii) The wireless propagation channel in a mobile environment. As discussed in Chapter 2,
the simplest propagation channel is the Rayleigh channel. In this channel model we have
a Gaussian distribution for the bandpass signal that goes through it, thus resulting in a
Rayleigh distribution for its instantaneous amplitude.

Looking at those various use cases, we can appreciate the importance of going through
the statistical properties of the Gaussian real bandpass process and its associated complex
envelopes.

Let us suppose that we are dealing with a Gaussian bandpass process s(t) whose PSD
spreads over a bandwidth 𝛿𝜔 centered around 𝜔c as illustrated in Figure 1.8. Generally
speaking, the term “Gaussian process” means that for any set of N samples of s(t), taken at

times t1, t2,… , tN , the vector
(
st1

, st2
,… , stN

)T
is a real normal random vector as defined in

Appendix 3. Practically speaking, when it exists, the PDF of
(
st1

, st2
,… , stN

)T
, p(x1,… , xN),

has a multivariate normal distribution as given by equation (A3.2). Furthermore, correlations
can exist between successive time samples due to the finite spectral bandwidth of the process.
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Figure 1.8 Power spectral density and probability density function of a real bandpass Gaussian
process – A real Gaussian bandpass process, s(t), has a PSD that is non-vanishing only over a finite
frequency band, 𝛿𝜔, that does not go down to the zero frequency (left). Due to the finite spectral width
of the process, correlation terms can exist between successive time samples of the process. Considered
at a given time t, the random variable st has a Gaussian distribution (right).

This simply means that the noise process we are considering is not white in the sense that
its flat spectrum does not spread toward infinity. As a result, the covariance matrix 𝚺, whose
elements are given by equation (A3.6), can be non-diagonal. The PDF of a single sample
random variable st reduces to a Gaussian distribution.

Let us now suppose that we are dealing with a centered and stationary bandpass process. This
is indeed a reasonable assumption in the field of wireless transceivers. Practically speaking,
it means we can assume that the PDF p(st) of st is independent of t and that it takes the
simple form

p(st) = p(s) = 1√
2𝜋𝜎

e
− s2

2𝜎2 , (1.99)

with

E{s} = 0, (1.100a)

E{s2} = 𝜎2. (1.100b)

As the realization s(t) is bandpass, we can consider for it the complex envelope s̃(t), defined
as centered around the angular frequency 𝜔c. As a first step, let us consider a Cartesian
representation of s̃(t) = p (t) + jq (t). This means that s(t) can be expressed as

s(t) = Re
{

s̃(t)ej𝜔ct
}

= p (t) cos(𝜔ct) − q (t) sin(𝜔ct). (1.101)

On the other hand, we get that the stationarity of s(t) leads to 𝛾s̃×s̃∗ (𝜏) = 0 following the
arguments in Appendix 2, and in particular equation (A2.11). This property, by which the

complex normal random vector
(

s̃t1
, s̃t2

,… , s̃tN

)T
is said to be circular, also leads to p (t) and

q (t) being uncorrelated when considered at the same time, as given by equation (A2.13b) for
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𝜏 = 0. Under our assumptions, the result is that pt and qt are independent, with a distribution
given by [3, 4]

p(pt) = p(p ) = 1√
2𝜋𝜎

e
− p 2

2𝜎2 , (1.102a)

p(qt) = p(q ) = 1√
2𝜋𝜎

e
− q 2

2𝜎2 , (1.102b)

with

E{p } = E{q } = E{s} = 0, (1.103a)

E{p 2} = E{q 2} = E{s2} = 𝜎2. (1.103b)

We thus get that the real and imaginary parts, p (t) and q (t), of the complex envelopes that
represent a stationary and centered bandpass Gaussian process also have a centered Gaussian
distribution with the same variance as the original bandpass process.

An additional interesting property for p (t) and q (t) occurs when s(t) also exhibits a spectral
symmetry with regard to the angular frequency chosen for the definition of its complex
envelope s̃(t) = p (t) + jq (t) – or, more precisely, when its PSD is evenly symmetrical with
regard to the frequency used to define the complex envelope s̃(t). In that case, the results in
“Impact of spectral symmetry on top of stationarity” (Section 1.1.3) apply and we get from
equation (1.51) that

Γs̃×s̃(𝜔) = Γp×p (𝜔) + Γq×q (𝜔) = 2Γp×p (𝜔) = 2Γq×q (𝜔). (1.104)

In that case, then, p (t) and q (t) have the same spectral shape as the original stationary
bandpass process they represent. The converse situation is also obviously true. This means that
the frequency upconversion of two stationary and centered lowpass processes with Gaussian
distributions results in a bandpass process that also exhibits a Gaussian distribution. And when
the two initial lowpass components are also uncorrelated, we get that the PSD of the resulting
RF bandpass signal is the sum of the input ones.

Let us now focus on the characteristics of the polar form of the complex envelope s̃(t) =
p (t) + jq (t) = 𝜌(t)ej𝜙(t). Assuming that we are dealing with a stationary and centered bandpass
process, we have seen that p (t) and q (t) are lowpass processes such that pt and qt are also
centered and have a Gaussian distribution. Under the same assumption, it can be shown that
the magnitude 𝜌(t) of the complex envelope s̃(t) is such that 𝜌t follows a Rayleigh distribution,
i.e. that [3]

p(𝜌t) = p(𝜌) =
𝜌

𝜎2
e
− 𝜌2

2𝜎2 . (1.105)

In the same way, as illustrated in Figure 1.9, the phase 𝜙(t) of s̃(t) is necessarily uniformly
distributed on [0, 2𝜋], i.e.

p(𝜙t) = p(𝜙) = 1
2𝜋

. (1.106)
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Figure 1.9 Statistical properties of the complex envelope of a stationary and centered bandpass Gaus-
sian process – The complex envelope of a stationary and centered bandpass Gaussian process, whose
PSD and PDF are of the form shown in Figure 1.8, has noticeable statistical properties: its real and imag-
inary parts also have a Gaussian distribution with the same variance as the original bandpass process, its
modulus is Rayleigh distributed and its argument uniformly distributed over [0, 2𝜋]. When considered
at the same time, the modulus and argument are mutually independent.

Moreover, we get that the joint distribution of the random variables 𝜌t and 𝜙t corresponding
to two realizations of 𝜌(t) and 𝜙(t), when considered at the same time, is such that

p(𝜌t,𝜙t) = p(𝜌t)p(𝜙t). (1.107)

Practically speaking, this means that the variables 𝜌t and 𝜙t are independent when considered
at the same time. Nevertheless, we have to keep in mind that this is true only when p (t) and
q (t) are centered. Indeed, if

E{p } = mp, (1.108a)

E{q } = mq, (1.108b)

with

mp + jmq = mej𝜃 , (1.109)
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it can be shown that [3]

p(𝜌t,𝜙t) =
1

2𝜋

𝜌t

𝜎2
e
− 1

2𝜎2

(
𝜌 2

t −2𝜌tm cos(𝜙t−𝜃)+m2
)
, (1.110)

which is a Rayleigh–Rice distribution. And if equation (1.107) no longer holds, then 𝜌t and 𝜙t
are no longer independent. However, as already highlighted, we can assume that all processes
of interest in wireless transceivers are centered.

To conclude this section, we briefly review the moments of the modulus 𝜌(t) of the complex
envelope of such a Gaussian and centered bandpass process. Those moments will be needed
to perform analytical derivations, for instance when dealing with nonlinear transfer functions,
as is done in Chapter 5. From our discussion so far, we have that those moments are nothing
more than those of the Rayleigh distribution. We can thus write that [1]

E{𝜌n} = (2𝜎2)n∕2Γ
(

1 + n
2

)
, (1.111)

where Γ(.) is the gamma function, which can be expressed for instance in its Euler integral
form as [6]

Γ(z) = ∫
+∞

0
tz−1e−tdt. (1.112)

One property of this function is that it reduces, for integers z, to a factorial expression:

Γ(z) = (z − 1)! = (z − 1)(z − 2)⋯ 1. (1.113)

Thus, for any even n = 2k, the moments of the Rayleigh distribution given by equation (1.111)
reduce to

E{𝜌2k} = (2𝜎2)kk!. (1.114)

It is these even order moments that will later be of interest.

1.2.2 Phase Noise vs. Amplitude Noise

Let us now take another step forward in the description of how an additive bandpass noise
corrupts a bandpass signal. Such bandpass noise can be decomposed into two terms that, under
the assumption that the SNR is good enough, corrupt up to first order either the instantaneous
amplitude or the instantaneous phase of the bandpass signal it is added to. Such decomposition
is of particular interest in practice as there are times when only one of the two terms is involved
in some of the mechanisms we deal with in the field of transceivers. One example is the transfer
of the phase noise part of the local oscillator (LO) signal during a frequency transposition
based on the use of mixers behaving as choppers, as discussed in Section 4.3.2. Another is
the cancellation mechanism of the amplitude part of such an additive noise signal in nonlinear
devices exhibiting compression behavior, as discussed in Sections 5.1.4 and 5.2.3.
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Let us consider a real bandpass signal, sw(t), resulting from the upconversion of the complex
envelope

s̃w(t) = 𝜌w(t)ej𝜙w(t), (1.115)

around the center angular frequency 𝜔c. We can thus express sw(t) as

sw(t) = Re
{

s̃w(t)ej𝜔ct
}

. (1.116)

Let us suppose that this signal is corrupted by an additive bandpass noise, n(t), described by
the complex envelope

ñ(t) = 𝜌n(t)ej𝜙n(t), (1.117)

also defined as centered around the same center frequency 𝜔c. We thus assume that n(t) can
be written as

n(t) = Re
{

ñ(t)ej𝜔ct
}

. (1.118)

Using these expressions, we can express the total signal s(t), defined as the superposition of
sw(t) and n(t), as

s(t) = sw(t) + n(t) = Re
{

(s̃w(t) + ñ(t))ej𝜔ct
}

. (1.119)

We then see that the complex envelope s̃(t) of s(t), when also defined as centered around 𝜔c,
can be written as

s̃(t) = s̃w(t) + ñ(t). (1.120)

Having defined those signals, we can now focus on the decomposition of n(t). Let us consider
the decomposition of its complex envelope, ñ(t), as the sum of two terms

ñ(t) = ñ∥(t) + ñ⟂(t). (1.121)

As illustrated in Figure 1.10, in this expression ñ∥(t) is defined as collinear to s̃w(t) when
represented in the complex plane, and ñ⟂(t) as orthogonal to it. Obviously, this definition
requires that s̃w(t) is non-vanishing in order to be able to define the direction of its representation
in the complex plane. Unfortunately, practical modulating complex envelopes can exhibit such
zero crossings, as illustrated in Section 1.3. However, when they occur, we can assume that
it is only for a set of discrete instants in practice. We can thus assume that ñ∥(t) and ñ⟂(t)
can still be defined at any time by continuity. The result is that we can in turn interpret ñ∥(t)
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Figure 1.10 Additive bandpass noise decomposition in terms of amplitude and phase noise terms –
The complex envelope of a bandpass noise, when defined as centered around the same center frequency
as that considered for the definition of the complex envelope of a bandpass signal it is added to, can
be decomposed into two components. The first, collinear to the signal complex envelope, represents a
bandpass noise that corrupts, at first order, mainly its instantaneous amplitude. The second, orthogonal
to it, represents a bandpass noise that corrupts, still at first order, mainly its instantaneous phase.

and ñ⟂(t) as the complex envelopes, still defined as centered around 𝜔c, of the bandpass noise
processes n∥(t) and n⟂(t) that can be written as

n∥(t) = Re
{

ñ∥(t)ej𝜔ct
}

, (1.122a)

n⟂(t) = Re
{

ñ⟂(t)ej𝜔ct
}

. (1.122b)

Thus, given that all the complex envelopes we are dealing with are defined as centered
around the same angular frequency, by substituting equation (1.121) into equation (1.118) and
using the above definition we can write

n(t) = Re
{

ñ(t)ej𝜔ct
}

= n∥(t) + n⟂(t). (1.123)

We have thus decomposed the additive bandpass noise n(t) as the sum of two bandpass terms
that have interesting properties. This can be advantageously investigated by expressing the
complex envelopes of those bandpass terms as a function of the characteristics of s̃w(t) and
ñ(t). This can be done in a straightforward way following geometrical considerations that
can be derived from the illustration in Figure 1.10. Based on this figure, we immediately
have that

ñ∥(t) = 𝜌∥(t)𝜖∥(t)ej𝜙w(t) = 𝜌𝜖∥(t)ej𝜙w(t), (1.124a)

ñ⟂(t) = 𝜌⟂(t)𝜖⟂(t)ej(𝜙w(t)+𝜋∕2) = j𝜌𝜖⟂(t)ej𝜙w(t), (1.124b)
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where we have defined

𝜌∥(t) = 𝜌n(t) |cos(𝜙n(t) − 𝜙w(t))|, (1.125a)

𝜌⟂(t) = 𝜌n(t) |sin(𝜙n(t) − 𝜙w(t))|, (1.125b)

and

𝜖∥(t) = sign {cos(𝜙n(t) − 𝜙w(t))}, (1.126a)

𝜖⟂(t) = sign {sin(𝜙n(t) − 𝜙w(t))}. (1.126b)

The reason for this definition comes from the fact that, following our conventions, 𝜌∥(t) and
𝜌⟂(t) are positive quantities that represent moduli of complex envelopes. We thus introduce
𝜖∥(t) and 𝜖⟂(t), which can be only ±1, in order to represent the 𝜋 phase shift of the arguments
of ñ∥(t) and ñ⟂(t) depending on the relative instantaneous phase between s̃w(t) and ñ(t).
However, as will be seen shortly, the quantities of interest for our derivations are 𝜌𝜖∥(t) in
equation (1.124a) and 𝜌𝜖⟂(t) in equation (1.124b), defined as

𝜌𝜖∥(t) = 𝜌n(t) cos(𝜙n(t) − 𝜙w(t)), (1.127a)

𝜌𝜖⟂(t) = 𝜌n(t) sin(𝜙n(t) − 𝜙w(t)). (1.127b)

Based on this decomposition of n(t), we can then go further in the interpretation of the
degradation of sw(t). We can express the modulus and argument of the complex envelope
s̃(t) = 𝜌(t)ej𝜙(t) of the total signal s(t) = sw(t) + n(t) as a function of the characteristics of
those two bandpass noises. For that purpose, we can consider both the decomposition of ñ(t)
given by equation (1.121), and the expressions for ñ∥(t) and ñ⟂(t) given by equation (1.124).
Following the representation shown in Figure 1.10, we can then immediately write

𝜌(t) = |s̃w(t) + ñ(t)| =√𝜌 2
w(t) + 2𝜌𝜖∥(t)𝜌w(t) + 𝜌 2

n (t), (1.128a)

𝜙(t) = arg{s̃w(t) + ñ(t)} = 𝜙w(t) + arctan
{

𝜌𝜖⟂(t)

𝜌w(t) + 𝜌𝜖∥(t)

}
, (1.128b)

with 𝜌𝜖∥(t) and 𝜌𝜖⟂(t) given by equation (1.127). Obviously, this definition requires that s̃w(t)
is non-vanishing so that 𝜌w(t) ≠ 0 so as to be able to define at least 𝜙(t) correctly. Nevertheless,
as highlighted previously, we can assume when dealing with practical modulations that this
situation occurs only for a set of discrete instants. We can thus assume that we can define
such a quantity at any time by continuity. Moreover, we can assume in many practical use
cases that 𝜌n(t) ≪ 𝜌w(t). At first glance, we could consider linking this assumption to the fact
of having a good enough SNR, i.e. to the assumption of having E

{
𝜌 2

n

}
≪ E

{
𝜌 2

w

}
according

to equation (1.64). This is unfortunately not true in all cases, as we have just recalled that
practical modulating complex envelopes can have their instantaneous amplitude going down
toward zero. This means that whatever their power, at some instant we can potentially have
that the modulus of their complex envelope is lower than that of a bandpass noise it is
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added to. However, as the SNR increases, we can imagine that the set of instants for which
this situation occurs diminishes. Furthermore, there are classical modulating waveforms for
which the instantaneous amplitude has a lower bound. This is obviously the case for constant
amplitude schemes, but is also the case for some complex modulations such as the modified
8PSK used in the GSM/EDGE standard and detailed in Section 1.3.2. For such a modulation,
there is thus a minimum SNR for which the condition 𝜌n(t) ≪ 𝜌w(t) can be considered as true
at any time. Finally, we recall that the classical use case for such decomposition of a bandpass
noise corresponds to a signal that is nothing more than the LO waveform flowing from an RF
synthesizer and used to drive a mixer for implementing a frequency transposition. In any case,
given that 𝜌n(t) ≪ 𝜌w(t) holds, we can rely on a small angle approximation in our derivations
so that the above expressions for 𝜌(t) and 𝜙(t) reduce to

𝜌(t) = 𝜌w(t) + n𝜌(t), (1.129a)

𝜙(t) = 𝜙w(t) + n𝜙(t), (1.129b)

with

n𝜌(t) ≈ 𝜌𝜖∥(t), (1.130a)

n𝜙(t) ≈
𝜌𝜖⟂(t)

𝜌w(t)
. (1.130b)

Under our present assumption, we thus get that up to first order 𝜌𝜖∥(t) corrupts only the
magnitude 𝜌w(t) of the signal complex envelope, i.e. the instantaneous amplitude of sw(t),
whereas 𝜌𝜖⟂(t) corrupts only the argument 𝜙w(t) of the signal complex envelope, i.e. the
instantaneous frequency of sw(t). We also have an additive behavior for the terms n𝜌(t) and
n𝜙(t) that can naturally be labeled as respectively the amplitude noise and the phase noise
which corrupt respectively the instantaneous amplitude and the instantaneous phase of the
signal.

We thus have two distinct, albeit equivalent, ways of describing the impact of the bandpass
noise n(t) on the bandpass signal sw(t) it is added to. On the one hand, we can keep the additive
behavior of n(t) regarding sw(t) while achieving its decomposition as the sum of n∥(t) and
n⟂(t). Using equations (1.119) and (1.123), we can write s(t) as

s(t) = sw(t) + n∥(t) + n⟂(t). (1.131)

Up to first order, i.e. given that 𝜌n(t) ≪ 𝜌w(t), we then get that n∥(t) and n⟂(t) corrupt either the
instantaneous amplitude of sw(t) or its instantaneous phase or frequency. On the other hand,
we can directly embed the noise terms in the components of the complex envelope of sw(t)
in order to derive an expression for s(t). In that case, with the small angle approximation, i.e.
still assuming that 𝜌n(t) ≪ 𝜌w(t), we can use the expression for the complex envelope of s(t)
given by equation (1.129) to write

s̃(t) = (𝜌w(t) + n𝜌(t))ej(𝜙w(t)+n𝜙(t)), (1.132)
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with n𝜌(t) and n𝜙(t) given by equation (1.130). In that case, s(t) can be written as

s(t) = Re
{

s̃(t)ej𝜔ct
}

= (𝜌w(t) + n𝜌(t)) cos(𝜔ct + 𝜙w(t) + n𝜙(t)). (1.133)

Although the latter formulation hides the additive behavior of the original bandpass noise with
regard to the signal, it is of interest for some practical analytical derivations. In any case, the
two representations are strictly equivalent when they exist. The use of either one thus depends
only on how easily derivations can be done with it. Nevertheless, despite this equivalence we
need to keep in mind that there is a fundamental difference between the terms involved in the
two different representations. On the one hand we are dealing with bandpass noise terms, n∥(t)
and n⟂(t), directly related to the decomposition of the original bandpass noise n(t). On the
other hand, we have lowpass components, n𝜌(t) and n𝜙(t), which are involved in the modulus
and argument of the complex envelope of the total signal s(t).

To conclude this section, it is of interest to mention additional considerations that arise
when the bandpass noise, implicitly assumed centered, also has a Gaussian distribution. In
this case it is easy to derive the fraction of power of the bandpass noise that corrupts either the
instantaneous amplitude of the signal or its instantaneous phase or frequency. Assuming we
are dealing with stationary processes, we can express the power Pn∥

and Pn⟂
of the bandpass

processes n∥(t) and n⟂(t) based on the expressions we have derived so far for their complex
envelopes through the use of equation (1.64). Focusing first on the average power of n∥(t),
given that 𝜖∥(t) can be only ±1, from equations (1.124a) and (1.125a) we have that

Pn∥
=

E
{
𝜌 2

n cos2(𝜙n − 𝜙w)
}

2
. (1.134)

But, following the derivations performed in Section 1.2.1, we also get that the modulus
and argument of the complex envelope of a stationary and centered Gaussian process are
independent when considered at the same time. Because the wanted signal sw(t) and the noise
component n(t) can also be assumed independent, we can therefore write

Pn∥
=

E
{
𝜌 2

n

}
2

E
{
cos2(𝜙n − 𝜙w)

}
. (1.135)

Using equation (1.54), we can then expand the last term of the right-hand side of this
equation:

E
{
cos2(𝜙n − 𝜙w)

}
= 1

2
+ 1

2
E{cos[2(𝜙n − 𝜙w)]}. (1.136)

As we have the independence of 𝜙n and 𝜙w, we can then evaluate the expectation on the
right-hand side of this equation by integrating first the PDF of 𝜙n. But, as we deal with a
stationary centered Gaussian bandpass noise, we get that 𝜙n is uniformly distributed over
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[0, 2𝜋] according to equation (1.106). Due to this even distribution over a period of the cosine
function, it follows that

E{cos[2(𝜙n − 𝜙w)]} = 0, (1.137)

and thus that

Pn∥
= 1

2

E
{
𝜌 2

n

}
2

= 1
2

Pn, (1.138)

where Pn is the power of the original bandpass Gaussian noise. As exactly the same derivation
can be performed for the perpendicular component n⟂(t), we finally get that

Pn∥
= Pn⟂

= 1
2

Pn. (1.139)

We see that whatever the characteristics of the signal such bandpass noise is added to, we
recover an equal noise power over the components defined as perpendicular and parallel to the
signal complex envelope. We also observe that this result highlights the derivations performed
in Chapter 5 when considering the SNR improvement through nonlinearity in Sections 5.1.4
and 5.2. Indeed, in those sections we find that the fraction of the input bandpass noise
corresponding to a complex envelope collinear to that of the constant amplitude signal can be
canceled due to RF compression. Only the fraction of noise that corresponds to an orthogonal
complex envelope succeeds in going through it. Reconsidering the above derivation, we can
then understand why the SNR improvement can asymptotically reach 3 dB as the input SNR
increases, as shown for instance in Figure 5.30.

1.3 Digital Modulation Examples

Let us now review some modulation schemes that are classically encountered in wireless
standards and that are used as examples throughout this book. From a transceiver dimensioning
perspective, we are mainly interested in the statistical properties of the modulating waveform
and of the associated modulated bandpass signal we have to process in a line-up, rather than
in the way such modulating waveforms are generated in practice. As a result, we review here
different schemes that are representative of almost all the statistics of complex envelopes we
encounter in practice, from the simple constant envelope modulation, illustrated here through
the Gaussian minimum shift keying (GMSK) scheme used in the GSM standard, to the most
complex waveforms as used in CDMA or OFDM based systems. However, we still need to
detail the way those waveforms are generated in order to be able to derive their statistical
properties and the associated constraints for transceivers.

1.3.1 Constant Envelope

Let us focus first on constant envelope modulation schemes. As the name suggests, we expect
in this case to keep the instantaneous amplitude of the resulting modulated bandpass sig-
nal constant. The modulations we are referring to are thus in fact pure phase or frequency
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modulation schemes. This means that it is only the instantaneous phase or frequency of the
resulting modulated RF bandpass signals that carries the information. To illustrate this kind
of modulating waveform we can consider GMSK as defined in the GSM standard [7].

We first need to express the instantaneous phase of the resulting modulated bandpass
signal as a function of the data bits. From the discussion in “Instantaneous amplitude and
instantaneous frequency” (Section 1.1.3), we get that this instantaneous phase is linked to the
argument of any of the complex envelopes of this bandpass signal. And due to the nature
of the modulation we are considering, the polar form of such complex signal is of interest.
Accordingly, let us consider the bandpass signal s(t) resulting from the upconversion of the
modulating complex signal s̃(t) = ej𝜙(t) around the carrier angular frequency 𝜔c. It can be
expressed as

s(t) = Re
{

s̃(t)ej𝜔ct
}

= Re
{

ej(𝜔ct+𝜙(t))
}

. (1.140)

It thus simply means that s̃(t) can be further interpreted as the complex envelope, defined as
centered around 𝜔c, of the bandpass signal s(t). Here, we observe that we have assumed for
the sake of simplicity a normalized modulus for s̃(t) in the definition of those quantities, i.e.
that 𝜌 = |s̃(t)| = 1. In any case, according to equation (1.97) we get that the instantaneous
frequency f (t) of s(t) is given by

f (t) = 1
2𝜋

(
𝜔c +

d𝜙(t)
dt

)
. (1.141)

In the GSM standard, the modulation is defined so that the instantaneous frequency of the
resulting modulated RF bandpass signal can be written as a function of the modulating data
according to

f (t) =
𝜔c

2𝜋
+ h

2

∑
k

𝛼kg(t − kT). (1.142)

As a result, the argument 𝜙(t) of s̃(t) can in turn be written as

𝜙(t) = 𝜋h
∑

k

𝛼k ∫
t−kT

−∞
g(u)du, (1.143)

thus leading to the expression for s̃(t):

s̃(t) = exp

(
j𝜋h
∑

k

𝛼k ∫
t−kT

−∞
g(u)du

)
. (1.144)

In equations (1.142)–(1.144), the parameter h stands for the modulation index and T for
the symbol period. These parameters are respectively equal to 1∕2 and 48∕13 = 3.69𝜇s in
the standard. In the same way g(t) is the pulse shaping filter that smooths the transitions of
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the instantaneous frequency of s(t) when going from one representation of input data to the
next, and 𝛼k is the sequence of input data, which can be ±1 here.4

With regard to the above expressions, it is of interest to interpret further how this modulating
scheme works. For instance, when a single datum 𝛼k = +1 enters the modulator, we get that
the instantaneous frequency signal f (t) experiences a positive deviation compared to the carrier
frequency 𝜔c∕2𝜋. This frequency offset stands for a finite duration corresponding to the length
of the impulse response of the filter g(t). We thus get that the impact of the datum 𝛼k = +1
on the final modulated signal s(t) is simply a finite phase shift on its instantaneous phase
compared to the average term 𝜔ct linked to the carrier, this shift being equal to the integral
of the instantaneous frequency deviation during the duration of the impulse response of g(t).
The magnitude of this phase shift is thus linked to the properties of the filter g(t). In the GSM
standard, this pulse shaping filter is a Gaussian filter defined as the convolution of the gate
function Π(t),

Π
(

t
T

)
=

⎧⎪⎨⎪⎩
1
T

when |t| < T∕2,

0 otherwise,
(1.145)

with a Gaussian function h(t) defined by

h(t) = 1

𝛿T
√

2𝜋
exp

(
− t2

2𝛿2T2

)
. (1.146)

Here, 𝛿 is defined by

𝛿 =

√
ln(2)

2𝜋BT
, (1.147)

with B the filter cut-off frequency at 3 dB, defined from the symbol duration through the relation
BT = 0.3. After some algebra, we can express the impulse response g(t) of the Gaussian pulse
shaping filter as

g(t) = h(t) ⋆ Π
(

t
T

)
= 1

2T

{
Erfc

[
1√
2𝛿

(
t
T
− 1

2

)]
− Erfc

[
1√
2𝛿

(
t
T
+ 1

2

)]}
, (1.148)

where Erfc(.) stands for the complementary error function defined by

Erfc(t) = 2√
𝜋 ∫

+∞

t
e−x2

dx. (1.149)

4 In the GSM standard, it is in fact the differential encoded input bits that are provided to the modulator as the 𝛼k data.
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From these expressions, we can thus see that the GMSK pulse shaping filter is normalized so
that ∫ +∞

−∞ g(u)du = 1. As a result, in the case of a single input datum 𝛼k equal to +1, we get that
the phase of the modulating signal given by equation (1.143) varies from 0 at t = 0 to 𝜋∕2 rad
at t = +∞. And for the same reason, for a single input datum of opposite sign, we get that the
phase of the signal varies from 0 at t = 0 to −𝜋∕2 rad at t = +∞. With this behavior in mind,
we can now understand that when considering a stream of constant input data all equal to +1,
we obtain a constant phase rotation at the modulator output of 𝜋∕2 rad for each symbol period,
i.e. of 2𝜋 after four symbol periods. We can thus expect with such a sequence of constant
input data values that the resulting modulated RF bandpass signal behaves as an almost CW
signal with a frequency offset of 1∕(4T) = 13 × 106∕(48 × 4) = 67708.33 Hz compared to the
carrier frequency. Moreover, we understand that this value corresponds to the maximum we
can achieve for the instantaneous frequency of the modulated signal, that is coherent with the
plot shown in Figure 1.11. However, this maximum deviation of ±h∕(2T) = ±67.70833 kHz
around the carrier frequency does not mean that the spectrum of the modulated RF signal does
not spread over a wider frequency range, as shown in Figure 1.12. Indeed, we get that the final
RF modulated signal is the cosine of the phase corresponding to this instantaneous frequency.
The relationship between its spectrum and the spectral content of the instantaneous frequency
signal is therefore not so straightforward. This topic is related to what is encountered in the
derivation of the Carson bandwidth when dealing with an analog frequency modulation.

Let us now focus on the consequences on the architecture of transceivers, and more precisely
of transmitters, of using such a pure phase or frequency modulating waveform. The first
consequence comes from the fact that the instantaneous amplitude of the resulting RF bandpass
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Figure 1.11 Instantaneous frequency of a GMSK modulated bandpass signal as used in the GSM
standard – For the instantaneous frequency to reach the maximum theoretical value of ±67.70833 kHz,
we need at least three input data of the same polarity. In the present case, the input data sequence is
1, 1,−1, 1,−1,−1, 1, 1, 1,−1, 1.
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Figure 1.12 Power spectral density of a randomly modulated GMSK complex envelope as used in the
GSM standard – The PSD of a randomly modulated GMSK waveform is wider than the instantaneous
frequency range due to the nonlinear behavior of the cosine function and to the rate of change of the
instantaneous frequency that follows the Gaussian filter response.

signal is constant. Another way to express this is to say that the PAPR of this signal, defined by
equation (1.71), reduces to 1, or 0 dB. Practically speaking, this characteristic is of interest as it
corresponds to RF bandpass signals that are resistant to compression, at least when considering
their sideband centered around the carrier angular frequency. As discussed in Chapter 5, this
allows, for instance, the use of saturated power amplifiers (PAs) that exhibit good efficiency,
thus leading to an optimization of the power consumption of the transceiver implementation.
Nevertheless, the counterpart of using such a constant amplitude modulating waveform is
obviously a limited efficiency in terms of transmitted bit rate for a given spectrum bandwidth,
as we use only one dimension out of the two available for mapping the modulation scheme.

Another interesting consequence in terms of physical implementation of using such constant
instantaneous amplitude behavior can be seen when reconsidering the expression for the
resulting RF bandpass signal s(t) derived from the polar form of the complex modulating
signal. Using equation (1.144), we get

s(t) = Re
{

s̃(t)ej𝜔ct
}

= cos

(
𝜔ct + 𝜋h

∑
k

𝛼k ∫
t−kT

−∞
g(u)du

)
. (1.150)

This expression shows that once the modulating waveform is generated, we can directly
modulate the phase or frequency of the RF synthesizer that is used to generate the carrier
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waveform in order to directly recover the modulated RF bandpass signal. This is what allows
the use of the very compact and power efficient direct phase locked loop (PLL) modulator
architecture for such a transmitter, as discussed in Chapter 8. However, this does not prevent
us considering a Cartesian form of the complex envelope s̃(t) if required. In that case, using
equation (1.144), we can write

p (t) = cos

(
𝜋h
∑

k

𝛼k ∫
t−kT

−∞
g(u)du

)
, (1.151a)

q (t) = sin

(
𝜋h
∑

k

𝛼k ∫
t−kT

−∞
g(u)du

)
, (1.151b)

so that we can express s(t) as

s(t) = cos

(
𝜋h
∑

k

𝛼k ∫
t−kT

−∞
g(u)du

)
cos(𝜔ct)

− sin

(
𝜋h
∑

k

𝛼k ∫
t−kT

−∞
g(u)du

)
sin(𝜔ct). (1.152)

Alternatively, this last expression for the RF signal can be obtained directly from equation
(1.150) using

cos(𝛼 + 𝛽) = cos(𝛼) cos(𝛽) − sin(𝛼) sin(𝛽). (1.153)

Such Cartesian expansion may be required, for instance, when using a direct conversion
transmitter. We then see that the real and imaginary parts of its complex envelope s̃(t) =
p (t) + jq (t) are sinusoidal waveforms that have a CF equal to

√
2, i.e. 3 dB. However, we get

that even if we are dealing with a final modulated bandpass signal s(t) that is insensitive to RF
compression when considering the sideband centered around the carrier angular frequency as
mentioned above, this property is untrue for the p (t) and q (t) signals that are by definition
lowpass. Any degradation of those Cartesian components through compression would result
in a distorted RF bandpass signal that could exhibit a non-constant amplitude waveform, as
originally expected. We also mention that the same behavior would result from any imbalance
between those components, as illustrated in Section 6.2.2. In any case, having such non-perfect
constant amplitude for s(t) may be an issue if we are faced with AM-PM conversion in the
final PA stage, as is frequently the case with saturated devices used for constant amplitude
RF waveforms. It would thus lead to some additional distortion of the transmitted signal
on top of the former non-perfect constant amplitude behavior. Here, we can thus anticipate
the discussion in Chapter 8 and highlight that the generation of s(t) through a direct PLL
modulation would allow us to overcome this kind of limitation linked to the implementation
of transmitters based on the Cartesian processing of the complex envelope of such constant
amplitude signal.
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We conclude with a comment on the complexity of the equations considered so far. We
understand that it would be quite unrealistic to consider an analog implementation of those
expressions for generating the modulating signals. This is in fact a general statement for most of
the modulations used in the field of digital communication, as illustrated through the examples
discussed in the forthcoming sections. It thus follows that these waveforms are almost always
generated in the digital domain and then converted to analog for further processing. This
therefore leads to traditional high level system block partitions in transceivers, as discussed in
Section 1.4.

1.3.2 Complex Modulation

As highlighted in the previous section, the use of constant envelope modulation schemes
is driven by both the potential simplicity in the generation of the corresponding modulated
RF bandpass signals and their good behavior with regard to RF compression. Nevertheless,
the need for increasing data rates while preserving the frequency bandwidth that is used
may lead to the consideration of complex modulations. Here, by “complex” we mean a
modulation scheme that effectively uses the two dimensions allowed by the complex envelope
representation. Practically speaking, it thus corresponds to a modulated RF bandpass signal
that is both amplitude and phase or frequency modulated. It is thus of interest to focus on the
modified 8PSK modulation used in the GSM/EDGE standard. Indeed, in addition to illustrating
a complex modulation in itself, this scheme gives the opportunity to highlight the way some
features considered at the definition level of the modulation may or may not make realizable
some particular transmit architectures as discussed at the end of this section.

Let us begin by detailing how to generate the modulating complex envelope as a function of
the input data bits according to the standard specification [7]. The first step is to map the data
bits into 8PSK (eight-phase shift keying) symbols. Practically speaking, the data bits are Gray
mapped by groups of three bits onto eight possible symbols uniformly spread over the unit
circle when represented in the complex plane. For a given sequence of input data bits, the
sequence of 8PSK symbols, S̃k, is in fact defined by

S̃k = ej 2l𝜋
8 , (1.154)

with l given in Table 1.1 as a function of the input data bits. Up to now, this symbol mapping
corresponds to a classical 8PSK modulation. But, in the GSM/EDGE standard, the symbol
mapping is slightly modified so that a continuous phase rotation of 3𝜋∕8 from symbol to
symbol is added to the former sequence of symbols. This results in the new sequence,

S̃′k = S̃k ej 3k𝜋
8 . (1.155)

This continuous phase rotation is the reason for the epithet “modified” in the term “modified
8PSK modulation”. Practically speaking, it is this simple added feature that explains the
properties of the resulting modulated RF bandpass signal mentioned at the beginning of the
section and further discussed at the end of the section. We can see that the final modulating
waveform is obtained as the filtered version of this sequence of data symbols in order to shape
the spectrum of the resulting modulated signal. Denoting this pulse shaping filter by C0 and
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Table 1.1 Symbol mapping parameter l for the
GSM/EDGE modified 8PSK modulation.

Modulating bits Symbol parameter
d3k, d3k+1, d3k+2 l

(1,1,1) 0
(0,1,1) 1
(0,1,0) 2
(0,0,0) 3
(0,0,1) 4
(1,0,1) 5
(1,0,0) 6
(1,1,0) 7

its impulse response by C0(t), the resulting complex envelope s̃(t) = p (t) + jq (t) can thus be
written as

s̃(t) =
∑

k

S̃′kC0(t − kT + 2T), (1.156)

so that we get

p(t) =
∑

k

Re
{

S̃′k
}

C0(t − kT + 2T), (1.157a)

q(t) =
∑

k

Im
{

S̃′k
}

C0(t − kT + 2T). (1.157b)

We observe that this is in fact the spectrum of both the real and the imaginary parts of the
modulating complex envelope s̃(t) that the C0 filter shapes. But, referring to the discussion
in “Power spectral density” (Section 1.1.3), we get that under common assumptions, those
real and imaginary parts have the same spectral shape as the overall complex envelope, and
thus as the final modulated bandpass signal s(t). We can thus understand the importance of
defining such complex modulating waveforms in their Cartesian form in order to directly
control the characteristics of the transmitted output signal in terms of spectral shape. This
explains why most practical complex modulations are defined in such a Cartesian way. In our
present case the final modulated RF bandpass signal s(t) resulting from the upconversion of
this complex envelope around the carrier angular frequency 𝜔c can therefore be expressed as

s(t) = Re
{

s̃(t)ej𝜔ct
}

, (1.158)

or, based on the Cartesian representation of s̃(t), as

s(t) =
∑

k

Re
{

S̃′k
}

C0(t − kT + 2T) cos(𝜔ct)

−
∑

k

Im
{

S̃′k
}

C0(t − kT + 2T) sin(𝜔ct). (1.159)
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In the EDGE standard, the impulse response of this C0 filter is defined as

C0(t) =

⎧⎪⎨⎪⎩
3∏

l=0

S(t + lT) when 0 ≤ t ≤ 5T ,

0 otherwise,

(1.160)

where T stands for the symbol period. In the EDGE standard, this period is the same as for
the GMSK modulation of the GSM standard, i.e. 48∕13 = 3.69𝜇s. In this expression, S(t) is
defined as5

S(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

sin
(
𝜋 ∫

t

0
g(u)du

)
when 0 ≤ t ≤ 4T ,

sin
(
𝜋

2
− 𝜋 ∫

t−4T

0
g(u)du

)
when 4T < t ≤ 8T ,

0 otherwise,

(1.161)

with g(t) given by

g(t) = 1
2T

{
Q

(
2𝜋0.3

t − 5T∕2

T
√
ln(2)

)
− Q

(
2𝜋0.3

t − 3T∕2

T
√
ln(2)

)}
. (1.162)

In this expression, Q(.) stands for

Q(t) = 1√
2𝜋 ∫

+∞

t
e−

x2

2 dx. (1.163)

Alternatively, we can make the link between this function and the Gaussian filter defined in
the previous section. For that purpose, we can express g(t) using both the complementary error
function, Erfc(.) defined by equation (1.149), and the 𝛿 parameter defined by equation (1.147).
We obtain

g(t) = 1
4T

{
Erfc

[
1√
2𝛿

(
t
T
− 5

2

)]
− Erfc

[
1√
2𝛿

(
t
T
− 3

2

)]}
. (1.164)

5 In equation (1.161), the summation of the Gaussian filter transfer function g(t) is done over a finite range as defined
in the standard, thus resulting in S(t) not being continuous for t = 4T [7]. With this definition, C0 is not exactly
symmetric, whereas the main pulse in the Laurent series expansion of the GMSK modulation should be, as the
original Gaussian filter is.
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Figure 1.13 Power spectral density of a randomly modulated GSM/EDGE complex envelope – The
PSD of a randomly modulated modified 8PSK waveform, as used in the GSM/EDGE standard, is
comparable to that of a GMSK modulated waveform used in the GSM standard, as shown in Figure 1.12.

We thus see that g(t) is nothing more than the Gaussian filter of the GMSK modulation
described in the previous section, but translated around t = 2.5T and with a different normal-
ization coefficient. The reason for the correspondence is that the C0 filter used in the present
modulation scheme is nothing more than the main pulse in the Laurent series decomposition
of the GMSK scheme [8]. It thus follows that the modified 8PSK scheme shaped through the
use of this filter results in almost the same spectrum as the original GMSK one, as can be seen
by comparing Figures 1.13 and 1.12.

Let us now focus on the statistical properties of the resulting modulating waveform. We begin
with the continuous phase rotation of 3𝜋∕8 added from symbol to symbol. The direct impact
of this feature can be seen in Figure 1.14 where the modulating complex envelope trajectories
are plotted in the two cases where the continuous phase rotation is either implemented or
not. This figure clearly shows that this simple continuous rotation, easily implemented on the
transmit side and compensated on the receive side, allows us to avoid any zero crossing of the
modulation trajectory in the complex plane. As summarized in Figure 1.15, we get that this
behavior results in interesting statistical properties, in particular the following:

(i) The dynamic range (DR) of the complex envelope magnitude 𝜌(t) = |s̃(t)|, and thus of
the PAPR of the corresponding modulated bandpass signal, is minimized. This parameter
can be evaluated to be 3.2 dB when this continuous rotation is used and 3.5 dB when not.
This reduction of 0.3 dB can thus be directly transposed in terms of gain on the back-off
regarding the saturated power to be used in order to avoid compression. Here we anticipate
Section 8.1.7 where it is mentioned that this reduction can be directly transposed in terms
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Figure 1.14 Trajectories of a randomly modulated GSM/EDGE complex envelope with and without
continuous phase rotation – Compared to the case where no continuous rotation is applied (right), the
trajectory of the modified 8PSK as defined in [7] exhibits no zero crossing (left).

of gain on the power consumption of the solution, at least when considering a statically
polarized linear amplifier. At first glance, 0.3 dB may seem a small improvement, but we
have to keep in mind that in a typical cellular system, the PA consumption can be up to
hundreds of milliamperes for mobile equipment. A few tenths of a decibel on this power
consumption is therefore not negligible.

(ii) A trajectory that does not vanish leads to other advantages that make simpler (and even
make possible) the use of architectures such as the polar transmitter. Indeed, as discussed
in Section 8.1.6, having zero crossings in the trajectory leads to important spikes in the
instantaneous frequency of the resulting modulated RF bandpass signal. This is obvi-
ously due to the 𝜋 shifts in the argument of the complex envelope at those instants that
lead to a derivative theoretically infinite. Such important instantaneous frequency varia-
tions require, on the one hand, synthesizers with a high enough bandwidth, and, on the
other hand, a very precise timing alignment between the instantaneous amplitude and the
instantaneous frequency to achieve a good reconstructed modulated RF bandpass signal.
In addition, having such zero crossings leads to an important DR of the modulus of the
complex envelope that can theoretically reach infinity when expressed in decibels. Having
an analog device that is linear over such a wide DR in order to be able to perform the
amplitude modulation of an RF carrier without distortion is almost impossible. However,
those problems are not too severe for the modified 8PSK modulation of the GSM/EDGE
standard. We get, for instance, that the DR of the instantaneous amplitude remains within
17 dB. We thus see that a simple trick like this continuous phase rotation from symbol to
symbol can make the difference between being and not being able to use a given transmit
architecture.
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Figure 1.15 Statistical characteristics of a randomly modulated GSM/EDGE complex envelope – The
real and imaginary parts p (t) (top left, solid) and q (t) (top left, dashed) of the GSM/EDGE complex
envelope have a distribution that is bounded by ±2 times their RMS value (middle left). Therefore their
CCDF reaches 0 for p (t) = 2prms or q (t) = 2qrms (bottom left). The CF of those waveforms is thus
equal to 2, i.e. 6 dB. The corresponding modulus 𝜌(t) (top right) has a bounded distribution relative to
its RMS value (middle right). This upper bound of 1.4, or 3.2 dB, corresponds to the modulation PAPR
as recovered on the CCDF of this parameter (bottom right).
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To conclude, as can be seen in Figure 1.15, we highlight the fact that the CF of the p (t) and
q (t) waveforms is around 6 dB, i.e. about 3 dB higher than the modulating waveform PAPR.
This result is consistent with equation (1.84) and the discussion presented in “Peak to average
power ratio and crest factor” (Section 1.1.3).

1.3.3 Wideband Modulation

To conclude this overview of digital modulation examples, let us now focus on wideband
modulations. The problem is that the criteria used to designate a modulating waveform as
wideband may depend on the point of view adopted. For instance, taking the RF implementation
point of view, we may be tempted to label as wideband a modulation that leads to a modulated
bandpass signal that spreads over a non-negligible frequency band with regard to the carrier
frequency. Unfortunately, most of the schemes classically classified as wideband still lead to
modulated signals that remain narrowband with regard to the carrier frequency in respect to
RF implementation issues. Alternatively, taking the wireless mobile signal processing point
of view, we may be tempted to label as wideband a modulating waveform whose spectrum
is wider than the coherence bandwidth of the propagation channel according to the concept
introduced in Section 2.3, the reason being that this property allows some interesting structures
for the channel estimation and equalization. However, with this definition we see that even
the modulating schemes reviewed in the previous sections can be considered as wideband
as long as the symbol data rate is chosen high enough. In any case, this situation does not
really occur in practice as the schemes leading to more efficient channel equalization when
there is the possibility of using such high frequency bandwidth rely on different modulation
strategies than those former ones. Moreover, in the wireless network perspective it is not
necessarily of interest to have the high data rate corresponding to such high bandwidth
statically allocated to a single end user. On the other hand, it may be of interest to consider
the possibility of multiplexing different users over the same wideband modulating waveform
in order to have the flexibility for the data rate to be dynamically allocated to any of them, as
introduced in Section 3.1. In both cases, it classically results in two families of modulating
waveforms that we can classify as wideband in what follows and that we can examine as
such, namely those encountered in CDMA systems and in OFDM systems. As will be seen,
this results in waveforms that exhibit interesting statistical properties compared to those seen
up to now.

Code Division Multiple Access

Let us begin our review of wideband modulations by examining the behavior of waveforms
encountered in CDMA systems. In such systems the multiplexing of the users belonging to
the same network cell, as introduced in Section 3.1, or at least of the different data and logical
channels of a given user, is done in the same frequency band and same time slot through the
use of orthogonal codes. That said, it is of interest to remark that those codes need to have
a high frequency content, at least comparable to the overall data rate of the system, in order
to allow for this multiplexing. As a side effect, we then get that, from a network perspective,
the modulating waveform that needs to be processed by a given receiver (RX) may potentially
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carry information for all the users belonging to the same cell at the same time, not just its own.6

This deep difference with respect to the modulations reviewed in previous sections explains
the fact that the modulating signals to be processed by the transceivers belonging to such a
network have in most cases a much higher bandwidth than their own effective data rate, thus
highlighting the label “wideband” for characterizing such modulating waveforms.

Let us consider the WCDMA standard [9, 10] as an example. In this standard, the orthogonal
codes used for the multiplexing of the channels are the Walsh–Hadamard codes that can be
expressed in a general form as

wk(t) =
L−1∑
n=0

ak(n)𝛿(t − nTc). (1.165)

In this expression, Tc stands for the duration of the elementary part ak of the code sequence, usu-
ally referred to as the chip duration. Given that this chip duration is expected to be the shortest
time base of the toggling of the modulating waveform, we can expect an overall bandwidth for
this signal in the region of 1∕Tc. We thus get that the choice for this chip duration is driven by the
targeted bandwidth of the final modulating waveform. Then, we get that the ak values are equal
to±1 and are such that the scalar product between two different codes is zero. Each data symbol
S̃ to be transmitted – which can be a QPSK symbol, a quadrature amplitude modulation (QAM)
symbol, or whatever is considered in the standard – is then associated with an entire code signal
wk(t). As a result, given a symbol duration equal to T , we then need to select the length of the
code L, also defined as the spreading factor, such that T = LTc. A sequence of data symbols
S̃k(m) associated with the kth code wk(t) therefore leads to a sequence of modulating chips c̃k(t)
given by

c̃k(t) =
∑

m

S̃k(m)wk(t − mT). (1.166)

Now, supposing that we have K different users, or at least K different channels, to be multi-
plexed through the use of K different codes, we get that the overall sequence of modulating
chips c̃K(t) is nothing more than the sum of the sequence associated with each code, i.e.∑K

k=1 c̃k(t). Assuming for simplicity that the spreading factor L is the same for any of them,
i.e. that we have the same data symbol rate for each user or channel, we can then use equations
(1.165) and (1.166) to express c̃K(t) as

c̃K(t) =
K∑

k=1

𝛽k

∑
m

S̃k(m)wk(t − mT)

=
K∑

k=1

𝛽k

∑
m

S̃k(m)
L−1∑
n=0

ak(n)𝛿(t − nTc − mT). (1.167)

6 We leave the interested reader to think about the burden, for instance in terms of power consumption, of having a
receiver that needs to demodulate and process a wideband signal that carries the information of all the users belonging
to the same network cell when its own data represents only a fraction of it.
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Here, 𝛽k stands for the relative power of the kth code. This parameter depends on the data rate
used with the associated code.

Practically speaking, if the characteristics of the Walsh–Hadamard codes are good in terms
of orthogonality, we get that this is obviously not true in terms of autocorrelation. This can
be a problem in terms of both the initial synchronization to the network, and the PSD of the
resulting modulating waveform. This explains why additional scrambling codes, s̃c, are used
in practice for that purpose. Even if not true in the considered standard, we can assume for the
sake of simplicity that their length is the same as that of the channelization codes. This then
leads to a modulating chip sequence c̃(t) that finally takes the form

c̃(t) =
∑

m

L−1∑
n=0

s̃c(n)
K∑

k=1

𝛽kS̃k(m)ak(n)𝛿(t − nTc − mT). (1.168)

We observe that, in contrast to what happens for the Walsh–Hadamard codes, the s̃c(n) elements
of those additional scrambling codes are complex numbers. They thus scramble together the
data from the real and imaginary parts of the constellation recovered after channelization. It
is then of interest to mention that in the WCDMA standard, at least on the uplink side, this
scrambling sequence takes a particular form in order to limit the modulated signal PAPR.
This particular scheme, referred to as hybrid phase shift keying (HPSK), avoids, or at least
limits, the zero crossings of the modulating waveform trajectory in the complex plane. It can
thus be compared to the mechanism discussed in the previous section for minimizing the
same parameter in the modified 8PSK scheme of the GSM/EDGE standard. We need not
give too much detail in the present case, as the modified 8PSK scheme is already a good
example of such optimization. Nevertheless, it highlights that the statistical parameters of the
modulating waveform are of particular importance for the efficiency of the implementation of
the RF/analog part of a transmitter at least. We can then understand why we need to consider
the optimization of such parameters at the early stages of the derivation of a wireless standard.

Having derived the sequence of modulating chips c̃(t) with both good orthogonality prop-
erties to allow recovery of the different data channels, and good autocorrelation properties to
allow for white behavior, it remains to apply a pulse shaping filter in order to shape correctly
the spectrum of the modulating waveform. In the standard being considered, this filter is a root
raised cosine (RRC) filter defined by its impulse response,

hrrc(t) =
sin
(
𝜋

t
Tc

(1 − 𝛼)

)
+ 4𝛼

t
Tc

cos
(
𝜋

t
Tc

(1 + 𝛼)

)
𝜋

t
Tc

(
1 −

(
4𝛼

t
Tc

)2
) , (1.169)

with

hrrc(0) = (1 − 𝛼) + 4𝛼
𝜋

(1.170)
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and

hrrc

(
±

Tc

4𝛼

)
= 1

2

[
4𝛼
𝜋

sin
(

1 − 𝛼

𝛼

4
𝜋

)
+ (1 + 𝛼) sin

(
1 + 𝛼

𝛼

4
𝜋

)
− (1 − 𝛼) cos

(
1 − 𝛼

𝛼

4
𝜋

)]
. (1.171)

Here, 𝛼 is the roll-off factor of the filter, set to 0.22 in the present case. Now the complex
envelope of the modulating signal, s̃(t), that results from the RRC filtering of equation (1.168)
can be written as

s̃(t) =
∑

m

L−1∑
n=0

s̃c(n)
K∑

k=1

𝛽kS̃k(m)ak(n)hrrc(t − nTc − mT). (1.172)

The corresponding real and imaginary parts of s̃(t) = p (t) + jq (t), can therefore be expressed
as

p (t) =
∑

m

L−1∑
n=0

K∑
k=1

𝛽kak(n)Re{S̃k(m)s̃c(n)}hrrc(t − nTc − mT), (1.173a)

q (t) =
∑

m

L−1∑
n=0

K∑
k=1

𝛽kak(n)Im{S̃k(m)s̃c(n)}hrrc(t − nTc − mT). (1.173b)

This results in the spectral shape for s̃(t) shown in Figure 1.16. Alternatively, it is of
interest to note that the impulse response defined by equation (1.169) has non-zero values at
instants ts = sTc. Hence, ISI exists in the resulting modulating waveform. Nevertheless, this
filter being a Nyquist filter, the self-convolution of its transfer function leads to an ISI-free
signal, as illustrated in Section 4.4. This explains why this filter, used as a pulse shaping filter
on the transmit side, is also implemented on the receive side of transceivers belonging to
this system.

Having derived the structure of s̃(t), we can now focus on the statistical properties of
this modulating waveform. From equation (1.173), we can understand that the statistical
characteristics of the modulating waveform obviously depend on the number of data codes
that are summed together. Indeed, assuming that the data symbols are statistically independent
and evenly distributed in the complex plane, we can expect that the more codes are summed,
the more the distributions of the real and imaginary parts of the complex envelope s̃(t) =
p (t) + jq (t) tend toward a centered Gaussian distribution thanks to the central limit theorem.
In that case, recalling the discussion in Section 1.2, we can expect that 𝜌(t) = |s̃(t)| tends toward
a Rayleigh distribution. This behavior is indeed confirmed by comparing the simulation results
shown in Figures 1.17 and 1.18 that correspond to uplink WCDMA modulating waveforms
based on either one or four data codes. We see that when only one code is used, the CF of
p (t) or q (t) is around 2, i.e. 6 dB, whereas the PAPR of the modulation is found to be 1.45,
i.e. 3.2 dB. But when four codes are used, the CF on p (t) or q (t) attains a value of 3, i.e.
9.6 dB, whereas the PAPR is simulated to reach 2.2, i.e. 6.8 dB. In addition, we observe that
even if the use of the HPSK scheme allows us to reduce the modulation PAPR, we still have
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Figure 1.16 Power spectral density of a randomly modulated WCDMA complex envelope – Due to the
properties of the scrambling codes defined in the standard, the spectrum of a WCDMA signal remains
white within the bandwidth of the RRC filter. The spectral side lobe heights then depend mainly on the
RRC filter implementation in terms of the impulse response length.

the minimum value of the modulus 𝜌(t) of the complex envelope that can go close to 0 when
the number of data codes increases. In contrast to what happens with the modified 8PSK
modulation discussed in the previous section, we can expect in the present case to be faced
with a huge DR for the instantaneous amplitude of the resulting modulated bandpass signal
as well as wideband instantaneous frequency variations. We may thus conclude at first glance
that this kind of waveform is not well suited to polar transmitter architectures, as discussed in
Section 8.1.6.

OFDM

Let us now turn our attention to the modulating waveforms that can be encountered in wireless
systems based on the OFDM technique. To understand their statistical properties, we first need
to detail the construction of such waveforms. Practically speaking, the idea behind the OFDM
is to use different subcarriers, which can be seen as orthogonal in a given sense, to multiplex
the information, rather than orthogonal codes as in WCDMA systems. More precisely, the
modulating waveform is constructed as the succession of slices of time domain waveforms
of duration Ts, each one resulting from the superposition of 2N + 1 subcarriers of the form
sk(t) = cos(2𝜋fkt). Here, the number of subcarriers is chosen as odd only for the sake of
simplicity in our formulations. Each of those subcarriers is then in turn modulated – either
in amplitude, phase, or both – in order to carry one data symbol S̃k. These data symbols can
result from the symbol mapping of any classical modulation scheme as a QPSK, QAM or
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Figure 1.17 Statistical characteristics of a randomly modulated WCDMA complex envelope in the case
of a single data code – The real and imaginary parts p (t) (top left, solid) and q (t) (top left, dashed) of the
WCDMA uplink complex envelope when one data code is used have a distribution that is bounded by ±2
times their RMS value (middle left). Therefore their CCDF reaches 0 for p (t) = 2prms or q (t) = 2qrms
(bottom left). The CF of those waveforms is thus equal to 2, i.e. 6 dB. The corresponding modulus
𝜌(t) (top right) can reach 1.45 or 3.2 dB above its RMS value (middle right). This upper bound for 𝜌(t)
corresponds to the modulation PAPR as recovered on the CCDF of this parameter (bottom right).
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Figure 1.18 Statistical characteristics of a randomly modulated WCDMA complex envelope in the
case of four data codes – The real and imaginary parts p (t) (top left, solid) and q (t) (top left, dashed)
of the WCDMA uplink complex envelope when four data codes are used have a distribution that is
bounded by ±3 times their RMS value (middle left). Therefore their CCDF reaches 0 for p (t) = 3prms or
q (t) = 3qrms (bottom left). The CF of those waveforms is thus equal to 3, i.e. 9.6 dB. The corresponding
modulus 𝜌(t) (top right) can reach 2.2 or 6.8 dB above its RMS value (middle right). This upper bound
for 𝜌(t) corresponds to the modulation PAPR as recovered on the CCDF of this parameter (bottom right).
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whatever. Such a slice of modulating waveform is then called an OFDM symbol, and thus
Ts represents the OFDM symbol duration. In addition, the subcarriers sk(t) are chosen so
that their frequencies fc are equally distributed on each side of the carrier. With our present
assumptions, these frequencies are thus of the form fk = fc + k𝛿f with k = −N,… , N. This
periodicity in the frequency domain in fact allows us to achieve the orthogonality we were
referring to, as can be understood when examining the expression for the complex envelope
s̃l(t) of the modulated bandpass signal carrying the lth OFDM symbol. Assuming that we are
dealing with complex envelopes defined as centered around the carrier frequency, we can refer
to the definitions given in Section 1.1.2 to see that the corresponding complex envelope of
the kth subcarrier sk(t) = cos(2𝜋fkt) can be directly written as ej2𝜋k𝛿ft. Thus, given that all the
complex envelopes we are dealing with are defined as centered around the same frequency,
we can immediately write s̃l(t) as the sum of the complex envelopes of the N subcarriers,

s̃l(t) = [U((l − 1)Ts) − U(lTs)]
N∑

k=−N

S̃k,l ej2𝜋k𝛿ft. (1.174)

Here, U(.) stands for the Heaviside step function and S̃k,l represents the data symbols carried
by the kth subcarrier during the lth OFDM symbol. We then observe that due to the periodicity
in the subcarrier spacing, the transposition of this expression in the sampled time domain
leads to a discrete Fourier transform that links the values of the data symbols carried by each
subcarrier to the values of the time domain samples of the corresponding OFDM symbol. In
that case we get that the OFDM symbol duration Ts is inversely proportional to the subcarrier
frequency spacing 𝛿f , thus leading to the orthogonality between vectors composed of the
sample of each subcarrier. Finally, the complex envelope s̃(t) of the overall modulated signal
carrying the succession of OFDM symbols can be written as

s̃(t) =
∑

l

s̃l(t). (1.175)

Having derived the structure of s̃(t) for a general OFDM signal, we can now focus on its
characteristics. We will use a concrete example by way of illustration. We examine the 10 MHz
bandwidth long-term evolution (LTE) downlink signal that corresponds in the configuration
considered to an OFDM modulation composed of 600 useful subcarriers separated by a
frequency offset of 15 kHz. This results in a complex envelope signal whose spectrum is spread
over the band [−4.5, 4.5] MHz. Obviously, the first consequence of summing subcarriers that
are evenly distributed in the frequency domain and carry the same power on average is that the
PSD of the resulting complex envelope is expected to be almost flat. This is indeed confirmed
by inspecting the spectrum shown in Figure 1.19. Nevertheless, we observe that in the present
case, even if not visible in the figure, a non-negligible amount of power necessarily leaks in
the adjacent channels through the secondary lobes of the sinc function resulting from the lack
of time domain windowing of the OFDM symbols. But due to the orthogonality resulting from
the discrete Fourier transform approach, this leakage can be made visible only through an
oversampling of the corresponding waveforms, which is obviously not done here.

Let us now focus on the statistical characteristics of such modulating waveform. Practically
speaking, in most of the standards based on an OFDM technique, the number of subcarriers
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Figure 1.19 Power spectral density of a randomly modulated OFDM complex envelope – An LTE
downlink waveform using 600 useful subcarriers separated by a frequency offset of 15 kHz exhibits a
PSD that spreads over the band [−4.5, 4.5] MHz.

involved in the generation of the modulating waveforms is important, as illustrated by our
LTE example. Thus, referring to equation (1.174), we see that the real and imaginary parts of
the complex envelope s̃(t) = p (t) + jq (t) result from the summation of a great number of data
symbols. Thus, as long as they can be considered as evenly distributed in the complex plane
and statistically independent, both p (t) and q (t) tend to have a centered Gaussian distribution
according to the central limit theorem. In that case, from the discussion in Section 1.2.1, we can
also expect that the modulus 𝜌(t) of s̃(t) tends to have a Rayleigh distribution. Those behaviors
are confirmed by the simulations shown in Figure 1.20. There is indeed an obvious fit between
the histograms of those waveforms and the theoretical Gaussian and Rayleigh distributions
displayed in the same graphs. Nevertheless, even if there is such a good agreement, the fact
is that the summation of the subcarriers remains finite in the definition of s̃(t). This means
that the maximum values of the modulating waveforms remain well defined and cannot reach
infinity. Practically speaking, those values can be used to derive the CF and PAPR of the
modulating waveforms as defined in “Peak to average power ratio and crest factor” (Section
1.1.3). As an example, we can reconsider our former 10 MHz bandwidth LTE downlink
signal. In that case, time domain simulations lead to both a CF for p (t) and q (t) of around 5,
i.e. 14 dB, and a PAPR of around 3.6, i.e. 11.1 dB. We observe that these numbers are larger
than what could be expected when considering the complementary cumulative distribution
function (CCDF) curves shown in Figure 1.20. The reason for this behavior is that the exact
maximum values reached by the waveforms during such a time domain simulation correspond
to a very low probability of occurrence. This justifies having a statistical definition for the
CF and the PAPR that reflects this behavior. Obviously, the exact thresholds to be considered
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Figure 1.20 Statistical characteristics of a randomly modulated OFDM complex envelope – The real
and imaginary parts p (t) (top left, solid) and q (t) (top left, dashed) of an OFDM complex envelope
tend to have a Gaussian distribution (middle left), but with a deterministic maximum value due to the
finite summation of the subcarriers. Using the statistical definition for the maximum values, their CCDF
reaches 0.001 for p (t) = 3.1prms or q (t) = 3.1qrms (bottom left). The CF of those waveforms thus
reaches 9.8 dB. The modulus 𝜌(t) (top right) follows a Rayleigh distribution and can reach 2.2 times its
RMS value (middle right). This corresponds to the modulation PAPR as recovered on the CCDF of 𝜌(t)
(bottom right).
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to decide whether or not a frequency of occurrence has negligible impact on the average
performance of a line-up should be refined. It is realistic to define the peak value of those
waveforms as the value for which their CCDF reaches 0.001. In other words, we can define
the peak value of p (t) or q (t) as the upper bound below which those waveforms are 99.9% of
the time. Applying this definition to p (t), for instance, we get that its peak value ppk is defined
from equation (1.75) such that

Fc(ppk) = 0.001. (1.176)

Assuming a Gaussian distribution for this parameter, we get that its CCDF is given by

Fc(ppk) = 1
2

Erfc

(
1√
2

ppk

prms

)
, (1.177)

with Erfc(.) the complementary error function defined by equation (1.149). It then follows
that the CF of p (t), defined as the ratio ppk∕prms, is approximately equal to 3.1, or 9.8 dB,
for such a Gaussian waveform. This is in line with the values that can be deduced from the
CCDF shown in Figure 1.20 and should be compared to the 14 dB derived previously. We thus
see more than a 4 dB reduction in the evaluation of the CF, merely by considering a realistic
upper bound that takes into account the frequency of occurrence of the peak values. The same
can obviously be done for the modulating waveform PAPR. Recall that, according to equation
(1.84), the PAPR must remain around 3 dB lower than the CF of the p (t) or q (t) waveforms.
This then results in a direct estimation of this quantity in the region of 7 dB, i.e. 2.2 in natural
units. Here again, this is in line with the CCDF of 𝜌(t) displayed in Figure 1.20.

To conclude this review, we highlight that even when taking into account the low probability
of occurrence of the peak values of the waveforms in the dimensioning of a line-up, we get
that such OFDM signals still exhibit really high PAPR. This is one of the main reasons for
the use of a slightly different modulation scheme for the uplink in the LTE standard. For that
scheme, chosen modulation is indeed based on the single carrier frequency division multiple
access (FDMA) scheme rather than a pure OFDM one. The idea behind this is to introduce
some correlation terms between the symbols used to modulate each subcarrier so that their
sum no longer tends toward a normal distribution as would be the case if they were statistically
independent. This correlation, introduced through the use of an extra discrete Fourier transform,
is enough in practice to quite significantly reduce the PAPR of the modulated signal compared
to the case of a pure OFDM scheme. In that sense, this approach can be related to what has
already been encountered in both the modified 8PSK scheme of the GSM/EDGE standard and
in the HPSK scheme of the WCDMA. This is thus another example of an optimization of a
modulation scheme that allows for greater efficiency in the physical implementation of the
transmit side.

1.4 First Transceiver Architecture

Based on what we have done so far in this chapter, we can already derive first block diagrams for
transceiver architectures based on the signal processing functions involved in the modulation
and demodulation of an RF bandpass signal. Here we continue with the general case of a



JWST466-c01 JWST466-Baudin Printer: Yet to Come September 19, 2014 11:56 Trim: 244mm × 170mm

First Transceiver Architecture 67

complex modulation. These structures, which can be seen as the minimal ones that enable
transceiver functionality, are then further completed in the subsequent chapters by taking into
account the constraints linked to other aspects of wireless systems as well as the limitations
of their physical implementation. This will lead to the practical architectures discussed in
Chapter 8.

When considering this minimum set of functions derived from the communication theory,
it is hard to totally get rid of additional constraints linked to their physical implementation if
we want to keep the approach realistic. Despite this, we try to stay as much as possible at a
theoretical level at this first stage.

1.4.1 Transmit Side

Let us focus for now on the architectures that can be derived from the signal processing
involved in the generation of a complex modulated RF bandpass signal as encountered on the
transmit side. Based on the foregoing, we understand that the signal processing we are referring
to reduces on the one hand to the generation of the modulating waveform in itself, and on the
other hand to the modulation of an RF carrier according to this complex lowpass signal in order
to obtain the expected modulated RF bandpass signal. From the discussion in Section 1.1.2, we
see that there are basically two different approaches for achieving such a modulation process,
depending on the chosen representation of the complex lowpass modulating waveform. Here,
by “representation”, we mean either Cartesian or polar. We can thus expect two different
families of transmit architectures, depending on the chosen representation.

Let us first suppose that we are dealing with a Cartesian representation of the complex low-
pass modulating waveform s̃(t) = p (t) + jq (t). By equation (1.28a), the resulting modulated
bandpass signal s(t) can be expressed as

s(t) = Re
{

s̃(t)ej𝜔ct
}

= p (t) cos(𝜔ct) − q (t) sin(𝜔ct). (1.178)

Starting from this equation, as highlighted above, we then need to take into account a minimum
set of constraints linked to the physical implementation of the corresponding signal process-
ing functions in order to derive a realistic overview of the line-up. For instance, recalling
the examples of modulating waveforms reviewed in Section 1.3, we can understand that the
complexity associated with the mathematical operations required for their generation leads
to having those operations implemented in the digital domain. As a result, we then need
to consider the generation of digital samples p [k] = p (kTs) and q [k] = q (kTs) of the real
and imaginary parts of the complex modulating signal. These samples are then necessarily
converted at a given point in the analog domain. In the present case, we can assume this
is done through the use of a digital to analog converter (DAC) that delivers analog base-
band signals. Anticipating Section 4.6.2, we observe that such conversion requires in most
practical implementations the use of a reconstruction filter in order to cancel the copies still
present, even if attenuated, at the output of the DAC. At this stage, we then achieve the
generation of analog p (t) and q (t) signals. It thus remains to achieve the modulation of the
RF carrier through the implementation of the operation corresponding to the above equation.
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Figure 1.21 Modulated RF bandpass signal generated through the direct upconversion of the complex
modulating waveform – Using the Cartesian representation of a complex lowpass modulating waveform
s̃(t) = p (t) + jq (t), we can derive an implementation for the generation of the corresponding modulated
RF bandpass signal through a direct complex frequency upconversion of the modulating signal. This
structure is thus referred to as the direct conversion transmitter.

For that purpose, we obviously need to generate the two LO signals in quadrature, cos(𝜔ct)
and sin(𝜔ct). This can be done through the use of an RF synthesizer, classically implemented
as a PLL that locks the oscillating frequency of an RF oscillator to that of an accurate low
frequency reference, as discussed in Section 4.3.1. In the present case this reference is not
represented in Figure 1.21 for the sake of simplicity, and the PLL is assumed to be an all
digital one [11]. Having generated the LO signals, we can then achieve the generation of the
modulated bandpass signal we are looking for through their multiplication by the lowpass
signals p (t) and q (t), using RF mixing stages for instance, and then subtracting the result. All
this results in the structure shown in Figure 1.21. Practically speaking, this structure is a sim-
plified view of a direct conversion, or (zero intermediate frequency, or ZIF), transmitter. This
widespread architecture is discussed in more depth in Section 8.1.1, and taken as an example in
Chapter 7.

Turning now to a polar representation of the complex lowpass modulating waveform s̃(t) =
𝜌(t)ej𝜙(t), the resulting modulated bandpass signal s(t) can be expressed according to equation
(1.28b) as

s(t) = Re
{

s̃(t)ej𝜔ct
}

= 𝜌(t) cos(𝜔ct + 𝜙(t)). (1.179)

However, in the present case we again need to take into account a minimum set of constraints
linked to the physical implementation of the signal processing functions we are considering
for the derivation of a realistic block diagram. Thinking back to the examples reviewed in
Section 1.3, we observe that most of the practical modulating waveforms we are dealing with
are defined through their generation in a Cartesian way. As discussed in more depth in Section
8.1.6, there are obviously good reasons for that. In our present polar approach a Cartesian to
polar conversion is necessary in order to generate the samples 𝜌[k] and 𝜙[k] from the Cartesian
p [k] and q [k]. We observe that the constant amplitude part of s(t), i.e. cos(𝜔ct + 𝜙(t)), can
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be seen as a pure carrier signal, but with a angular frequency that is varying according to the
phase modulation term 𝜙(t). As a result, even if it should obviously be refined, this signal can
be generated through the modulation of the PLL that delivers the carrier signal according to
the expected instantaneous frequency f (t). Practically speaking, we get from equation (1.97)
that f (t) is linked to the carrier frequency and to the argument of the modulating complex
envelope through

f (t) = 1
2𝜋

(
𝜔c +

d𝜙(t)
dt

)
. (1.180)

As a result, we need to differentiate 𝜙(t) in order to be able to generate the samples f [k] of
f (t) that are further provided to the PLL. Once this is done, it then simply remains to apply
the instantaneous amplitude to the constant amplitude signal flowing from the PLL to obtain
the expected modulated RF bandpass signal. This can be achieved, for instance, through the
use of a variable gain amplifier (VGA), or through a mixing stage that uses this constant
amplitude waveform as an LO signal to upconvert the instantaneous amplitude signal 𝜌(t).
As this multiplication is performed in the analog domain, 𝜌(t) can be reconstructed from
the samples 𝜌[k] through a DAC and a reconstruction filter. The resulting structure shown in
Figure 1.22 is a simplified view of the polar transmit architecture that is discussed in more
depth in Section 8.1.6.

1.4.2 Receive Side

Let us now focus on the architectures that can be derived from the signal processing corre-
sponding to the recovery of the complex envelope s̃(t) of a bandpass RF signal s(t) as involved
on the receive side. Following the discussion in Section 1.1.2, we get from equation (1.23)
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Figure 1.22 Modulated RF bandpass signal generated through a direct instantaneous frequency and
amplitude modulation – Using the polar representation of a complex lowpass modulating waveform
s̃(t) = 𝜌(t)ej𝜙(t), we can derive an implementation for the generation of the corresponding modulated
RF bandpass signal based on the direct modulation of its instantaneous frequency and amplitude. This
structure is referred to as a polar transmitter.
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that the real and imaginary parts of s̃(t) = p (t) + jq (t) can be recovered through the use of a
Hilbert transform of s(t) and of dedicated mixing stages using LO signals at the carrier angular
frequency. Nevertheless, even if such a Hilbert transform can be implemented for bandpass
signals using a pure 𝜋∕2 phase shifter as discussed in that section, this approach is not the
easiest way forward from the physical implementation perspective. Moreover, it requires a
double mixing stage for its correct implementation.

Alternatively, the complex envelope s̃(t) can be obtained through the use of a complex
frequency downconversion followed by a lowpass filtering, as detailed in Chapter 6. With such
an approach, we are faced with a situation symmetrical to that encountered on the transmit side
when considering the frequency upconversion of the complex modulating waveform expressed
in its Cartesian form. Transposed to the present receive case, it results in the simplified view
shown in Figure 1.23. Anticipating the discussion in the following chapters, we observe that
the signal being processed in a receiver is often composed of both the wanted signal and of
unwanted ones linked to the coexistence with other users. As a result, the lowpass filtering
dedicated to the cancellation of the unwanted sideband of the wanted signal in the signal
processing approach associated with the complex frequency downconversion is also used in
practice to cancel, or at least attenuate sufficiently, the unwanted signals. In that sense, it also
behaves as an anti-aliasing filter prior to the analog to digital converter (ADC) stage according
to the arguments of Section 4.6.1. Such conversion to the digital world is indeed required in
practice due to the complexity of the signal processing associated with channel equalization, in
particular in a mobile environment, as highlighted in Chapter 2. Here again, we can thus make
the link with what was encountered on the transmit side with the complexity of the generation
of practical modulating waveforms used in the field of digital communication. Furthermore,
we may also mention the interest there is in using the integration capabilities of modern silicon
processes for digital logic. The resulting structure shown in Figure 1.23 is a simplified view of
a direct conversion, or ZIF receiver. As was the case for its counterpart on the transmit side,
this receive architecture is also in widespread use for low cost integrated solutions. As such,
it is discussed in more depth in Section 8.2.1, and taken as an example in Chapter 7.
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Figure 1.23 Complex envelope recovery using a direct complex frequency downconversion of a mod-
ulated bandpass RF signal – The use of a complex frequency downconversion associated with a lowpass
filtering on the two branches allows the recovery of the real and imaginary parts of a modulating complex
envelope.
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To conclude, we observe that we could alternatively imagine recovering the instantaneous
frequency and amplitude of the received RF bandpass signal using a sort of polar demodulator
that would be the symmetric implementation of the polar transmitter. However, because of
various problems this kind of structure is not necessarily considered in practice except in the
notable case of a pure frequency modulation. In that case, a PLL can indeed be used to directly
recover the instantaneous frequency of the received signal, thus leading to a very compact
solution. Such a PLL demodulation scheme is discussed in Section 8.2.4.
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