
Sample Sizes for Clinical, Laboratory and Epidemiology Studies, Fourth Edition. David Machin, Michael J. Campbell,  
Say Beng Tan and Sze Huey Tan.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.

1

Basic Design Considerations

1.1  Why Sample Size Calculations?

To motivate the statistical issues relevant to sample size calculations, we will assume that we are 
planning a two‐group clinical trial in which subjects are allocated at random to one of two alternative 
treatments for a particular medical condition and that a single endpoint measure has been specified 
in advance. However, it should be emphasised that the basic principles described, the formulae, sam-
ple size tables and associated software included in this book are equally relevant to a wide range of 
design types covering all areas of medical research ranging from the epidemiological to clinical and 
laboratory‐based studies.

Whatever the field of inquiry the investigators associated with a well‐designed study will have con-
sidered the research questions posed carefully, formally estimated the required sample size (the par-
ticular focus for us in this book), and recorded the supporting reasons for their choice. Awareness of 
the importance of these has led to the major medical and related journals demanding that a detailed 
justification of the study size be included in any submitted article as it is a key component for peer 
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SUMMARY

This chapter reviews the reasons why sample size considerations are important when planning a clinical study of 
any type. The basic elements underlying this process include the null and alternative study hypotheses, effect size, 
statistical significance level and power, each of which are described. We introduce the notation to distinguish the 
population parameters we are trying to estimate with the study, from their anticipated value at the planning stages 
and also from their estimated value once the study has been completed. We emphasise for comparative studies 
that, whenever feasible, it is important to randomise the allocation of subjects to respective groups.

The basic properties of the standardised Normal distribution are described. Also discussed is how, once the effect size, 
statistical significance level and power for a comparative study using a continuous outcome are specified, the 
Fundamental Equation (which essentially plays a role in most sample size calculations for comparative studies) is derived.

The Student’s t‐distribution and the Non‐central t‐distribution are also described. In addition the Binomial, 
Poisson, Negative‐Binomial, Beta and Exponential statistical distributions are defined. In particular, the circumstances 
(essentially large study sizes) in which the Binomial and Poisson distributions have an approximately Normal shape 
are described. Methods for calculating confidence intervals for a population mean are indicated together with 
(suitably modified) how they can be used for a proportion or a rate in larger studies. For the Binomial situation, 
formulae are also provided where the sample size is not large. Finally, a note concerning numerical accuracy of the 
calculations in the illustrative examples of later chapters is included.
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1 Basic Design Considerations2

reviewers to consider when assessing the scientific credibility of the work undertaken. For example, 
the General Statistical Checklist of the British Medical Journal asks statistical reviewers of their sub-
mitted papers ‘Was a pre‐study calculation of study size reported?’ Similarly, many research grant 
funding agencies such as the Singapore National Medical Research Council now also have such 
requirements in place.

In any event, at a more mundane level, investigators, grant‐awarding bodies and medical product 
development companies will all wish to know how much a study is likely to ‘cost’ both in terms of 
time and resources consumed as well as monetary terms. The projected study size will be a key com-
ponent in this ‘cost’. They would also like to be reassured that the allocated resource will be well spent 
by assessing the likelihood that the study will give unequivocal results. In particular for clinical trials, 
the regulatory authorities, including the Committee for Proprietary Medicinal Products (CPMP, 
1995) in the European Union and the Food and Drug Administration (FDA, 1988 and 1996) in the 
USA, require information on planned study size. These are encapsulated in the guidelines of the 
International Conference on Harmonisation of Technical Requirements for Registration of 
Pharmaceuticals for Human Use (1998) ICH Topic E9.

If too few subjects are involved, the study is potentially a misuse of time because realistic differ-
ences of scientific or clinical importance are unlikely to be distinguished from chance variation. Too 
large a study can be a waste of important resources. Further, it may be argued that ethical considera-
tions also enter into sample size calculations. Thus a small clinical trial with no chance of detecting 
a clinically useful difference between treatments is unfair to all the patients put to the (possible) risk 
and discomfort of the trial processes. A trial that is too large may be unfair if one treatment could 
have been ‘proven’ to be more effective with fewer patients as a larger than necessary number of them 
has received the (now known) inferior treatment.

Providing a sample size for a study is not simply a matter of providing a single number from a set of 
statistical tables. It is, and should be, a several‐stage process. At the preliminary stages, what is required 
are ‘ball‐park’ figures that enable the investigators to judge whether or not to start the detailed plan-
ning of the study. If a decision is made to proceed, then the later stages are used to refine the support-
ing evidence for the preliminary calculations until they make a persuasive case for the final patient 
numbers chosen. Once decided this is then included (and justified) in the final study protocol.

After the final sample size is determined and the protocol is prepared and approved by the relevant 
bodies, it is incumbent on the research team to expedite the recruitment processes as much as pos-
sible, ensure the study is conducted to the highest of standards possible, and ensure that it is eventu-
ally reported comprehensively.

1.2  Statistical Significance

Notation

In very brief terms the (statistical) objective of any study is to estimate from a sample the value of a 
population parameter. For example, if we were interested in the mean birth weight of babies born in 
a certain locality, then we may record the weight of a selected sample of N babies and their mean 
weight w is taken as our estimate of the population mean birth weight denoted ωPop. The Greek ω 
distinguishes the population value from its estimate, the Roman w. When planning a study, we are 
clearly ignorant of ωPop and neither do we have the data to calculate w. As we shall see later, when 
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1.2 tatisticaal igniiicance 3

planning a study the investigators will usually need to provide some value for what ωPop may turn out 
to be. This anticipated value is denoted ωPlan. This value then forms (part of ) the basis for subsequent 
sample size calculations.

Outcomes

In any study, it is necessary to define an outcome (endpoint) which may be, for example, the birth 
weight of the babies concerned, as determined by the objectives of the investigation. In other situa-
tions this outcome may be a measure of blood pressure, wound healing time, degree of palliation, a 
patient reported outcome (PRO) that indicates the level of some aspect of their Quality of Life (QoL) 
or any other relevant and measureable outcome of interest.

The Effect Size

Consider, as an example, a proposed randomised trial of a placebo (control, C) against acupuncture (A) 
for the relief of pain in patients with a particular diagnosis. The patients are randomised to 
receive either A or C (how placebo acupuncture can be administered is clearly an important consid-
eration). In addition, we assume that pain relief is assessed at a fixed time after randomisation and is 
defined in such a way as to be unambiguously evaluable for each patient as either ‘success’ or ‘failure’. 
We assume the aim of the trial is to estimate the true difference δPop between the true success rate 
πPopA of A and the true success rate πPopC of C. Thus the key (population) parameter of interest is δPop 
which is a composite of the two (population) parameters πPopA and πPopC.

At the completion of the trial the A patients yield a treatment success rate pA which is an estimate 
of πPopA and for C the corresponding items are pC and πPopC. Thus, the observed difference, d = pA − pC, 
provides an estimate of the true difference (the effect size) δPop = πPopA − πPopC.

Significance Tests

In a clinical trial, two or more forms of therapy or intervention may be compared. However, patients 
themselves vary both in their baseline characteristics at diagnosis and in their response to subse-
quent therapy. Hence in a clinical trial, an apparent difference in treatments may be observed due to 
chance alone, that is, we may observe a difference but it may be explained by the intrinsic character-
istics of the patients themselves rather than ‘caused’ by the different treatments given. As a conse-
quence, it is customary to use a ‘significance test’ to assess the weight of evidence and to estimate the 
probability that the observed data could in fact have arisen purely by chance.

The Null Hypothesis and Test Size

In our example, the null hypothesis, termed HNull, implies that A and C are equally effective or that 
δPop = πPopA − πPopC = 0. Even when that null hypothesis is true, at the end of the study an observed 
difference, d = pA − pC other than zero, may occur. The probability of obtaining the observed differ-
ence d or a more extreme one, on the assumption that δPop = 0, can be calculated using a statistical 
test. If, under this null hypothesis, the resulting probability or p‐value is very small, then we reject 
this null hypothesis of no difference and conclude that the two treatments do indeed differ in 
efficacy.
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1 Basic Design Considerations4

The critical value taken for the p‐value is arbitrary and is denoted by α. If, once calculated following 
the statistical test, the p‐value ≤ α then the null hypothesis is rejected. Conversely, if the p‐value > α, 
one does not reject the null hypothesis. Even when the null hypothesis is in fact true there is a risk of 
rejecting it. To reject the null hypothesis when it is true is to make a Type I error and the associated 
probability of this is α. The quantity α can be referred to either as the test size, significance level, 
probability of a Type I error or, sometimes, the false‐positive error.

The Alternative Hypothesis and Power

Usually in statistical significance testing, by rejecting the null hypothesis, we do not specifically 
accept any alternative hypothesis, and it is usual to report the range of plausible population values 
with a confidence interval (CI) as we describe in Section 1.6. However, sample size calculations are 
usually posed in a hypothesis test framework, and this requires us to specify an alternative hypoth-
esis, termed HAlt, that the true effect size is δPop = πPopA − πPopC ≠ 0.

The clinical trial could yield an observed difference d that would lead to a p‐value > α even though 
the null hypothesis is really not true, that is, πPopA truly differs from πPopC and so δPop ≠ 0. In such a 
situation, we then fail to reject the null hypothesis although it is indeed false. This is called a Type II 
or false‐negative error and the probability of this is denoted by β.

As the probability of a Type II error is based on the assumption that the null hypothesis is not true, 
that is, δPop ≠ 0, then there are many possible values for δPop in this instance. Since there are countless 
potential values then each would give a different value for β.

The power is defined as one minus the probability of a Type II error, 1 − β. Thus ‘power’ is the prob-
ability of what ‘you want’, which is obtaining a ‘significant’ p‐value when the null hypothesis is truly 
false and so a difference between two interventions may be claimed.

1.3  Planning Issues

The Effect Size

Of the parameters that have to be pre‐specified before the sample size can be determined, the true 
effect size is the most critical. Thus, in order to estimate sample size, one must first identify the mag-
nitude of the difference between the interventions A and C that one wishes to detect (strictly the 
minimum size of scientific or clinical interest) and quantify this as the (anticipated) effect size 
denoted δPlan. Although what follows is couched in terms of planning a randomised control trial, 
analogous considerations apply to all comparative study types.

Sometimes there is prior knowledge that enables an investigator to anticipate what size of benefit 
the test intervention is likely to bring, and the role of the trial is to confirm that expectation. In other 
circumstances, it may be possible to say that, for example, only the prospect of doubling of their 
median survival would be worthwhile for patients with a fatal disease who are rapidly deteriorating. 
This is because the test treatment is known to be toxic and likely to be a severe burden for the patient 
as compared to the standard approach.

One additional problem is that investigators are often optimistic about the effect of test interven-
tions; it can take considerable effort to initiate a trial and so, in many cases, the trial would only 
be launched if the investigating team is enthusiastic about the new treatment A and is sufficiently 
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convinced about its potential efficacy over C. Experience suggests that as trials progress there is 
often a growing realism that, even at best, the initial expectations were optimistic. There is also 
ample historical evidence to suggest that trials which set out to detect large effects nearly always 
result in ‘no significant difference was detected’. In such cases there may have been a true and clini-
cally worthwhile, but smaller, benefit that has been missed, since the level of detectable difference 
set by the design was unrealistically high and hence the sample size too small to detect this impor-
tant difference.

It is usual for most clinical trials that there is considerable uncertainty about the relative merits of 
the alternative interventions so that even when the new treatment or intervention under test is thought 
for scientific reasons to be an improvement over the current standard, the possibility that this is not 
the case is allowed for. For example, in the clinical trial conducted by Chow, Tai, Tan, et al (2002) it 
was thought, at the planning stage, that high dose tamoxifen would not compromise survival in 
patients with inoperable hepatocellular carcinoma. This turned out not to be the case and, if anything, 
tamoxifen was detrimental to their ultimate survival time. This is not an isolated example.

In practice, when determining an appropriate effect size, a form of iteration is often used. The 
clinical team might offer a variety of opinions as to what clinically useful difference will tran-
spire — ranging perhaps from an unduly pessimistic small effect to the optimistic (and unlikely in 
many situations) large effect. Sample sizes may then be calculated under this range of scenarios with 
corresponding patient numbers ranging perhaps from extremely large to relatively small. The impor-
tance of the clinical question and/or the impossibility of recruiting large patient numbers may rule 
out a very large trial but conducting a small trial may leave important clinical effects not firmly estab-
lished. As a consequence, the team may next define a revised aim maybe using a summary derived 
from their individual opinions, and the calculations are repeated. Perhaps the sample size now 
becomes attainable and forms the basis for the definitive protocol.

There are a number of ways of eliciting useful effect sizes using clinical opinion: a Bayesian per-
spective has been advocated by Spiegelhalter, Freedman and Parmar (1994), an economic approach 
by Drummond and O’Brien (1993) and one based on patients’ perceptions rather than clinicians’ 
perceptions of benefit by Naylor and Llewellyn‐Thomas (1994). Gandhi, Tan, Chung and Machin 
(2015) give a specific case study describing the synthesis of prior clinical beliefs, with information 
from non‐randomised and randomised trials concerning the treatment of patients following curative 
resection for hepatocellular carcinoma. Cook, Hislop, Altman et al (2015) also give useful guidelines 
for selection of an appropriate effect size.

One‐ or Two‐Sided Significance Tests

It is plausible to assume in the acupuncture trial referred to earlier that the placebo is in some sense 
‘inactive’ and that any ‘active’ treatment will have to perform better than the ‘inactive’ treatment if it 
is to be adopted into clinical practice. Thus rather than set the alternative hypothesis as HAlt: 
πPopA ≠ πPopC, it may be replaced by HAlt: πPopA > πPopC. This formulation leads to a 1‐sided statistical 
significance test.

On the other hand, if we cannot make this type of assumption about the new treatment at the 
design stage, then the alternative hypothesis is HAlt: πPopA ≠ πPopC. This leads to a 2‐sided statistical 
significance test.

For a given sample size, a 1‐sided test is more powerful than the corresponding 2‐sided test. 
However, a decision to use a 1‐sided test should never be made after looking at the data and  observing 
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the direction of the departure. Such decisions should be made at the design stage, and a 1‐sided test 
should only be used if it is certain that departures in the particular direction not anticipated 
will always be ascribed to chance and therefore regarded as non‐significant, however large they turn 
out to be.

It is more usual to carry out 2‐sided tests of significance but, if a 1‐sided test is to be used, this 
should be indicated and justified clearly for the problem in hand. Chapter 6, which refers to post‐
marketing studies, and Chapter 11, which discusses non‐inferiority trials, give some examples of 
studies where the use of a 1‐sided test size can be clearly justified.

Choosing α and β

It is customary to start by specifying the effect size required to be detected and then to estimate the 
number of patients necessary to enable the trial to detect this difference if it truly exists. Thus, for 
example, it might be anticipated that acupuncture could improve the response rate from 20% with C 
to 30% with A and, since this is deemed a plausible and medically important improvement, it is 
desired to be reasonably certain of detecting such a difference if it really exists. ‘Detecting a differ-
ence’ is usually taken to mean ‘obtaining a statistically significant difference with the p‐value < 0.05’; 
and similarly the phrase ‘to be reasonably certain’ is usually interpreted to mean something like ‘to 
have a chance of at least 90% of obtaining such a p‐value’ if there really is an improvement from 20 to 
30%. This latter statement corresponds, in statistical terms, to saying that the power of the trial 
should be 0.9 or 90%.

The choice for α is essentially an arbitrary one, the choice being made by the study investigating 
team. However, practice, accumulated over a long period of time, has established α = 0.05 as some-
thing of a convention. Thus in the majority of cases, investigators, editors of journals and their read-
ers have become accustomed to anticipate this value. If a different value is chosen then investigators 
would be advised to explain why.

Convention is not so well established with respect to the size of β, although in the context of a 
randomised control trial, to set β > 0.2, implying a power of less than 80%, would be regarded with 
some scepticism. Indeed, the use of 90% has become more of the norm (however, see Chapter 16, 
concerned with feasibility studies where the same considerations will not apply). In some circum-
stances, it may be the type of study to be conducted that determines this choice. Nevertheless, it is 
the investigating team which has to consider the possibilities and make the final choice.

Sample Size and Interpretation of Significance

The results of the significance test, calculated on the assumption that the null hypothesis is true, will 
be expressed as a ‘p‐value’. For example, at the end of the trial if the difference between treatments is 
tested, then a p‐value < 0.05 would indicate that so extreme or greater an observed difference could 
be expected to have arisen by chance alone less than 5% of the time, and so it is quite likely that a 
treatment difference really is present.

However, if only a few patients were entered into the trial then, even if there really was a true treat-
ment difference, the results are likely to be less convincing than if a much larger number of patients 
had been assessed. Thus, the weight of evidence in favour of concluding that there is a treatment 
effect will be much less in a small trial than in a large one. In statistical terms, we would say that the 
‘sample size’ is too small and that the ‘power of the test’ is very low.
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Suppose the results of an observed treatment difference in a clinical trial are declared ‘not statisti-
cally significant’. Such a statement only indicates that there was insufficient weight of evidence to be 
able to declare that ‘the observed difference is unlikely to have arisen by chance’. It does not imply that 
there is ‘no clinically important difference between the treatments’ as, for example, if the sample size 
was too small the trial might be very unlikely to obtain a significant p‐value even when a clinically 
relevant difference is truly present. Hence, it is of crucial importance to consider sample size and 
power when interpreting statements about ‘non‐significant’ results. In particular, if the power of the 
statistical test was very low, all one can conclude from a non‐significant result is that the question of 
treatment differences remains unresolved.

1.4  The Normal Distribution

The Normal distribution plays a central role in statistical theory and frequency distributions resem-
bling the Normal distribution form are often observed in practice. Of particular importance is the 
standardised Normal distribution, which is the Normal distribution that has a mean equal to 0 and a 
standard deviation (SD) equal to 1. The probability density function of such a Normally distributed 
random variable z is given by

 
z exp z1

2
1
2

2 , (1.1)

where π represents the irrational number 3.14159…. The curve described by equation (1.1) is shown 
in Figure 1.1
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Figure 1.1 The probability density function of a standardised Normal distribution. (ee insert ior coalor representation 
oi tTe iigsre.)
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1 Basic Design Considerations8

For sample size purposes, we shall need to calculate the area under some part of this Normal curve. 
To do this, use is made of the symmetrical nature of the distribution about the mean of 0 and the fact 
that the total area under a probability density function is unity.

Any shaded area similar to that in Figure 1.1 which has area γ (here γ ≥ 0.5) has a corresponding 
value of zγ along the horizontal axis that can be calculated. This may be described in mathematical 
terms by the following integral:

 

z

z dz z . (1.2)

For areas with γ < 0.5 we can use the symmetry of the distribution to calculate, in this case, the 
values for the unshaded area. For example if γ = 0.5, then one can see from Figure 1.1 that zγ = z0.5 = 0. 
It is also useful to be able to find the value of γ for a given value of zγ and this is tabulated in Table 1.1. 
For example if zγ = 1.96 then Table 1.1 gives γ = 0.97500. In this case, the shaded area of Figure 1.1 is 
then 0.975 and the unshaded area is 1 – 0.975 = 0.025.

For purposes of sample size estimation, it is the area in the tail, 1 – γ, that is often needed and so 
we most often need the value of z for a specified area. In relation to test size, we denote the area by α 
and Table 1.2 gives the value of z for differing values of α. Thus for 1‐sided α = 0.025 we have 
z = 1.9600. As a consequence of the symmetry of Figure 1.1, if z = –1.9600 then α = 0.025 is also in the 
lower tail of the distribution. Hence, the tabular value of z = 1.9600 also corresponds to 2‐sided 
α = 0.05. Similarly, Table 1.2 gives the value of z corresponding to the appropriate area under the 
curve for one‐ and two‐tailed values of 1 – β.

The ‘Fundamental Equation’

When the outcome variable of a study is continuous and Normally distributed, the mean, x , and 
standard deviation, s, calculated from the data obtained on n subjects provide estimates of the popu-
lation mean μPop and standard deviation σPop respectively. The corresponding standard error of the 
mean is then estimated by SE x s

n
.

In a parallel group trial to compare two treatments, with n patients in each group, the true relative 
efficacy of the two treatments is δPop = μPop1 – μPop2, and this is estimated by d x x1 2, with standard 

error SE d s
n

s
n

1
2

2
2

. It is usual to assume that the standard deviations are the same in both 

groups, so σPop1 = σPop2 = σPop (say). In which case a pooled estimate obtained from the data of both 

groups is s
s s1

2
2
2

2
, so that SE d s

n
s
n

s
n

2 2 2 .

The null hypothesis of no difference between groups is expressed as H0: δ = μPop1 – μPop2 = 0. This 
corresponds to the left hand Normal distribution of Figure 1.2 centred on 0. Provided the groups are 
sufficiently large, then a test of the null hypothesis, H0: δ = 0, of equal means calculates

 

z d
SE d

d

s
n

0
2

 (1.3)

and, for example, if this is sufficiently large, it indicates evidence against the null hypothesis.
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Now if this significance test, utilising the data we have collected, is to be just significant at some 
level α, then the corresponding value of z is z1‐α and that of d is denoted dα. That is, if the observed 
value d equals or exceeds the critical value dα, then the result is declared statistically significant at 
significance level α.

At the planning stage of the study, when we have no data, we would express the conceptual result 
of equation (1.3) by

 

z d

n

d z
n1 1

2
2or . (1.4)

The alternative hypothesis, HAlt: δ ≠ 0, where we assume δ > 0 for convenience, corresponds to the 
right hand Normal distribution of Figure 1.2 centred on δ. If this were the case then we would expect 
d to be close to δ, so that d – δ will be close to zero. To just reject the hypothesis that δ = μ1 – μ2 ≠ 0, 
we require our observed data to provide

 

z d
SE d

d

s
n

z
2

1

.
. (1.5)

At the planning stage of the study, when we have no data, we would express this conceptual result by

Standardised variable, z
0 δ

D
en

si
ty

Distribution of d under H0
Distribution of d under HAlt

Type II error rate β Type I error rate α

Figure 1.2 Distribution of d under the null (δ = 0) and alternative hypotheses (δ > 0).
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d z

n1
2 . (1.6)

Equating (1.4) and (1.6) for dα, and rearranging, we obtain the total sample size for the trial as

 
N n

z z z z
2

4 41 1
2

2
1 1

2

2/
. (1.7)

Here Δ = δ/σ is termed the standardised effect size. The essential structure of equation (1.7) occurs in 
many calculations of sample sizes and this is why it is termed the ‘Fundamental Equation’.

The use of (1.7) for the case of a two‐tailed test, rather than the one‐tailed test discussed previously, 
involves a slight approximation since d is also statistically significant if it is less than − dα. However, 
with d positive the associated probability is negligible. Thus, for the more usual situation of a 2‐sided 
test, we simply replace z1‐α in (1.7) by z1‐α/2.

In applications discussed in this book, 2‐sided α and 1‐sided β correspond to the most frequent 
application. A 1‐sided α and/or 2‐sided β are used less often (see Chapter 11 concerned with non‐
inferiority designs, however).

Choice of Allocation Ratio

Even though the Fundamental Equation (1.7) has been derived for comparing two groups of equal 
size, it will be adapted in subsequent chapters to allow for unequal subject numbers in the compara-
tor groups. Thus, for example, although the majority of clinical trials allocate subjects to the two 
competing interventions on a 1:1 basis, in many other situations there may be different numbers 
available for each group so that allocation is planned in the ratio 1: φ with φ ≠ 1.

If equal allocation is used, then φ = 1, and so equation (1.7) yields NEqual and hence nEqual = NEqual/2 
per group. However if φ ≠ 1, then ‘2n’ is replaced by ‘n + φn’ and the ‘4’ by ‘(1 + φ)2/φ’. This in turn 
implies NUnequal = nEqual(1 + φ)2/2φ. The minimum value of the ratio (1 + φ)2/2φ is 2 when φ = 1. Hence, 
NUnequal > NEqual and therefore a study using unequal allocation will require a larger number of 
subjects to be studied.

Notation

Throughout this book, we denote a 2‐sided (or two‐tailed) value for z corresponding to a 2‐sided 
significance level, α, by z1–α/2 and for a 1‐sided significance level by z1−α. The same notation is used in 
respect to the Type II error β.

 n order to design a stsdy corparing two grosps tTe design tear ssppalies

 ● The allocation ratio, φ
 ● The anticipated standardised eiiect size, Δ, which is the size of the anticipated difference between the 

two groups expressed in relation to the D.
 ● The probability of a Type I error, α, of the statistical test to be used in the analysis.
 ● The probability of a Type II error, β, equivalently expressed as the power 1 – β.
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Use of Tables 1.1 and 1.2

Table 1.1
Example 1.1 In retrospectively calculating the power of the test from a completed trial comparing 
two treatments, an investigator has obtained z1–β = 1.05 and would like to know the corresponding 
power, 1 – β.

In the terminology of Table 1.1, the investigator needs to find γ for zγ = 1.05. Direct entry into the 
table with zγ = 1.05 gives the corresponding γ = 0.85314. Thus, the power of the test would be approx-
imately 1 – β = 0.85 or 85%.

Table 1.2
Example 1.2 At the planning stage of a randomised trial, an investigator is considering using a 
one‐sided or one‐tailed test size α of 0.05 and a power of 0.8. What are the values of z1‐α and z1‐β that 
are needed for the calculations?

For a one‐tailed test one requires a probability of α in one tail of the corresponding standardized 
Normal distribution. The investigator thus needs to find zγ = z1‐α or z0.95. A value of 0 95.  could be 
found by searching in the body of Table 1.1. Such a search gives z as being between 1.64 and 1.65. 
However, direct entry into the second column of Table 1.2 with α = 0.05 gives the corresponding 
z = 1.6449. To find z1‐β for 1 − β = 0.80, enter the second column to obtain z0.80 = 0.8416.

At a later stage in the planning, the investigator is led to believe that a 2‐sided test would be more 
appropriate; how does this affect the calculations?

For a two‐tailed test with α = 0.05, direct entry into the second column of Table 1.2 gives the cor-
responding z0 975 1 9600. . .

1.5  Distributions

Central and Non‐Central T‐Distributions

Suppose we had n Normally distributed observations with mean x  and SD s. Then, under the null 
hypothesis, H0, that the true mean value μ = 0, the function

 
t x

s n
0

/
 (1.8)

has a Student’s t‐distribution with degrees of freedom (df) equal to n – 1.
Figure 1.3 shows how the central t‐distribution is less peaked, with fatter tails, than the corre-

sponding Normal distribution. However, once the df attains 30, it becomes virtually identical to the 
Normal distribution in shape.

Values of tdf,1‐α/2 are given in Table 1.3. For example if df = 9 and 2‐sided α = 0.05 then t9,0.975 = 2.2622. 
As the df increase, the corresponding tabular values decrease until, when df = ∞, t9,0.975 = 1.9600. This 
is now the same as z0.975 = 1.9600 found in Tables 1.1 and 1.2 for the Normal distribution.

Under the alternative hypothesis, HAlt, that μ ≠ 0, the function

 
t x

s n
Non Central

/
 (1.9)

has a Non‐Central‐t (NCT) distribution, with df = n − 1 and non‐centrality parameter 
n

. Thus 
if μ and σ are fixed, the ψ depends only on the square root of the sample size, n.
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1 Basic Design Considerations12

Figure 1.4 shows the distribution of various NCT distributions with μ = σ = 1; df = 1, 3, 8 and 30, 
and hence non‐centrality parameter ψ = √2, √4, √9 and √31 respectively. In general as ψ increases, the 
mean of the NCT distribution moves away from zero, the SD decreases and so the distribution 
becomes less skewed. However, as shown in Figure 1.4, even with n = 31, the NCT distribution is 
slightly positively skewed relative to the Normal distribution with the same mean and SD.

The cumulative NCT distribution represents the area under the corresponding distribution to the 
left of the ordinate x and is denoted by Tdf(t|ψ). However, in contrast to the value of z1‐α/2 in Table 1.1, 
which depends only on α, and tdf,1‐α/2 of Table 1.3, which depends on α and df, the corresponding 
NCT1‐α/2, df, ψ varies according to the three components α, df and ψ and so the associated tables of 
values would need to be very extensive. As a consequence, specific computer‐based algorithms, 
rather than tabulations, are used to provide the specific ordinates needed.

Binomial

In many studies the outcome is a response and the results are expressed as the proportion of subjects 
who achieve this response. As a consequence, the Binomial distribution plays an important role in 
the design and analysis of the corresponding trials.

For a specified probability of response π, the Binomial distribution is the probability of observing 
exactly r (ranging from 0 to n) responses in n patients or

 
b r n n

r n r
r n r; , .!

! !
1  (1.10)

Here, for example, n! = n × (n – 1) × (n – 2) × … × 2 × 1 and 0! = 1.
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Figure 1.3 Central t‐distributions with different degrees of freedom (di) and the corresponding Normal distribution. 
(ee insert ior coalor representation oi tTe iigsre.)
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1.5 Distriistions 13

For a fixed sample size n, the shape of the Binomial distribution depends only on π. Suppose n = 5 
patients are to be treated, and it is known that on average 0.25 will respond to this particular treat-
ment. The number of responses actually observed can only take integer values between 0 (no 
responses) and 5 (all respond). The Binomial distribution for this case is illustrated in Figure 1.5. 
The distribution is not symmetric, it has a maximum at one response, and the height of the blocks 
corresponds to the probability of obtaining the particular number of responses from the five patients 
yet to be treated. It should be noted that the mean or expected value for r, the number of successes 
yet to be observed if we treated n patients, is nπ. The potential variation of this expectation is 
expressed by the corresponding SD r n 1 .

Figure 1.5 illustrates the shape of the Binomial distribution for π = 0.25 and various n values. When 
n is small (here 5 and 10), the distribution is ‘skewed to the right’ as the longer tail is on the right side 
of the peak value. The distribution becomes more symmetrical as the sample size increases (here 20 
and 50). We also note that the width of the bars decreases as n increases since the total probability of 
unity is divided amongst more and more possibilities.

If π were set equal to 0.5, then all the distributions corresponding to those of Figure 1.5 would be 
symmetrical whatever the size of n. On the other hand if π = 0.75, then all the distributions would be 
skewed to the left.

The cumulative Binomial distribution is the sum of the probabilities of equation (1.10) from r = 0 
to a specific value of r = R, that is

 
B R n n

r n rr

r R
r n r; , .

0
1!

! !
 (1.11)
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Figure 1.4 Non‐central t‐distributions with μ = σ = 1, hence non‐centrality parameters ψ = √n, with increasing di = n − 1 
with n equal to 2, 4, 9 and 31. For n = 31 the corresponding Normal distribution with mean √31 = 5.57 is added. 
(ee insert ior coalor representation oi tTe iigsre.)
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1.5 Distriistions 15

The values given to r, R, π and n in expressions (1.10) and (1.11) will depend on the context. This 
expression corresponds to equation (1.2), and the unshaded area in Figure 1.1, of the standardised 
Normal distribution.

Poisson

The Poisson distribution is used to describe discrete quantitative data such as counts that occur 
independently and randomly in time at some average rate. For example, the number of deaths in a 
town from a particular disease per day and the number of admissions to a particular hospital casualty 
department typically follow a Poisson distribution.

Suppose events happen randomly and independently in time at a constant rate. If the events hap-
pen with a rate of λ events per unit time, the probability of r events happening in unit time is

 
Poisson r

exp
r

r

!
, (1.12)

where exp(−λ) is a convenient way of writing the exponential constant e raised to the power − λ. The 
constant e is the base of natural logarithms which is 2.718281 ….

The mean of the Poisson distribution for the number of events per unit time is simply the rate, λ. 
The variance of the Poisson distribution is also equal to λ, and so the SD = √λ.

Figure 1.6 shows the Poisson distribution for four different means λ = 1, 4, 10 and 15. For λ = 1 the 
distribution is very right skewed, for λ = 4 the skewness is much less, and as the mean increases to 
λ = 10 or 15, the distribution is more symmetrical. These look more like the Binomial distribution of 
Figure 1.5 and ultimately the Normal distribution shape of Figure 1.1.

Negative‐Binomial

A key property of the Poisson distribution is that the mean and the variance are both equal to λ. 
However, there are situations where the mean and variance may be expected to differ. In which 
case, the Negative‐Binomial (NB) distribution which we consider when comparing rates in 
Chapter  6 may provide an appropriate description for the resulting data. The distribution is 
defined by

 
NB r

r
r

r

r

1
1 1 1 1

/
/

./
 (1.13)

Here the underlying mean rate is λ and the over‐dispersion (a variance greater than λ) is accounted 
for by the parameter κ and implies a variance of λ(1 + κλ). In equation (1.13) the quantity Γ(r + 1) rep-
resents the gamma function which, when r is a non‐negative integer, equals r!. Thus if r = 3, 
Γ(4) = 3 × 2 × 1 = 6 while if r = 4, Γ(5) = 4 × 3 × 2 × 1 = 24. However if, for example, κ = 2 then Γ(r + ½) 
cannot be expressed as a simple product of successive non‐negative integers. In fact if r = 4, then 

4 5 11 630
3 5. ..e u duu . As might be expected, this is somewhere between 3! = 6 and 4! = 24.
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1.5 Distriistions 17

Beta

Another distribution that we will utilise when discussing therapeutic exploratory studies including 
dose‐finding studies and phase II trials in Chapters 17 and 18 is the Beta distribution. This distribu-
tion is similar to the Binomial distribution of equation (1.10) but allows non‐integer powers of the 
terms π and (1 – π). It takes the form

 
beta v w

Beta v w

v w

, , 
, 

,
1 11  (1.14)

where v and w are usually > 1 for our purpose and Beta v w u u duv w, 0

1 1 11 . This integral can 
be solved numerically for a given v and w and its value ensures that the sum (strictly the integral) of 
all the terms of (1.14) is unity. In contrast to (1.10) the Beta distribution is that of the continuous vari-
able π rather than of the integer r of the Binomial distribution.

In general when planning a study where the outcome of interest is measured as a proportion, the 
Beta distribution may be used to encapsulate, given our prior knowledge about π, the parameter we 
are trying to estimate with the trial. This prior knowledge may include relevant information from 
other sources such as the scientific literature or merely reflect the investigator’s belief in the ultimate 
activity of the therapy under test.

Once trial recruitment is complete and r responses from the n subjects concerned are observed, 
the prior knowledge is then combined with the study data to obtain a posterior distribution for 
π.  This is formed from the product of parts of equations (1.14) and (1.10), that is, πv−1(1 – 
π)1−w × πr(1  – π)n−r = π r+v−1(1 – π)n−r+1−w. The Beta distribution is chosen as it combines easily 
with the Binomial distribution in this way. The posterior distribution forms the basis of Bayesian 
methods and  represents our overall belief at the close of the trial about the distribution of the 
population parameter, π.

Once we have obtained the posterior distribution, we can compute the probability that π falls within 
any pre‐specified region of interest. For example, the investigator might wish to know the probability 
that the true response proportion exceeds a pre‐specified target value. This contrasts with the confi-
dence interval approach of Section 1.6, which does not answer this question but provides an estimate 
of the true response proportion, along with the associated 95% confidence interval (termed Frequentist 
as opposed to Bayesian). Arguably, in the context of early stage trials discussed in Chapter 17, since 
their main goal is not to obtain a precise estimate of the response rate of the new drug but rather to 
accept or reject the drug for further testing in a randomised controlled trial, a Bayesian approach 
seems best. However, the majority of studies are not designed using a Bayesian framework.

Exponential

In survival time studies, such as those describing the subsequent survival experience of a group of 
patients diagnosed with cancer, if the death rate is constant then the pattern of their deaths follows 
an Exponential distribution.

If the death rate is θ per unit time, then the proportion of subjects alive at time t is

 S t e t . (1.15)

This is often written S(t) = exp(−θt) and is termed the survival function of the Exponential distribu-
tion. More generally the death rate is replaced by the hazard rate as the event of concern may not be 
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1 Basic Design Considerations18

death but (say) time to relapse of a disease or the healing time of an ulcer. The constant hazard rate 
is a unique property of the Exponential distribution. Sample sizes for survival time studies are dis-
cussed in Chapter 7.

The shape of the Exponential survival distribution of equation (1.15) is shown in Figure 1.7 for a 
hazard rate θ = 0.25 per month. It is clear from this graph that only about 0.2 (20%) of the population 
remains alive at 6 months, less than 10% at 12 months, and very few survivors beyond 18 months. 
This is not very surprising since the hazard rate tells us that one‐quarter of those alive at a given time 
will die in the following month.

As Figure 1.7 also shows, with a hazard rate θ = 0.125 the Exponential survival function will lie 
above that of θ = 0.25 since the death rate is lower, while for θ = 0. 5 it falls below since, in this case, 
the death rate is higher.

A constant value of the hazard rate implies that the probability of death remains constant as succes-
sive days go by. This idea extends to saying that the probability of death in any time interval depends 
only on the width of the interval. Thus the wider the time interval, the greater the probability of death 
in that interval, but where the interval begins (and ends) has no influence on the death rate.

1.6  Confidence Intervals

When describing the Fundamental Equation (1.7), we have presumed that the study involves two 
treatment groups and that, once the data are all collated, a statistical significance test of the null 
hypothesis will be conducted from which a p‐value will be determined. Whether this is statistically 
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Figure 1.7 The Exponential survival function with constant hazards of θ = 0.125, 0.25 and 0.5. (ee insert ior coalor 
representation oi tTe iigsre.)
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1.6 Coniidence  nterraals 19

significant or not, a p‐value alone gives the reader, who wishes to make use of the published results 
of a particular study, little practical information. As a consequence, it is therefore incumbent on the 
investigating team to quote the estimated effect (the observed difference between the treatments) 
together with an indication of the uncertainty attached to this value by the corresponding (usually 
95%) confidence interval (CI). Together these enable an interested reader of the final report of the 
study to better judge the relative impact of the alternative interventions.

Even in situations when no comparison is to be made, for example in estimating the prevalence of 
a particular disease, it remains important to provide the relevant confidence interval.

In general, for the purposes of this book and at the planning stage of a study, discussion is easier in 
terms of statistical significance but nevertheless we emphasise that key CIs should always be quoted 
in the final report of any study of whatever design.

In the following sections, we give the expressions for standard errors (SEs) and CIs for some key 
summary statistics including the mean, proportion, rate and hazard rate corresponding to data 
obtained from the Normal, Binomial, Poisson and Exponential distributions. Although not detailed 
here, there are corresponding CIs for the appropriate measures of the difference between groups. CIs 
for some of these latter situations are included in Chapter 9.

Normal

Confidence interval for a mean
Large samples
The sample mean, proportion or rate is the best estimate we have of the true population mean, pro-
portion or rate. We know that the distribution of these parameter estimates from many samples of 
the same size will be more or less Normal. As a consequence, we can construct a CI—a range of 
values in which we are confident the true population value of the parameter is likely to lie. Such an 
interval for the population mean μPop is defined by

 x z SE x x z SE x1 2 1 2/ /to , (1.16)

where x  is the mean from a sample of n subjects and SE x
n

Pop . To calculate the CI an estimate, 

s, of the true SD σPop has to be obtained from the data. Values of z1‐α/2 are found from Table 1.2, so 
that for a 95% CI, α = 0.05 and we have z0.975 = 1.9600.

Example 1.3 Regional brain volumes in extremely preterm infants
Parikh, Kennedy, Lasky, et al (2013) report the mean regional brain volume in 21 high‐risk ventilator‐
dependent infants randomised to receive placebo (P) as x  = 277.8 cm3 with SD = 59.1. Thus SE x  = 
59.1/√21 = 12.90 cm3. From these the 95% CI for the population mean is 277.8 − (1.96 × 12.90) to 
277.8 + (1.96 × 12.90) or 252.5 to 303.1 cm3.

Hence, loosely speaking, we are 95% confident that the true population mean regional brain vol-
ume for such preterm infants lies between 253 and 303 cm3. Our best estimate is provided by the 
sample mean of 278 cm3.

Strictly speaking, it is incorrect to say that there is a probability of 0.95 that the population mean 
birth weight lies between 253 and 303 cm3 as the population mean is a fixed number and not a ran-
dom variable and therefore has no probability attached to it. Nevertheless, many statisticians often 

0003410591.INDD   19 05/15/2018   9:30:05 PM



1 Basic Design Considerations20

describe CIs in that way. The value of 0.95 is really the probability that the CI calculated from a ran-
dom sample will include the population value. Thus for 95% of the CIs it will be true to say that the 
population mean, μPop, lies within this interval. However we only ever have one CI and we cannot 
know for certain whether it includes the population value or not.

Small samples
Equation (1.16) for the 100(1 – α)% CI for a mean strictly only applies when the sample size is rela-
tively large—a guide is if n, the number of subjects contributing to the mean, exceeds 25. When 
sample sizes are smaller, the following expression should be used instead

 x t SE x x t SE xdf df, / , /1 2 1 2to . (1.17)

Here tdf,1‐α/2 replaces z1‐α/2 of equation (1.16).

Degrees of  Freedom (df) Besides depending on α, tdf,1‐α of equation (1.17) also depends on the 
degrees of freedom, df, utilised to estimate the true standard deviation, σ, in the final analysis of the 
study. For a single mean, the df = n – 1. Values of tdf,1‐α/2 are found from Table 1.3. For example, for a 
sample mean based on n = 10 observations, df = 10 – 1 = 9. The corresponding 95% CI has α = 0.05 and 
so tdf,1‐α/2 = t9,0.975 = 2.2622, whereas the corresponding z0.975 (see the last row of Table 1.3) is 1.9600. 
Thus the small sample leads, for a given α, to a wider CI.

Use of Table 1.3

Example 1.4 Regional brain volumes in extremely preterm infants
In the randomised trial of Parikh, Kennedy, Lasky, et al (2013) of Example 1.3, the reported mean 
regional brain volume in those receiving P was based on n = 21 infants, which is not a very large sam-
ple size. Thus it is more appropriate to estimate the CI of the mean using the t‐distribution with 
df = 21 − 1 = 20. For a 95% CI, Table 1.3 gives tdf,1‐α/2 = t20,0.975 = 2.0860 so that equation (1.17) leads to 
277.8 − (2.0860 × 12.90) to 277.8 + (2.0860 × 12.90) or 250.9 to 304.7 cm3. This CI is a little wider than 
that calculated using the Normal distribution of Table 1.1.

Binomial

Confidence interval for a proportion
If r is the number of patients who respond out of n recruited for a trial, then the response proportion 

p = r/n is the estimate of the true response rate πPop. The SE of p is SE p
p p

n
1

 and the cor-

responding approximate 100(1 − α)% CI for πPop is calculated using the ‘traditional’ method by anal-
ogy with equation (1.16) as

 p z SE p p z SE p1 2 1 2/ /to . (1.18)

The reason we can do this is provided by the distributions shown in Figure 1.5 where, as n gets 
larger, the shape of the Binomial distribution comes closer and closer to that of the Normal distribu-
tion until they are almost indistinguishable. However, this ‘traditional’ approximation of equation 
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1.6 Coniidence  nterraals 21

(1.16) should not be used if the proportion responding is either very low or very high or if the 
numbers of patients involved is small. In these cases we advocate the use of the ‘recommended’ 
method described by Newcombe and Altman (2000), see also Julious (2005), and which is computed 
as follows.

Calculate p r
n

, A r z2 1 2
2

/ , B z z r p1 2 1 2
2 4 1/ /  and C n z2 1 2

2
/ .

The corresponding 2‐sided (1 − α)% CI is then given by

 
A B

C
A B

C
to . (1.19)

This method can be used even when no responses occur, that is when r = 0, and hence p = 0. In 
which case the CI is

 
0 1 2

2

1 2
2

to .z
n z

/

/

 (1.20)

Furthermore, if all patients respond, r = n so that p = 1, and the CI then becomes

 

n
n z1 2

2
1

/

to . (1.21)

Example 1.5 Carboplatin for metastatic rhabdomyosarcoma
Chisholm, Machin, McDowell, et al (2007, Table  2) reported 1 complete and 4 partial responses 
among 17 children or adolescents with newly diagnosed metastatic rhabdomyosarcoma who 
had  received carboplatin. The corresponding overall response rate was p = 5/17 = 0.2941 with 

SE p
0 2941 1 0 2941

17
0 1105

. .
. .

Using the ‘traditional’ method of equation (1.16) gives a 95% CI for πPop of 0.0775 to 0.5107, whereas 
using the ‘recommended’ method of equation (1.19) results in 0.1328 to 0.5313. These are quite dif-
ferent but only the latter is correct and should be quoted.

As it is usual to quote response rates in percentages, the corresponding trial report would quote for 
these data: ‘… the response rate observed was 29% (95% CI 13 to 53%).’

Poisson

Confidence interval for a rate
If r events are observed in a very large number of n subjects, then the rate is R = r/n as with the 
Binomial proportion. However, for the Poisson distribution r is small relative to n, so the standard 
error of R, is

 
SE R

R R
n

R
n

1
. (1.22)
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In this case, the approximate 100(1 − α)% CI for the population value of λPop is calculated using the 
‘traditional’ method, by

 R z SE R R z SE R1 2 1 2/ /to . (1.23)

However, although we refer to the number of events as r, we also add that this is the number of 
events observed in a ‘unit of time’ and it is therefore essentially a rate. Thus the estimated rate for 
λ is often expressed as R = r/Y, where Y is the unit of time concerned. Thus, in Example 1.6 below, 
we refer to R as the number of organ donations per day, which is 1.82 as calculated from 1,330 
donations over a two year (731 day) period. In such a case n, of equation (1.22), is replaced by Y.

The reason we can use equation (1.23) is provided by the distributions shown in Figure 1.6 where, 
as λ gets larger, the shape of the Poisson distribution comes closer and closer to that of the Normal 
distribution until they are almost indistinguishable. However, this ‘traditional’ approximation of 
equation (1.16) should not be used if R (before division by n or Y as appropriate) is very low or if the 
numbers of subjects involved small.

Example 1.6 Cadaveric heart donors
The study of Wight, Jakubovic, Walters, et al (2004) gave the number of organ donations calculated 

over a two‐year period as R = 1,330/731 = 1.82 per day. This is a rate with SE R 1 82
731

0 05. . .

Therefore, using equation (1.23) the 95% CI for λPop is 1.82 – 1.96 × 0.05 to 1.82 + 1.96 × 0.05 or 1.72 
to 1.92 organ donations per day. This CI is quite narrow, suggesting that the true value of (more 
strictly the range for) λPop is well established.

Exponential

Confidence interval for a hazard rate
The hazard rate is estimated by θ = D/T where D is the number of deaths (or events) while T is the 
total survival experience in (say) years of the n subjects in the study. When D and/or n is large, an 
approximate 95% CI can be obtained from

 
log log log log1 96 1 96. .SE SEto , (1.24)

since log θ often follows more closely a Normal distribution than does θ itself. In this case, 
SE log

D
1 .

Example 1.7 Glioblastoma
Sridhar, Gore, Boiangiu, et al (2009) treated 23 patients with non‐extensive glioblastoma with con-
comitant temozolomide and radiation of whom 18 died in a total of 33.32 years of follow‐up while 
5  patients remain alive and so provided censored observations. The corresponding hazard rate 
θ = 18/33.32 = 0.5402 per year.

Substituting θ = 0.5402 in equation (1.24) gives log θ = −0.6158, SE(log θ) = 1/√18 = 0.2357 and the 
95% CI for log θ as −0.6158 − (1.96 × 0.2357) to −0.6158 + (1.96 × 0.2357) or −1.0778 to −0.1538. 
If  we  exponentiate (anti‐log) both limits of this interval, we obtain exp(−1.0778) = 0.3403 to 
exp(−0.1538) = 0.8574 per year or 34 to 84% for the 95% CI for θ.
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1.7  Use of Sample Size Tables

Number of Subjects

Before conducting a clinical trial to test the value of acupuncture, a researcher believes that the pla-
cebo group will yield a response rate of 30%. How many subjects are required to demonstrate an 
anticipated response rate for acupuncture of 50% at a given significance level and power?

Power of a Study

A common situation is one where the number of patients that can be recruited for a study is gov-
erned by forces such as time, money, human resources, disease prevalence or incidence rather than 
by purely scientific criteria. The researcher may then wish to know ‘What is the probability (the 
power) of detecting the perceived clinically relevant difference in treatment efficacy if a trial of this 
given size is conducted?’

Size of Effect

A reasonable power, say 80%, may be fixed and the investigators wish to explore with a particular 
sample size in mind, what size of effect could be established within this constraint.

1.8  Numerical Accuracy

This book contains formulae for sample size determination for many different situations. If these 
formulae are evaluated with the necessary input values provided, they will give sample sizes to a 
mathematical accuracy of a single subject. However, the user should be aware that when planning a 
study of whatever type, the investigators are planning in the presence of considerable uncertainty 
with respect to the eventual outcome so it is important not to be misled by this apparent precision.

When calculating sample sizes from the formulae given, as well as in the examples and in the sta-
tistical software provided, there may be some numerical differences between what is published and 
what an investigator may obtain in repeating the calculations.

Such divergences may arise in a number of ways. For example, when a particular calculation is 
performed there is often a choice of the number of significant figures to be used in the calculation 
process. Although the final sample size, N, must be integer, such a choice will in general provide 
non‐integer values which are then rounded (usually upwards) to the nearest integer value. To give 
an extreme example, the use of two significant figure accuracy for the individual components 
within a sample size calculation may result in N = 123.99, whereas four figure accuracy may lead to 
N = 124.0001. Rounding upwards then introduces a discrepancy between 124 and 125. Further, if a 
1:1 allocation to the two groups to be compared is required, then the former gives n = 62 per group 
but the latter gives n = 62.5, which would be rounded to 63 and hence an upward revised N = 126. 
Depending on the numerical values derived, further discrepancies can occur in circumstances if 
these calculations use, for example, 123.99/2 or 124.0001/2 rather than 124/2 and 125/2.

However, since investigators are usually planning in situations of considerable uncertainty, these 
differences will usually have little practical consequence. Also in view of this, it would seem in general 
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rather wise to take, for example, a final N of 100 rather than 98, and certainly 1,000 rather than 998. 
Indeed, although this will require some judgement, perhaps a calculated N of 90 or 950 may become 
100 and 1,000 respectively.

This suggests that, in the majority of applications, the number obtained should be rounded upwards 
to the nearest 5, 10 or more to establish the required sample size. We advise to round upwards as this 
gives rise to narrower confidence intervals and hence more ‘convincing’ evidence.

The above comments clearly make sense when the final sample sizes under discussion are relatively 
large, but more care will be needed in small and particularly very small sized studies. Also, when 
discussing the cluster designs of Chapters 12 and 13, care is needed. In this context, the final sample 
size is the product of the total number of clusters, K, and the number of subjects within each cluster, 
m, so that N = Km. Suppose the investigator plans for m = 45 per cluster, and the sample size calcula-
tions lead to K = 7.99 or 8.0001 depending on the number of significant figures used. Then rounding 
to 8 and 9 respectively and requiring a 1:1 allocation of the intervention to clusters gives K = 8 or 10. 
In which case, automatically rounding 8.0001 upwards to 10 results in 2 extra clusters and hence a 
study requiring a further 90 subjects. Again, some judgement is now necessary by the investigating 
team to decide the final choice of study size.

In some cases, statistical research may improve the numerical accuracy of some of the sample size 
formulae reproduced here which depend on algebraic approximations. However, these improve-
ments are likely to have less effect on the subsequent subject numbers obtained than changes in the 
planning values substituted into the corresponding formulae.

1.9  Software for Sample Size Calculations

Since sample size determination is such a critical part of the design process, we recommend that all 
calculations are carefully checked before the final decisions are made. This is particularly important 
for large and/or resource intensive studies. In‐house checking by colleagues is important as well.

Sample size calculations for a number of situations are available in various statistical packages such 
as SAS, SPSS and Stata. They are also available in a number of propriety packages as listed below.

Borenstein M, Rothstein H and Cohen J (2005). Power & Precision (Power Analysis): Version 4. 
Biostat, Englewood, New Jersey, USA.

Lenth RV (2006‐9). Java Applets for Power and Sample Size. http://www.stat.uiowa.edu/~rlenth/Power.
NCSS, LC (2017). Pass 15 Power Analysis and Sample Size Software (PASS 15): Kaysville, Utah, USA.
SAS Institute (2004). Getting Started with the SAS Power and Sample Size Application: Version 9.1, 

SAS Institute, Cary, North Carolina.
StataCorp (2014). Stata Statistical Software: Release 14. College Station, Texas, USA.
Statistical Solutions (2015). nQuery Adviser + nTerim: Users Guide. Cork, Ireland.
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Table 1.1 The cumulative Normal distribution function, Φ(z): The probability that a Normally distributed variable is 
less than z [Equation (1.2)].

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.50000 0.50399 0.50798 0.51197 0.51595 0.51994 0.52392 0.52790 0.53188 0.53586
0.1 0.53983 0.54380 0.54776 0.55172 0.55567 0.55962 0.56356 0.56749 0.57142 0.57535
0.2 0.57926 0.58317 0.58706 0.59095 0.59483 0.59871 0.60257 0.60642 0.61026 0.61409
0.3 0.61791 0.62172 0.62552 0.62930 0.63307 0.63683 0.64058 0.64431 0.64803 0.65173
0.4 0.65542 0.65910 0.66276 0.66640 0.67003 0.67364 0.67724 0.68082 0.68439 0.68793

0.5 0.69146 0.69497 0.69847 0.70194 0.70540 0.70884 0.71226 0.71566 0.71904 0.72240
0.6 0.72575 0.72907 0.73237 0.73565 0.73891 0.74215 0.74537 0.74857 0.75175 0.75490
0.7 0.75804 0.76115 0.76424 0.76730 0.77035 0.77337 0.77637 0.77935 0.78230 0.78524
0.8 0.78814 0.79103 0.79389 0.79673 0.79955 0.80234 0.80511 0.80785 0.81057 0.81327
0.9 0.81594 0.81859 0.82121 0.82381 0.82639 0.82894 0.83147 0.83398 0.83646 0.83891

1.0 0.84134 0.84375 0.84614 0.84849 0.85083 0.85314 0.85543 0.85769 0.85993 0.86214
1.1 0.86433 0.86650 0.86864 0.87076 0.87286 0.87493 0.87698 0.87900 0.88100 0.88298
1.2 0.88493 0.88686 0.88877 0.89065 0.89251 0.89435 0.89617 0.89796 0.89973 0.90147
1.3 0.90320 0.90490 0.90658 0.90824 0.90988 0.91149 0.91308 0.91466 0.91621 0.91774
1.4 0.91924 0.92073 0.92220 0.92364 0.92507 0.92647 0.92785 0.92922 0.93056 0.93189

1.5 0.93319 0.93448 0.93574 0.93699 0.93822 0.93943 0.94062 0.94179 0.94295 0.94408
1.6 0.94520 0.94630 0.94738 0.94845 0.94950 0.95053 0.95154 0.95254 0.95352 0.95449
1.7 0.95543 0.95637 0.95728 0.95818 0.95907 0.95994 0.96080 0.96164 0.96246 0.96327
1.8 0.96407 0.96485 0.96562 0.96638 0.96712 0.96784 0.96856 0.96926 0.96995 0.97062
1.9 0.97128 0.97193 0.97257 0.97320 0.97381 0.97441 0.97500 0.97558 0.97615 0.97670

2.0 0.97725 0.97778 0.97831 0.97882 0.97932 0.97982 0.98030 0.98077 0.98124 0.98169
2.1 0.98214 0.98257 0.98300 0.98341 0.98382 0.98422 0.98461 0.98500 0.98537 0.98574
2.2 0.98610 0.98645 0.98679 0.98713 0.98745 0.98778 0.98809 0.98840 0.98870 0.98899
2.3 0.98928 0.98956 0.98983 0.99010 0.99036 0.99061 0.99086 0.99111 0.99134 0.99158
2.4 0.99180 0.99202 0.99224 0.99245 0.99266 0.99286 0.99305 0.99324 0.99343 0.99361

2.5 0.99379 0.99396 0.99413 0.99430 0.99446 0.99461 0.99477 0.99492 0.99506 0.99520
2.6 0.99534 0.99547 0.99560 0.99573 0.99585 0.99598 0.99609 0.99621 0.99632 0.99643
2.7 0.99653 0.99664 0.99674 0.99683 0.99693 0.99702 0.99711 0.99720 0.99728 0.99736
2.8 0.99744 0.99752 0.99760 0.99767 0.99774 0.99781 0.99788 0.99795 0.99801 0.99807
2.9 0.99813 0.99819 0.99825 0.99831 0.99836 0.99841 0.99846 0.99851 0.99856 0.99861

3.0 0.99865 0.99869 0.99874 0.99878 0.99882 0.99886 0.99889 0.99893 0.99896 0.99900
3.1 0.99903 0.99906 0.99910 0.99913 0.99916 0.99918 0.99921 0.99924 0.99926 0.99929
3.2 0.99931 0.99934 0.99936 0.99938 0.99940 0.99942 0.99944 0.99946 0.99948 0.99950
3.3 0.99952 0.99953 0.99955 0.99957 0.99958 0.99960 0.99961 0.99962 0.99964 0.99965
3.4 0.99966 0.99968 0.99969 0.99970 0.99971 0.99972 0.99973 0.99974 0.99975 0.99976

3.5 0.99977 0.99978 0.99978 0.99979 0.99980 0.99981 0.99981 0.99982 0.99983 0.99983
3.6 0.99984 0.99985 0.99985 0.99986 0.99986 0.99987 0.99987 0.99988 0.99988 0.99989
3.7 0.99989 0.99990 0.99990 0.99990 0.99991 0.99991 0.99992 0.99992 0.99992 0.99992
3.8 0.99993 0.99993 0.99993 0.99994 0.99994 0.99994 0.99994 0.99995 0.99995 0.99995
3.9 0.99995 0.99995 0.99996 0.99996 0.99996 0.99996 0.99996 0.99996 0.99997 0.99997

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
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Table 1.3 Student’s t‐distribution, tdi,1‐α/2.

2‐sided α

df 0.20 0.10 0.05 0.01

1 3.0777 6.3138 12.7062 63.6567
2 1.8856 2.9200 4.3027 9.9248
3 1.6377 2.3534 3.1824 5.8409
4 1.5332 2.1318 2.7764 4.6041
5 1.4759 2.0150 2.5706 4.0321
6 1.4398 1.9432 2.4469 3.7074
7 1.4149 1.8946 2.3646 3.4995
8 1.3968 1.8595 2.3060 3.3554
9 1.3830 1.8331 2.2622 3.2498

10 1.3722 1.8125 2.2281 3.1693
11 1.3634 1.7959 2.2010 3.1058
12 1.3562 1.7823 2.1788 3.0545
13 1.3502 1.7709 2.1604 3.0123
14 1.3450 1.7613 2.1448 2.9768
15 1.3406 1.7531 2.1314 2.9467
16 1.3368 1.7459 2.1199 2.9208
17 1.3334 1.7396 2.1098 2.8982
18 1.3304 1.7341 2.1009 2.8784
19 1.3277 1.7291 2.0930 2.8609

Table 1.2 Percentage points of the Normal distribution for differing α and 1 − β.

α 1 − β

z1‐sided 2‐sided 1‐sided 2‐sided

0.0005 0.001 0.9995 0.999 3.2905
0.0025 0.005 0.9975 0.995 2.8070
0.005 0.01 0.995 0.99 2.5758
0.01 0.02 0.99 0.98 2.3263
0.0125 0.025 0.9875 0.975 2.2414

0.025 0.05 0.975 0.95 1.9600
0.05 0.1 0.95 0.9 1.6449
0.1 0.2 0.9 0.8 1.2816
0.15 0.3 0.85 0.7 1.0364
0.2 0.4 0.8 0.6 0.8416

0.25 0.5 0.75 0.5 0.6745
0.3 0.6 0.7 0.4 0.5244
0.35 0.7 0.65 0.3 0.3853
0.4 0.8 0.6 0.2 0.2533
0.45 0.9 0.55 0.1 0.1257
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2‐sided α

df 0.20 0.10 0.05 0.01

20 1.3253 1.7247 2.0860 2.8453
21 1.3232 1.7207 2.0796 2.8314
22 1.3212 1.7171 2.0739 2.8188
23 1.3195 1.7139 2.0687 2.8073
24 1.3178 1.7109 2.0639 2.7969
25 1.3163 1.7081 2.0595 2.7874
26 1.3150 1.7056 2.0555 2.7787
27 1.3137 1.7033 2.0518 2.7707
28 1.3125 1.7011 2.0484 2.7633
29 1.3114 1.6991 2.0452 2.7564

30 1.3104 1.6973 2.0423 2.7500
31 1.3095 1.6955 2.0395 2.7440
32 1.3086 1.6939 2.0369 2.7385
33 1.3077 1.6924 2.0345 2.7333
34 1.3070 1.6909 2.0322 2.7284
35 1.3062 1.6896 2.0301 2.7238
36 1.3055 1.6883 2.0281 2.7195
37 1.3049 1.6871 2.0262 2.7154
38 1.3042 1.6860 2.0244 2.7116
39 1.3036 1.6849 2.0227 2.7079
40 1.3031 1.6839 2.0211 2.7045
41 1.3025 1.6829 2.0195 2.7012
42 1.3020 1.6820 2.0181 2.6981
43 1.3016 1.6811 2.0167 2.6951
44 1.3011 1.6802 2.0154 2.6923
45 1.3006 1.6794 2.0141 2.6896

∞ 1.2816 1.6449 1.9600 2.5759

Table 1.3  (Continued)
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